OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [bt-load.c] - Blame information for rev 20

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Perform branch target register load optimizations.
2
   Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
 
4
This file is part of GCC.
5
 
6
GCC is free software; you can redistribute it and/or modify it under
7
the terms of the GNU General Public License as published by the Free
8
Software Foundation; either version 2, or (at your option) any later
9
version.
10
 
11
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12
WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14
for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with GCC; see the file COPYING.  If not, write to the Free
18
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19
02110-1301, USA.  */
20
 
21
#include "config.h"
22
#include "system.h"
23
#include "coretypes.h"
24
#include "tm.h"
25
#include "rtl.h"
26
#include "hard-reg-set.h"
27
#include "regs.h"
28
#include "fibheap.h"
29
#include "output.h"
30
#include "target.h"
31
#include "expr.h"
32
#include "flags.h"
33
#include "insn-attr.h"
34
#include "function.h"
35
#include "except.h"
36
#include "tm_p.h"
37
#include "toplev.h"
38
#include "tree-pass.h"
39
 
40
/* Target register optimizations - these are performed after reload.  */
41
 
42
typedef struct btr_def_group_s
43
{
44
  struct btr_def_group_s *next;
45
  rtx src;
46
  struct btr_def_s *members;
47
} *btr_def_group;
48
 
49
typedef struct btr_user_s
50
{
51
  struct btr_user_s *next;
52
  basic_block bb;
53
  int luid;
54
  rtx insn;
55
  /* If INSN has a single use of a single branch register, then
56
     USE points to it within INSN.  If there is more than
57
     one branch register use, or the use is in some way ambiguous,
58
     then USE is NULL.  */
59
  rtx use;
60
  int n_reaching_defs;
61
  int first_reaching_def;
62
  char other_use_this_block;
63
} *btr_user;
64
 
65
/* btr_def structs appear on three lists:
66
     1. A list of all btr_def structures (head is
67
        ALL_BTR_DEFS, linked by the NEXT field).
68
     2. A list of branch reg definitions per basic block (head is
69
        BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
70
     3. A list of all branch reg definitions belonging to the same
71
        group (head is in a BTR_DEF_GROUP struct, linked by
72
        NEXT_THIS_GROUP field).  */
73
 
74
typedef struct btr_def_s
75
{
76
  struct btr_def_s *next_this_bb;
77
  struct btr_def_s *next_this_group;
78
  basic_block bb;
79
  int luid;
80
  rtx insn;
81
  int btr;
82
  int cost;
83
  /* For a branch register setting insn that has a constant
84
     source (i.e. a label), group links together all the
85
     insns with the same source.  For other branch register
86
     setting insns, group is NULL.  */
87
  btr_def_group group;
88
  btr_user uses;
89
  /* If this def has a reaching use which is not a simple use
90
     in a branch instruction, then has_ambiguous_use will be true,
91
     and we will not attempt to migrate this definition.  */
92
  char has_ambiguous_use;
93
  /* live_range is an approximation to the true live range for this
94
     def/use web, because it records the set of blocks that contain
95
     the live range.  There could be other live ranges for the same
96
     branch register in that set of blocks, either in the block
97
     containing the def (before the def), or in a block containing
98
     a use (after the use).  If there are such other live ranges, then
99
     other_btr_uses_before_def or other_btr_uses_after_use must be set true
100
     as appropriate.  */
101
  char other_btr_uses_before_def;
102
  char other_btr_uses_after_use;
103
  /* We set own_end when we have moved a definition into a dominator.
104
     Thus, when a later combination removes this definition again, we know
105
     to clear out trs_live_at_end again.  */
106
  char own_end;
107
  bitmap live_range;
108
} *btr_def;
109
 
110
static int issue_rate;
111
 
112
static int basic_block_freq (basic_block);
113
static int insn_sets_btr_p (rtx, int, int *);
114
static rtx *find_btr_use (rtx);
115
static int btr_referenced_p (rtx, rtx *);
116
static int find_btr_reference (rtx *, void *);
117
static void find_btr_def_group (btr_def_group *, btr_def);
118
static btr_def add_btr_def (fibheap_t, basic_block, int, rtx,
119
                            unsigned int, int, btr_def_group *);
120
static btr_user new_btr_user (basic_block, int, rtx);
121
static void dump_hard_reg_set (HARD_REG_SET);
122
static void dump_btrs_live (int);
123
static void note_other_use_this_block (unsigned int, btr_user);
124
static void compute_defs_uses_and_gen (fibheap_t, btr_def *,btr_user *,
125
                                       sbitmap *, sbitmap *, HARD_REG_SET *);
126
static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *);
127
static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int);
128
static void link_btr_uses (btr_def *, btr_user *, sbitmap *, sbitmap *, int);
129
static void build_btr_def_use_webs (fibheap_t);
130
static int block_at_edge_of_live_range_p (int, btr_def);
131
static void clear_btr_from_live_range (btr_def def);
132
static void add_btr_to_live_range (btr_def, int);
133
static void augment_live_range (bitmap, HARD_REG_SET *, basic_block,
134
                                basic_block, int);
135
static int choose_btr (HARD_REG_SET);
136
static void combine_btr_defs (btr_def, HARD_REG_SET *);
137
static void btr_def_live_range (btr_def, HARD_REG_SET *);
138
static void move_btr_def (basic_block, int, btr_def, bitmap, HARD_REG_SET *);
139
static int migrate_btr_def (btr_def, int);
140
static void migrate_btr_defs (enum reg_class, int);
141
static int can_move_up (basic_block, rtx, int);
142
static void note_btr_set (rtx, rtx, void *);
143
 
144
/* The following code performs code motion of target load instructions
145
   (instructions that set branch target registers), to move them
146
   forward away from the branch instructions and out of loops (or,
147
   more generally, from a more frequently executed place to a less
148
   frequently executed place).
149
   Moving target load instructions further in front of the branch
150
   instruction that uses the target register value means that the hardware
151
   has a better chance of preloading the instructions at the branch
152
   target by the time the branch is reached.  This avoids bubbles
153
   when a taken branch needs to flush out the pipeline.
154
   Moving target load instructions out of loops means they are executed
155
   less frequently.  */
156
 
157
/* An obstack to hold the def-use web data structures built up for
158
   migrating branch target load instructions.  */
159
static struct obstack migrate_btrl_obstack;
160
 
161
/* Array indexed by basic block number, giving the set of registers
162
   live in that block.  */
163
static HARD_REG_SET *btrs_live;
164
 
165
/* Array indexed by basic block number, giving the set of registers live at
166
  the end of that block, including any uses by a final jump insn, if any.  */
167
static HARD_REG_SET *btrs_live_at_end;
168
 
169
/* Set of all target registers that we are willing to allocate.  */
170
static HARD_REG_SET all_btrs;
171
 
172
/* Provide lower and upper bounds for target register numbers, so that
173
   we don't need to search through all the hard registers all the time.  */
174
static int first_btr, last_btr;
175
 
176
 
177
 
178
/* Return an estimate of the frequency of execution of block bb.  */
179
static int
180
basic_block_freq (basic_block bb)
181
{
182
  return bb->frequency;
183
}
184
 
