OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [boehm-gc/] [os_dep.c] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/*
2
 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3
 * Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.
4
 * Copyright (c) 1996-1999 by Silicon Graphics.  All rights reserved.
5
 * Copyright (c) 1999 by Hewlett-Packard Company.  All rights reserved.
6
 *
7
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8
 * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
9
 *
10
 * Permission is hereby granted to use or copy this program
11
 * for any purpose,  provided the above notices are retained on all copies.
12
 * Permission to modify the code and to distribute modified code is granted,
13
 * provided the above notices are retained, and a notice that the code was
14
 * modified is included with the above copyright notice.
15
 */
16
 
17
# include "private/gc_priv.h"
18
 
19
# if defined(LINUX) && !defined(POWERPC)
20
#   include <linux/version.h>
21
#   if (LINUX_VERSION_CODE <= 0x10400)
22
      /* Ugly hack to get struct sigcontext_struct definition.  Required      */
23
      /* for some early 1.3.X releases.  Will hopefully go away soon. */
24
      /* in some later Linux releases, asm/sigcontext.h may have to   */
25
      /* be included instead.                                         */
26
#     define __KERNEL__
27
#     include <asm/signal.h>
28
#     undef __KERNEL__
29
#   else
30
      /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31
      /* struct sigcontext.  libc6 (glibc2) uses "struct sigcontext" in     */
32
      /* prototypes, so we have to include the top-level sigcontext.h to    */
33
      /* make sure the former gets defined to be the latter if appropriate. */
34
#     include <features.h>
35
#     if 2 <= __GLIBC__
36
#       if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37
          /* glibc 2.1 no longer has sigcontext.h.  But signal.h        */
38
          /* has the right declaration for glibc 2.1.                   */
39
#         include <sigcontext.h>
40
#       endif /* 0 == __GLIBC_MINOR__ */
41
#     else /* not 2 <= __GLIBC__ */
42
        /* libc5 doesn't have <sigcontext.h>: go directly with the kernel   */
43
        /* one.  Check LINUX_VERSION_CODE to see which we should reference. */
44
#       include <asm/sigcontext.h>
45
#     endif /* 2 <= __GLIBC__ */
46
#   endif
47
# endif
48
# if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49
    && !defined(MSWINCE)
50
#   include <sys/types.h>
51
#   if !defined(MSWIN32) && !defined(SUNOS4)
52
#       include <unistd.h>
53
#   endif
54
# endif
55
 
56
# include <stdio.h>
57
# if defined(MSWINCE)
58
#   define SIGSEGV 0 /* value is irrelevant */
59
# else
60
#   include <signal.h>
61
# endif
62
 
63
/* Blatantly OS dependent routines, except for those that are related   */
64
/* to dynamic loading.                                                  */
65
 
66
# if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
67
#   define NEED_FIND_LIMIT
68
# endif
69
 
70
# if !defined(STACKBOTTOM) && defined(HEURISTIC2)
71
#   define NEED_FIND_LIMIT
72
# endif
73
 
74
# if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
75
#   define NEED_FIND_LIMIT
76
# endif
77
 
78
# if (defined(SVR4) || defined(AUX) || defined(DGUX) \
79
      || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
80
#   define NEED_FIND_LIMIT
81
# endif
82
 
83
#if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__))
84
#  include <machine/trap.h>
85
#  if !defined(PCR)
86
#    define NEED_FIND_LIMIT
87
#  endif
88
#endif
89
 
90
#if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
91
    && !defined(NEED_FIND_LIMIT)
92
   /* Used by GC_init_netbsd_elf() below.       */
93
#  define NEED_FIND_LIMIT
94
#endif
95
 
96
#ifdef NEED_FIND_LIMIT
97
#   include <setjmp.h>
98
#endif
99
 
100
#ifdef AMIGA
101
# define GC_AMIGA_DEF
102
# include "AmigaOS.c"
103
# undef GC_AMIGA_DEF
104
#endif
105
 
106
#if defined(MSWIN32) || defined(MSWINCE)
107
# define WIN32_LEAN_AND_MEAN
108
# define NOSERVICE
109
# include <windows.h>
110
#endif
111
 
112
#ifdef MACOS
113
# include <Processes.h>
114
#endif
115
 
116
#ifdef IRIX5
117
# include <sys/uio.h>
118
# include <malloc.h>   /* for locking */
119
#endif
120
#if defined(USE_MMAP) || defined(USE_MUNMAP)
121
# ifndef USE_MMAP
122
    --> USE_MUNMAP requires USE_MMAP
123
# endif
124
# include <sys/types.h>
125
# include <sys/mman.h>
126
# include <sys/stat.h>
127
# include <errno.h>
128
#endif
129
 
130
#ifdef UNIX_LIKE
131
# include <fcntl.h>
132
# if defined(SUNOS5SIGS) && !defined(FREEBSD)
133
#  include <sys/siginfo.h>
134
# endif
135
  /* Define SETJMP and friends to be the version that restores  */
136
  /* the signal mask.                                           */
137
# define SETJMP(env) sigsetjmp(env, 1)
138
# define LONGJMP(env, val) siglongjmp(env, val)
139
# define JMP_BUF sigjmp_buf
140
#else
141
# define SETJMP(env) setjmp(env)
142
# define LONGJMP(env, val) longjmp(env, val)
143
# define JMP_BUF jmp_buf
144
#endif
145
 
146
#ifdef DARWIN
147
/* for get_etext and friends */
148
#include <mach-o/getsect.h>
149
#endif
150
 
151
#ifdef DJGPP
152
  /* Apparently necessary for djgpp 2.01.  May cause problems with      */
153
  /* other versions.                                                    */
154
  typedef long unsigned int caddr_t;
155
#endif
156
 
157
#ifdef PCR
158
# include "il/PCR_IL.h"
159
# include "th/PCR_ThCtl.h"
160
# include "mm/PCR_MM.h"
161
#endif
162
 
163
#if !defined(NO_EXECUTE_PERMISSION)
164
# define OPT_PROT_EXEC PROT_EXEC
165
#else
166
# define OPT_PROT_EXEC 0
167
#endif
168
 
169
#if defined(LINUX) && \
170
    (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
171
 
172
/* We need to parse /proc/self/maps, either to find dynamic libraries,  */
173
/* and/or to find the register backing store base (IA64).  Do it once   */
174
/* here.                                                                */
175
 
176
#define READ read
177
 
178
/* Repeatedly perform a read call until the buffer is filled or */
179
/* we encounter EOF.                                            */
180
ssize_t GC_repeat_read(int fd, char *buf, size_t count)
181
{
182
    ssize_t num_read = 0;
183
    ssize_t result;
184
 
185
    while (num_read < count) {
186
        result = READ(fd, buf + num_read, count - num_read);
187
        if (result < 0) return result;
188
        if (result == 0) break;
189
        num_read += result;
190
    }
191
    return num_read;
192
}
193
 
194
/*
195
 * Apply fn to a buffer containing the contents of /proc/self/maps.
196
 * Return the result of fn or, if we failed, 0.
197
 * We currently do nothing to /proc/self/maps other than simply read
198
 * it.  This code could be simplified if we could determine its size
199
 * ahead of time.
200
 */
201
 
202
word GC_apply_to_maps(word (*fn)(char *))
203
{
204
    int f;
205
    int result;
206
    size_t maps_size = 4000;  /* Initial guess.         */
207
    static char init_buf[1];
208
    static char *maps_buf = init_buf;
209
    static size_t maps_buf_sz = 1;
210
 
211
    /* Read /proc/self/maps, growing maps_buf as necessary.     */
212
        /* Note that we may not allocate conventionally, and    */
213
        /* thus can't use stdio.                                */
214
        do {
215
            if (maps_size >= maps_buf_sz) {
216
              /* Grow only by powers of 2, since we leak "too small" buffers. */
217
              while (maps_size >= maps_buf_sz) maps_buf_sz *= 2;
218
              maps_buf = GC_scratch_alloc(maps_buf_sz);
219
              if (maps_buf == 0) return 0;
220
            }
221
            f = open("/proc/self/maps", O_RDONLY);
222
            if (-1 == f) return 0;
223
            maps_size = 0;
224
            do {
225
                result = GC_repeat_read(f, maps_buf, maps_buf_sz-1);
226
                if (result <= 0) return 0;
227
                maps_size += result;
228
            } while (result == maps_buf_sz-1);
229
            close(f);
230
        } while (maps_size >= maps_buf_sz);
231
        maps_buf[maps_size] = '\0';
232
 
233
    /* Apply fn to result. */
234
        return fn(maps_buf);
235
}
236
 
237
#endif /* Need GC_apply_to_maps */
238
 
239
#if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
240
//
241
//  GC_parse_map_entry parses an entry from /proc/self/maps so we can
242
//  locate all writable data segments that belong to shared libraries.
243
//  The format of one of these entries and the fields we care about
244
//  is as follows:
245
//  XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537     name of mapping...\n
246
//  ^^^^^^^^ ^^^^^^^^ ^^^^          ^^
247
//  start    end      prot          maj_dev
248
//  0        9        18            32
249
//  
250
//  For 64 bit ABIs:
251
//  0        17       34            56
252
//
253
//  The parser is called with a pointer to the entry and the return value
254
//  is either NULL or is advanced to the next entry(the byte after the
255
//  trailing '\n'.)
256
//
257
#if CPP_WORDSZ == 32
258
# define OFFSET_MAP_START   0
259
# define OFFSET_MAP_END     9
260
# define OFFSET_MAP_PROT   18
261
# define OFFSET_MAP_MAJDEV 32
262
# define ADDR_WIDTH         8
263
#endif
264
 
265
#if CPP_WORDSZ == 64
266
# define OFFSET_MAP_START   0
267
# define OFFSET_MAP_END    17
268
# define OFFSET_MAP_PROT   34
269
# define OFFSET_MAP_MAJDEV 56
270
# define ADDR_WIDTH        16
271
#endif
272
 
273
/*
274
 * Assign various fields of the first line in buf_ptr to *start, *end,
275
 * *prot_buf and *maj_dev.  Only *prot_buf may be set for unwritable maps.
276
 */
277
char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
278
                                char *prot_buf, unsigned int *maj_dev)
279
{
280
    int i;
281
    char *tok;
282
 
283
    if (buf_ptr == NULL || *buf_ptr == '\0') {
284
        return NULL;
285
    }
286
 
287
    memcpy(prot_buf, buf_ptr+OFFSET_MAP_PROT, 4);
288
                                /* do the protections first. */
289
    prot_buf[4] = '\0';
290
 
291
    if (prot_buf[1] == 'w') {/* we can skip all of this if it's not writable. */
292
 
293
        tok = buf_ptr;
294
        buf_ptr[OFFSET_MAP_START+ADDR_WIDTH] = '\0';
295
        *start = strtoul(tok, NULL, 16);
296
 
297
        tok = buf_ptr+OFFSET_MAP_END;
298
        buf_ptr[OFFSET_MAP_END+ADDR_WIDTH] = '\0';
299
        *end = strtoul(tok, NULL, 16);
300
 
301
        buf_ptr += OFFSET_MAP_MAJDEV;
302
        tok = buf_ptr;
303
        while (*buf_ptr != ':') buf_ptr++;
304
        *buf_ptr++ = '\0';
305
        *maj_dev = strtoul(tok, NULL, 16);
306
    }
307
 
308
    while (*buf_ptr && *buf_ptr++ != '\n');
309
 
310
    return buf_ptr;
311
}
312
 
313
#endif /* Need to parse /proc/self/maps. */     
314
 
315
#if defined(SEARCH_FOR_DATA_START)
316
  /* The I386 case can be handled without a search.  The Alpha case     */
317
  /* used to be handled differently as well, but the rules changed      */
318
  /* for recent Linux versions.  This seems to be the easiest way to    */
319
  /* cover all versions.                                                */
320
 
321
# ifdef LINUX
322
    /* Some Linux distributions arrange to define __data_start.  Some   */
323
    /* define data_start as a weak symbol.  The latter is technically   */
324
    /* broken, since the user program may define data_start, in which   */
325
    /* case we lose.  Nonetheless, we try both, prefering __data_start. */
326
    /* We assume gcc-compatible pragmas.        */
327
#   pragma weak __data_start
328
    extern int __data_start[];
329
#   pragma weak data_start
330
    extern int data_start[];
331
# endif /* LINUX */
332
  extern int _end[];
333
 
334
  ptr_t GC_data_start;
335
 
336
  void GC_init_linux_data_start()
337
  {
338
    extern ptr_t GC_find_limit();
339
 
340
#   ifdef LINUX
341
      /* Try the easy approaches first: */
342
      if ((ptr_t)__data_start != 0) {
343
          GC_data_start = (ptr_t)(__data_start);
344
          return;
345
      }
346
      if ((ptr_t)data_start != 0) {
347
          GC_data_start = (ptr_t)(data_start);
348
          return;
349
      }
350
#   endif /* LINUX */
351
    GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
352
  }
353
#endif
354
 
355
# ifdef ECOS
356
 
357
# ifndef ECOS_GC_MEMORY_SIZE
358
# define ECOS_GC_MEMORY_SIZE (448 * 1024)
359
# endif /* ECOS_GC_MEMORY_SIZE */
360
 
361
// setjmp() function, as described in ANSI para 7.6.1.1
362
#undef SETJMP
363
#define SETJMP( __env__ )  hal_setjmp( __env__ )
364
 
365
// FIXME: This is a simple way of allocating memory which is
366
// compatible with ECOS early releases.  Later releases use a more
367
// sophisticated means of allocating memory than this simple static
368
// allocator, but this method is at least bound to work.
369
static char memory[ECOS_GC_MEMORY_SIZE];
370
static char *brk = memory;
371
 
372
static void *tiny_sbrk(ptrdiff_t increment)
373
{
374
  void *p = brk;
375
 
376
  brk += increment;
377
 
378
  if (brk >  memory + sizeof memory)
379
    {
380
      brk -= increment;
381
      return NULL;
382
    }
383
 
384
  return p;
385
}
386
#define sbrk tiny_sbrk
387
# endif /* ECOS */
388
 
389
#if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
390
  ptr_t GC_data_start;
391
 
392
  void GC_init_netbsd_elf()
393
  {
394
    extern ptr_t GC_find_limit();
395
    extern char **environ;
396
        /* This may need to be environ, without the underscore, for     */
397
        /* some versions.                                               */
398
    GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
399
  }
400
#endif
401
 
402
# ifdef OS2
403
 
404
# include <stddef.h>
405
 
406
# if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
407
 
408
struct exe_hdr {
409
    unsigned short      magic_number;
410
    unsigned short      padding[29];
411
    long                new_exe_offset;
412
};
413
 
414
#define E_MAGIC(x)      (x).magic_number
415
#define EMAGIC          0x5A4D  
416
#define E_LFANEW(x)     (x).new_exe_offset
417
 
418
struct e32_exe {
419
    unsigned char       magic_number[2];
420
    unsigned char       byte_order;
421
    unsigned char       word_order;
422
    unsigned long       exe_format_level;
423
    unsigned short      cpu;
424
    unsigned short      os;
425
    unsigned long       padding1[13];
426
    unsigned long       object_table_offset;
427
    unsigned long       object_count;
428
    unsigned long       padding2[31];
429
};
430
 
431
#define E32_MAGIC1(x)   (x).magic_number[0]
432
#define E32MAGIC1       'L'
433
#define E32_MAGIC2(x)   (x).magic_number[1]
434
#define E32MAGIC2       'X'
435
#define E32_BORDER(x)   (x).byte_order
436
#define E32LEBO         0
437
#define E32_WORDER(x)   (x).word_order
438
#define E32LEWO         0
439
#define E32_CPU(x)      (x).cpu
440
#define E32CPU286       1
441
#define E32_OBJTAB(x)   (x).object_table_offset
442
#define E32_OBJCNT(x)   (x).object_count
443
 
444
struct o32_obj {
445
    unsigned long       size;
446
    unsigned long       base;
447
    unsigned long       flags;
448
    unsigned long       pagemap;
449
    unsigned long       mapsize;
450
    unsigned long       reserved;
451
};
452
 
453
#define O32_FLAGS(x)    (x).flags
454
#define OBJREAD         0x0001L
455
#define OBJWRITE        0x0002L
456
#define OBJINVALID      0x0080L
457
#define O32_SIZE(x)     (x).size
458
#define O32_BASE(x)     (x).base
459
 
460
# else  /* IBM's compiler */
461
 
462
/* A kludge to get around what appears to be a header file bug */
463
# ifndef WORD
464
#   define WORD unsigned short
465
# endif
466
# ifndef DWORD
467
#   define DWORD unsigned long
468
# endif
469
 
470
# define EXE386 1
471
# include <newexe.h>
472
# include <exe386.h>
473
 
474
# endif  /* __IBMC__ */
475
 
476
# define INCL_DOSEXCEPTIONS
477
# define INCL_DOSPROCESS
478
# define INCL_DOSERRORS
479
# define INCL_DOSMODULEMGR
480
# define INCL_DOSMEMMGR
481
# include <os2.h>
482
 
483
 
484
/* Disable and enable signals during nontrivial allocations     */
485
 
486
void GC_disable_signals(void)
487
{
488
    ULONG nest;
489
 
490
    DosEnterMustComplete(&nest);
491
    if (nest != 1) ABORT("nested GC_disable_signals");
492
}
493
 
494
void GC_enable_signals(void)
495
{
496
    ULONG nest;
497
 
498
    DosExitMustComplete(&nest);
499
    if (nest != 0) ABORT("GC_enable_signals");
500
}
501
 
502
 
503
# else
504
 
505
#  if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
506
      && !defined(MSWINCE) \
507
      && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
508
      && !defined(NOSYS) && !defined(ECOS)
509
 
510
#   if defined(sigmask) && !defined(UTS4) && !defined(HURD)
511
        /* Use the traditional BSD interface */
512
#       define SIGSET_T int
513
#       define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
514
#       define SIG_FILL(set)  (set) = 0x7fffffff
515
          /* Setting the leading bit appears to provoke a bug in some   */
516
          /* longjmp implementations.  Most systems appear not to have  */
517
          /* a signal 32.                                               */
518
#       define SIGSETMASK(old, new) (old) = sigsetmask(new)
519
#   else
520
        /* Use POSIX/SYSV interface     */
521
#       define SIGSET_T sigset_t
522
#       define SIG_DEL(set, signal) sigdelset(&(set), (signal))
523
#       define SIG_FILL(set) sigfillset(&set)
524
#       define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
525
#   endif
526
 
527
static GC_bool mask_initialized = FALSE;
528
 
529
static SIGSET_T new_mask;
530
 
531
static SIGSET_T old_mask;
532
 
533
static SIGSET_T dummy;
534
 
535
#if defined(PRINTSTATS) && !defined(THREADS)
536
# define CHECK_SIGNALS
537
  int GC_sig_disabled = 0;
538
#endif
539
 
540
void GC_disable_signals()
541
{
542
    if (!mask_initialized) {
543
        SIG_FILL(new_mask);
544
 