185
static rtx *btr_reference_found;
186
 
187
/* A subroutine of btr_referenced_p, called through for_each_rtx.
188
   PREG is a pointer to an rtx that is to be excluded from the
189
   traversal.  If we find a reference to a target register anywhere
190
   else, return 1, and put a pointer to it into btr_reference_found.  */
191
static int
192
find_btr_reference (rtx *px, void *preg)
193
{
194
  rtx x;
195
  int regno, i;
196
 
197
  if (px == preg)
198
    return -1;
199
  x = *px;
200
  if (!REG_P (x))
201
    return 0;
202
  regno = REGNO (x);
203
  for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
204
    if (TEST_HARD_REG_BIT (all_btrs, regno+i))
205
      {
206
        btr_reference_found = px;
207
        return 1;
208
      }
209
  return -1;
210
}
211
 
212
/* Return nonzero if X references (sets or reads) any branch target register.
213
   If EXCLUDEP is set, disregard any references within the rtx pointed to
214
   by it.  If returning nonzero, also set btr_reference_found as above.  */
215
static int
216
btr_referenced_p (rtx x, rtx *excludep)
217
{
218
  return for_each_rtx (&x, find_btr_reference, excludep);
219
}
220
 
221
/* Return true if insn is an instruction that sets a target register.
222
   if CHECK_CONST is true, only return true if the source is constant.
223
   If such a set is found and REGNO is nonzero, assign the register number
224
   of the destination register to *REGNO.  */
225
static int
226
insn_sets_btr_p (rtx insn, int check_const, int *regno)
227
{
228
  rtx set;
229
 
230
  if (NONJUMP_INSN_P (insn)
231
      && (set = single_set (insn)))
232
    {
233
      rtx dest = SET_DEST (set);
234
      rtx src = SET_SRC (set);
235
 
236
      if (GET_CODE (dest) == SUBREG)
237
        dest = XEXP (dest, 0);
238
 
239
      if (REG_P (dest)
240
          && TEST_HARD_REG_BIT (all_btrs, REGNO (dest)))
241
        {
242
          gcc_assert (!btr_referenced_p (src, NULL));
243
 
244
          if (!check_const || CONSTANT_P (src))
245
            {
246
              if (regno)
247
                *regno = REGNO (dest);
248
              return 1;
249
            }
250
        }
251
    }
252
  return 0;
253
}
254
 
255
/* Find and return a use of a target register within an instruction INSN.  */
256
static rtx *
257
find_btr_use (rtx insn)
258
{
259
  return btr_referenced_p (insn, NULL) ? btr_reference_found : NULL;
260
}
261
 
262
/* Find the group that the target register definition DEF belongs
263
   to in the list starting with *ALL_BTR_DEF_GROUPS.  If no such
264
   group exists, create one.  Add def to the group.  */
265
static void
266
find_btr_def_group (btr_def_group *all_btr_def_groups, btr_def def)
267
{
268
  if (insn_sets_btr_p (def->insn, 1, NULL))
269
    {
270
      btr_def_group this_group;
271
      rtx def_src = SET_SRC (single_set (def->insn));
272
 
273
      /* ?? This linear search is an efficiency concern, particularly
274
         as the search will almost always fail to find a match.  */
275
      for (this_group = *all_btr_def_groups;
276
           this_group != NULL;
277
           this_group = this_group->next)
278
        if (rtx_equal_p (def_src, this_group->src))
279
          break;
280
 
281
      if (!this_group)
282
        {
283
          this_group = obstack_alloc (&migrate_btrl_obstack,
284
                                      sizeof (struct btr_def_group_s));
285
          this_group->src = def_src;
286
          this_group->members = NULL;
287
          this_group->next = *all_btr_def_groups;
288
          *all_btr_def_groups = this_group;
289
        }
290
      def->group = this_group;
291
      def->next_this_group = this_group->members;
292
      this_group->members = def;
293
    }
294
  else
295
    def->group = NULL;
296
}
297
 
298
/* Create a new target register definition structure, for a definition in
299
   block BB, instruction INSN, and insert it into ALL_BTR_DEFS.  Return
300
   the new definition.  */
301
static btr_def
302
add_btr_def (fibheap_t all_btr_defs, basic_block bb, int insn_luid, rtx insn,
303
             unsigned int dest_reg, int other_btr_uses_before_def,
304
             btr_def_group *all_btr_def_groups)
305
{
306
  btr_def this
307
    = obstack_alloc (&migrate_btrl_obstack, sizeof (struct btr_def_s));
308
  this->bb = bb;
309
  this->luid = insn_luid;
310
  this->insn = insn;
311
  this->btr = dest_reg;
312
  this->cost = basic_block_freq (bb);
313
  this->has_ambiguous_use = 0;
314
  this->other_btr_uses_before_def = other_btr_uses_before_def;
315
  this->other_btr_uses_after_use = 0;
316
  this->next_this_bb = NULL;
317
  this->next_this_group = NULL;
318
  this->uses = NULL;
319
  this->live_range = NULL;
320
  find_btr_def_group (all_btr_def_groups, this);
321
 
322
  fibheap_insert (all_btr_defs, -this->cost, this);
323
 
324
  if (dump_file)
325
    fprintf (dump_file,
326
      "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
327
      dest_reg, bb->index, INSN_UID (insn), (this->group ? "" : ":not const"),
328
      this->cost);
329
 
330
  return this;
331
}
332
 
333
/* Create a new target register user structure, for a use in block BB,
334
   instruction INSN.  Return the new user.  */
335
static btr_user
336
new_btr_user (basic_block bb, int insn_luid, rtx insn)
337
{
338
  /* This instruction reads target registers.  We need
339
     to decide whether we can replace all target register
340
     uses easily.
341
   */
342
  rtx *usep = find_btr_use (PATTERN (insn));
343
  rtx use;
344
  btr_user user = NULL;
345
 
346
  if (usep)
347
    {
348
      int unambiguous_single_use;
349
 
350
      /* We want to ensure that USE is the only use of a target
351
         register in INSN, so that we know that to rewrite INSN to use
352
         a different target register, all we have to do is replace USE.  */
353
      unambiguous_single_use = !btr_referenced_p (PATTERN (insn), usep);
354
      if (!unambiguous_single_use)
355
        usep = NULL;
356
    }
357
  use = usep ? *usep : NULL_RTX;
358
  user = obstack_alloc (&migrate_btrl_obstack, sizeof (struct btr_user_s));
359
  user->bb = bb;
360
  user->luid = insn_luid;
361
  user->insn = insn;
362
  user->use = use;
363
  user->other_use_this_block = 0;
364
  user->next = NULL;
365
  user->n_reaching_defs = 0;
366
  user->first_reaching_def = -1;
367
 
368
  if (dump_file)
369
    {
370
      fprintf (dump_file, "Uses target reg: { bb %d, insn %d }",
371
               bb->index, INSN_UID (insn));
372
 
373
      if (user->use)
374
        fprintf (dump_file, ": unambiguous use of reg %d\n",
375
                 REGNO (user->use));
376
    }
377
 
378
  return user;
379
}
380
 
381
/* Write the contents of S to the dump file.  */
382
static void
383
dump_hard_reg_set (HARD_REG_SET s)
384
{
385
  int reg;
386
  for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
387
    if (TEST_HARD_REG_BIT (s, reg))
388
      fprintf (dump_file, " %d", reg);
389
}
390
 