545
        SIG_DEL(new_mask, SIGSEGV);
546
        SIG_DEL(new_mask, SIGILL);
547
        SIG_DEL(new_mask, SIGQUIT);
548
#       ifdef SIGBUS
549
            SIG_DEL(new_mask, SIGBUS);
550
#       endif
551
#       ifdef SIGIOT
552
            SIG_DEL(new_mask, SIGIOT);
553
#       endif
554
#       ifdef SIGEMT
555
            SIG_DEL(new_mask, SIGEMT);
556
#       endif
557
#       ifdef SIGTRAP
558
            SIG_DEL(new_mask, SIGTRAP);
559
#       endif 
560
        mask_initialized = TRUE;
561
    }
562
#   ifdef CHECK_SIGNALS
563
        if (GC_sig_disabled != 0) ABORT("Nested disables");
564
        GC_sig_disabled++;
565
#   endif
566
    SIGSETMASK(old_mask,new_mask);
567
}
568
 
569
void GC_enable_signals()
570
{
571
#   ifdef CHECK_SIGNALS
572
        if (GC_sig_disabled != 1) ABORT("Unmatched enable");
573
        GC_sig_disabled--;
574
#   endif
575
    SIGSETMASK(dummy,old_mask);
576
}
577
 
578
#  endif  /* !PCR */
579
 
580
# endif /*!OS/2 */
581
 
582
/* Ivan Demakov: simplest way (to me) */
583
#if defined (DOS4GW)
584
  void GC_disable_signals() { }
585
  void GC_enable_signals() { }
586
#endif
587
 
588
/* Find the page size */
589
word GC_page_size;
590
 
591
# if defined(MSWIN32) || defined(MSWINCE)
592
  void GC_setpagesize()
593
  {
594
    GetSystemInfo(&GC_sysinfo);
595
    GC_page_size = GC_sysinfo.dwPageSize;
596
  }
597
 
598
# else
599
#   if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
600
       || defined(USE_MUNMAP)
601
        void GC_setpagesize()
602
        {
603
            GC_page_size = GETPAGESIZE();
604
        }
605
#   else
606
        /* It's acceptable to fake it. */
607
        void GC_setpagesize()
608
        {
609
            GC_page_size = HBLKSIZE;
610
        }
611
#   endif
612
# endif
613
 
614
/*
615
 * Find the base of the stack.
616
 * Used only in single-threaded environment.
617
 * With threads, GC_mark_roots needs to know how to do this.
618
 * Called with allocator lock held.
619
 */
620
# if defined(MSWIN32) || defined(MSWINCE)
621
# define is_writable(prot) ((prot) == PAGE_READWRITE \
622
                            || (prot) == PAGE_WRITECOPY \
623
                            || (prot) == PAGE_EXECUTE_READWRITE \
624
                            || (prot) == PAGE_EXECUTE_WRITECOPY)
625
/* Return the number of bytes that are writable starting at p.  */
626
/* The pointer p is assumed to be page aligned.                 */
627
/* If base is not 0, *base becomes the beginning of the         */
628
/* allocation region containing p.                              */
629
word GC_get_writable_length(ptr_t p, ptr_t *base)
630
{
631
    MEMORY_BASIC_INFORMATION buf;
632
    word result;
633
    word protect;
634
 
635
    result = VirtualQuery(p, &buf, sizeof(buf));
636
    if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
637
    if (base != 0) *base = (ptr_t)(buf.AllocationBase);
638
    protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
639
    if (!is_writable(protect)) {
640
        return(0);
641
    }
642
    if (buf.State != MEM_COMMIT) return(0);
643
    return(buf.RegionSize);
644
}
645
 
646
ptr_t GC_get_stack_base()
647
{
648
    int dummy;
649
    ptr_t sp = (ptr_t)(&dummy);
650
    ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
651
    word size = GC_get_writable_length(trunc_sp, 0);
652
 
653
    return(trunc_sp + size);
654
}
655
 
656
 
657
# endif /* MS Windows */
658
 
659
# ifdef BEOS
660
# include <kernel/OS.h>
661
ptr_t GC_get_stack_base(){
662
        thread_info th;
663
        get_thread_info(find_thread(NULL),&th);
664
        return th.stack_end;
665
}
666
# endif /* BEOS */
667
 
668
 
669
# ifdef OS2
670
 
671
ptr_t GC_get_stack_base()
672
{
673
    PTIB ptib;
674
    PPIB ppib;
675
 
676
    if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
677
        GC_err_printf0("DosGetInfoBlocks failed\n");
678
        ABORT("DosGetInfoBlocks failed\n");
679
    }
680
    return((ptr_t)(ptib -> tib_pstacklimit));
681
}
682
 
683
# endif /* OS2 */
684
 
685
# ifdef AMIGA
686
#   define GC_AMIGA_SB
687
#   include "AmigaOS.c"
688
#   undef GC_AMIGA_SB
689
# endif /* AMIGA */
690
 
691
# if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
692
 
693
#   ifdef __STDC__
694
        typedef void (*handler)(int);
695
#   else
696
        typedef void (*handler)();
697
#   endif
698
 
699
#   if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
700
    || defined(HURD) || defined(NETBSD)
701
        static struct sigaction old_segv_act;
702
#       if defined(_sigargs) /* !Irix6.x */ || defined(HPUX) \
703
        || defined(HURD) || defined(NETBSD)
704
            static struct sigaction old_bus_act;
705
#       endif
706
#   else
707
        static handler old_segv_handler, old_bus_handler;
708
#   endif
709
 
710
#   ifdef __STDC__
711
      void GC_set_and_save_fault_handler(handler h)
712
#   else
713
      void GC_set_and_save_fault_handler(h)
714
      handler h;
715
#   endif
716
    {
717
#       if defined(SUNOS5SIGS) || defined(IRIX5)  \
718
        || defined(OSF1) || defined(HURD) || defined(NETBSD)
719
          struct sigaction      act;
720
 
721
          act.sa_handler        = h;
722
#         if 0 /* Was necessary for Solaris 2.3 and very temporary      */
723
               /* NetBSD bugs.                                          */
724
            act.sa_flags          = SA_RESTART | SA_NODEFER;
725
#         else
726
            act.sa_flags          = SA_RESTART;
727
#         endif
728
 
729
          (void) sigemptyset(&act.sa_mask);
730
#         ifdef GC_IRIX_THREADS
731
                /* Older versions have a bug related to retrieving and  */
732
                /* and setting a handler at the same time.              */
733
                (void) sigaction(SIGSEGV, 0, &old_segv_act);
734
                (void) sigaction(SIGSEGV, &act, 0);
735
#         else
736
                (void) sigaction(SIGSEGV, &act, &old_segv_act);
737
#               if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
738
                   || defined(HPUX) || defined(HURD) || defined(NETBSD)
739
                    /* Under Irix 5.x or HP/UX, we may get SIGBUS.      */
740
                    /* Pthreads doesn't exist under Irix 5.x, so we     */
741
                    /* don't have to worry in the threads case.         */
742
                    (void) sigaction(SIGBUS, &act, &old_bus_act);
743
#               endif
744
#         endif /* GC_IRIX_THREADS */
745
#       else
746
          old_segv_handler = signal(SIGSEGV, h);
747
#         ifdef SIGBUS
748
            old_bus_handler = signal(SIGBUS, h);
749
#         endif
750
#       endif
751
    }
752
# endif /* NEED_FIND_LIMIT || UNIX_LIKE */
753
 
754
# ifdef NEED_FIND_LIMIT
755
  /* Some tools to implement HEURISTIC2 */
756
#   define MIN_PAGE_SIZE 256    /* Smallest conceivable page size, bytes */
757
    /* static */ JMP_BUF GC_jmp_buf;
758
 
759
    /*ARGSUSED*/
760
    void GC_fault_handler(sig)
761
    int sig;
762
    {
763
        LONGJMP(GC_jmp_buf, 1);
764
    }
765
 
766
    void GC_setup_temporary_fault_handler()
767
    {
768
        GC_set_and_save_fault_handler(GC_fault_handler);
769
    }
770
 
771
    void GC_reset_fault_handler()
772
    {
773
#       if defined(SUNOS5SIGS) || defined(IRIX5) \
774
           || defined(OSF1) || defined(HURD) || defined(NETBSD)
775
          (void) sigaction(SIGSEGV, &old_segv_act, 0);
776
#         if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
777
             || defined(HPUX) || defined(HURD) || defined(NETBSD)
778
              (void) sigaction(SIGBUS, &old_bus_act, 0);
779
#         endif
780
#       else
781
          (void) signal(SIGSEGV, old_segv_handler);
782
#         ifdef SIGBUS
783
            (void) signal(SIGBUS, old_bus_handler);
784
#         endif
785
#       endif
786
    }
787
 
788
    /* Return the first nonaddressible location > p (up) or     */
789
    /* the smallest location q s.t. [q,p) is addressable (!up). */
790
    /* We assume that p (up) or p-1 (!up) is addressable.       */
791
    ptr_t GC_find_limit(p, up)
792
    ptr_t p;
793
    GC_bool up;
794
    {
795
        static VOLATILE ptr_t result;
796
                /* Needs to be static, since otherwise it may not be    */
797
                /* preserved across the longjmp.  Can safely be         */
798
                /* static since it's only called once, with the         */
799
                /* allocation lock held.                                */
800
 
801
 
802
        GC_setup_temporary_fault_handler();
803
        if (SETJMP(GC_jmp_buf) == 0) {
804
            result = (ptr_t)(((word)(p))
805
                              & ~(MIN_PAGE_SIZE-1));
806
            for (;;) {
807
                if (up) {
808
                    result += MIN_PAGE_SIZE;
809
                } else {
810
                    result -= MIN_PAGE_SIZE;
811
                }
812
                GC_noop1((word)(*result));
813
            }
814
        }
815
        GC_reset_fault_handler();
816
        if (!up) {
817
            result += MIN_PAGE_SIZE;
818
        }
819
        return(result);
820
    }
821
# endif
822
 
823
#if defined(ECOS) || defined(NOSYS)
824
  ptr_t GC_get_stack_base()
825
  {
826
    return STACKBOTTOM;
827
  }
828
#endif
829
 
830
#ifdef HPUX_STACKBOTTOM
831
 
832
#include <sys/param.h>
833
#include <sys/pstat.h>
834
 
835
  ptr_t GC_get_register_stack_base(void)
836
  {
837
    struct pst_vm_status vm_status;
838
 
839
    int i = 0;
840
    while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) {
841
      if (vm_status.pst_type == PS_RSESTACK) {
842
        return (ptr_t) vm_status.pst_vaddr;
843
      }
844
    }
845
 
846
    /* old way to get the register stackbottom */
847
    return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1)
848
                   & ~(BACKING_STORE_ALIGNMENT - 1));
849
  }
850
 
851
#endif /* HPUX_STACK_BOTTOM */
852
 
853
#ifdef LINUX_STACKBOTTOM
854
 
855
#include <sys/types.h>
856
#include <sys/stat.h>
857
#include <ctype.h>
858
 
859
# define STAT_SKIP 27   /* Number of fields preceding startstack        */
860
                        /* field in /proc/self/stat                     */
861
 
862
# pragma weak __libc_stack_end
863
  extern ptr_t __libc_stack_end;
864
 
865
# ifdef IA64
866
    /* Try to read the backing store base from /proc/self/maps. */
867
    /* We look for the writable mapping with a 0 major device,  */
868
    /* which is as close to our frame as possible, but below it.*/
869
    static word backing_store_base_from_maps(char *maps)
870
    {
871
      char prot_buf[5];
872
      char *buf_ptr = maps;
873
      word start, end;
874
      unsigned int maj_dev;
875
      word current_best = 0;
876
      word dummy;
877
 
878
      for (;;) {
879
        buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
880
        if (buf_ptr == NULL) return current_best;
881
        if (prot_buf[1] == 'w' && maj_dev == 0) {
882
            if (end < (word)(&dummy) && start > current_best) current_best = start;
883
        }
884
      }
885
      return current_best;
886
    }
887
 
888
    static word backing_store_base_from_proc(void)
889
    {
890
        return GC_apply_to_maps(backing_store_base_from_maps);
891
    }
892
 
893
#   pragma weak __libc_ia64_register_backing_store_base
894
    extern ptr_t __libc_ia64_register_backing_store_base;
895
 
896
    ptr_t GC_get_register_stack_base(void)
897
    {
898
      if (0 != &__libc_ia64_register_backing_store_base
899
          && 0 != __libc_ia64_register_backing_store_base) {
900
        /* Glibc 2.2.4 has a bug such that for dynamically linked       */
901
        /* executables __libc_ia64_register_backing_store_base is       */
902
        /* defined but uninitialized during constructor calls.          */
903
        /* Hence we check for both nonzero address and value.           */
904
        return __libc_ia64_register_backing_store_base;
905
      } else {
906
        word result = backing_store_base_from_proc();
907
        if (0 == result) {
908
          /* Use dumb heuristics.  Works only for default configuration. */
909
          result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
910
          result += BACKING_STORE_ALIGNMENT - 1;
911
          result &= ~(BACKING_STORE_ALIGNMENT - 1);
912
          /* Verify that it's at least readable.  If not, we goofed. */
913
          GC_noop1(*(word *)result);
914
        }
915
        return (ptr_t)result;
916
      }
917
    }
918
# endif
919
 
920
  ptr_t GC_linux_stack_base(void)
921
  {
922
    /* We read the stack base value from /proc/self/stat.  We do this   */
923
    /* using direct I/O system calls in order to avoid calling malloc   */
924
    /* in case REDIRECT_MALLOC is defined.                              */
925
#   define STAT_BUF_SIZE 4096
926
#   define STAT_READ read
927
          /* Should probably call the real read, if read is wrapped.    */
928
    char stat_buf[STAT_BUF_SIZE];
929
    int f;
930
    char c;
931
    word result = 0;
932
    size_t i, buf_offset = 0;
933
 
934
    /* First try the easy way.  This should work for glibc 2.2  */
935
    /* This fails in a prelinked ("prelink" command) executable */
936
    /* since the correct value of __libc_stack_end never        */
937
    /* becomes visible to us.  The second test works around     */
938
    /* this.                                                    */
939
      if (0 != &__libc_stack_end && 0 != __libc_stack_end ) {
940
#       ifdef IA64
941
          /* Some versions of glibc set the address 16 bytes too        */
942
          /* low while the initialization code is running.              */
943
          if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
944
            return __libc_stack_end + 0x10;
945
          } /* Otherwise it's not safe to add 16 bytes and we fall      */
946
            /* back to using /proc.                                     */
947
#       else 
948
#       ifdef SPARC
949
          /* Older versions of glibc for 64-bit Sparc do not set
950
           * this variable correctly, it gets set to either zero
951
           * or one.
952
           */
953
          if (__libc_stack_end != (ptr_t) (unsigned long)0x1)
954
            return __libc_stack_end;
955
#       else
956
          return __libc_stack_end;
957
#       endif
958
#       endif
959
      }
960
    f = open("/proc/self/stat", O_RDONLY);
961
    if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
962
        ABORT("Couldn't read /proc/self/stat");
963
    }
964
    c = stat_buf[buf_offset++];
965
    /* Skip the required number of fields.  This number is hopefully    */
966
    /* constant across all Linux implementations.                       */
967
      for (i = 0; i < STAT_SKIP; ++i) {
968
        while (isspace(c)) c = stat_buf[buf_offset++];
969
        while (!isspace(c)) c = stat_buf[buf_offset++];
970
      }
971
    while (isspace(c)) c = stat_buf[buf_offset++];
972
    while (isdigit(c)) {
973
      result *= 10;
974
      result += c - '0';
975
      c = stat_buf[buf_offset++];
976
    }
977
    close(f);
978
    if (result < 0x10000000) ABORT("Absurd stack bottom value");
979
    return (ptr_t)result;
980
  }
981
 
982
#endif /* LINUX_STACKBOTTOM */
983
 
984
#ifdef FREEBSD_STACKBOTTOM
985
 
986
/* This uses an undocumented sysctl call, but at least one expert       */
987
/* believes it will stay.                                               */
988
 
989
#include <unistd.h>
990
#include <sys/types.h>
991
#include <sys/sysctl.h>
992
 
993
  ptr_t GC_freebsd_stack_base(void)
994
  {
995
    int nm[2] = {CTL_KERN, KERN_USRSTACK};
996
    ptr_t base;
997
    size_t len = sizeof(ptr_t);
998
    int r = sysctl(nm, 2, &base, &len, NULL, 0);
999
 
1000
    if (r) ABORT("Error getting stack base");
1001
 
1002
    return base;
1003
  }
1004
 
1005
#endif /* FREEBSD_STACKBOTTOM */
1006
 
1007
#if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
1008
    && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
1009
 
1010
ptr_t GC_get_stack_base()
1011
{
1012
#   if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1013
       defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1014
    word dummy;
1015
    ptr_t result;
1016
#   endif
1017
 
1018
#   define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1019
 
1020
#   ifdef STACKBOTTOM
1021
        return(STACKBOTTOM);
1022
#   else
1023
#       ifdef HEURISTIC1
1024
#          ifdef STACK_GROWS_DOWN
1025
             result = (ptr_t)((((word)(&dummy))
1026
                               + STACKBOTTOM_ALIGNMENT_M1)
1027
                              & ~STACKBOTTOM_ALIGNMENT_M1);
1028
#          else
1029
             result = (ptr_t)(((word)(&dummy))
1030
                              & ~STACKBOTTOM_ALIGNMENT_M1);
1031
#          endif
1032
#       endif /* HEURISTIC1 */
1033
#       ifdef LINUX_STACKBOTTOM
1034
           result = GC_linux_stack_base();
1035
#       endif
1036
#       ifdef FREEBSD_STACKBOTTOM
1037
           result = GC_freebsd_stack_base();
1038
#       endif
1039
#       ifdef HEURISTIC2
1040
#           ifdef STACK_GROWS_DOWN
1041
                result = GC_find_limit((ptr_t)(&dummy), TRUE);
1042
#               ifdef HEURISTIC2_LIMIT
1043
                    if (result > HEURISTIC2_LIMIT
1044
                        && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1045
                            result = HEURISTIC2_LIMIT;
1046
                    }
1047
#               endif
1048
#           else
1049
                result = GC_find_limit((ptr_t)(&dummy), FALSE);
1050
#               ifdef HEURISTIC2_LIMIT
1051
                    if (result < HEURISTIC2_LIMIT
1052
                        && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1053
                            result = HEURISTIC2_LIMIT;
1054
                    }
1055
#               endif
1056
#           endif
1057
 
1058
#       endif /* HEURISTIC2 */
1059
#       ifdef STACK_GROWS_DOWN
1060
            if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1061
#       endif
1062
        return(result);
1063
#   endif /* STACKBOTTOM */
1064
}
1065
 
1066
# endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1067
 
1068
/*
1069
 * Register static data segment(s) as roots.
1070
 * If more data segments are added later then they need to be registered
1071
 * add that point (as we do with SunOS dynamic loading),
1072
 * or GC_mark_roots needs to check for them (as we do with PCR).
1073
 * Called with allocator lock held.
1074
 */
1075
 
1076
# ifdef OS2
1077
 
1078
void GC_register_data_segments()
1079
{
1080
    PTIB ptib;
1081
    PPIB ppib;
1082
    HMODULE module_handle;
1083
#   define PBUFSIZ 512
1084
    UCHAR path[PBUFSIZ];
1085
    FILE * myexefile;
1086
    struct exe_hdr hdrdos;      /* MSDOS header.        */
1087
    struct e32_exe hdr386;      /* Real header for my executable */
1088
    struct o32_obj seg; /* Currrent segment */
1089
    int nsegs;
1090
 