391
/* Write the set of target regs live in block BB to the dump file.  */
392
static void
393
dump_btrs_live (int bb)
394
{
395
  fprintf (dump_file, "BB%d live:", bb);
396
  dump_hard_reg_set (btrs_live[bb]);
397
  fprintf (dump_file, "\n");
398
}
399
 
400
/* REGNO is the number of a branch target register that is being used or
401
   set.  USERS_THIS_BB is a list of preceding branch target register users;
402
   If any of them use the same register, set their other_use_this_block
403
   flag.  */
404
static void
405
note_other_use_this_block (unsigned int regno, btr_user users_this_bb)
406
{
407
  btr_user user;
408
 
409
  for (user = users_this_bb; user != NULL; user = user->next)
410
    if (user->use && REGNO (user->use) == regno)
411
      user->other_use_this_block = 1;
412
}
413
 
414
typedef struct {
415
  btr_user users_this_bb;
416
  HARD_REG_SET btrs_written_in_block;
417
  HARD_REG_SET btrs_live_in_block;
418
  sbitmap bb_gen;
419
  sbitmap *btr_defset;
420
} defs_uses_info;
421
 
422
/* Called via note_stores or directly to register stores into /
423
   clobbers of a branch target register DEST that are not recognized as
424
   straightforward definitions.  DATA points to information about the
425
   current basic block that needs updating.  */
426
static void
427
note_btr_set (rtx dest, rtx set ATTRIBUTE_UNUSED, void *data)
428
{
429
  defs_uses_info *info = data;
430
  int regno, end_regno;
431
 
432
  if (!REG_P (dest))
433
    return;
434
  regno = REGNO (dest);
435
  end_regno = regno + hard_regno_nregs[regno][GET_MODE (dest)];
436
  for (; regno < end_regno; regno++)
437
    if (TEST_HARD_REG_BIT (all_btrs, regno))
438
      {
439
        note_other_use_this_block (regno, info->users_this_bb);
440
        SET_HARD_REG_BIT (info->btrs_written_in_block, regno);
441
        SET_HARD_REG_BIT (info->btrs_live_in_block, regno);
442
        sbitmap_difference (info->bb_gen, info->bb_gen,
443
                            info->btr_defset[regno - first_btr]);
444
      }
445
}
446
 
447
static void
448
compute_defs_uses_and_gen (fibheap_t all_btr_defs, btr_def *def_array,
449
                           btr_user *use_array, sbitmap *btr_defset,
450
                           sbitmap *bb_gen, HARD_REG_SET *btrs_written)
451
{
452
  /* Scan the code building up the set of all defs and all uses.
453
     For each target register, build the set of defs of that register.
454
     For each block, calculate the set of target registers
455
     written in that block.
456
     Also calculate the set of btrs ever live in that block.
457
  */
458
  int i;
459
  int insn_luid = 0;
460
  btr_def_group all_btr_def_groups = NULL;
461
  defs_uses_info info;
462
 
463
  sbitmap_vector_zero (bb_gen, n_basic_blocks);
464
  for (i = 0; i < n_basic_blocks; i++)
465
    {
466
      basic_block bb = BASIC_BLOCK (i);
467
      int reg;
468
      btr_def defs_this_bb = NULL;
469
      rtx insn;
470
      rtx last;
471
      int can_throw = 0;
472
 
473
      info.users_this_bb = NULL;
474
      info.bb_gen = bb_gen[i];
475
      info.btr_defset = btr_defset;
476
 
477
      CLEAR_HARD_REG_SET (info.btrs_live_in_block);
478
      CLEAR_HARD_REG_SET (info.btrs_written_in_block);
479
      for (reg = first_btr; reg <= last_btr; reg++)
480
        if (TEST_HARD_REG_BIT (all_btrs, reg)
481
            && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
482
          SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
483
 
484
      for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
485
           insn != last;
486
           insn = NEXT_INSN (insn), insn_luid++)
487
        {
488
          if (INSN_P (insn))
489
            {
490
              int regno;
491
              int insn_uid = INSN_UID (insn);
492
 
493
              if (insn_sets_btr_p (insn, 0, &regno))
494
                {
495
                  btr_def def = add_btr_def (
496
                      all_btr_defs, bb, insn_luid, insn, regno,
497
                      TEST_HARD_REG_BIT (info.btrs_live_in_block, regno),
498
                      &all_btr_def_groups);
499
 
500
                  def_array[insn_uid] = def;
501
                  SET_HARD_REG_BIT (info.btrs_written_in_block, regno);
502
                  SET_HARD_REG_BIT (info.btrs_live_in_block, regno);
503
                  sbitmap_difference (bb_gen[i], bb_gen[i],
504
                                      btr_defset[regno - first_btr]);
505
                  SET_BIT (bb_gen[i], insn_uid);
506
                  def->next_this_bb = defs_this_bb;
507
                  defs_this_bb = def;
508
                  SET_BIT (btr_defset[regno - first_btr], insn_uid);
509
                  note_other_use_this_block (regno, info.users_this_bb);
510
                }
511
              /* Check for the blockage emitted by expand_nl_goto_receiver.  */
512
              else if (current_function_has_nonlocal_label
513
                       && GET_CODE (PATTERN (insn)) == ASM_INPUT)
514
                {
515
                  btr_user user;
516
 
517
                  /* Do the equivalent of calling note_other_use_this_block
518
                     for every target register.  */
519
                  for (user = info.users_this_bb; user != NULL;
520
                       user = user->next)
521
                    if (user->use)
522
                      user->other_use_this_block = 1;
523
                  IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs);
524
                  IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs);
525
                  sbitmap_zero (info.bb_gen);
526
                }
527
              else
528
                {
529
                  if (btr_referenced_p (PATTERN (insn), NULL))
530
                    {
531
                      btr_user user = new_btr_user (bb, insn_luid, insn);
532
 
533
                      use_array[insn_uid] = user;
534
                      if (user->use)
535
                        SET_HARD_REG_BIT (info.btrs_live_in_block,
536
                                          REGNO (user->use));
537
                      else
538
                        {
539
                          int reg;
540
                          for (reg = first_btr; reg <= last_btr; reg++)
541
                            if (TEST_HARD_REG_BIT (all_btrs, reg)
542
                                && refers_to_regno_p (reg, reg + 1, user->insn,
543
                                                      NULL))
544
                              {
545
                                note_other_use_this_block (reg,
546
                                                           info.users_this_bb);
547
                                SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
548
                              }
549
                          note_stores (PATTERN (insn), note_btr_set, &info);
550
                        }
551
                      user->next = info.users_this_bb;
552
                      info.users_this_bb = user;
553
                    }
554
                  if (CALL_P (insn))
555
                    {
556
                      HARD_REG_SET *clobbered = &call_used_reg_set;
557
                      HARD_REG_SET call_saved;
558
                      rtx pat = PATTERN (insn);
559
                      int i;
560
 
561
                      /* Check for sibcall.  */
562
                      if (GET_CODE (pat) == PARALLEL)
563
                        for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
564
                          if (GET_CODE (XVECEXP (pat, 0, i)) == RETURN)
565
                            {
566
                              COMPL_HARD_REG_SET (call_saved,
567
                                                  call_used_reg_set);
568
                              clobbered = &call_saved;
569
                            }
570
 
571
                      for (regno = first_btr; regno <= last_btr; regno++)
572
                        if (TEST_HARD_REG_BIT (*clobbered, regno))
573
                          note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info);
574
                    }
575
                }
576
            }
577
        }
578
 
579
      COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block);
580
      COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block);
581
 
582
      REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], bb->il.rtl->global_live_at_end);
583
      /* If this block ends in a jump insn, add any uses or even clobbers
584
         of branch target registers that it might have.  */
585
      for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); )
586
        insn = PREV_INSN (insn);
587
      /* ??? for the fall-through edge, it would make sense to insert the
588
         btr set on the edge, but that would require to split the block
589
         early on so that we can distinguish between dominance from the fall
590
         through edge - which can use the call-clobbered registers - from
591
         dominance by the throw edge.  */
592
      if (can_throw_internal (insn))
593
        {
594
          HARD_REG_SET tmp;
595
 
596
          COPY_HARD_REG_SET (tmp, call_used_reg_set);
597
          AND_HARD_REG_SET (tmp, all_btrs);
598
          IOR_HARD_REG_SET (btrs_live_at_end[i], tmp);
599
          can_throw = 1;
600
        }
601
      if (can_throw || JUMP_P (insn))
602
        {
603
          int regno;
604
 
605
          for (regno = first_btr; regno <= last_btr; regno++)
606
            if (refers_to_regno_p (regno, regno+1, insn, NULL))
607
              SET_HARD_REG_BIT (btrs_live_at_end[i], regno);
608
        }
609
 
610
      if (dump_file)
611
        dump_btrs_live(i);
612
    }
613
}
614
 
615
static void
616
compute_kill (sbitmap *bb_kill, sbitmap *btr_defset,
617
              HARD_REG_SET *btrs_written)
618
{
619
  int i;
620
  int regno;
621
 
622
  /* For each basic block, form the set BB_KILL - the set
623
     of definitions that the block kills.  */
624
  sbitmap_vector_zero (bb_kill, n_basic_blocks);
625
  for (i = 0; i < n_basic_blocks; i++)
626
    {
627
      for (regno = first_btr; regno <= last_btr; regno++)
628
        if (TEST_HARD_REG_BIT (all_btrs, regno)
629
            && TEST_HARD_REG_BIT (btrs_written[i], regno))
630
          sbitmap_a_or_b (bb_kill[i], bb_kill[i],
631
                          btr_defset[regno - first_btr]);
632
    }
633
}
634
 
635
static void
636
compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid)
637
{
638
  /* Perform iterative dataflow:
639
      Initially, for all blocks, BB_OUT = BB_GEN.
640
      For each block,
641
        BB_IN  = union over predecessors of BB_OUT(pred)
642
        BB_OUT = (BB_IN - BB_KILL) + BB_GEN
643
     Iterate until the bb_out sets stop growing.  */
644
  int i;
645
  int changed;
646
  sbitmap bb_in = sbitmap_alloc (max_uid);
647
 
648
  for (i = 0; i < n_basic_blocks; i++)
649
    sbitmap_copy (bb_out[i], bb_gen[i]);
650
 
651
  changed = 1;
652
  while (changed)
653
    {
654
      changed = 0;
655
      for (i = 0; i < n_basic_blocks; i++)
656
        {
657
          sbitmap_union_of_preds (bb_in, bb_out, i);
658
          changed |= sbitmap_union_of_diff_cg (bb_out[i], bb_gen[i],
659
                                               bb_in, bb_kill[i]);
660
        }
661
    }
662
  sbitmap_free (bb_in);
663
}
664
 
665
static void
666
link_btr_uses (btr_def *def_array, btr_user *use_array, sbitmap *bb_out,
667
               sbitmap *btr_defset, int max_uid)
668
{
669
  int i;
670
  sbitmap reaching_defs = sbitmap_alloc (max_uid);
671
 
672
  /* Link uses to the uses lists of all of their reaching defs.
673
     Count up the number of reaching defs of each use.  */
674
  for (i = 0; i < n_basic_blocks; i++)
675
    {
676
      basic_block bb = BASIC_BLOCK (i);
677
      rtx insn;
678
      rtx last;
679
 
680
      sbitmap_union_of_preds (reaching_defs, bb_out, i);
681
      for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
682
           insn != last;
683
           insn = NEXT_INSN (insn))
684
        {
685
          if (INSN_P (insn))
686
            {
687
              int insn_uid = INSN_UID (insn);
688
 
689
              btr_def def   = def_array[insn_uid];
690
              btr_user user = use_array[insn_uid];
691
              if (def != NULL)
692
                {
693
                  /* Remove all reaching defs of regno except
694
                     for this one.  */
695
                  sbitmap_difference (reaching_defs, reaching_defs,
696
                                      btr_defset[def->btr - first_btr]);
697
                  SET_BIT(reaching_defs, insn_uid);
698
                }
699
 
700
              if (user != NULL)
701
                {
702
                  /* Find all the reaching defs for this use.  */
703
                  sbitmap reaching_defs_of_reg = sbitmap_alloc(max_uid);
704
                  unsigned int uid = 0;
705
                  sbitmap_iterator sbi;
706
 
707
                  if (user->use)
708
                    sbitmap_a_and_b (
709
                      reaching_defs_of_reg,
710
                      reaching_defs,
711
                      btr_defset[REGNO (user->use) - first_btr]);
712
                  else
713
                    {
714
                      int reg;
715
 
716
                      sbitmap_zero (reaching_defs_of_reg);
717
                      for (reg = first_btr; reg <= last_btr; reg++)
718
                        if (TEST_HARD_REG_BIT (all_btrs, reg)
719
                            && refers_to_regno_p (reg, reg + 1, user->insn,
720
                                                  NULL))
721
                          sbitmap_a_or_b_and_c (reaching_defs_of_reg,
722
                            reaching_defs_of_reg,
723
                            reaching_defs,
724
                            btr_defset[reg - first_btr]);
725
                    }
726
                  EXECUTE_IF_SET_IN_SBITMAP (reaching_defs_of_reg, 0, uid, sbi)
727
                    {
728
                      btr_def def = def_array[uid];
729
 
730
                      /* We now know that def reaches user.  */
731
 
732
                      if (dump_file)
733
                        fprintf (dump_file,
734
                          "Def in insn %d reaches use in insn %d\n",
735
                          uid, insn_uid);
736
 
737
                      user->n_reaching_defs++;
738
                      if (!user->use)
739
                        def->has_ambiguous_use = 1;
740
                      if (user->first_reaching_def != -1)
741
                        { /* There is more than one reaching def.  This is
742
                             a rare case, so just give up on this def/use
743
                             web when it occurs.  */
744
                          def->has_ambiguous_use = 1;
745
                          def_array[user->first_reaching_def]
746
                            ->has_ambiguous_use = 1;
747
                          if (dump_file)
748
                            fprintf (dump_file,
749
                                     "(use %d has multiple reaching defs)\n",
750
                                     insn_uid);
751
                        }
752
                      else
753
                        user->first_reaching_def = uid;
754
                      if (user->other_use_this_block)
755
                        def->other_btr_uses_after_use = 1;
756
                      user->next = def->uses;
757
                      def->uses = user;
758
                    }
759
                  sbitmap_free (reaching_defs_of_reg);
760
                }
761
 