1091
 
1092
    if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1093
        GC_err_printf0("DosGetInfoBlocks failed\n");
1094
        ABORT("DosGetInfoBlocks failed\n");
1095
    }
1096
    module_handle = ppib -> pib_hmte;
1097
    if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1098
        GC_err_printf0("DosQueryModuleName failed\n");
1099
        ABORT("DosGetInfoBlocks failed\n");
1100
    }
1101
    myexefile = fopen(path, "rb");
1102
    if (myexefile == 0) {
1103
        GC_err_puts("Couldn't open executable ");
1104
        GC_err_puts(path); GC_err_puts("\n");
1105
        ABORT("Failed to open executable\n");
1106
    }
1107
    if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1108
        GC_err_puts("Couldn't read MSDOS header from ");
1109
        GC_err_puts(path); GC_err_puts("\n");
1110
        ABORT("Couldn't read MSDOS header");
1111
    }
1112
    if (E_MAGIC(hdrdos) != EMAGIC) {
1113
        GC_err_puts("Executable has wrong DOS magic number: ");
1114
        GC_err_puts(path); GC_err_puts("\n");
1115
        ABORT("Bad DOS magic number");
1116
    }
1117
    if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1118
        GC_err_puts("Seek to new header failed in ");
1119
        GC_err_puts(path); GC_err_puts("\n");
1120
        ABORT("Bad DOS magic number");
1121
    }
1122
    if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1123
        GC_err_puts("Couldn't read MSDOS header from ");
1124
        GC_err_puts(path); GC_err_puts("\n");
1125
        ABORT("Couldn't read OS/2 header");
1126
    }
1127
    if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1128
        GC_err_puts("Executable has wrong OS/2 magic number:");
1129
        GC_err_puts(path); GC_err_puts("\n");
1130
        ABORT("Bad OS/2 magic number");
1131
    }
1132
    if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1133
        GC_err_puts("Executable %s has wrong byte order: ");
1134
        GC_err_puts(path); GC_err_puts("\n");
1135
        ABORT("Bad byte order");
1136
    }
1137
    if ( E32_CPU(hdr386) == E32CPU286) {
1138
        GC_err_puts("GC can't handle 80286 executables: ");
1139
        GC_err_puts(path); GC_err_puts("\n");
1140
        EXIT();
1141
    }
1142
    if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1143
              SEEK_SET) != 0) {
1144
        GC_err_puts("Seek to object table failed: ");
1145
        GC_err_puts(path); GC_err_puts("\n");
1146
        ABORT("Seek to object table failed");
1147
    }
1148
    for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1149
      int flags;
1150
      if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1151
        GC_err_puts("Couldn't read obj table entry from ");
1152
        GC_err_puts(path); GC_err_puts("\n");
1153
        ABORT("Couldn't read obj table entry");
1154
      }
1155
      flags = O32_FLAGS(seg);
1156
      if (!(flags & OBJWRITE)) continue;
1157
      if (!(flags & OBJREAD)) continue;
1158
      if (flags & OBJINVALID) {
1159
          GC_err_printf0("Object with invalid pages?\n");
1160
          continue;
1161
      }
1162
      GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1163
    }
1164
}
1165
 
1166
# else /* !OS2 */
1167
 
1168
# if defined(MSWIN32) || defined(MSWINCE)
1169
 
1170
# ifdef MSWIN32
1171
  /* Unfortunately, we have to handle win32s very differently from NT,  */
1172
  /* Since VirtualQuery has very different semantics.  In particular,   */
1173
  /* under win32s a VirtualQuery call on an unmapped page returns an    */
1174
  /* invalid result.  Under NT, GC_register_data_segments is a noop and */
1175
  /* all real work is done by GC_register_dynamic_libraries.  Under     */
1176
  /* win32s, we cannot find the data segments associated with dll's.    */
1177
  /* We register the main data segment here.                            */
1178
  GC_bool GC_no_win32_dlls = FALSE;
1179
        /* This used to be set for gcc, to avoid dealing with           */
1180
        /* the structured exception handling issues.  But we now have   */
1181
        /* assembly code to do that right.                              */
1182
 
1183
  void GC_init_win32()
1184
  {
1185
    /* if we're running under win32s, assume that no DLLs will be loaded */
1186
    DWORD v = GetVersion();
1187
    GC_no_win32_dlls |= ((v & 0x80000000) && (v & 0xff) <= 3);
1188
  }
1189
 
1190
  /* Return the smallest address a such that VirtualQuery               */
1191
  /* returns correct results for all addresses between a and start.     */
1192
  /* Assumes VirtualQuery returns correct information for start.        */
1193
  ptr_t GC_least_described_address(ptr_t start)
1194
  {
1195
    MEMORY_BASIC_INFORMATION buf;
1196
    DWORD result;
1197
    LPVOID limit;
1198
    ptr_t p;
1199
    LPVOID q;
1200
 
1201
    limit = GC_sysinfo.lpMinimumApplicationAddress;
1202
    p = (ptr_t)((word)start & ~(GC_page_size - 1));
1203
    for (;;) {
1204
        q = (LPVOID)(p - GC_page_size);
1205
        if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1206
        result = VirtualQuery(q, &buf, sizeof(buf));
1207
        if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1208
        p = (ptr_t)(buf.AllocationBase);
1209
    }
1210
    return(p);
1211
  }
1212
# endif
1213
 
1214
# ifndef REDIRECT_MALLOC
1215
  /* We maintain a linked list of AllocationBase values that we know    */
1216
  /* correspond to malloc heap sections.  Currently this is only called */
1217
  /* during a GC.  But there is some hope that for long running         */
1218
  /* programs we will eventually see most heap sections.                */
1219
 
1220
  /* In the long run, it would be more reliable to occasionally walk    */
1221
  /* the malloc heap with HeapWalk on the default heap.  But that       */
1222
  /* apparently works only for NT-based Windows.                        */
1223
 
1224
  /* In the long run, a better data structure would also be nice ...    */
1225
  struct GC_malloc_heap_list {
1226
    void * allocation_base;
1227
    struct GC_malloc_heap_list *next;
1228
  } *GC_malloc_heap_l = 0;
1229
 
1230
  /* Is p the base of one of the malloc heap sections we already know   */
1231
  /* about?                                                             */
1232
  GC_bool GC_is_malloc_heap_base(ptr_t p)
1233
  {
1234
    struct GC_malloc_heap_list *q = GC_malloc_heap_l;
1235
 
1236
    while (0 != q) {
1237
      if (q -> allocation_base == p) return TRUE;
1238
      q = q -> next;
1239
    }
1240
    return FALSE;
1241
  }
1242
 
1243
  void *GC_get_allocation_base(void *p)
1244
  {
1245
    MEMORY_BASIC_INFORMATION buf;
1246
    DWORD result = VirtualQuery(p, &buf, sizeof(buf));
1247
    if (result != sizeof(buf)) {
1248
      ABORT("Weird VirtualQuery result");
1249
    }
1250
    return buf.AllocationBase;
1251
  }
1252
 
1253
  size_t GC_max_root_size = 100000;     /* Appr. largest root size.     */
1254
 
1255
  void GC_add_current_malloc_heap()
1256
  {
1257
    struct GC_malloc_heap_list *new_l =
1258
                 malloc(sizeof(struct GC_malloc_heap_list));
1259
    void * candidate = GC_get_allocation_base(new_l);
1260
 
1261
    if (new_l == 0) return;
1262
    if (GC_is_malloc_heap_base(candidate)) {
1263
      /* Try a little harder to find malloc heap.                       */
1264
        size_t req_size = 10000;
1265
        do {
1266
          void *p = malloc(req_size);
1267
          if (0 == p) { free(new_l); return; }
1268
          candidate = GC_get_allocation_base(p);
1269
          free(p);
1270
          req_size *= 2;
1271
        } while (GC_is_malloc_heap_base(candidate)
1272
                 && req_size < GC_max_root_size/10 && req_size < 500000);
1273
        if (GC_is_malloc_heap_base(candidate)) {
1274
          free(new_l); return;
1275
        }
1276
    }
1277
#   ifdef CONDPRINT
1278
      if (GC_print_stats)
1279
          GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1280
                     candidate);
1281
#   endif
1282
    new_l -> allocation_base = candidate;
1283
    new_l -> next = GC_malloc_heap_l;
1284
    GC_malloc_heap_l = new_l;
1285
  }
1286
# endif /* REDIRECT_MALLOC */
1287
 
1288
  /* Is p the start of either the malloc heap, or of one of our */
1289
  /* heap sections?                                             */
1290
  GC_bool GC_is_heap_base (ptr_t p)
1291
  {
1292
 
1293
     unsigned i;
1294
 
1295
#    ifndef REDIRECT_MALLOC
1296
       static word last_gc_no = -1;
1297
 
1298
       if (last_gc_no != GC_gc_no) {
1299
         GC_add_current_malloc_heap();
1300
         last_gc_no = GC_gc_no;
1301
       }
1302
       if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
1303
       if (GC_is_malloc_heap_base(p)) return TRUE;
1304
#    endif
1305
     for (i = 0; i < GC_n_heap_bases; i++) {
1306
         if (GC_heap_bases[i] == p) return TRUE;
1307
     }
1308
     return FALSE ;
1309
  }
1310
 
1311
# ifdef MSWIN32
1312
  void GC_register_root_section(ptr_t static_root)
1313
  {
1314
      MEMORY_BASIC_INFORMATION buf;
1315
      DWORD result;
1316
      DWORD protect;
1317
      LPVOID p;
1318
      char * base;
1319
      char * limit, * new_limit;
1320
 
1321
      if (!GC_no_win32_dlls) return;
1322
      p = base = limit = GC_least_described_address(static_root);
1323
      while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1324
        result = VirtualQuery(p, &buf, sizeof(buf));
1325
        if (result != sizeof(buf) || buf.AllocationBase == 0
1326
            || GC_is_heap_base(buf.AllocationBase)) break;
1327
        new_limit = (char *)p + buf.RegionSize;
1328
        protect = buf.Protect;
1329
        if (buf.State == MEM_COMMIT
1330
            && is_writable(protect)) {
1331
            if ((char *)p == limit) {
1332
                limit = new_limit;
1333
            } else {
1334
                if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1335
                base = p;
1336
                limit = new_limit;
1337
            }
1338
        }
1339
        if (p > (LPVOID)new_limit /* overflow */) break;
1340
        p = (LPVOID)new_limit;
1341
      }
1342
      if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1343
  }
1344
#endif
1345
 
1346
  void GC_register_data_segments()
1347
  {
1348
#     ifdef MSWIN32
1349
      static char dummy;
1350
      GC_register_root_section((ptr_t)(&dummy));
1351
#     endif
1352
  }
1353
 
1354
# else /* !OS2 && !Windows */
1355
 
1356
# if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1357
      || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1358
ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1359
int max_page_size;
1360
int * etext_addr;
1361
{
1362
    word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1363
                    & ~(sizeof(word) - 1);
1364
        /* etext rounded to word boundary       */
1365
    word next_page = ((text_end + (word)max_page_size - 1)
1366
                      & ~((word)max_page_size - 1));
1367
    word page_offset = (text_end & ((word)max_page_size - 1));
1368
    VOLATILE char * result = (char *)(next_page + page_offset);
1369
    /* Note that this isnt equivalent to just adding            */
1370
    /* max_page_size to &etext if &etext is at a page boundary  */
1371
 
1372
    GC_setup_temporary_fault_handler();
1373
    if (SETJMP(GC_jmp_buf) == 0) {
1374
        /* Try writing to the address.  */
1375
        *result = *result;
1376
        GC_reset_fault_handler();
1377
    } else {
1378
        GC_reset_fault_handler();
1379
        /* We got here via a longjmp.  The address is not readable.     */
1380
        /* This is known to happen under Solaris 2.4 + gcc, which place */
1381
        /* string constants in the text segment, but after etext.       */
1382
        /* Use plan B.  Note that we now know there is a gap between    */
1383
        /* text and data segments, so plan A bought us something.       */
1384
        result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
1385
    }
1386
    return((ptr_t)result);
1387
}
1388
# endif
1389
 
1390
# if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__)) && !defined(PCR)
1391
/* Its unclear whether this should be identical to the above, or        */
1392
/* whether it should apply to non-X86 architectures.                    */
1393
/* For now we don't assume that there is always an empty page after     */
1394
/* etext.  But in some cases there actually seems to be slightly more.  */
1395
/* This also deals with holes between read-only data and writable data. */
1396
ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
1397
int max_page_size;
1398
int * etext_addr;
1399
{
1400
    word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1401
                     & ~(sizeof(word) - 1);
1402
        /* etext rounded to word boundary       */
1403
    VOLATILE word next_page = (text_end + (word)max_page_size - 1)
1404
                              & ~((word)max_page_size - 1);
1405
    VOLATILE ptr_t result = (ptr_t)text_end;
1406
    GC_setup_temporary_fault_handler();
1407
    if (SETJMP(GC_jmp_buf) == 0) {
1408
        /* Try reading at the address.                          */
1409
        /* This should happen before there is another thread.   */
1410
        for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
1411
            *(VOLATILE char *)next_page;
1412
        GC_reset_fault_handler();
1413
    } else {
1414
        GC_reset_fault_handler();
1415
        /* As above, we go to plan B    */
1416
        result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1417
    }
1418
    return(result);
1419
}
1420
 
1421
# endif
1422
 
1423
 
1424
#ifdef AMIGA
1425
 
1426
#  define GC_AMIGA_DS
1427
#  include "AmigaOS.c"
1428
#  undef GC_AMIGA_DS
1429
 
1430
#else /* !OS2 && !Windows && !AMIGA */
1431
 
1432
void GC_register_data_segments()
1433
{
1434
#   if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1435
#     if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1436
        /* As of Solaris 2.3, the Solaris threads implementation        */
1437
        /* allocates the data structure for the initial thread with     */
1438
        /* sbrk at process startup.  It needs to be scanned, so that    */
1439
        /* we don't lose some malloc allocated data structures          */
1440
        /* hanging from it.  We're on thin ice here ...                 */
1441
        extern caddr_t sbrk();
1442
 
1443
        GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1444
#     else
1445
        GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1446
#       if defined(DATASTART2)
1447
         GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1448
#       endif
1449
#     endif
1450
#   endif
1451
#   if defined(MACOS)
1452
    {
1453
#   if defined(THINK_C)
1454
        extern void* GC_MacGetDataStart(void);
1455
        /* globals begin above stack and end at a5. */
1456
        GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1457
                           (ptr_t)LMGetCurrentA5(), FALSE);
1458
#   else
1459
#     if defined(__MWERKS__)
1460
#       if !__POWERPC__
1461
          extern void* GC_MacGetDataStart(void);
1462
          /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1463
#         if __option(far_data)
1464
          extern void* GC_MacGetDataEnd(void);
1465
#         endif
1466
          /* globals begin above stack and end at a5. */
1467
          GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1468
                             (ptr_t)LMGetCurrentA5(), FALSE);
1469
          /* MATTHEW: Handle Far Globals */
1470
#         if __option(far_data)
1471
      /* Far globals follow he QD globals: */
1472
          GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1473
                             (ptr_t)GC_MacGetDataEnd(), FALSE);
1474
#         endif
1475
#       else
1476
          extern char __data_start__[], __data_end__[];
1477
          GC_add_roots_inner((ptr_t)&__data_start__,
1478
                             (ptr_t)&__data_end__, FALSE);
1479
#       endif /* __POWERPC__ */
1480
#     endif /* __MWERKS__ */
1481
#   endif /* !THINK_C */
1482
    }
1483
#   endif /* MACOS */
1484
 
1485
    /* Dynamic libraries are added at every collection, since they may  */
1486
    /* change.                                                          */
1487
}
1488
 
1489
# endif  /* ! AMIGA */
1490
# endif  /* ! MSWIN32 && ! MSWINCE*/
1491
# endif  /* ! OS2 */
1492
 
1493
/*
1494
 * Auxiliary routines for obtaining memory from OS.
1495
 */
1496
 
1497
# if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1498
        && !defined(MSWIN32) && !defined(MSWINCE) \
1499
        && !defined(MACOS) && !defined(DOS4GW)
1500
 
1501
# ifdef SUNOS4
1502
    extern caddr_t sbrk();
1503
# endif
1504
# ifdef __STDC__
1505
#   define SBRK_ARG_T ptrdiff_t
1506
# else
1507
#   define SBRK_ARG_T int
1508
# endif
1509
 
1510
 
1511
# ifdef RS6000
1512
/* The compiler seems to generate speculative reads one past the end of */
1513
/* an allocated object.  Hence we need to make sure that the page       */
1514
/* following the last heap page is also mapped.                         */
1515
ptr_t GC_unix_get_mem(bytes)
1516
word bytes;
1517
{
1518
    caddr_t cur_brk = (caddr_t)sbrk(0);
1519
    caddr_t result;
1520
    SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1521
    static caddr_t my_brk_val = 0;
1522
 
1523
    if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1524
    if (lsbs != 0) {
1525
        if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1526
    }
1527
    if (cur_brk == my_brk_val) {
1528
        /* Use the extra block we allocated last time. */
1529
        result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1530
        if (result == (caddr_t)(-1)) return(0);
1531
        result -= GC_page_size;
1532
    } else {
1533
        result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1534
        if (result == (caddr_t)(-1)) return(0);
1535
    }
1536
    my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1537
    return((ptr_t)result);
1538
}
1539
 
1540
#else  /* Not RS6000 */
1541
 
1542
#if defined(USE_MMAP) || defined(USE_MUNMAP)
1543
 
1544
#ifdef USE_MMAP_FIXED
1545
#   define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1546
        /* Seems to yield better performance on Solaris 2, but can      */
1547
        /* be unreliable if something is already mapped at the address. */
1548
#else
1549
#   define GC_MMAP_FLAGS MAP_PRIVATE
1550
#endif
1551
 
1552
#ifdef USE_MMAP_ANON
1553
# define zero_fd -1
1554
# if defined(MAP_ANONYMOUS)
1555
#   define OPT_MAP_ANON MAP_ANONYMOUS
1556
# else
1557
#   define OPT_MAP_ANON MAP_ANON
1558
# endif
1559
#else
1560
  static int zero_fd;
1561
# define OPT_MAP_ANON 0
1562
#endif 
1563
 
1564
#endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1565
 
1566
#if defined(USE_MMAP)
1567
/* Tested only under Linux, IRIX5 and Solaris 2 */
1568
 
1569
#ifndef HEAP_START
1570
#   define HEAP_START 0
1571
#endif
1572
 
1573
ptr_t GC_unix_get_mem(bytes)
1574
word bytes;
1575
{
1576
    void *result;
1577
    static ptr_t last_addr = HEAP_START;
1578
 
1579
#   ifndef USE_MMAP_ANON
1580
      static GC_bool initialized = FALSE;
1581
 
1582
      if (!initialized) {
1583
          zero_fd = open("/dev/zero", O_RDONLY);
1584
          fcntl(zero_fd, F_SETFD, FD_CLOEXEC);
1585
          initialized = TRUE;
1586
      }
1587
#   endif
1588
 