762
              if (CALL_P (insn))
763
                {
764
                  int regno;
765
 
766
                  for (regno = first_btr; regno <= last_btr; regno++)
767
                    if (TEST_HARD_REG_BIT (all_btrs, regno)
768
                        && TEST_HARD_REG_BIT (call_used_reg_set, regno))
769
                      sbitmap_difference (reaching_defs, reaching_defs,
770
                                          btr_defset[regno - first_btr]);
771
                }
772
            }
773
        }
774
    }
775
  sbitmap_free (reaching_defs);
776
}
777
 
778
static void
779
build_btr_def_use_webs (fibheap_t all_btr_defs)
780
{
781
  const int max_uid = get_max_uid ();
782
  btr_def  *def_array   = xcalloc (max_uid, sizeof (btr_def));
783
  btr_user *use_array   = xcalloc (max_uid, sizeof (btr_user));
784
  sbitmap *btr_defset   = sbitmap_vector_alloc (
785
                           (last_btr - first_btr) + 1, max_uid);
786
  sbitmap *bb_gen      = sbitmap_vector_alloc (n_basic_blocks, max_uid);
787
  HARD_REG_SET *btrs_written = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
788
  sbitmap *bb_kill;
789
  sbitmap *bb_out;
790
 
791
  sbitmap_vector_zero (btr_defset, (last_btr - first_btr) + 1);
792
 
793
  compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset,
794
                             bb_gen, btrs_written);
795
 
796
  bb_kill = sbitmap_vector_alloc (n_basic_blocks, max_uid);
797
  compute_kill (bb_kill, btr_defset, btrs_written);
798
  free (btrs_written);
799
 
800
  bb_out = sbitmap_vector_alloc (n_basic_blocks, max_uid);
801
  compute_out (bb_out, bb_gen, bb_kill, max_uid);
802
 
803
  sbitmap_vector_free (bb_gen);
804
  sbitmap_vector_free (bb_kill);
805
 
806
  link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid);
807
 
808
  sbitmap_vector_free (bb_out);
809
  sbitmap_vector_free (btr_defset);
810
  free (use_array);
811
  free (def_array);
812
}
813
 
814
/* Return true if basic block BB contains the start or end of the
815
   live range of the definition DEF, AND there are other live
816
   ranges of the same target register that include BB.  */
817
static int
818
block_at_edge_of_live_range_p (int bb, btr_def def)
819
{
820
  if (def->other_btr_uses_before_def && BASIC_BLOCK (bb) == def->bb)
821
    return 1;
822
  else if (def->other_btr_uses_after_use)
823
    {
824
      btr_user user;
825
      for (user = def->uses; user != NULL; user = user->next)
826
        if (BASIC_BLOCK (bb) == user->bb)
827
          return 1;
828
    }
829
  return 0;
830
}
831
 
832
/* We are removing the def/use web DEF.  The target register
833
   used in this web is therefore no longer live in the live range
834
   of this web, so remove it from the live set of all basic blocks
835
   in the live range of the web.
836
   Blocks at the boundary of the live range may contain other live
837
   ranges for the same target register, so we have to be careful
838
   to remove the target register from the live set of these blocks
839
   only if they do not contain other live ranges for the same register.  */
840
static void
841
clear_btr_from_live_range (btr_def def)
842
{
843
  unsigned bb;
844
  bitmap_iterator bi;
845
 
846
  EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
847
    {
848
      if ((!def->other_btr_uses_before_def
849
           && !def->other_btr_uses_after_use)
850
          || !block_at_edge_of_live_range_p (bb, def))
851
        {
852
          CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr);
853
          CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
854
          if (dump_file)
855
            dump_btrs_live (bb);
856
        }
857
    }
858
 if (def->own_end)
859
   CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
860
}
861
 
862
 
863
/* We are adding the def/use web DEF.  Add the target register used
864
   in this web to the live set of all of the basic blocks that contain
865
   the live range of the web.
866
   If OWN_END is set, also show that the register is live from our
867
   definitions at the end of the basic block where it is defined.  */
868
static void
869
add_btr_to_live_range (btr_def def, int own_end)
870
{
871
  unsigned bb;
872
  bitmap_iterator bi;
873
 
874
  EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
875
    {
876
      SET_HARD_REG_BIT (btrs_live[bb], def->btr);
877
      SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
878
      if (dump_file)
879
        dump_btrs_live (bb);
880
    }
881
  if (own_end)
882
    {
883
      SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
884
      def->own_end = 1;
885
    }
886
}
887
 
888
/* Update a live range to contain the basic block NEW_BLOCK, and all
889
   blocks on paths between the existing live range and NEW_BLOCK.
890
   HEAD is a block contained in the existing live range that dominates
891
   all other blocks in the existing live range.
892
   Also add to the set BTRS_LIVE_IN_RANGE all target registers that
893
   are live in the blocks that we add to the live range.
894
   If FULL_RANGE is set, include the full live range of NEW_BB;
895
   otherwise, if NEW_BB dominates HEAD_BB, only add registers that
896
   are life at the end of NEW_BB for NEW_BB itself.
897
   It is a precondition that either NEW_BLOCK dominates HEAD,or
898
   HEAD dom NEW_BLOCK.  This is used to speed up the
899
   implementation of this function.  */
900
static void
901
augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range,
902
                    basic_block head_bb, basic_block new_bb, int full_range)
903
{
904
  basic_block *worklist, *tos;
905
 
906
  tos = worklist = xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
907
 
908
  if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb))
909
    {
910
      if (new_bb == head_bb)
911
        {
912
          if (full_range)
913
            IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]);
914
          return;
915
        }
916
      *tos++ = new_bb;
917
    }
918
  else
919
    {
920
      edge e;
921
      edge_iterator ei;
922
      int new_block = new_bb->index;
923
 
924
      gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb));
925
 
926
      IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]);
927
      bitmap_set_bit (live_range, new_block);
928
      /* A previous btr migration could have caused a register to be
929
        live just at the end of new_block which we need in full, so
930
        use trs_live_at_end even if full_range is set.  */
931
      IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]);
932
      if (full_range)
933
        IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]);
934
      if (dump_file)
935
        {
936
          fprintf (dump_file,
937
                   "Adding end of block %d and rest of %d to live range\n",
938
                   new_block, head_bb->index);
939
          fprintf (dump_file,"Now live btrs are ");
940
          dump_hard_reg_set (*btrs_live_in_range);
941
          fprintf (dump_file, "\n");
942
        }
943
      FOR_EACH_EDGE (e, ei, head_bb->preds)
944
        *tos++ = e->src;
945
    }
946
 
947
  while (tos != worklist)
948
    {
949
      basic_block bb = *--tos;
950
      if (!bitmap_bit_p (live_range, bb->index))
951
        {
952
          edge e;
953
          edge_iterator ei;
954
 
955
          bitmap_set_bit (live_range, bb->index);
956
          IOR_HARD_REG_SET (*btrs_live_in_range,
957
            btrs_live[bb->index]);
958
          /* A previous btr migration could have caused a register to be
959
             live just at the end of a block which we need in full.  */
960
          IOR_HARD_REG_SET (*btrs_live_in_range,
961
            btrs_live_at_end[bb->index]);
962
          if (dump_file)
963
            {
964
              fprintf (dump_file,
965
                "Adding block %d to live range\n", bb->index);
966
              fprintf (dump_file,"Now live btrs are ");
967
              dump_hard_reg_set (*btrs_live_in_range);
968
              fprintf (dump_file, "\n");
969
            }
970
 