1589
    if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1590
    result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1591
                  GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */);
1592
    if (result == MAP_FAILED) return(0);
1593
    last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1594
    last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1595
#   if !defined(LINUX)
1596
      if (last_addr == 0) {
1597
        /* Oops.  We got the end of the address space.  This isn't      */
1598
        /* usable by arbitrary C code, since one-past-end pointers      */
1599
        /* don't work, so we discard it and try again.                  */
1600
        munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1601
                        /* Leave last page mapped, so we can't repeat. */
1602
        return GC_unix_get_mem(bytes);
1603
      }
1604
#   else
1605
      GC_ASSERT(last_addr != 0);
1606
#   endif
1607
    return((ptr_t)result);
1608
}
1609
 
1610
#else /* Not RS6000, not USE_MMAP */
1611
ptr_t GC_unix_get_mem(bytes)
1612
word bytes;
1613
{
1614
  ptr_t result;
1615
# ifdef IRIX5
1616
    /* Bare sbrk isn't thread safe.  Play by malloc rules.      */
1617
    /* The equivalent may be needed on other systems as well.   */
1618
    __LOCK_MALLOC();
1619
# endif
1620
  {
1621
    ptr_t cur_brk = (ptr_t)sbrk(0);
1622
    SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1623
 
1624
    if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1625
    if (lsbs != 0) {
1626
        if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1627
    }
1628
    result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1629
    if (result == (ptr_t)(-1)) result = 0;
1630
  }
1631
# ifdef IRIX5
1632
    __UNLOCK_MALLOC();
1633
# endif
1634
  return(result);
1635
}
1636
 
1637
#endif /* Not USE_MMAP */
1638
#endif /* Not RS6000 */
1639
 
1640
# endif /* UN*X */
1641
 
1642
# ifdef OS2
1643
 
1644
void * os2_alloc(size_t bytes)
1645
{
1646
    void * result;
1647
 
1648
    if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1649
                                    PAG_WRITE | PAG_COMMIT)
1650
                    != NO_ERROR) {
1651
        return(0);
1652
    }
1653
    if (result == 0) return(os2_alloc(bytes));
1654
    return(result);
1655
}
1656
 
1657
# endif /* OS2 */
1658
 
1659
 
1660
# if defined(MSWIN32) || defined(MSWINCE)
1661
SYSTEM_INFO GC_sysinfo;
1662
# endif
1663
 
1664
# ifdef MSWIN32
1665
 
1666
# ifdef USE_GLOBAL_ALLOC
1667
#   define GLOBAL_ALLOC_TEST 1
1668
# else
1669
#   define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1670
# endif
1671
 
1672
word GC_n_heap_bases = 0;
1673
 
1674
ptr_t GC_win32_get_mem(bytes)
1675
word bytes;
1676
{
1677
    ptr_t result;
1678
 
1679
    if (GLOBAL_ALLOC_TEST) {
1680
        /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE.    */
1681
        /* There are also unconfirmed rumors of other           */
1682
        /* problems, so we dodge the issue.                     */
1683
        result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1684
        result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1685
    } else {
1686
        /* VirtualProtect only works on regions returned by a   */
1687
        /* single VirtualAlloc call.  Thus we allocate one      */
1688
        /* extra page, which will prevent merging of blocks     */
1689
        /* in separate regions, and eliminate any temptation    */
1690
        /* to call VirtualProtect on a range spanning regions.  */
1691
        /* This wastes a small amount of memory, and risks      */
1692
        /* increased fragmentation.  But better alternatives    */
1693
        /* would require effort.                                */
1694
        result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1695
                                      MEM_COMMIT | MEM_RESERVE,
1696
                                      PAGE_EXECUTE_READWRITE);
1697
    }
1698
    if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1699
        /* If I read the documentation correctly, this can      */
1700
        /* only happen if HBLKSIZE > 64k or not a power of 2.   */
1701
    if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1702
    GC_heap_bases[GC_n_heap_bases++] = result;
1703
    return(result);
1704
}
1705
 
1706
void GC_win32_free_heap ()
1707
{
1708
    if (GC_no_win32_dlls) {
1709
        while (GC_n_heap_bases > 0) {
1710
            GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1711
            GC_heap_bases[GC_n_heap_bases] = 0;
1712
        }
1713
    }
1714
}
1715
# endif
1716
 
1717
#ifdef AMIGA
1718
# define GC_AMIGA_AM
1719
# include "AmigaOS.c"
1720
# undef GC_AMIGA_AM
1721
#endif
1722
 
1723
 
1724
# ifdef MSWINCE
1725
word GC_n_heap_bases = 0;
1726
 
1727
ptr_t GC_wince_get_mem(bytes)
1728
word bytes;
1729
{
1730
    ptr_t result;
1731
    word i;
1732
 
1733
    /* Round up allocation size to multiple of page size */
1734
    bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1735
 
1736
    /* Try to find reserved, uncommitted pages */
1737
    for (i = 0; i < GC_n_heap_bases; i++) {
1738
        if (((word)(-(signed_word)GC_heap_lengths[i])
1739
             & (GC_sysinfo.dwAllocationGranularity-1))
1740
            >= bytes) {
1741
            result = GC_heap_bases[i] + GC_heap_lengths[i];
1742
            break;
1743
        }
1744
    }
1745
 
1746
    if (i == GC_n_heap_bases) {
1747
        /* Reserve more pages */
1748
        word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1749
                         & ~(GC_sysinfo.dwAllocationGranularity-1);
1750
        /* If we ever support MPROTECT_VDB here, we will probably need to       */
1751
        /* ensure that res_bytes is strictly > bytes, so that VirtualProtect    */
1752
        /* never spans regions.  It seems to be OK for a VirtualFree argument   */
1753
        /* to span regions, so we should be OK for now.                         */
1754
        result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1755
                                      MEM_RESERVE | MEM_TOP_DOWN,
1756
                                      PAGE_EXECUTE_READWRITE);
1757
        if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1758
            /* If I read the documentation correctly, this can  */
1759
            /* only happen if HBLKSIZE > 64k or not a power of 2.       */
1760
        if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1761
        GC_heap_bases[GC_n_heap_bases] = result;
1762
        GC_heap_lengths[GC_n_heap_bases] = 0;
1763
        GC_n_heap_bases++;
1764
    }
1765
 
1766
    /* Commit pages */
1767
    result = (ptr_t) VirtualAlloc(result, bytes,
1768
                                  MEM_COMMIT,
1769
                                  PAGE_EXECUTE_READWRITE);
1770
    if (result != NULL) {
1771
        if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1772
        GC_heap_lengths[i] += bytes;
1773
    }
1774
 
1775
    return(result);
1776
}
1777
# endif
1778
 
1779
#ifdef USE_MUNMAP
1780
 
1781
/* For now, this only works on Win32/WinCE and some Unix-like   */
1782
/* systems.  If you have something else, don't define           */
1783
/* USE_MUNMAP.                                                  */
1784
/* We assume ANSI C to support this feature.                    */
1785
 
1786
#if !defined(MSWIN32) && !defined(MSWINCE)
1787
 
1788
#include <unistd.h>
1789
#include <sys/mman.h>
1790
#include <sys/stat.h>
1791
#include <sys/types.h>
1792
 
1793
#endif
1794
 
1795
/* Compute a page aligned starting address for the unmap        */
1796
/* operation on a block of size bytes starting at start.        */
1797
/* Return 0 if the block is too small to make this feasible.    */
1798
ptr_t GC_unmap_start(ptr_t start, word bytes)
1799
{
1800
    ptr_t result = start;
1801
    /* Round start to next page boundary.       */
1802
        result += GC_page_size - 1;
1803
        result = (ptr_t)((word)result & ~(GC_page_size - 1));
1804
    if (result + GC_page_size > start + bytes) return 0;
1805
    return result;
1806
}
1807
 
1808
/* Compute end address for an unmap operation on the indicated  */
1809
/* block.                                                       */
1810
ptr_t GC_unmap_end(ptr_t start, word bytes)
1811
{
1812
    ptr_t end_addr = start + bytes;
1813
    end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1814
    return end_addr;
1815
}
1816
 
1817
/* Under Win32/WinCE we commit (map) and decommit (unmap)       */
1818
/* memory using VirtualAlloc and VirtualFree.  These functions  */
1819
/* work on individual allocations of virtual memory, made       */
1820
/* previously using VirtualAlloc with the MEM_RESERVE flag.     */
1821
/* The ranges we need to (de)commit may span several of these   */
1822
/* allocations; therefore we use VirtualQuery to check          */
1823
/* allocation lengths, and split up the range as necessary.     */
1824
 
1825
/* We assume that GC_remap is called on exactly the same range  */
1826
/* as a previous call to GC_unmap.  It is safe to consistently  */
1827
/* round the endpoints in both places.                          */
1828
void GC_unmap(ptr_t start, word bytes)
1829
{
1830
    ptr_t start_addr = GC_unmap_start(start, bytes);
1831
    ptr_t end_addr = GC_unmap_end(start, bytes);
1832
    word len = end_addr - start_addr;
1833
    if (0 == start_addr) return;
1834
#   if defined(MSWIN32) || defined(MSWINCE)
1835
      while (len != 0) {
1836
          MEMORY_BASIC_INFORMATION mem_info;
1837
          GC_word free_len;
1838
          if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1839
              != sizeof(mem_info))
1840
              ABORT("Weird VirtualQuery result");
1841
          free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1842
          if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1843
              ABORT("VirtualFree failed");
1844
          GC_unmapped_bytes += free_len;
1845
          start_addr += free_len;
1846
          len -= free_len;
1847
      }
1848
#   else
1849
      /* We immediately remap it to prevent an intervening mmap from    */
1850
      /* accidentally grabbing the same address space.                  */
1851
      {
1852
        void * result;
1853
        result = mmap(start_addr, len, PROT_NONE,
1854
                      MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
1855
                      zero_fd, 0/* offset */);
1856
        if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
1857
      }
1858
      GC_unmapped_bytes += len;
1859
#   endif
1860
}
1861
 
1862
 
1863
void GC_remap(ptr_t start, word bytes)
1864
{
1865
    ptr_t start_addr = GC_unmap_start(start, bytes);
1866
    ptr_t end_addr = GC_unmap_end(start, bytes);
1867
    word len = end_addr - start_addr;
1868
 
1869
#   if defined(MSWIN32) || defined(MSWINCE)
1870
      ptr_t result;
1871
 
1872
      if (0 == start_addr) return;
1873
      while (len != 0) {
1874
          MEMORY_BASIC_INFORMATION mem_info;
1875
          GC_word alloc_len;
1876
          if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1877
              != sizeof(mem_info))
1878
              ABORT("Weird VirtualQuery result");
1879
          alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1880
          result = VirtualAlloc(start_addr, alloc_len,
1881
                                MEM_COMMIT,
1882
                                PAGE_EXECUTE_READWRITE);
1883
          if (result != start_addr) {
1884
              ABORT("VirtualAlloc remapping failed");
1885
          }
1886
          GC_unmapped_bytes -= alloc_len;
1887
          start_addr += alloc_len;
1888
          len -= alloc_len;
1889
      }
1890
#   else
1891
      /* It was already remapped with PROT_NONE. */
1892
      int result;
1893
 
1894
      if (0 == start_addr) return;
1895
      result = mprotect(start_addr, len,
1896
                        PROT_READ | PROT_WRITE | OPT_PROT_EXEC);
1897
      if (result != 0) {
1898
          GC_err_printf3(
1899
                "Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
1900
                start_addr, len, errno);
1901
          ABORT("Mprotect remapping failed");
1902
      }
1903
      GC_unmapped_bytes -= len;
1904
#   endif
1905
}
1906
 
1907
/* Two adjacent blocks have already been unmapped and are about to      */
1908
/* be merged.  Unmap the whole block.  This typically requires          */
1909
/* that we unmap a small section in the middle that was not previously  */
1910
/* unmapped due to alignment constraints.                               */
1911
void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1912
{
1913
    ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1914
    ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1915
    ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1916
    ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1917
    ptr_t start_addr = end1_addr;
1918
    ptr_t end_addr = start2_addr;
1919
    word len;
1920
    GC_ASSERT(start1 + bytes1 == start2);
1921
    if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1922
    if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1923
    if (0 == start_addr) return;
1924
    len = end_addr - start_addr;
1925
#   if defined(MSWIN32) || defined(MSWINCE)
1926
      while (len != 0) {
1927
          MEMORY_BASIC_INFORMATION mem_info;
1928
          GC_word free_len;
1929
          if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1930
              != sizeof(mem_info))
1931
              ABORT("Weird VirtualQuery result");
1932
          free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1933
          if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1934
              ABORT("VirtualFree failed");
1935
          GC_unmapped_bytes += free_len;
1936
          start_addr += free_len;
1937
          len -= free_len;
1938
      }
1939
#   else
1940
      if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1941
      GC_unmapped_bytes += len;
1942
#   endif
1943
}
1944
 
1945
#endif /* USE_MUNMAP */
1946
 
1947
/* Routine for pushing any additional roots.  In THREADS        */
1948
/* environment, this is also responsible for marking from       */
1949
/* thread stacks.                                               */
1950
#ifndef THREADS
1951
void (*GC_push_other_roots)() = 0;
1952
#else /* THREADS */
1953
 
1954
# ifdef PCR
1955
PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1956
{
1957
    struct PCR_ThCtl_TInfoRep info;
1958
    PCR_ERes result;
1959
 
1960
    info.ti_stkLow = info.ti_stkHi = 0;
1961
    result = PCR_ThCtl_GetInfo(t, &info);
1962
    GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1963
    return(result);
1964
}
1965
 
1966
/* Push the contents of an old object. We treat this as stack   */
1967
/* data only becasue that makes it robust against mark stack    */
1968
/* overflow.                                                    */
1969
PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1970
{
1971
    GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1972
    return(PCR_ERes_okay);
1973
}
1974
 
1975
 
1976
void GC_default_push_other_roots GC_PROTO((void))
1977
{
1978
    /* Traverse data allocated by previous memory managers.             */
1979
        {
1980
          extern struct PCR_MM_ProcsRep * GC_old_allocator;
1981
 
1982
          if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1983
                                                   GC_push_old_obj, 0)
1984
              != PCR_ERes_okay) {
1985
              ABORT("Old object enumeration failed");
1986
          }
1987
        }
1988
    /* Traverse all thread stacks. */
1989
        if (PCR_ERes_IsErr(
1990
                PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1991
              || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1992
              ABORT("Thread stack marking failed\n");
1993
        }
1994
}
1995
 
1996
# endif /* PCR */
1997
 
1998
# ifdef SRC_M3
1999
 
2000
# ifdef ALL_INTERIOR_POINTERS
2001
    --> misconfigured
2002
# endif
2003
 
2004
void GC_push_thread_structures GC_PROTO((void))
2005
{
2006
    /* Not our responsibibility. */
2007
}
2008
 
2009
extern void ThreadF__ProcessStacks();
2010
 
2011
void GC_push_thread_stack(start, stop)
2012
word start, stop;
2013
{
2014
   GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
2015
}
2016
 
2017
/* Push routine with M3 specific calling convention. */
2018
GC_m3_push_root(dummy1, p, dummy2, dummy3)
2019
word *p;
2020
ptr_t dummy1, dummy2;
2021
int dummy3;
2022
{
2023
    word q = *p;
2024
 
2025
    GC_PUSH_ONE_STACK(q, p);
2026
}
2027
 
2028
/* M3 set equivalent to RTHeap.TracedRefTypes */
2029
typedef struct { int elts[1]; }  RefTypeSet;
2030
RefTypeSet GC_TracedRefTypes = {{0x1}};
2031
 
2032
void GC_default_push_other_roots GC_PROTO((void))
2033
{
2034
    /* Use the M3 provided routine for finding static roots.     */
2035
    /* This is a bit dubious, since it presumes no C roots.      */
2036
    /* We handle the collector roots explicitly in GC_push_roots */
2037
        RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
2038
        if (GC_words_allocd > 0) {
2039
            ThreadF__ProcessStacks(GC_push_thread_stack);
2040
        }
2041
        /* Otherwise this isn't absolutely necessary, and we have       */
2042
        /* startup ordering problems.                                   */
2043
}
2044
 
2045
# endif /* SRC_M3 */
2046
 
2047
# if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2048
     defined(GC_WIN32_THREADS)
2049
 
2050
extern void GC_push_all_stacks();
2051
 
2052
void GC_default_push_other_roots GC_PROTO((void))
2053
{
2054
    GC_push_all_stacks();
2055
}
2056
 
2057
# endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2058
 
2059
void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
2060
 
2061
#endif /* THREADS */
2062
 
2063
/*
2064
 * Routines for accessing dirty  bits on virtual pages.
2065
 * We plan to eventually implement four strategies for doing so:
2066
 * DEFAULT_VDB: A simple dummy implementation that treats every page
2067
 *              as possibly dirty.  This makes incremental collection
2068
 *              useless, but the implementation is still correct.
2069
 * PCR_VDB:     Use PPCRs virtual dirty bit facility.
2070
 * PROC_VDB:    Use the /proc facility for reading dirty bits.  Only
2071
 *              works under some SVR4 variants.  Even then, it may be
2072
 *              too slow to be entirely satisfactory.  Requires reading
2073
 *              dirty bits for entire address space.  Implementations tend
2074
 *              to assume that the client is a (slow) debugger.
2075
 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2076
 *              dirtied pages.  The implementation (and implementability)
2077
 *              is highly system dependent.  This usually fails when system
2078
 *              calls write to a protected page.  We prevent the read system
2079
 *              call from doing so.  It is the clients responsibility to
2080
 *              make sure that other system calls are similarly protected
2081
 *              or write only to the stack.
2082
 */
2083
GC_bool GC_dirty_maintained = FALSE;
2084
 
2085
# ifdef DEFAULT_VDB
2086
 
2087
/* All of the following assume the allocation lock is held, and */
2088
/* signals are disabled.                                        */
2089
 
2090
/* The client asserts that unallocated pages in the heap are never      */
2091
/* written.                                                             */
2092
 
2093
/* Initialize virtual dirty bit implementation.                 */
2094
void GC_dirty_init()
2095
{
2096
#   ifdef PRINTSTATS
2097
      GC_printf0("Initializing DEFAULT_VDB...\n");
2098
#   endif
2099
    GC_dirty_maintained = TRUE;
2100
}
2101
 
2102
/* Retrieve system dirty bits for heap to a local buffer.       */
2103
/* Restore the systems notion of which pages are dirty.         */
2104
void GC_read_dirty()
2105
{}
2106
 
2107
/* Is the HBLKSIZE sized page at h marked dirty in the local buffer?    */
2108
/* If the actual page size is different, this returns TRUE if any       */
2109
/* of the pages overlapping h are dirty.  This routine may err on the   */
2110
/* side of labelling pages as dirty (and this implementation does).     */
2111
/*ARGSUSED*/
2112
GC_bool GC_page_was_dirty(h)
2113
struct hblk *h;
2114
{
2115
    return(TRUE);
2116
}
2117
 
2118
/*
2119
 * The following two routines are typically less crucial.  They matter
2120
 * most with large dynamic libraries, or if we can't accurately identify
2121
 * stacks, e.g. under Solaris 2.X.  Otherwise the following default
2122
 * versions are adequate.
2123
 */
2124
 
2125
/* Could any valid GC heap pointer ever have been written to this page? */
2126
/*ARGSUSED*/
2127
GC_bool GC_page_was_ever_dirty(h)
2128
struct hblk *h;
2129
{
2130
    return(TRUE);
2131
}
2132
 
2133
/* Reset the n pages starting at h to "was never dirty" status. */
2134
void GC_is_fresh(h, n)
2135
struct hblk *h;
2136
word n;
2137
{
2138
}
2139
 
2140
/* A call that:                                         */
2141
/* I) hints that [h, h+nblocks) is about to be written. */
2142
/* II) guarantees that protection is removed.           */
2143
/* (I) may speed up some dirty bit implementations.     */
2144
/* (II) may be essential if we need to ensure that      */
2145
/* pointer-free system call buffers in the heap are     */
2146
/* not protected.                                       */
2147
/*ARGSUSED*/
2148
void GC_remove_protection(h, nblocks, is_ptrfree)
2149
struct hblk *h;
2150
word nblocks;
2151
GC_bool is_ptrfree;
2152
{
2153
}
2154
 
2155
# endif /* DEFAULT_VDB */
2156
 
2157
 
2158
# ifdef MPROTECT_VDB
2159
 
2160
/*
2161
 * See DEFAULT_VDB for interface descriptions.
2162
 */
2163
 
2164
/*
2165
 * This implementation maintains dirty bits itself by catching write
2166
 * faults and keeping track of them.  We assume nobody else catches
2167
 * SIGBUS or SIGSEGV.  We assume no write faults occur in system calls.
2168
 * This means that clients must ensure that system calls don't write
2169
 * to the write-protected heap.  Probably the best way to do this is to
2170
 * ensure that system calls write at most to POINTERFREE objects in the
2171
 * heap, and do even that only if we are on a platform on which those
2172
 * are not protected.  Another alternative is to wrap system calls
2173
 * (see example for read below), but the current implementation holds
2174
 * a lock across blocking calls, making it problematic for multithreaded
2175
 * applications.
2176
 * We assume the page size is a multiple of HBLKSIZE.
2177
 * We prefer them to be the same.  We avoid protecting POINTERFREE
2178
 * objects only if they are the same.
2179
 */
2180
 
2181
# if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2182
 
2183
#   include <sys/mman.h>
2184
#   include <signal.h>
2185
#   include <sys/syscall.h>
2186
 
2187
#   define PROTECT(addr, len) \
2188
          if (mprotect((caddr_t)(addr), (size_t)(len), \
2189
                       PROT_READ | OPT_PROT_EXEC) < 0) { \
2190
            ABORT("mprotect failed"); \
2191
          }
2192
#   define UNPROTECT(addr, len) \
2193
          if (mprotect((caddr_t)(addr), (size_t)(len), \
2194
                       PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2195
            ABORT("un-mprotect failed"); \
2196
          }
2197
 
2198
# else
2199
 
2200
# ifdef DARWIN
2201
    /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2202
       decrease the likelihood of some of the problems described below. */
2203
    #include <mach/vm_map.h>
2204
    static mach_port_t GC_task_self;
2205
    #define PROTECT(addr,len) \
2206
        if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2207
                FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2208
            ABORT("vm_portect failed"); \
2209
        }
2210
    #define UNPROTECT(addr,len) \
2211
        if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2212
                FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2213
            ABORT("vm_portect failed"); \
2214
        }
2215
# else
2216
 
2217
#   ifndef MSWINCE
2218
#     include <signal.h>
2219
#   endif
2220
 
2221
    static DWORD protect_junk;
2222
#   define PROTECT(addr, len) \
2223
          if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2224
                              &protect_junk)) { \
2225
            DWORD last_error = GetLastError(); \
2226
            GC_printf1("Last error code: %lx\n", last_error); \
2227
            ABORT("VirtualProtect failed"); \
2228
          }
2229
#   define UNPROTECT(addr, len) \
2230
          if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2231
                              &protect_junk)) { \
2232
            ABORT("un-VirtualProtect failed"); \
2233
          }
2234
# endif /* !DARWIN */
2235
# endif /* MSWIN32 || MSWINCE || DARWIN */
2236
 
2237
#if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2238
    typedef void (* SIG_PF)();
2239
#endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2240
 
2241
#if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2242
    || defined(HURD)
2243
# ifdef __STDC__
2244
    typedef void (* SIG_PF)(int);
2245
# else
2246
    typedef void (* SIG_PF)();
2247
# endif
2248
#endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2249
 
2250
#if defined(MSWIN32)
2251
    typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2252
#   undef SIG_DFL
2253
#   define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2254
#endif
2255
#if defined(MSWINCE)
2256
    typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2257
#   undef SIG_DFL
2258
#   define SIG_DFL (SIG_PF) (-1)
2259
#endif
2260
 
2261
#if defined(IRIX5) || defined(OSF1) || defined(HURD)
2262
    typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
2263
#endif /* IRIX5 || OSF1 || HURD */
2264
 
2265
#if defined(SUNOS5SIGS)
2266
# if defined(HPUX) || defined(FREEBSD)
2267
#   define SIGINFO_T siginfo_t
2268
# else
2269
#   define SIGINFO_T struct siginfo
2270
# endif
2271
# ifdef __STDC__
2272
    typedef void (* REAL_SIG_PF)(int, SIGINFO_T *, void *);
2273
# else
2274
    typedef void (* REAL_SIG_PF)();
2275
# endif
2276
#endif /* SUNOS5SIGS */
2277
 
2278
#if defined(LINUX)
2279
#   if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2280
      typedef struct sigcontext s_c;
2281
#   else  /* glibc < 2.2 */
2282
#     include <linux/version.h>
2283
#     if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2284
        typedef struct sigcontext s_c;
2285
#     else
2286
        typedef struct sigcontext_struct s_c;
2287
#     endif
2288
#   endif  /* glibc < 2.2 */
2289
#   if defined(ALPHA) || defined(M68K)
2290
      typedef void (* REAL_SIG_PF)(int, int, s_c *);
2291
#   else
2292
#     if defined(IA64) || defined(HP_PA) || defined(X86_64)
2293
        typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2294
        /* FIXME:                                                 */
2295
        /* According to SUSV3, the last argument should have type */
2296
        /* void * or ucontext_t *                                 */
2297
#     else
2298
        typedef void (* REAL_SIG_PF)(int, s_c);
2299
#     endif
2300
#   endif
2301
#   ifdef ALPHA
2302
    /* Retrieve fault address from sigcontext structure by decoding     */
2303
    /* instruction.                                                     */
2304
    char * get_fault_addr(s_c *sc) {
2305
        unsigned instr;
2306
        word faultaddr;
2307
 
2308
        instr = *((unsigned *)(sc->sc_pc));
2309
        faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2310
        faultaddr += (word) (((int)instr << 16) >> 16);
2311
        return (char *)faultaddr;
2312
    }
2313
#   endif /* !ALPHA */
2314
# endif /* LINUX */
2315
 
2316
#ifndef DARWIN
2317
SIG_PF GC_old_bus_handler;
2318
SIG_PF GC_old_segv_handler;     /* Also old MSWIN32 ACCESS_VIOLATION filter */
2319
#endif /* !DARWIN */
2320
 
2321
#if defined(THREADS)
2322
/* We need to lock around the bitmap update in the write fault handler  */
2323
/* in order to avoid the risk of losing a bit.  We do this with a       */
2324
/* test-and-set spin lock if we know how to do that.  Otherwise we      */
2325
/* check whether we are already in the handler and use the dumb but     */
2326
/* safe fallback algorithm of setting all bits in the word.             */
2327
/* Contention should be very rare, so we do the minimum to handle it    */
2328
/* correctly.                                                           */
2329
#ifdef GC_TEST_AND_SET_DEFINED
2330
  static VOLATILE unsigned int fault_handler_lock = 0;
2331
  void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2332
    while (GC_test_and_set(&fault_handler_lock)) {}
2333
    /* Could also revert to set_pht_entry_from_index_safe if initial    */
2334
    /* GC_test_and_set fails.                                           */
2335
    set_pht_entry_from_index(db, index);
2336
    GC_clear(&fault_handler_lock);
2337
  }
2338
#else /* !GC_TEST_AND_SET_DEFINED */
2339
  /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong,  */
2340
  /* just before we notice the conflict and correct it. We may end up   */
2341
  /* looking at it while it's wrong.  But this requires contention      */
2342
  /* exactly when a GC is triggered, which seems far less likely to     */
2343
  /* fail than the old code, which had no reported failures.  Thus we   */
2344
  /* leave it this way while we think of something better, or support   */
2345
  /* GC_test_and_set on the remaining platforms.                        */
2346
  static VOLATILE word currently_updating = 0;
2347
  void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2348
    unsigned int update_dummy;
2349
    currently_updating = (word)(&update_dummy);
2350
    set_pht_entry_from_index(db, index);
2351
    /* If we get contention in the 10 or so instruction window here,    */
2352
    /* and we get stopped by a GC between the two updates, we lose!     */
2353
    if (currently_updating != (word)(&update_dummy)) {
2354
        set_pht_entry_from_index_safe(db, index);
2355
        /* We claim that if two threads concurrently try to update the  */
2356
        /* dirty bit vector, the first one to execute UPDATE_START      */
2357
        /* will see it changed when UPDATE_END is executed.  (Note that */
2358
        /* &update_dummy must differ in two distinct threads.)  It      */
2359
        /* will then execute set_pht_entry_from_index_safe, thus        */
2360
        /* returning us to a safe state, though not soon enough.        */
2361
    }
2362
  }
2363
#endif /* !GC_TEST_AND_SET_DEFINED */
2364
#else /* !THREADS */
2365
# define async_set_pht_entry_from_index(db, index) \
2366
        set_pht_entry_from_index(db, index)
2367
#endif /* !THREADS */
2368
 
2369
/*ARGSUSED*/
2370
#if !defined(DARWIN)
2371
# if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2372
    void GC_write_fault_handler(sig, code, scp, addr)
2373
    int sig, code;
2374
    struct sigcontext *scp;
2375
    char * addr;
2376
#   ifdef SUNOS4
2377
#     define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2378
#     define CODE_OK (FC_CODE(code) == FC_PROT \
2379
                    || (FC_CODE(code) == FC_OBJERR \
2380
                       && FC_ERRNO(code) == FC_PROT))
2381
#   endif
2382
#   ifdef FREEBSD
2383
#     define SIG_OK (sig == SIGBUS)
2384
#     define CODE_OK (code == BUS_PAGE_FAULT)
2385
#   endif
2386
# endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2387
 
2388
# if defined(IRIX5) || defined(OSF1) || defined(HURD)
2389
#   include <errno.h>
2390
    void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2391
#   ifdef OSF1
2392
#     define SIG_OK (sig == SIGSEGV)
2393
#     define CODE_OK (code == 2 /* experimentally determined */)
2394
#   endif
2395
#   ifdef IRIX5
2396
#     define SIG_OK (sig == SIGSEGV)
2397
#     define CODE_OK (code == EACCES)
2398
#   endif
2399
#   ifdef HURD
2400
#     define SIG_OK (sig == SIGBUS || sig == SIGSEGV)   
2401
#     define CODE_OK  TRUE
2402
#   endif
2403
# endif /* IRIX5 || OSF1 || HURD */
2404
 
2405
# if defined(LINUX)
2406
#   if defined(ALPHA) || defined(M68K)
2407
      void GC_write_fault_handler(int sig, int code, s_c * sc)
2408
#   else
2409
#     if defined(IA64) || defined(HP_PA) || defined(X86_64)
2410
        void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2411
#     else
2412
#       if defined(ARM32)
2413
          void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2414
#       else
2415
          void GC_write_fault_handler(int sig, s_c sc)
2416
#       endif
2417
#     endif
2418
#   endif
2419
#   define SIG_OK (sig == SIGSEGV)
2420
#   define CODE_OK TRUE
2421
        /* Empirically c.trapno == 14, on IA32, but is that useful?     */
2422
        /* Should probably consider alignment issues on other           */
2423
        /* architectures.                                               */
2424
# endif /* LINUX */
2425
 
2426
# if defined(SUNOS5SIGS)
2427
#  ifdef __STDC__
2428
    void GC_write_fault_handler(int sig, SIGINFO_T *scp, void * context)
2429
#  else
2430
    void GC_write_fault_handler(sig, scp, context)
2431
    int sig;
2432
    SIGINFO_T *scp;
2433
    void * context;
2434
#  endif
2435
#   ifdef HPUX
2436
#     define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2437
#     define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2438
                     || (scp -> si_code == BUS_ADRERR) \
2439
                     || (scp -> si_code == BUS_UNKNOWN) \
2440
                     || (scp -> si_code == SEGV_UNKNOWN) \
2441
                     || (scp -> si_code == BUS_OBJERR)
2442
#   else
2443
#     ifdef FREEBSD
2444
#       define SIG_OK (sig == SIGBUS)
2445
#       define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2446
#     else
2447
#       define SIG_OK (sig == SIGSEGV)
2448
#       define CODE_OK (scp -> si_code == SEGV_ACCERR)
2449
#     endif
2450
#   endif    
2451
# endif /* SUNOS5SIGS */
2452
 
2453
# if defined(MSWIN32) || defined(MSWINCE)
2454
    LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2455
#   define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2456
                        STATUS_ACCESS_VIOLATION)
2457
#   define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2458
                        /* Write fault */
2459
# endif /* MSWIN32 || MSWINCE */
2460
{
2461
    register unsigned i;
2462
#   if defined(HURD) 
2463
        char *addr = (char *) code;
2464
#   endif
2465
#   ifdef IRIX5
2466
        char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2467
#   endif
2468
#   if defined(OSF1) && defined(ALPHA)
2469
        char * addr = (char *) (scp -> sc_traparg_a0);
2470
#   endif
2471
#   ifdef SUNOS5SIGS
2472
        char * addr = (char *) (scp -> si_addr);
2473
#   endif
2474
#   ifdef LINUX
2475
#     if defined(I386)
2476
        char * addr = (char *) (sc.cr2);
2477
#     else
2478
#       if defined(M68K)
2479
          char * addr = NULL;
2480
 
2481
          struct sigcontext *scp = (struct sigcontext *)(sc);
2482
 
2483
          int format = (scp->sc_formatvec >> 12) & 0xf;
2484
          unsigned long *framedata = (unsigned long *)(scp + 1);
2485
          unsigned long ea;
2486
 
2487
          if (format == 0xa || format == 0xb) {
2488
                /* 68020/030 */
2489
                ea = framedata[2];
2490
          } else if (format == 7) {
2491
                /* 68040 */
2492
                ea = framedata[3];
2493
                if (framedata[1] & 0x08000000) {
2494
                        /* correct addr on misaligned access */
2495
                        ea = (ea+4095)&(~4095);
2496
                }
2497
          } else if (format == 4) {
2498
                /* 68060 */
2499
                ea = framedata[0];
2500
                if (framedata[1] & 0x08000000) {
2501
                        /* correct addr on misaligned access */
2502
                        ea = (ea+4095)&(~4095);
2503
                }
2504
          }
2505
          addr = (char *)ea;
2506
#       else
2507
#         ifdef ALPHA
2508
            char * addr = get_fault_addr(sc);
2509
#         else
2510
#           if defined(IA64) || defined(HP_PA) || defined(X86_64)
2511
              char * addr = si -> si_addr;
2512
              /* I believe this is claimed to work on all platforms for */
2513
              /* Linux 2.3.47 and later.  Hopefully we don't have to    */
2514
              /* worry about earlier kernels on IA64.                   */
2515
#           else
2516
#             if defined(POWERPC)
2517
                char * addr = (char *) (sc.regs->dar);
2518
#             else
2519
#               if defined(ARM32)
2520
                  char * addr = (char *)sc.fault_address;
2521
#               else
2522
#                 if defined(CRIS)
2523
                    char * addr = (char *)sc.regs.csraddr;
2524
#                 else
2525
                    --> architecture not supported
2526
#                 endif
2527
#               endif
2528
#             endif
2529
#           endif
2530
#         endif
2531
#       endif
2532
#     endif
2533
#   endif
2534
#   if defined(MSWIN32) || defined(MSWINCE)
2535
        char * addr = (char *) (exc_info -> ExceptionRecord
2536
                                -> ExceptionInformation[1]);
2537
#       define sig SIGSEGV
2538
#   endif
2539
 
2540
    if (SIG_OK && CODE_OK) {
2541
        register struct hblk * h =
2542
                        (struct hblk *)((word)addr & ~(GC_page_size-1));
2543
        GC_bool in_allocd_block;
2544
 
2545
#       ifdef SUNOS5SIGS
2546
            /* Address is only within the correct physical page.        */
2547
            in_allocd_block = FALSE;
2548
            for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2549
              if (HDR(h+i) != 0) {
2550
                in_allocd_block = TRUE;
2551
              }
2552
            }
2553
#       else
2554
            in_allocd_block = (HDR(addr) != 0);
2555
#       endif
2556
        if (!in_allocd_block) {
2557
            /* FIXME - We should make sure that we invoke the   */
2558
            /* old handler with the appropriate calling         */
2559
            /* sequence, which often depends on SA_SIGINFO.     */
2560
 
2561
            /* Heap blocks now begin and end on page boundaries */
2562
            SIG_PF old_handler;
2563
 
2564
            if (sig == SIGSEGV) {
2565
                old_handler = GC_old_segv_handler;
2566
            } else {
2567
                old_handler = GC_old_bus_handler;
2568
            }
2569
            if (old_handler == SIG_DFL) {
2570
#               if !defined(MSWIN32) && !defined(MSWINCE)
2571
                    GC_err_printf1("Segfault at 0x%lx\n", addr);
2572
                    ABORT("Unexpected bus error or segmentation fault");
2573
#               else
2574
                    return(EXCEPTION_CONTINUE_SEARCH);
2575
#               endif
2576
            } else {
2577
#               if defined (SUNOS4) \
2578
                    || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2579
                    (*old_handler) (sig, code, scp, addr);
2580
                    return;
2581
#               endif
2582
#               if defined (SUNOS5SIGS)
2583
                    /*
2584
                     * FIXME: For FreeBSD, this code should check if the
2585
                     * old signal handler used the traditional BSD style and
2586
                     * if so call it using that style.
2587
                     */
2588
                    (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2589
                    return;
2590
#               endif
2591
#               if defined (LINUX)
2592
#                   if defined(ALPHA) || defined(M68K)
2593
                        (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2594
#                   else 
2595
#                     if defined(IA64) || defined(HP_PA) || defined(X86_64)
2596
                        (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2597
#                     else
2598
                        (*(REAL_SIG_PF)old_handler) (sig, sc);
2599
#                     endif
2600
#                   endif
2601
                    return;
2602
#               endif
2603
#               if defined (IRIX5) || defined(OSF1) || defined(HURD)
2604
                    (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2605
                    return;
2606
#               endif
2607
#               ifdef MSWIN32
2608
                    return((*old_handler)(exc_info));
2609
#               endif
2610
            }
2611
        }
2612
        UNPROTECT(h, GC_page_size);
2613
        /* We need to make sure that no collection occurs between       */
2614
        /* the UNPROTECT and the setting of the dirty bit.  Otherwise   */
2615
        /* a write by a third thread might go unnoticed.  Reversing     */
2616
        /* the order is just as bad, since we would end up unprotecting */
2617
        /* a page in a GC cycle during which it's not marked.           */
2618
        /* Currently we do this by disabling the thread stopping        */
2619
        /* signals while this handler is running.  An alternative might */
2620
        /* be to record the fact that we're about to unprotect, or      */
2621
        /* have just unprotected a page in the GC's thread structure,   */
2622
        /* and then to have the thread stopping code set the dirty      */
2623
        /* flag, if necessary.                                          */
2624
        for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2625
            register int index = PHT_HASH(h+i);
2626
 