971
          FOR_EACH_EDGE (e, ei, bb->preds)
972
            {
973
              basic_block pred = e->src;
974
              if (!bitmap_bit_p (live_range, pred->index))
975
                *tos++ = pred;
976
            }
977
        }
978
    }
979
 
980
  free (worklist);
981
}
982
 
983
/*  Return the most desirable target register that is not in
984
    the set USED_BTRS.  */
985
static int
986
choose_btr (HARD_REG_SET used_btrs)
987
{
988
  int i;
989
  GO_IF_HARD_REG_SUBSET (all_btrs, used_btrs, give_up);
990
 
991
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
992
    {
993
#ifdef REG_ALLOC_ORDER
994
      int regno = reg_alloc_order[i];
995
#else
996
      int regno = i;
997
#endif
998
      if (TEST_HARD_REG_BIT (all_btrs, regno)
999
          && !TEST_HARD_REG_BIT (used_btrs, regno))
1000
        return regno;
1001
    }
1002
give_up:
1003
  return -1;
1004
}
1005
 
1006
/* Calculate the set of basic blocks that contain the live range of
1007
   the def/use web DEF.
1008
   Also calculate the set of target registers that are live at time
1009
   in this live range, but ignore the live range represented by DEF
1010
   when calculating this set.  */
1011
static void
1012
btr_def_live_range (btr_def def, HARD_REG_SET *btrs_live_in_range)
1013
{
1014
  if (!def->live_range)
1015
    {
1016
      btr_user user;
1017
 
1018
      def->live_range = BITMAP_ALLOC (NULL);
1019
 
1020
      bitmap_set_bit (def->live_range, def->bb->index);
1021
      COPY_HARD_REG_SET (*btrs_live_in_range,
1022
                         (flag_btr_bb_exclusive
1023
                          ? btrs_live : btrs_live_at_end)[def->bb->index]);
1024
 
1025
      for (user = def->uses; user != NULL; user = user->next)
1026
        augment_live_range (def->live_range, btrs_live_in_range,
1027
                            def->bb, user->bb,
1028
                            (flag_btr_bb_exclusive
1029
                             || user->insn != BB_END (def->bb)
1030
                             || !JUMP_P (user->insn)));
1031
    }
1032
  else
1033
    {
1034
      /* def->live_range is accurate, but we need to recompute
1035
         the set of target registers live over it, because migration
1036
         of other PT instructions may have affected it.
1037
      */
1038
      unsigned bb;
1039
      unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index;
1040
      bitmap_iterator bi;
1041
 
1042
      CLEAR_HARD_REG_SET (*btrs_live_in_range);
1043
      EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
1044
        {
1045
          IOR_HARD_REG_SET (*btrs_live_in_range,
1046
                            (def_bb == bb
1047
                             ? btrs_live_at_end : btrs_live) [bb]);
1048
        }
1049
    }
1050
  if (!def->other_btr_uses_before_def &&
1051
      !def->other_btr_uses_after_use)
1052
    CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr);
1053
}
1054
 
1055
/* Merge into the def/use web DEF any other def/use webs in the same
1056
   group that are dominated by DEF, provided that there is a target
1057
   register available to allocate to the merged web.  */
1058
static void
1059
combine_btr_defs (btr_def def, HARD_REG_SET *btrs_live_in_range)
1060
{
1061
  btr_def other_def;
1062
 
1063
  for (other_def = def->group->members;
1064
       other_def != NULL;
1065
       other_def = other_def->next_this_group)
1066
    {
1067
      if (other_def != def
1068
          && other_def->uses != NULL
1069
          && ! other_def->has_ambiguous_use
1070
          && dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb))
1071
        {
1072
          /* def->bb dominates the other def, so def and other_def could
1073
             be combined.  */
1074
          /* Merge their live ranges, and get the set of
1075
             target registers live over the merged range.  */
1076
          int btr;
1077
          HARD_REG_SET combined_btrs_live;
1078
          bitmap combined_live_range = BITMAP_ALLOC (NULL);
1079
          btr_user user;
1080
 
1081
          if (other_def->live_range == NULL)
1082
            {
1083
              HARD_REG_SET dummy_btrs_live_in_range;
1084
              btr_def_live_range (other_def, &dummy_btrs_live_in_range);
1085
            }
1086
          COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range);
1087
          bitmap_copy (combined_live_range, def->live_range);
1088
 
1089
          for (user = other_def->uses; user != NULL; user = user->next)
1090
            augment_live_range (combined_live_range, &combined_btrs_live,
1091
                                def->bb, user->bb,
1092
                                (flag_btr_bb_exclusive
1093
                                 || user->insn != BB_END (def->bb)
1094
                                 || !JUMP_P (user->insn)));
1095
 
1096
          btr = choose_btr (combined_btrs_live);
1097
          if (btr != -1)
1098
            {
1099
              /* We can combine them.  */
1100
              if (dump_file)
1101
                fprintf (dump_file,
1102
                         "Combining def in insn %d with def in insn %d\n",
1103
                         INSN_UID (other_def->insn), INSN_UID (def->insn));
1104
 
1105
              def->btr = btr;
1106
              user = other_def->uses;
1107
              while (user != NULL)
1108
                {
1109
                  btr_user next = user->next;
1110
 
1111
                  user->next = def->uses;
1112
                  def->uses = user;
1113
                  user = next;
1114
                }
1115
              /* Combining def/use webs can make target registers live
1116
                 after uses where they previously were not.  This means
1117
                 some REG_DEAD notes may no longer be correct.  We could
1118
                 be more precise about this if we looked at the combined
1119
                 live range, but here I just delete any REG_DEAD notes
1120
                 in case they are no longer correct.  */
1121
              for (user = def->uses; user != NULL; user = user->next)
1122
                remove_note (user->insn,
1123
                             find_regno_note (user->insn, REG_DEAD,
1124
                                              REGNO (user->use)));
1125
              clear_btr_from_live_range (other_def);
1126
              other_def->uses = NULL;
1127
              bitmap_copy (def->live_range, combined_live_range);
1128
              if (other_def->btr == btr && other_def->other_btr_uses_after_use)
1129
                def->other_btr_uses_after_use = 1;
1130
              COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live);
1131
 
1132
              /* Delete the old target register initialization.  */
1133
              delete_insn (other_def->insn);
1134
 
1135
            }
1136
          BITMAP_FREE (combined_live_range);
1137
        }
1138
    }
1139
}
1140
 
1141
/* Move the definition DEF from its current position to basic
1142
   block NEW_DEF_BB, and modify it to use branch target register BTR.
1143
   Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1144
   Update all reaching uses of DEF in the RTL to use BTR.
1145
   If this new position means that other defs in the
1146
   same group can be combined with DEF then combine them.  */
1147
static void
1148
move_btr_def (basic_block new_def_bb, int btr, btr_def def, bitmap live_range,
1149
             HARD_REG_SET *btrs_live_in_range)
1150
{
1151
  /* We can move the instruction.
1152
     Set a target register in block NEW_DEF_BB to the value
1153
     needed for this target register definition.
1154
     Replace all uses of the old target register definition by
1155
     uses of the new definition.  Delete the old definition.  */
1156
  basic_block b = new_def_bb;
1157
  rtx insp = BB_HEAD (b);
1158
  rtx old_insn = def->insn;
1159
  rtx src;
1160
  rtx btr_rtx;
1161
  rtx new_insn;
1162
  enum machine_mode btr_mode;
1163
  btr_user user;
1164
  rtx set;
1165
 