2627
            async_set_pht_entry_from_index(GC_dirty_pages, index);
2628
        }
2629
#       if defined(OSF1)
2630
            /* These reset the signal handler each time by default. */
2631
            signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2632
#       endif
2633
        /* The write may not take place before dirty bits are read.     */
2634
        /* But then we'll fault again ...                               */
2635
#       if defined(MSWIN32) || defined(MSWINCE)
2636
            return(EXCEPTION_CONTINUE_EXECUTION);
2637
#       else
2638
            return;
2639
#       endif
2640
    }
2641
#if defined(MSWIN32) || defined(MSWINCE)
2642
    return EXCEPTION_CONTINUE_SEARCH;
2643
#else
2644
    GC_err_printf1("Segfault at 0x%lx\n", addr);
2645
    ABORT("Unexpected bus error or segmentation fault");
2646
#endif
2647
}
2648
#endif /* !DARWIN */
2649
 
2650
/*
2651
 * We hold the allocation lock.  We expect block h to be written
2652
 * shortly.  Ensure that all pages containing any part of the n hblks
2653
 * starting at h are no longer protected.  If is_ptrfree is false,
2654
 * also ensure that they will subsequently appear to be dirty.
2655
 */
2656
void GC_remove_protection(h, nblocks, is_ptrfree)
2657
struct hblk *h;
2658
word nblocks;
2659
GC_bool is_ptrfree;
2660
{
2661
    struct hblk * h_trunc;  /* Truncated to page boundary */
2662
    struct hblk * h_end;    /* Page boundary following block end */
2663
    struct hblk * current;
2664
    GC_bool found_clean;
2665
 
2666
    if (!GC_dirty_maintained) return;
2667
    h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2668
    h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2669
                            & ~(GC_page_size-1));
2670
    found_clean = FALSE;
2671
    for (current = h_trunc; current < h_end; ++current) {
2672
        int index = PHT_HASH(current);
2673
 
2674
        if (!is_ptrfree || current < h || current >= h + nblocks) {
2675
            async_set_pht_entry_from_index(GC_dirty_pages, index);
2676
        }
2677
    }
2678
    UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
2679
}
2680
 
2681
#if !defined(DARWIN)
2682
void GC_dirty_init()
2683
{
2684
#   if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2685
       defined(OSF1) || defined(HURD)
2686
      struct sigaction  act, oldact;
2687
      /* We should probably specify SA_SIGINFO for Linux, and handle    */
2688
      /* the different architectures more uniformly.                    */
2689
#     if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2690
         || defined(OSF1) || defined(HURD)
2691
        act.sa_flags    = SA_RESTART;
2692
        act.sa_handler  = (SIG_PF)GC_write_fault_handler;
2693
#     else
2694
        act.sa_flags    = SA_RESTART | SA_SIGINFO;
2695
        act.sa_sigaction = GC_write_fault_handler;
2696
#     endif
2697
      (void)sigemptyset(&act.sa_mask);
2698
#     ifdef SIG_SUSPEND
2699
        /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2700
        /* handler.  This effectively makes the handler atomic w.r.t.   */
2701
        /* stopping the world for GC.                                   */
2702
        (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2703
#     endif /* SIG_SUSPEND */
2704
#    endif
2705
#   ifdef PRINTSTATS
2706
        GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2707
#   endif
2708
    GC_dirty_maintained = TRUE;
2709
    if (GC_page_size % HBLKSIZE != 0) {
2710
        GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2711
        ABORT("Page size not multiple of HBLKSIZE");
2712
    }
2713
#   if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2714
      GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2715
      if (GC_old_bus_handler == SIG_IGN) {
2716
        GC_err_printf0("Previously ignored bus error!?");
2717
        GC_old_bus_handler = SIG_DFL;
2718
      }
2719
      if (GC_old_bus_handler != SIG_DFL) {
2720
#       ifdef PRINTSTATS
2721
          GC_err_printf0("Replaced other SIGBUS handler\n");
2722
#       endif
2723
      }
2724
#   endif
2725
#   if defined(SUNOS4)
2726
      GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2727
      if (GC_old_segv_handler == SIG_IGN) {
2728
        GC_err_printf0("Previously ignored segmentation violation!?");
2729
        GC_old_segv_handler = SIG_DFL;
2730
      }
2731
      if (GC_old_segv_handler != SIG_DFL) {
2732
#       ifdef PRINTSTATS
2733
          GC_err_printf0("Replaced other SIGSEGV handler\n");
2734
#       endif
2735
      }
2736
#   endif
2737
#   if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2738
       || defined(LINUX) || defined(OSF1) || defined(HURD)
2739
      /* SUNOS5SIGS includes HPUX */
2740
#     if defined(GC_IRIX_THREADS)
2741
        sigaction(SIGSEGV, 0, &oldact);
2742
        sigaction(SIGSEGV, &act, 0);
2743
#     else 
2744
        {
2745
          int res = sigaction(SIGSEGV, &act, &oldact);
2746
          if (res != 0) ABORT("Sigaction failed");
2747
        }
2748
#     endif
2749
#     if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2750
        /* This is Irix 5.x, not 6.x.  Irix 5.x does not have   */
2751
        /* sa_sigaction.                                        */
2752
        GC_old_segv_handler = oldact.sa_handler;
2753
#     else /* Irix 6.x or SUNOS5SIGS or LINUX */
2754
        if (oldact.sa_flags & SA_SIGINFO) {
2755
          GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2756
        } else {
2757
          GC_old_segv_handler = oldact.sa_handler;
2758
        }
2759
#     endif
2760
      if (GC_old_segv_handler == SIG_IGN) {
2761
             GC_err_printf0("Previously ignored segmentation violation!?");
2762
             GC_old_segv_handler = SIG_DFL;
2763
      }
2764
      if (GC_old_segv_handler != SIG_DFL) {
2765
#       ifdef PRINTSTATS
2766
          GC_err_printf0("Replaced other SIGSEGV handler\n");
2767
#       endif
2768
      }
2769
#   endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2770
#   if defined(HPUX) || defined(LINUX) || defined(HURD) \
2771
      || (defined(FREEBSD) && defined(SUNOS5SIGS))
2772
      sigaction(SIGBUS, &act, &oldact);
2773
      GC_old_bus_handler = oldact.sa_handler;
2774
      if (GC_old_bus_handler == SIG_IGN) {
2775
             GC_err_printf0("Previously ignored bus error!?");
2776
             GC_old_bus_handler = SIG_DFL;
2777
      }
2778
      if (GC_old_bus_handler != SIG_DFL) {
2779
#       ifdef PRINTSTATS
2780
          GC_err_printf0("Replaced other SIGBUS handler\n");
2781
#       endif
2782
      }
2783
#   endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2784
#   if defined(MSWIN32)
2785
      GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2786
      if (GC_old_segv_handler != NULL) {
2787
#       ifdef PRINTSTATS
2788
          GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2789
#       endif
2790
      } else {
2791
          GC_old_segv_handler = SIG_DFL;
2792
      }
2793
#   endif
2794
}
2795
#endif /* !DARWIN */
2796
 
2797
int GC_incremental_protection_needs()
2798
{
2799
    if (GC_page_size == HBLKSIZE) {
2800
        return GC_PROTECTS_POINTER_HEAP;
2801
    } else {
2802
        return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
2803
    }
2804
}
2805
 
2806
#define HAVE_INCREMENTAL_PROTECTION_NEEDS
2807
 
2808
#define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2809
 
2810
#define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
2811
void GC_protect_heap()
2812
{
2813
    ptr_t start;
2814
    word len;
2815
    struct hblk * current;
2816
    struct hblk * current_start;  /* Start of block to be protected. */
2817
    struct hblk * limit;
2818
    unsigned i;
2819
    GC_bool protect_all =
2820
          (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
2821
    for (i = 0; i < GC_n_heap_sects; i++) {
2822
        start = GC_heap_sects[i].hs_start;
2823
        len = GC_heap_sects[i].hs_bytes;
2824
        if (protect_all) {
2825
          PROTECT(start, len);
2826
        } else {
2827
          GC_ASSERT(PAGE_ALIGNED(len))
2828
          GC_ASSERT(PAGE_ALIGNED(start))
2829
          current_start = current = (struct hblk *)start;
2830
          limit = (struct hblk *)(start + len);
2831
          while (current < limit) {
2832
            hdr * hhdr;
2833
            word nhblks;
2834
            GC_bool is_ptrfree;
2835
 
2836
            GC_ASSERT(PAGE_ALIGNED(current));
2837
            GET_HDR(current, hhdr);
2838
            if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
2839
              /* This can happen only if we're at the beginning of a    */
2840
              /* heap segment, and a block spans heap segments.         */
2841
              /* We will handle that block as part of the preceding     */
2842
              /* segment.                                               */
2843
              GC_ASSERT(current_start == current);
2844
              current_start = ++current;
2845
              continue;
2846
            }
2847
            if (HBLK_IS_FREE(hhdr)) {
2848
              GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
2849
              nhblks = divHBLKSZ(hhdr -> hb_sz);
2850
              is_ptrfree = TRUE;        /* dirty on alloc */
2851
            } else {
2852
              nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
2853
              is_ptrfree = IS_PTRFREE(hhdr);
2854
            }
2855
            if (is_ptrfree) {
2856
              if (current_start < current) {
2857
                PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2858
              }
2859
              current_start = (current += nhblks);
2860
            } else {
2861
              current += nhblks;
2862
            }
2863
          }
2864
          if (current_start < current) {
2865
            PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2866
          }
2867
        }
2868
    }
2869
}
2870
 
2871
/* We assume that either the world is stopped or its OK to lose dirty   */
2872
/* bits while this is happenning (as in GC_enable_incremental).         */
2873
void GC_read_dirty()
2874
{
2875
    BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2876
          (sizeof GC_dirty_pages));
2877
    BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2878
    GC_protect_heap();
2879
}
2880
 
2881
GC_bool GC_page_was_dirty(h)
2882
struct hblk * h;
2883
{
2884
    register word index = PHT_HASH(h);
2885
 
2886
    return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2887
}
2888
 
2889
/*
2890
 * Acquiring the allocation lock here is dangerous, since this
2891
 * can be called from within GC_call_with_alloc_lock, and the cord
2892
 * package does so.  On systems that allow nested lock acquisition, this
2893
 * happens to work.
2894
 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2895
 */
2896
 
2897
static GC_bool syscall_acquired_lock = FALSE;   /* Protected by GC lock. */
2898
 
2899
void GC_begin_syscall()
2900
{
2901
    if (!I_HOLD_LOCK()) {
2902
        LOCK();
2903
        syscall_acquired_lock = TRUE;
2904
    }
2905
}
2906
 
2907
void GC_end_syscall()
2908
{
2909
    if (syscall_acquired_lock) {
2910
        syscall_acquired_lock = FALSE;
2911
        UNLOCK();
2912
    }
2913
}
2914
 
2915
void GC_unprotect_range(addr, len)
2916
ptr_t addr;
2917
word len;
2918
{
2919
    struct hblk * start_block;
2920
    struct hblk * end_block;
2921
    register struct hblk *h;
2922
    ptr_t obj_start;
2923
 
2924
    if (!GC_dirty_maintained) return;
2925
    obj_start = GC_base(addr);
2926
    if (obj_start == 0) return;
2927
    if (GC_base(addr + len - 1) != obj_start) {
2928
        ABORT("GC_unprotect_range(range bigger than object)");
2929
    }
2930
    start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2931
    end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2932
    end_block += GC_page_size/HBLKSIZE - 1;
2933
    for (h = start_block; h <= end_block; h++) {
2934
        register word index = PHT_HASH(h);
2935
 
2936
        async_set_pht_entry_from_index(GC_dirty_pages, index);
2937
    }
2938
    UNPROTECT(start_block,
2939
              ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2940
}
2941
 
2942
#if 0
2943
 
2944
/* We no longer wrap read by default, since that was causing too many   */
2945
/* problems.  It is preferred that the client instead avoids writing    */
2946
/* to the write-protected heap with a system call.                      */
2947
/* This still serves as sample code if you do want to wrap system calls.*/
2948
 
2949
#if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2950
/* Replacement for UNIX system call.                                      */
2951
/* Other calls that write to the heap should be handled similarly.        */
2952
/* Note that this doesn't work well for blocking reads:  It will hold     */
2953
/* the allocation lock for the entire duration of the call. Multithreaded */
2954
/* clients should really ensure that it won't block, either by setting    */
2955
/* the descriptor nonblocking, or by calling select or poll first, to     */
2956
/* make sure that input is available.                                     */
2957
/* Another, preferred alternative is to ensure that system calls never    */
2958
/* write to the protected heap (see above).                               */
2959
# if defined(__STDC__) && !defined(SUNOS4)
2960
#   include <unistd.h>
2961
#   include <sys/uio.h>
2962
    ssize_t read(int fd, void *buf, size_t nbyte)
2963
# else
2964
#   ifndef LINT
2965
      int read(fd, buf, nbyte)
2966
#   else
2967
      int GC_read(fd, buf, nbyte)
2968
#   endif
2969
    int fd;
2970
    char *buf;
2971
    int nbyte;
2972
# endif
2973
{
2974
    int result;
2975
 
2976
    GC_begin_syscall();
2977
    GC_unprotect_range(buf, (word)nbyte);
2978
#   if defined(IRIX5) || defined(GC_LINUX_THREADS)
2979
        /* Indirect system call may not always be easily available.     */
2980
        /* We could call _read, but that would interfere with the       */
2981
        /* libpthread interception of read.                             */
2982
        /* On Linux, we have to be careful with the linuxthreads        */
2983
        /* read interception.                                           */
2984
        {
2985
            struct iovec iov;
2986
 
2987
            iov.iov_base = buf;
2988
            iov.iov_len = nbyte;
2989
            result = readv(fd, &iov, 1);
2990
        }
2991
#   else
2992
#     if defined(HURD)  
2993
        result = __read(fd, buf, nbyte);
2994
#     else
2995
        /* The two zero args at the end of this list are because one
2996
           IA-64 syscall() implementation actually requires six args
2997
           to be passed, even though they aren't always used. */
2998
        result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
2999
#     endif /* !HURD */
3000
#   endif
3001
    GC_end_syscall();
3002
    return(result);
3003
}
3004
#endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
3005
 
3006
#if defined(GC_USE_LD_WRAP) && !defined(THREADS)
3007
    /* We use the GNU ld call wrapping facility.                        */
3008
    /* This requires that the linker be invoked with "--wrap read".     */
3009
    /* This can be done by passing -Wl,"--wrap read" to gcc.            */
3010
    /* I'm not sure that this actually wraps whatever version of read   */
3011
    /* is called by stdio.  That code also mentions __read.             */
3012
#   include <unistd.h>
3013
    ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
3014
    {
3015
        int result;
3016
 
3017
        GC_begin_syscall();
3018
        GC_unprotect_range(buf, (word)nbyte);
3019
        result = __real_read(fd, buf, nbyte);
3020
        GC_end_syscall();
3021
        return(result);
3022
    }
3023
 
3024
    /* We should probably also do this for __read, or whatever stdio    */
3025
    /* actually calls.                                                  */
3026
#endif
3027
 
3028
#endif /* 0 */
3029
 
3030
/*ARGSUSED*/
3031
GC_bool GC_page_was_ever_dirty(h)
3032
struct hblk *h;
3033
{
3034
    return(TRUE);
3035
}
3036
 
3037
/* Reset the n pages starting at h to "was never dirty" status. */
3038
/*ARGSUSED*/
3039
void GC_is_fresh(h, n)
3040
struct hblk *h;
3041
word n;
3042
{
3043
}
3044
 
3045
# endif /* MPROTECT_VDB */
3046
 
3047
# ifdef PROC_VDB
3048
 
3049
/*
3050
 * See DEFAULT_VDB for interface descriptions.
3051
 */
3052
 
3053
/*
3054
 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3055
 * from which we can read page modified bits.  This facility is far from
3056
 * optimal (e.g. we would like to get the info for only some of the
3057
 * address space), but it avoids intercepting system calls.
3058
 */
3059
 
3060
#include <errno.h>
3061
#include <sys/types.h>
3062
#include <sys/signal.h>
3063
#include <sys/fault.h>
3064
#include <sys/syscall.h>
3065
#include <sys/procfs.h>
3066
#include <sys/stat.h>
3067
 
3068
#define INITIAL_BUF_SZ 16384
3069
word GC_proc_buf_size = INITIAL_BUF_SZ;
3070
char *GC_proc_buf;
3071
 
3072
#ifdef GC_SOLARIS_THREADS
3073
/* We don't have exact sp values for threads.  So we count on   */
3074
/* occasionally declaring stack pages to be fresh.  Thus we     */
3075
/* need a real implementation of GC_is_fresh.  We can't clear   */
3076
/* entries in GC_written_pages, since that would declare all    */
3077
/* pages with the given hash address to be fresh.               */
3078
#   define MAX_FRESH_PAGES 8*1024       /* Must be power of 2 */
3079
    struct hblk ** GC_fresh_pages;      /* A direct mapped cache.       */
3080
                                        /* Collisions are dropped.      */
3081
 
3082
#   define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3083
#   define ADD_FRESH_PAGE(h) \
3084
        GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3085
#   define PAGE_IS_FRESH(h) \
3086
        (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3087
#endif
3088
 
3089
/* Add all pages in pht2 to pht1 */
3090
void GC_or_pages(pht1, pht2)
3091
page_hash_table pht1, pht2;
3092
{
3093
    register int i;
3094
 
3095
    for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3096
}
3097
 
3098
int GC_proc_fd;
3099
 
3100
void GC_dirty_init()
3101
{
3102
    int fd;
3103
    char buf[30];
3104
 
3105
    GC_dirty_maintained = TRUE;
3106
    if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3107
        register int i;
3108
 
3109
        for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3110
#       ifdef PRINTSTATS
3111
            GC_printf1("Allocated words:%lu:all pages may have been written\n",
3112
                       (unsigned long)
3113
                                (GC_words_allocd + GC_words_allocd_before_gc));
3114
#       endif       
3115
    }
3116
    sprintf(buf, "/proc/%d", getpid());
3117
    fd = open(buf, O_RDONLY);
3118
    if (fd < 0) {
3119
        ABORT("/proc open failed");
3120
    }
3121
    GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3122
    close(fd);
3123
    syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
3124
    if (GC_proc_fd < 0) {
3125
        ABORT("/proc ioctl failed");
3126
    }
3127
    GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
3128
#   ifdef GC_SOLARIS_THREADS
3129
        GC_fresh_pages = (struct hblk **)
3130
          GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3131
        if (GC_fresh_pages == 0) {
3132
            GC_err_printf0("No space for fresh pages\n");
3133
            EXIT();
3134
        }
3135
        BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3136
#   endif
3137
}
3138
 
3139
/* Ignore write hints. They don't help us here. */
3140
/*ARGSUSED*/
3141
void GC_remove_protection(h, nblocks, is_ptrfree)
3142
struct hblk *h;
3143
word nblocks;
3144
GC_bool is_ptrfree;
3145
{
3146
}
3147
 