1166
  if (dump_file)
1167
    fprintf(dump_file, "migrating to basic block %d, using reg %d\n",
1168
            new_def_bb->index, btr);
1169
 
1170
  clear_btr_from_live_range (def);
1171
  def->btr = btr;
1172
  def->bb = new_def_bb;
1173
  def->luid = 0;
1174
  def->cost = basic_block_freq (new_def_bb);
1175
  bitmap_copy (def->live_range, live_range);
1176
  combine_btr_defs (def, btrs_live_in_range);
1177
  btr = def->btr;
1178
  def->other_btr_uses_before_def
1179
    = TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0;
1180
  add_btr_to_live_range (def, 1);
1181
  if (LABEL_P (insp))
1182
    insp = NEXT_INSN (insp);
1183
  /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now.  Some
1184
     optimizations can result in insp being both first and last insn of
1185
     its basic block.  */
1186
  /* ?? some assertions to check that insp is sensible? */
1187
 
1188
  if (def->other_btr_uses_before_def)
1189
    {
1190
      insp = BB_END (b);
1191
      for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp))
1192
        gcc_assert (insp != BB_HEAD (b));
1193
 
1194
      if (JUMP_P (insp) || can_throw_internal (insp))
1195
        insp = PREV_INSN (insp);
1196
    }
1197
 
1198
  set = single_set (old_insn);
1199
  src = SET_SRC (set);
1200
  btr_mode = GET_MODE (SET_DEST (set));
1201
  btr_rtx = gen_rtx_REG (btr_mode, btr);
1202
 
1203
  new_insn = gen_move_insn (btr_rtx, src);
1204
 
1205
  /* Insert target register initialization at head of basic block.  */
1206
  def->insn = emit_insn_after (new_insn, insp);
1207
 
1208
  regs_ever_live[btr] = 1;
1209
 
1210
  if (dump_file)
1211
    fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n",
1212
             INSN_UID (def->insn), INSN_UID (insp));
1213
 
1214
  /* Delete the old target register initialization.  */
1215
  delete_insn (old_insn);
1216
 
1217
  /* Replace each use of the old target register by a use of the new target
1218
     register.  */
1219
  for (user = def->uses; user != NULL; user = user->next)
1220
    {
1221
      /* Some extra work here to ensure consistent modes, because
1222
         it seems that a target register REG rtx can be given a different
1223
         mode depending on the context (surely that should not be
1224
         the case?).  */
1225
      rtx replacement_rtx;
1226
      if (GET_MODE (user->use) == GET_MODE (btr_rtx)
1227
          || GET_MODE (user->use) == VOIDmode)
1228
        replacement_rtx = btr_rtx;
1229
      else
1230
        replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr);
1231
      replace_rtx (user->insn, user->use, replacement_rtx);
1232
      user->use = replacement_rtx;
1233
    }
1234
}
1235
 
1236
/* We anticipate intra-block scheduling to be done.  See if INSN could move
1237
   up within BB by N_INSNS.  */
1238
static int
1239
can_move_up (basic_block bb, rtx insn, int n_insns)
1240
{
1241
  while (insn != BB_HEAD (bb) && n_insns > 0)
1242
    {
1243
      insn = PREV_INSN (insn);
1244
      /* ??? What if we have an anti-dependency that actually prevents the
1245
         scheduler from doing the move?  We'd like to re-allocate the register,
1246
         but not necessarily put the load into another basic block.  */
1247
      if (INSN_P (insn))
1248
        n_insns--;
1249
    }
1250
  return n_insns <= 0;
1251
}
1252
 
1253
/* Attempt to migrate the target register definition DEF to an
1254
   earlier point in the flowgraph.
1255
 
1256
   It is a precondition of this function that DEF is migratable:
1257
   i.e. it has a constant source, and all uses are unambiguous.
1258
 
1259
   Only migrations that reduce the cost of DEF will be made.
1260
   MIN_COST is the lower bound on the cost of the DEF after migration.
1261
   If we migrate DEF so that its cost falls below MIN_COST,
1262
   then we do not attempt to migrate further.  The idea is that
1263
   we migrate definitions in a priority order based on their cost,
1264
   when the cost of this definition falls below MIN_COST, then
1265
   there is another definition with cost == MIN_COST which now
1266
   has a higher priority than this definition.
1267
 
1268
   Return nonzero if there may be benefit from attempting to
1269
   migrate this DEF further (i.e. we have reduced the cost below
1270
   MIN_COST, but we may be able to reduce it further).
1271
   Return zero if no further migration is possible.  */
1272
static int
1273
migrate_btr_def (btr_def def, int min_cost)
1274
{
1275
  bitmap live_range;
1276
  HARD_REG_SET btrs_live_in_range;
1277
  int btr_used_near_def = 0;
1278
  int def_basic_block_freq;
1279
  basic_block try;
1280
  int give_up = 0;
1281
  int def_moved = 0;
1282
  btr_user user;
1283
  int def_latency;
1284
 
1285
  if (dump_file)
1286
    fprintf (dump_file,
1287
             "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1288
             INSN_UID (def->insn), def->cost, min_cost);
1289
 
1290
  if (!def->group || def->has_ambiguous_use)
1291
    /* These defs are not migratable.  */
1292
    {
1293
      if (dump_file)
1294
        fprintf (dump_file, "it's not migratable\n");
1295
      return 0;
1296
    }
1297
 
1298
  if (!def->uses)
1299
    /* We have combined this def with another in the same group, so
1300
       no need to consider it further.
1301
    */
1302
    {
1303
      if (dump_file)
1304
        fprintf (dump_file, "it's already combined with another pt\n");
1305
      return 0;
1306
    }
1307
 
1308
  btr_def_live_range (def, &btrs_live_in_range);
1309
  live_range = BITMAP_ALLOC (NULL);
1310
  bitmap_copy (live_range, def->live_range);
1311
 
1312
#ifdef INSN_SCHEDULING
1313
  def_latency = insn_default_latency (def->insn) * issue_rate;
1314
#else
1315
  def_latency = issue_rate;
1316
#endif
1317
 
1318
  for (user = def->uses; user != NULL; user = user->next)
1319
    {
1320
      if (user->bb == def->bb
1321
          && user->luid > def->luid
1322
          && (def->luid + def_latency) > user->luid
1323
          && ! can_move_up (def->bb, def->insn,
1324
                            (def->luid + def_latency) - user->luid))
1325
        {
1326
          btr_used_near_def = 1;
1327
          break;
1328
        }
1329
    }
1330
 
1331
  def_basic_block_freq = basic_block_freq (def->bb);
1332
 
1333
  for (try = get_immediate_dominator (CDI_DOMINATORS, def->bb);
1334
       !give_up && try && try != ENTRY_BLOCK_PTR && def->cost >= min_cost;
1335
       try = get_immediate_dominator (CDI_DOMINATORS, try))
1336
    {
1337
      /* Try to move the instruction that sets the target register into
1338
         basic block TRY.  */
1339
      int try_freq = basic_block_freq (try);
1340
 