3148
#ifdef GC_SOLARIS_THREADS
3149
#   define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3150
#else
3151
#   define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3152
#endif
3153
 
3154
void GC_read_dirty()
3155
{
3156
    unsigned long ps, np;
3157
    int nmaps;
3158
    ptr_t vaddr;
3159
    struct prasmap * map;
3160
    char * bufp;
3161
    ptr_t current_addr, limit;
3162
    int i;
3163
int dummy;
3164
 
3165
    BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3166
 
3167
    bufp = GC_proc_buf;
3168
    if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3169
#       ifdef PRINTSTATS
3170
            GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3171
                       GC_proc_buf_size);
3172
#       endif       
3173
        {
3174
            /* Retry with larger buffer. */
3175
            word new_size = 2 * GC_proc_buf_size;
3176
            char * new_buf = GC_scratch_alloc(new_size);
3177
 
3178
            if (new_buf != 0) {
3179
                GC_proc_buf = bufp = new_buf;
3180
                GC_proc_buf_size = new_size;
3181
            }
3182
            if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3183
                WARN("Insufficient space for /proc read\n", 0);
3184
                /* Punt:        */
3185
                memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3186
                memset(GC_written_pages, 0xff, sizeof(page_hash_table));
3187
#               ifdef GC_SOLARIS_THREADS
3188
                    BZERO(GC_fresh_pages,
3189
                          MAX_FRESH_PAGES * sizeof (struct hblk *));
3190
#               endif
3191
                return;
3192
            }
3193
        }
3194
    }
3195
    /* Copy dirty bits into GC_grungy_pages */
3196
        nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3197
        /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3198
                     nmaps, PG_REFERENCED, PG_MODIFIED); */
3199
        bufp = bufp + sizeof(struct prpageheader);
3200
        for (i = 0; i < nmaps; i++) {
3201
            map = (struct prasmap *)bufp;
3202
            vaddr = (ptr_t)(map -> pr_vaddr);
3203
            ps = map -> pr_pagesize;
3204
            np = map -> pr_npage;
3205
            /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3206
            limit = vaddr + ps * np;
3207
            bufp += sizeof (struct prasmap);
3208
            for (current_addr = vaddr;
3209
                 current_addr < limit; current_addr += ps){
3210
                if ((*bufp++) & PG_MODIFIED) {
3211
                    register struct hblk * h = (struct hblk *) current_addr;
3212
 
3213
                    while ((ptr_t)h < current_addr + ps) {
3214
                        register word index = PHT_HASH(h);
3215
 
3216
                        set_pht_entry_from_index(GC_grungy_pages, index);
3217
#                       ifdef GC_SOLARIS_THREADS
3218
                          {
3219
                            register int slot = FRESH_PAGE_SLOT(h);
3220
 
3221
                            if (GC_fresh_pages[slot] == h) {
3222
                                GC_fresh_pages[slot] = 0;
3223
                            }
3224
                          }
3225
#                       endif
3226
                        h++;
3227
                    }
3228
                }
3229
            }
3230
            bufp += sizeof(long) - 1;
3231
            bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3232
        }
3233
    /* Update GC_written_pages. */
3234
        GC_or_pages(GC_written_pages, GC_grungy_pages);
3235
#   ifdef GC_SOLARIS_THREADS
3236
      /* Make sure that old stacks are considered completely clean      */
3237
      /* unless written again.                                          */
3238
        GC_old_stacks_are_fresh();
3239
#   endif
3240
}
3241
 
3242
#undef READ
3243
 
3244
GC_bool GC_page_was_dirty(h)
3245
struct hblk *h;
3246
{
3247
    register word index = PHT_HASH(h);
3248
    register GC_bool result;
3249
 
3250
    result = get_pht_entry_from_index(GC_grungy_pages, index);
3251
#   ifdef GC_SOLARIS_THREADS
3252
        if (result && PAGE_IS_FRESH(h)) result = FALSE;
3253
        /* This happens only if page was declared fresh since   */
3254
        /* the read_dirty call, e.g. because it's in an unused  */
3255
        /* thread stack.  It's OK to treat it as clean, in      */
3256
        /* that case.  And it's consistent with                 */
3257
        /* GC_page_was_ever_dirty.                              */
3258
#   endif
3259
    return(result);
3260
}
3261
 
3262
GC_bool GC_page_was_ever_dirty(h)
3263
struct hblk *h;
3264
{
3265
    register word index = PHT_HASH(h);
3266
    register GC_bool result;
3267
 
3268
    result = get_pht_entry_from_index(GC_written_pages, index);
3269
#   ifdef GC_SOLARIS_THREADS
3270
        if (result && PAGE_IS_FRESH(h)) result = FALSE;
3271
#   endif
3272
    return(result);
3273
}
3274
 
3275
/* Caller holds allocation lock.        */
3276
void GC_is_fresh(h, n)
3277
struct hblk *h;
3278
word n;
3279
{
3280
 
3281
    register word index;
3282
 
3283
#   ifdef GC_SOLARIS_THREADS
3284
      register word i;
3285
 
3286
      if (GC_fresh_pages != 0) {
3287
        for (i = 0; i < n; i++) {
3288
          ADD_FRESH_PAGE(h + i);
3289
        }
3290
      }
3291
#   endif
3292
}
3293
 
3294
# endif /* PROC_VDB */
3295
 
3296
 
3297
# ifdef PCR_VDB
3298
 
3299
# include "vd/PCR_VD.h"
3300
 
3301
# define NPAGES (32*1024)       /* 128 MB */
3302
 
3303
PCR_VD_DB  GC_grungy_bits[NPAGES];
3304
 
3305
ptr_t GC_vd_base;       /* Address corresponding to GC_grungy_bits[0]   */
3306
                        /* HBLKSIZE aligned.                            */
3307
 
3308
void GC_dirty_init()
3309
{
3310
    GC_dirty_maintained = TRUE;
3311
    /* For the time being, we assume the heap generally grows up */
3312
    GC_vd_base = GC_heap_sects[0].hs_start;
3313
    if (GC_vd_base == 0) {
3314
        ABORT("Bad initial heap segment");
3315
    }
3316
    if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3317
        != PCR_ERes_okay) {
3318
        ABORT("dirty bit initialization failed");
3319
    }
3320
}
3321
 
3322
void GC_read_dirty()
3323
{
3324
    /* lazily enable dirty bits on newly added heap sects */
3325
    {
3326
        static int onhs = 0;
3327
        int nhs = GC_n_heap_sects;
3328
        for( ; onhs < nhs; onhs++ ) {
3329
            PCR_VD_WriteProtectEnable(
3330
                    GC_heap_sects[onhs].hs_start,
3331
                    GC_heap_sects[onhs].hs_bytes );
3332
        }
3333
    }
3334
 
3335
 
3336
    if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3337
        != PCR_ERes_okay) {
3338
        ABORT("dirty bit read failed");
3339
    }
3340
}
3341
 
3342
GC_bool GC_page_was_dirty(h)
3343
struct hblk *h;
3344
{
3345
    if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3346
        return(TRUE);
3347
    }
3348
    return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3349
}
3350
 
3351
/*ARGSUSED*/
3352
void GC_remove_protection(h, nblocks, is_ptrfree)
3353
struct hblk *h;
3354
word nblocks;
3355
GC_bool is_ptrfree;
3356
{
3357
    PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3358
    PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
3359
}
3360
 
3361
# endif /* PCR_VDB */
3362
 
3363
#if defined(MPROTECT_VDB) && defined(DARWIN)
3364
/* The following sources were used as a *reference* for this exception handling
3365
   code:
3366
      1. Apple's mach/xnu documentation
3367
      2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3368
         omnigroup's macosx-dev list.
3369
         www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
3370
      3. macosx-nat.c from Apple's GDB source code.
3371
*/
3372
 
3373
/* The bug that caused all this trouble should now be fixed. This should
3374
   eventually be removed if all goes well. */
3375
/* define BROKEN_EXCEPTION_HANDLING */
3376
 
3377
#include <mach/mach.h>
3378
#include <mach/mach_error.h>
3379
#include <mach/thread_status.h>
3380
#include <mach/exception.h>
3381
#include <mach/task.h>
3382
#include <pthread.h>
3383
 
3384
/* These are not defined in any header, although they are documented */
3385
extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
3386
extern kern_return_t exception_raise(
3387
    mach_port_t,mach_port_t,mach_port_t,
3388
    exception_type_t,exception_data_t,mach_msg_type_number_t);
3389
extern kern_return_t exception_raise_state(
3390
    mach_port_t,mach_port_t,mach_port_t,
3391
    exception_type_t,exception_data_t,mach_msg_type_number_t,
3392
    thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3393
    thread_state_t,mach_msg_type_number_t*);
3394
extern kern_return_t exception_raise_state_identity(
3395
    mach_port_t,mach_port_t,mach_port_t,
3396
    exception_type_t,exception_data_t,mach_msg_type_number_t,
3397
    thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3398
    thread_state_t,mach_msg_type_number_t*);
3399
 
3400
 
3401
#define MAX_EXCEPTION_PORTS 16
3402
 
3403
static struct {
3404
    mach_msg_type_number_t count;
3405
    exception_mask_t      masks[MAX_EXCEPTION_PORTS];
3406
    exception_handler_t   ports[MAX_EXCEPTION_PORTS];
3407
    exception_behavior_t  behaviors[MAX_EXCEPTION_PORTS];
3408
    thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
3409
} GC_old_exc_ports;
3410
 
3411
static struct {
3412
    mach_port_t exception;
3413
#if defined(THREADS)
3414
    mach_port_t reply;
3415
#endif
3416
} GC_ports;
3417
 
3418
typedef struct {
3419
    mach_msg_header_t head;
3420
} GC_msg_t;
3421
 
3422
typedef enum {
3423
    GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
3424
} GC_mprotect_state_t;
3425
 
3426
/* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3427
   but it isn't  documented. Use the source and see if they
3428
   should be ok. */
3429
#define ID_STOP 1
3430
#define ID_RESUME 2
3431
 
3432
/* These values are only used on the reply port */
3433
#define ID_ACK 3
3434
 
3435
#if defined(THREADS)
3436
 
3437
GC_mprotect_state_t GC_mprotect_state;
3438
 
3439
/* The following should ONLY be called when the world is stopped  */
3440
static void GC_mprotect_thread_notify(mach_msg_id_t id) {
3441
    struct {
3442
        GC_msg_t msg;
3443
        mach_msg_trailer_t trailer;
3444
    } buf;
3445
    mach_msg_return_t r;
3446
    /* remote, local */
3447
    buf.msg.head.msgh_bits =
3448
        MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3449
    buf.msg.head.msgh_size = sizeof(buf.msg);
3450
    buf.msg.head.msgh_remote_port = GC_ports.exception;
3451
    buf.msg.head.msgh_local_port = MACH_PORT_NULL;
3452
    buf.msg.head.msgh_id = id;
3453
 
3454
    r = mach_msg(
3455
        &buf.msg.head,
3456
        MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
3457
        sizeof(buf.msg),
3458
        sizeof(buf),
3459
        GC_ports.reply,
3460
        MACH_MSG_TIMEOUT_NONE,
3461
        MACH_PORT_NULL);
3462
    if(r != MACH_MSG_SUCCESS)
3463
        ABORT("mach_msg failed in GC_mprotect_thread_notify");
3464
    if(buf.msg.head.msgh_id != ID_ACK)
3465
        ABORT("invalid ack in GC_mprotect_thread_notify");
3466
}
3467
 
3468
/* Should only be called by the mprotect thread */
3469
static void GC_mprotect_thread_reply() {
3470
    GC_msg_t msg;
3471
    mach_msg_return_t r;
3472
    /* remote, local */
3473
    msg.head.msgh_bits =
3474
        MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3475
    msg.head.msgh_size = sizeof(msg);
3476
    msg.head.msgh_remote_port = GC_ports.reply;
3477
    msg.head.msgh_local_port = MACH_PORT_NULL;
3478
    msg.head.msgh_id = ID_ACK;
3479
 
3480
    r = mach_msg(
3481
        &msg.head,
3482
        MACH_SEND_MSG,
3483
        sizeof(msg),
3484
        0,
3485
        MACH_PORT_NULL,
3486
        MACH_MSG_TIMEOUT_NONE,
3487
        MACH_PORT_NULL);
3488
    if(r != MACH_MSG_SUCCESS)
3489
        ABORT("mach_msg failed in GC_mprotect_thread_reply");
3490
}
3491
 
3492
void GC_mprotect_stop() {
3493
    GC_mprotect_thread_notify(ID_STOP);
3494
}
3495
void GC_mprotect_resume() {
3496
    GC_mprotect_thread_notify(ID_RESUME);
3497
}
3498
 
3499
#else /* !THREADS */
3500
/* The compiler should optimize away any GC_mprotect_state computations */
3501
#define GC_mprotect_state GC_MP_NORMAL
3502
#endif
3503
 
3504
static void *GC_mprotect_thread(void *arg) {
3505
    mach_msg_return_t r;
3506
    /* These two structures contain some private kernel data. We don't need to
3507
       access any of it so we don't bother defining a proper struct. The
3508
       correct definitions are in the xnu source code. */
3509
    struct {
3510
        mach_msg_header_t head;
3511
        char data[256];
3512
    } reply;
3513
    struct {
3514
        mach_msg_header_t head;
3515
        mach_msg_body_t msgh_body;
3516
        char data[1024];
3517
    } msg;
3518
 
3519
    mach_msg_id_t id;
3520
 
3521
    GC_darwin_register_mach_handler_thread(mach_thread_self());
3522
 
3523
    for(;;) {
3524
        r = mach_msg(
3525
            &msg.head,
3526
            MACH_RCV_MSG|MACH_RCV_LARGE|
3527
                (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
3528
            0,
3529
            sizeof(msg),
3530
            GC_ports.exception,
3531
            GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
3532
            MACH_PORT_NULL);
3533
 
3534
        id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
3535
 
3536
#if defined(THREADS)
3537
        if(GC_mprotect_state == GC_MP_DISCARDING) {
3538
            if(r == MACH_RCV_TIMED_OUT) {
3539
                GC_mprotect_state = GC_MP_STOPPED;
3540
                GC_mprotect_thread_reply();
3541
                continue;
3542
            }
3543
            if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
3544
                ABORT("out of order mprotect thread request");
3545
        }
3546
#endif
3547
 
3548
        if(r != MACH_MSG_SUCCESS) {
3549
            GC_err_printf2("mach_msg failed with %d %s\n",
3550
                (int)r,mach_error_string(r));
3551
            ABORT("mach_msg failed");
3552
        }
3553
 
3554
        switch(id) {
3555
#if defined(THREADS)
3556
            case ID_STOP:
3557
                if(GC_mprotect_state != GC_MP_NORMAL)
3558
                    ABORT("Called mprotect_stop when state wasn't normal");
3559
                GC_mprotect_state = GC_MP_DISCARDING;
3560
                break;
3561
            case ID_RESUME:
3562
                if(GC_mprotect_state != GC_MP_STOPPED)
3563
                    ABORT("Called mprotect_resume when state wasn't stopped");
3564
                GC_mprotect_state = GC_MP_NORMAL;
3565
                GC_mprotect_thread_reply();
3566
                break;
3567
#endif /* THREADS */
3568
            default:
3569
                    /* Handle the message (calls catch_exception_raise) */
3570
                if(!exc_server(&msg.head,&reply.head))
3571
                    ABORT("exc_server failed");
3572
                /* Send the reply */
3573
                r = mach_msg(
3574
                    &reply.head,
3575
                    MACH_SEND_MSG,
3576
                    reply.head.msgh_size,
3577
                    0,
3578
                    MACH_PORT_NULL,
3579
                    MACH_MSG_TIMEOUT_NONE,
3580
                    MACH_PORT_NULL);
3581
                if(r != MACH_MSG_SUCCESS) {
3582
                        /* This will fail if the thread dies, but the thread shouldn't
3583
                           die... */
3584
                        #ifdef BROKEN_EXCEPTION_HANDLING
3585
                        GC_err_printf2(
3586
                        "mach_msg failed with %d %s while sending exc reply\n",
3587
                        (int)r,mach_error_string(r));
3588
                #else
3589
                        ABORT("mach_msg failed while sending exception reply");
3590
                #endif
3591
                }
3592
        } /* switch */
3593
    } /* for(;;) */
3594
    /* NOT REACHED */
3595
    return NULL;
3596
}
3597
 
3598
/* All this SIGBUS code shouldn't be necessary. All protection faults should
3599
   be going throught the mach exception handler. However, it seems a SIGBUS is
3600
   occasionally sent for some unknown reason. Even more odd, it seems to be
3601
   meaningless and safe to ignore. */
3602
#ifdef BROKEN_EXCEPTION_HANDLING
3603
 
3604
typedef void (* SIG_PF)();
3605
static SIG_PF GC_old_bus_handler;
3606
 
3607
/* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3608
   Even if this doesn't get updated property, it isn't really a problem */
3609
static int GC_sigbus_count;
3610
 
3611
static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
3612
    if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
3613
 
3614
    /* Ugh... some seem safe to ignore, but too many in a row probably means
3615
       trouble. GC_sigbus_count is reset for each mach exception that is
3616
       handled */
3617
    if(GC_sigbus_count >= 8) {
3618
        ABORT("Got more than 8 SIGBUSs in a row!");
3619
    } else {
3620
        GC_sigbus_count++;
3621
        GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3622
    }
3623
}
3624
#endif /* BROKEN_EXCEPTION_HANDLING */
3625
 
3626
void GC_dirty_init() {
3627
    kern_return_t r;
3628
    mach_port_t me;
3629
    pthread_t thread;
3630
    pthread_attr_t attr;
3631
    exception_mask_t mask;
3632
 
3633
#   ifdef PRINTSTATS
3634
        GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3635
            "implementation\n");
3636
#   endif  
3637
#       ifdef BROKEN_EXCEPTION_HANDLING
3638
        GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3639
            "exception handling bugs.\n");
3640
#       endif
3641
    GC_dirty_maintained = TRUE;
3642
    if (GC_page_size % HBLKSIZE != 0) {
3643
        GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3644
        ABORT("Page size not multiple of HBLKSIZE");
3645
    }
3646
 
3647
    GC_task_self = me = mach_task_self();
3648
 
3649
    r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
3650
    if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
3651
 
3652
    r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
3653
        MACH_MSG_TYPE_MAKE_SEND);
3654
    if(r != KERN_SUCCESS)
3655
        ABORT("mach_port_insert_right failed (exception port)");
3656
 
3657
    #if defined(THREADS)
3658
        r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
3659
        if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
3660
    #endif
3661
 
3662
    /* The exceptions we want to catch */
3663
    mask = EXC_MASK_BAD_ACCESS;
3664
 
3665
    r = task_get_exception_ports(
3666
        me,
3667
        mask,
3668
        GC_old_exc_ports.masks,
3669
        &GC_old_exc_ports.count,
3670
        GC_old_exc_ports.ports,
3671
        GC_old_exc_ports.behaviors,
3672
        GC_old_exc_ports.flavors
3673
    );
3674
    if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
3675
 