1341
      if (dump_file)
1342
        fprintf (dump_file, "trying block %d ...", try->index);
1343
 
1344
      if (try_freq < def_basic_block_freq
1345
          || (try_freq == def_basic_block_freq && btr_used_near_def))
1346
        {
1347
          int btr;
1348
          augment_live_range (live_range, &btrs_live_in_range, def->bb, try,
1349
                              flag_btr_bb_exclusive);
1350
          if (dump_file)
1351
            {
1352
              fprintf (dump_file, "Now btrs live in range are: ");
1353
              dump_hard_reg_set (btrs_live_in_range);
1354
              fprintf (dump_file, "\n");
1355
            }
1356
          btr = choose_btr (btrs_live_in_range);
1357
          if (btr != -1)
1358
            {
1359
              move_btr_def (try, btr, def, live_range, &btrs_live_in_range);
1360
              bitmap_copy(live_range, def->live_range);
1361
              btr_used_near_def = 0;
1362
              def_moved = 1;
1363
              def_basic_block_freq = basic_block_freq (def->bb);
1364
            }
1365
          else
1366
            {
1367
              /* There are no free target registers available to move
1368
                 this far forward, so give up */
1369
              give_up = 1;
1370
              if (dump_file)
1371
                fprintf (dump_file,
1372
                         "giving up because there are no free target registers\n");
1373
            }
1374
 
1375
        }
1376
    }
1377
  if (!def_moved)
1378
    {
1379
      give_up = 1;
1380
      if (dump_file)
1381
        fprintf (dump_file, "failed to move\n");
1382
    }
1383
  BITMAP_FREE (live_range);
1384
  return !give_up;
1385
}
1386
 
1387
/* Attempt to move instructions that set target registers earlier
1388
   in the flowgraph, away from their corresponding uses.  */
1389
static void
1390
migrate_btr_defs (enum reg_class btr_class, int allow_callee_save)
1391
{
1392
  fibheap_t all_btr_defs = fibheap_new ();
1393
  int reg;
1394
 
1395
  gcc_obstack_init (&migrate_btrl_obstack);
1396
  if (dump_file)
1397
    {
1398
      int i;
1399
 
1400
      for (i = 0; i < n_basic_blocks; i++)
1401
        {
1402
          basic_block bb = BASIC_BLOCK (i);
1403
          fprintf(dump_file,
1404
            "Basic block %d: count = " HOST_WIDEST_INT_PRINT_DEC
1405
            " loop-depth = %d idom = %d\n",
1406
            i, (HOST_WIDEST_INT) bb->count, bb->loop_depth,
1407
            get_immediate_dominator (CDI_DOMINATORS, bb)->index);
1408
        }
1409
    }
1410
 
1411
  CLEAR_HARD_REG_SET (all_btrs);
1412
  for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
1413
    if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg)
1414
        && (allow_callee_save || call_used_regs[reg] || regs_ever_live[reg]))
1415
      {
1416
        SET_HARD_REG_BIT (all_btrs, reg);
1417
        last_btr = reg;
1418
        if (first_btr < 0)
1419
          first_btr = reg;
1420
      }
1421
 
1422
  btrs_live = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
1423
  btrs_live_at_end = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
1424
 
1425
  build_btr_def_use_webs (all_btr_defs);
1426
 
1427
  while (!fibheap_empty (all_btr_defs))
1428
    {
1429
      btr_def def = fibheap_extract_min (all_btr_defs);
1430
      int min_cost = -fibheap_min_key (all_btr_defs);
1431
      if (migrate_btr_def (def, min_cost))
1432
        {
1433
          fibheap_insert (all_btr_defs, -def->cost, (void *) def);
1434
          if (dump_file)
1435
            {
1436
              fprintf (dump_file,
1437
                "Putting insn %d back on queue with priority %d\n",
1438
                INSN_UID (def->insn), def->cost);
1439
            }
1440
        }
1441
      else
1442
        BITMAP_FREE (def->live_range);
1443
    }
1444
 
1445
  free (btrs_live);
1446
  free (btrs_live_at_end);
1447
  obstack_free (&migrate_btrl_obstack, NULL);
1448
  fibheap_delete (all_btr_defs);
1449
}
1450
 
1451
void
1452
branch_target_load_optimize (bool after_prologue_epilogue_gen)
1453
{
1454
  enum reg_class class = targetm.branch_target_register_class ();
1455
  if (class != NO_REGS)
1456
    {
1457
      /* Initialize issue_rate.  */
1458
      if (targetm.sched.issue_rate)
1459
        issue_rate = targetm.sched.issue_rate ();
1460
      else
1461
        issue_rate = 1;
1462
 
1463
      /* Build the CFG for migrate_btr_defs.  */
1464
#if 1
1465
      /* This may or may not be needed, depending on where we
1466
         run this phase.  */
1467
      cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
1468
#endif
1469
 
1470
      life_analysis (NULL, 0);
1471
 
1472
      /* Dominator info is also needed for migrate_btr_def.  */
1473
      calculate_dominance_info (CDI_DOMINATORS);
1474
      migrate_btr_defs (class,
1475
                       (targetm.branch_target_register_callee_saved
1476
                        (after_prologue_epilogue_gen)));
1477
 
1478
      free_dominance_info (CDI_DOMINATORS);
1479
 
1480
      update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1481
                        PROP_DEATH_NOTES | PROP_REG_INFO);
1482
    }
1483
}
1484
 
1485
static bool
1486
gate_handle_branch_target_load_optimize (void)
1487
{
1488
  return (optimize > 0 && flag_branch_target_load_optimize2);
1489
}
1490
 
1491
 
1492
static void
1493
rest_of_handle_branch_target_load_optimize (void)
1494
{
1495
  static int warned = 0;
1496
 
1497
  /* Leave this a warning for now so that it is possible to experiment
1498
     with running this pass twice.  In 3.6, we should either make this
1499
     an error, or use separate dump files.  */
1500
  if (flag_branch_target_load_optimize
1501
      && flag_branch_target_load_optimize2
1502
      && !warned)
1503
    {
1504
      warning (0, "branch target register load optimization is not intended "
1505
                  "to be run twice");
1506
 
1507
      warned = 1;
1508
    }
1509
 
1510
  branch_target_load_optimize (epilogue_completed);
1511
}
1512
 
1513
struct tree_opt_pass pass_branch_target_load_optimize =
1514
{
1515
  "btl",                               /* name */
1516
  gate_handle_branch_target_load_optimize,      /* gate */
1517
  rest_of_handle_branch_target_load_optimize,   /* execute */
1518
  NULL,                                 /* sub */
1519
  NULL,                                 /* next */
1520
  0,                                    /* static_pass_number */
1521
  0,                                     /* tv_id */
1522
  0,                                    /* properties_required */
1523
  0,                                    /* properties_provided */
1524
  0,                                    /* properties_destroyed */
1525
  0,                                    /* todo_flags_start */
1526
  TODO_dump_func |
1527
  TODO_ggc_collect,                     /* todo_flags_finish */
1528
  'd'                                   /* letter */
1529
};
1530
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.