3676
    r = task_set_exception_ports(
3677
        me,
3678
        mask,
3679
        GC_ports.exception,
3680
        EXCEPTION_DEFAULT,
3681
        MACHINE_THREAD_STATE
3682
    );
3683
    if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
3684
 
3685
    if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
3686
    if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
3687
        ABORT("pthread_attr_setdetachedstate failed");
3688
 
3689
#       undef pthread_create
3690
    /* This will call the real pthread function, not our wrapper */
3691
    if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
3692
        ABORT("pthread_create failed");
3693
    pthread_attr_destroy(&attr);
3694
 
3695
    /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3696
    #ifdef BROKEN_EXCEPTION_HANDLING 
3697
    {
3698
        struct sigaction sa, oldsa;
3699
        sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
3700
        sigemptyset(&sa.sa_mask);
3701
        sa.sa_flags = SA_RESTART|SA_SIGINFO;
3702
        if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
3703
        GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
3704
        if (GC_old_bus_handler != SIG_DFL) {
3705
#               ifdef PRINTSTATS
3706
                GC_err_printf0("Replaced other SIGBUS handler\n");
3707
#               endif
3708
        }
3709
    }
3710
    #endif /* BROKEN_EXCEPTION_HANDLING  */
3711
}
3712
 
3713
/* The source code for Apple's GDB was used as a reference for the exception
3714
   forwarding code. This code is similar to be GDB code only because there is
3715
   only one way to do it. */
3716
static kern_return_t GC_forward_exception(
3717
        mach_port_t thread,
3718
        mach_port_t task,
3719
        exception_type_t exception,
3720
        exception_data_t data,
3721
        mach_msg_type_number_t data_count
3722
) {
3723
    int i;
3724
    kern_return_t r;
3725
    mach_port_t port;
3726
    exception_behavior_t behavior;
3727
    thread_state_flavor_t flavor;
3728
 
3729
    thread_state_data_t thread_state;
3730
    mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
3731
 
3732
    for(i=0;i<GC_old_exc_ports.count;i++)
3733
        if(GC_old_exc_ports.masks[i] & (1 << exception))
3734
            break;
3735
    if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
3736
 
3737
    port = GC_old_exc_ports.ports[i];
3738
    behavior = GC_old_exc_ports.behaviors[i];
3739
    flavor = GC_old_exc_ports.flavors[i];
3740
 
3741
    if(behavior != EXCEPTION_DEFAULT) {
3742
        r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
3743
        if(r != KERN_SUCCESS)
3744
            ABORT("thread_get_state failed in forward_exception");
3745
    }
3746
 
3747
    switch(behavior) {
3748
        case EXCEPTION_DEFAULT:
3749
            r = exception_raise(port,thread,task,exception,data,data_count);
3750
            break;
3751
        case EXCEPTION_STATE:
3752
            r = exception_raise_state(port,thread,task,exception,data,
3753
                data_count,&flavor,thread_state,thread_state_count,
3754
                thread_state,&thread_state_count);
3755
            break;
3756
        case EXCEPTION_STATE_IDENTITY:
3757
            r = exception_raise_state_identity(port,thread,task,exception,data,
3758
                data_count,&flavor,thread_state,thread_state_count,
3759
                thread_state,&thread_state_count);
3760
            break;
3761
        default:
3762
            r = KERN_FAILURE; /* make gcc happy */
3763
            ABORT("forward_exception: unknown behavior");
3764
            break;
3765
    }
3766
 
3767
    if(behavior != EXCEPTION_DEFAULT) {
3768
        r = thread_set_state(thread,flavor,thread_state,thread_state_count);
3769
        if(r != KERN_SUCCESS)
3770
            ABORT("thread_set_state failed in forward_exception");
3771
    }
3772
 
3773
    return r;
3774
}
3775
 
3776
#define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3777
 
3778
/* This violates the namespace rules but there isn't anything that can be done
3779
   about it. The exception handling stuff is hard coded to call this */
3780
kern_return_t
3781
catch_exception_raise(
3782
   mach_port_t exception_port,mach_port_t thread,mach_port_t task,
3783
   exception_type_t exception,exception_data_t code,
3784
   mach_msg_type_number_t code_count
3785
) {
3786
    kern_return_t r;
3787
    char *addr;
3788
    struct hblk *h;
3789
    int i;
3790
#ifdef POWERPC
3791
    thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
3792
    mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
3793
    ppc_exception_state_t exc_state;
3794
#else
3795
#       error FIXME for non-ppc darwin
3796
#endif
3797
 
3798
 
3799
    if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
3800
        #ifdef DEBUG_EXCEPTION_HANDLING
3801
        /* We aren't interested, pass it on to the old handler */
3802
        GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3803
            exception,
3804
            code_count > 0 ? code[0] : -1,
3805
            code_count > 1 ? code[1] : -1);
3806
        #endif
3807
        return FWD();
3808
    }
3809
 
3810
    r = thread_get_state(thread,flavor,
3811
        (natural_t*)&exc_state,&exc_state_count);
3812
    if(r != KERN_SUCCESS) {
3813
        /* The thread is supposed to be suspended while the exception handler
3814
           is called. This shouldn't fail. */
3815
        #ifdef BROKEN_EXCEPTION_HANDLING
3816
            GC_err_printf0("thread_get_state failed in "
3817
                "catch_exception_raise\n");
3818
            return KERN_SUCCESS;
3819
        #else
3820
            ABORT("thread_get_state failed in catch_exception_raise");
3821
        #endif
3822
    }
3823
 
3824
    /* This is the address that caused the fault */
3825
    addr = (char*) exc_state.dar;
3826
 
3827
    if((HDR(addr)) == 0) {
3828
        /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3829
           KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3830
           a bunch in a row before doing anything about it. If a "real" fault
3831
           ever occurres it'll just keep faulting over and over and we'll hit
3832
           the limit pretty quickly. */
3833
        #ifdef BROKEN_EXCEPTION_HANDLING
3834
            static char *last_fault;
3835
            static int last_fault_count;
3836
 
3837
            if(addr != last_fault) {
3838
                last_fault = addr;
3839
                last_fault_count = 0;
3840
            }
3841
            if(++last_fault_count < 32) {
3842
                if(last_fault_count == 1)
3843
                    GC_err_printf1(
3844
                        "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3845
                        addr);
3846
                return KERN_SUCCESS;
3847
            }
3848
 
3849
            GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
3850
            /* Can't pass it along to the signal handler because that is
3851
               ignoring SIGBUS signals. We also shouldn't call ABORT here as
3852
               signals don't always work too well from the exception handler. */
3853
            GC_err_printf0("Aborting\n");
3854
            exit(EXIT_FAILURE);
3855
        #else /* BROKEN_EXCEPTION_HANDLING */
3856
            /* Pass it along to the next exception handler
3857
               (which should call SIGBUS/SIGSEGV) */
3858
            return FWD();
3859
        #endif /* !BROKEN_EXCEPTION_HANDLING */
3860
    }
3861
 
3862
    #ifdef BROKEN_EXCEPTION_HANDLING
3863
        /* Reset the number of consecutive SIGBUSs */
3864
        GC_sigbus_count = 0;
3865
    #endif
3866
 
3867
    if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
3868
        h = (struct hblk*)((word)addr & ~(GC_page_size-1));
3869
        UNPROTECT(h, GC_page_size);
3870
        for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
3871
            register int index = PHT_HASH(h+i);
3872
            async_set_pht_entry_from_index(GC_dirty_pages, index);
3873
        }
3874
    } else if(GC_mprotect_state == GC_MP_DISCARDING) {
3875
        /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3876
           when we're just going to PROTECT() it again later. The thread
3877
           will just fault again once it resumes */
3878
    } else {
3879
        /* Shouldn't happen, i don't think */
3880
        GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3881
        return FWD();
3882
    }
3883
    return KERN_SUCCESS;
3884
}
3885
#undef FWD
3886
 
3887
/* These should never be called, but just in case...  */
3888
kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
3889
    int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3890
    int flavor, thread_state_t old_state, int old_stateCnt,
3891
    thread_state_t new_state, int new_stateCnt)
3892
{
3893
    ABORT("catch_exception_raise_state");
3894
    return(KERN_INVALID_ARGUMENT);
3895
}
3896
kern_return_t catch_exception_raise_state_identity(
3897
    mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
3898
    int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3899
    int flavor, thread_state_t old_state, int old_stateCnt,
3900
    thread_state_t new_state, int new_stateCnt)
3901
{
3902
    ABORT("catch_exception_raise_state_identity");
3903
    return(KERN_INVALID_ARGUMENT);
3904
}
3905
 
3906
 
3907
#endif /* DARWIN && MPROTECT_VDB */
3908
 
3909
# ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3910
  int GC_incremental_protection_needs()
3911
  {
3912
    return GC_PROTECTS_NONE;
3913
  }
3914
# endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3915
 
3916
/*
3917
 * Call stack save code for debugging.
3918
 * Should probably be in mach_dep.c, but that requires reorganization.
3919
 */
3920
 
3921
/* I suspect the following works for most X86 *nix variants, so         */
3922
/* long as the frame pointer is explicitly stored.  In the case of gcc, */
3923
/* compiler flags (e.g. -fomit-frame-pointer) determine whether it is.  */
3924
#if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
3925
#   include <features.h>
3926
 
3927
    struct frame {
3928
        struct frame *fr_savfp;
3929
        long    fr_savpc;
3930
        long    fr_arg[NARGS];  /* All the arguments go here.   */
3931
    };
3932
#endif
3933
 
3934
#if defined(SPARC)
3935
#  if defined(LINUX)
3936
#    include <features.h>
3937
 
3938
     struct frame {
3939
        long    fr_local[8];
3940
        long    fr_arg[6];
3941
        struct frame *fr_savfp;
3942
        long    fr_savpc;
3943
#       ifndef __arch64__
3944
          char  *fr_stret;
3945
#       endif
3946
        long    fr_argd[6];
3947
        long    fr_argx[0];
3948
     };
3949
#  else
3950
#    if defined(SUNOS4)
3951
#      include <machine/frame.h>
3952
#    else
3953
#      if defined (DRSNX)
3954
#        include <sys/sparc/frame.h>
3955
#      else
3956
#        if defined(OPENBSD) || defined(NETBSD)
3957
#          include <frame.h>
3958
#        else
3959
#          include <sys/frame.h>
3960
#        endif
3961
#      endif
3962
#    endif
3963
#  endif
3964
#  if NARGS > 6
3965
        --> We only know how to to get the first 6 arguments
3966
#  endif
3967
#endif /* SPARC */
3968
 
3969
#ifdef  NEED_CALLINFO
3970
/* Fill in the pc and argument information for up to NFRAMES of my      */
3971
/* callers.  Ignore my frame and my callers frame.                      */
3972
 
3973
#ifdef LINUX
3974
#   include <unistd.h>
3975
#endif
3976
 
3977
#endif /* NEED_CALLINFO */
3978
 
3979
#if defined(GC_HAVE_BUILTIN_BACKTRACE)
3980
# include <execinfo.h>
3981
#endif
3982
 
3983
#ifdef SAVE_CALL_CHAIN
3984
 
3985
#if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
3986
    && defined(GC_HAVE_BUILTIN_BACKTRACE)
3987
 
3988
void GC_save_callers (info)
3989
struct callinfo info[NFRAMES];
3990
{
3991
  void * tmp_info[NFRAMES + 1];
3992
  int npcs, i;
3993
# define IGNORE_FRAMES 1
3994
 
3995
  /* We retrieve NFRAMES+1 pc values, but discard the first, since it   */
3996
  /* points to our own frame.                                           */
3997
  GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
3998
  npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
3999
  BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
4000
  for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
4001
}
4002
 
4003
#else /* No builtin backtrace; do it ourselves */
4004
 
4005
#if (defined(OPENBSD) || defined(NETBSD)) && defined(SPARC)
4006
#  define FR_SAVFP fr_fp
4007
#  define FR_SAVPC fr_pc
4008
#else
4009
#  define FR_SAVFP fr_savfp
4010
#  define FR_SAVPC fr_savpc
4011
#endif
4012
 
4013
#if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4014
#   define BIAS 2047
4015
#else
4016
#   define BIAS 0
4017
#endif
4018
 
4019
void GC_save_callers (info)
4020
struct callinfo info[NFRAMES];
4021
{
4022
  struct frame *frame;
4023
  struct frame *fp;
4024
  int nframes = 0;
4025
# ifdef I386
4026
    /* We assume this is turned on only with gcc as the compiler. */
4027
    asm("movl %%ebp,%0" : "=r"(frame));
4028
    fp = frame;
4029
# else
4030
    frame = (struct frame *) GC_save_regs_in_stack ();
4031
    fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
4032
#endif
4033
 
4034
   for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
4035
           && (nframes < NFRAMES));
4036
       fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
4037
      register int i;
4038
 
4039
      info[nframes].ci_pc = fp->FR_SAVPC;
4040
#     if NARGS > 0
4041
        for (i = 0; i < NARGS; i++) {
4042
          info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
4043
        }
4044
#     endif /* NARGS > 0 */
4045
  }
4046
  if (nframes < NFRAMES) info[nframes].ci_pc = 0;
4047
}
4048
 
4049
#endif /* No builtin backtrace */
4050
 
4051
#endif /* SAVE_CALL_CHAIN */
4052
 
4053
#ifdef NEED_CALLINFO
4054
 
4055
/* Print info to stderr.  We do NOT hold the allocation lock */
4056
void GC_print_callers (info)
4057
struct callinfo info[NFRAMES];
4058
{
4059
    register int i;
4060
    static int reentry_count = 0;
4061
    GC_bool stop = FALSE;
4062
 
4063
    /* FIXME: This should probably use a different lock, so that we     */
4064
    /* become callable with or without the allocation lock.             */
4065
    LOCK();
4066
      ++reentry_count;
4067
    UNLOCK();
4068
 
4069
#   if NFRAMES == 1
4070
      GC_err_printf0("\tCaller at allocation:\n");
4071
#   else
4072
      GC_err_printf0("\tCall chain at allocation:\n");
4073
#   endif
4074
    for (i = 0; i < NFRAMES && !stop ; i++) {
4075
        if (info[i].ci_pc == 0) break;
4076
#       if NARGS > 0
4077
        {
4078
          int j;
4079
 
4080
          GC_err_printf0("\t\targs: ");
4081
          for (j = 0; j < NARGS; j++) {
4082
            if (j != 0) GC_err_printf0(", ");
4083
            GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
4084
                                        ~(info[i].ci_arg[j]));
4085
          }
4086
          GC_err_printf0("\n");
4087
        }
4088
#       endif
4089
        if (reentry_count > 1) {
4090
            /* We were called during an allocation during       */
4091
            /* a previous GC_print_callers call; punt.          */
4092
            GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4093
            continue;
4094
        }
4095
        {
4096
#         ifdef LINUX
4097
            FILE *pipe;
4098
#         endif
4099
#         if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4100
             && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4101
            char **sym_name =
4102
              backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4103
            char *name = sym_name[0];
4104
#         else
4105
            char buf[40];
4106
            char *name = buf;
4107
            sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4108
#         endif
4109
#         if defined(LINUX) && !defined(SMALL_CONFIG)
4110
            /* Try for a line number. */
4111
            {
4112
#               define EXE_SZ 100
4113
                static char exe_name[EXE_SZ];
4114
#               define CMD_SZ 200
4115
                char cmd_buf[CMD_SZ];
4116
#               define RESULT_SZ 200
4117
                static char result_buf[RESULT_SZ];
4118
                size_t result_len;
4119
                char *old_preload;
4120
#               define PRELOAD_SZ 200
4121
                char preload_buf[PRELOAD_SZ];
4122
                static GC_bool found_exe_name = FALSE;
4123
                static GC_bool will_fail = FALSE;
4124
                int ret_code;
4125
                /* Try to get it via a hairy and expensive scheme.      */
4126
                /* First we get the name of the executable:             */
4127
                if (will_fail) goto out;
4128
                if (!found_exe_name) {
4129
                  ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4130
                  if (ret_code < 0 || ret_code >= EXE_SZ
4131
                      || exe_name[0] != '/') {
4132
                    will_fail = TRUE;   /* Dont try again. */
4133
                    goto out;
4134
                  }
4135
                  exe_name[ret_code] = '\0';
4136
                  found_exe_name = TRUE;
4137
                }
4138
                /* Then we use popen to start addr2line -e <exe> <addr> */
4139
                /* There are faster ways to do this, but hopefully this */
4140
                /* isn't time critical.                                 */
4141
                sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
4142
                                 (unsigned long)info[i].ci_pc);
4143
                old_preload = getenv ("LD_PRELOAD");
4144
                if (0 != old_preload) {
4145
                  if (strlen (old_preload) >= PRELOAD_SZ) {
4146
                    will_fail = TRUE;
4147
                    goto out;
4148
                  }
4149
                  strcpy (preload_buf, old_preload);
4150
                  unsetenv ("LD_PRELOAD");
4151
                }
4152
                pipe = popen(cmd_buf, "r");
4153
                if (0 != old_preload
4154
                    && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) {
4155
                  WARN("Failed to reset LD_PRELOAD\n", 0);
4156
                }
4157
                if (pipe == NULL
4158
                    || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
4159
                       == 0) {
4160
                  if (pipe != NULL) pclose(pipe);
4161
                  will_fail = TRUE;
4162
                  goto out;
4163
                }
4164
                if (result_buf[result_len - 1] == '\n') --result_len;
4165
                result_buf[result_len] = 0;
4166
                if (result_buf[0] == '?'
4167
                    || result_buf[result_len-2] == ':'
4168
                       && result_buf[result_len-1] == '0') {
4169
                    pclose(pipe);
4170
                    goto out;
4171
                }
4172
                /* Get rid of embedded newline, if any.  Test for "main" */
4173
                {
4174
                   char * nl = strchr(result_buf, '\n');
4175
                   if (nl != NULL && nl < result_buf + result_len) {
4176
                     *nl = ':';
4177
                   }
4178
                   if (strncmp(result_buf, "main", nl - result_buf) == 0) {
4179
                     stop = TRUE;
4180
                   }
4181
                }
4182
                if (result_len < RESULT_SZ - 25) {
4183
                  /* Add in hex address */
4184
                    sprintf(result_buf + result_len, " [0x%lx]",
4185
                          (unsigned long)info[i].ci_pc);
4186
                }
4187
                name = result_buf;
4188
                pclose(pipe);
4189
                out:;
4190
            }
4191
#         endif /* LINUX */
4192
          GC_err_printf1("\t\t%s\n", name);
4193
#         if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4194
             && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4195
            free(sym_name);  /* May call GC_free; that's OK */
4196
#         endif
4197
        }
4198
    }
4199
    LOCK();
4200
      --reentry_count;
4201
    UNLOCK();
4202
}
4203
 
4204
#endif /* NEED_CALLINFO */
4205
 
4206
 
4207
 
4208
#if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4209
 
4210
/* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4211
   addresses in FIND_LEAK output. */
4212
 
4213
static word dump_maps(char *maps)
4214
{
4215
    GC_err_write(maps, strlen(maps));
4216
    return 1;
4217
}
4218
 
4219
void GC_print_address_map()
4220
{
4221
    GC_err_printf0("---------- Begin address map ----------\n");
4222
    GC_apply_to_maps(dump_maps);
4223
    GC_err_printf0("---------- End address map ----------\n");
4224
}
4225
 
4226
#endif
4227
 
4228
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.