OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [c-typeck.c] - Blame information for rev 20

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Build expressions with type checking for C compiler.
2
   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
 
5
This file is part of GCC.
6
 
7
GCC is free software; you can redistribute it and/or modify it under
8
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 2, or (at your option) any later
10
version.
11
 
12
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13
WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15
for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING.  If not, write to the Free
19
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20
02110-1301, USA.  */
21
 
22
 
23
/* This file is part of the C front end.
24
   It contains routines to build C expressions given their operands,
25
   including computing the types of the result, C-specific error checks,
26
   and some optimization.  */
27
 
28
#include "config.h"
29
#include "system.h"
30
#include "coretypes.h"
31
#include "tm.h"
32
#include "rtl.h"
33
#include "tree.h"
34
#include "langhooks.h"
35
#include "c-tree.h"
36
#include "tm_p.h"
37
#include "flags.h"
38
#include "output.h"
39
#include "expr.h"
40
#include "toplev.h"
41
#include "intl.h"
42
#include "ggc.h"
43
#include "target.h"
44
#include "tree-iterator.h"
45
#include "tree-gimple.h"
46
#include "tree-flow.h"
47
 
48
/* Possible cases of implicit bad conversions.  Used to select
49
   diagnostic messages in convert_for_assignment.  */
50
enum impl_conv {
51
  ic_argpass,
52
  ic_argpass_nonproto,
53
  ic_assign,
54
  ic_init,
55
  ic_return
56
};
57
 
58
/* The level of nesting inside "__alignof__".  */
59
int in_alignof;
60
 
61
/* The level of nesting inside "sizeof".  */
62
int in_sizeof;
63
 
64
/* The level of nesting inside "typeof".  */
65
int in_typeof;
66
 
67
struct c_label_context_se *label_context_stack_se;
68
struct c_label_context_vm *label_context_stack_vm;
69
 
70
/* Nonzero if we've already printed a "missing braces around initializer"
71
   message within this initializer.  */
72
static int missing_braces_mentioned;
73
 
74
static int require_constant_value;
75
static int require_constant_elements;
76
 
77
static tree qualify_type (tree, tree);
78
static int tagged_types_tu_compatible_p (tree, tree);
79
static int comp_target_types (tree, tree);
80
static int function_types_compatible_p (tree, tree);
81
static int type_lists_compatible_p (tree, tree);
82
static tree decl_constant_value_for_broken_optimization (tree);
83
static tree lookup_field (tree, tree);
84
static tree convert_arguments (tree, tree, tree, tree);
85
static tree pointer_diff (tree, tree);
86
static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
87
                                    int);
88
static tree valid_compound_expr_initializer (tree, tree);
89
static void push_string (const char *);
90
static void push_member_name (tree);
91
static int spelling_length (void);
92
static char *print_spelling (char *);
93
static void warning_init (const char *);
94
static tree digest_init (tree, tree, bool, int);
95
static void output_init_element (tree, bool, tree, tree, int);
96
static void output_pending_init_elements (int);
97
static int set_designator (int);
98
static void push_range_stack (tree);
99
static void add_pending_init (tree, tree);
100
static void set_nonincremental_init (void);
101
static void set_nonincremental_init_from_string (tree);
102
static tree find_init_member (tree);
103
static void readonly_error (tree, enum lvalue_use);
104
static int lvalue_or_else (tree, enum lvalue_use);
105
static int lvalue_p (tree);
106
static void record_maybe_used_decl (tree);
107
static int comptypes_internal (tree, tree);
108
/* This is a cache to hold if two types are compatible or not.  */
109
 
110
struct tagged_tu_seen_cache {
111
  const struct tagged_tu_seen_cache * next;
112
  tree t1;
113
  tree t2;
114
  /* The return value of tagged_types_tu_compatible_p if we had seen
115
     these two types already.  */
116
  int val;
117
};
118
 
119
static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
120
static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
121
 
122
/* Do `exp = require_complete_type (exp);' to make sure exp
123
   does not have an incomplete type.  (That includes void types.)  */
124
 
125
tree
126
require_complete_type (tree value)
127
{
128
  tree type = TREE_TYPE (value);
129
 
130
  if (value == error_mark_node || type == error_mark_node)
131
    return error_mark_node;
132
 
133
  /* First, detect a valid value with a complete type.  */
134
  if (COMPLETE_TYPE_P (type))
135
    return value;
136
 
137
  c_incomplete_type_error (value, type);
138
  return error_mark_node;
139
}
140
 
141
/* Print an error message for invalid use of an incomplete type.
142
   VALUE is the expression that was used (or 0 if that isn't known)
143
   and TYPE is the type that was invalid.  */
144
 
145
void
146
c_incomplete_type_error (tree value, tree type)
147
{
148
  const char *type_code_string;
149
 
150
  /* Avoid duplicate error message.  */
151
  if (TREE_CODE (type) == ERROR_MARK)
152
    return;
153
 
154
  if (value != 0 && (TREE_CODE (value) == VAR_DECL
155
                     || TREE_CODE (value) == PARM_DECL))
156
    error ("%qD has an incomplete type", value);
157
  else
158
    {
159
    retry:
160
      /* We must print an error message.  Be clever about what it says.  */
161
 
162
      switch (TREE_CODE (type))
163
        {
164
        case RECORD_TYPE:
165
          type_code_string = "struct";
166
          break;
167
 
168
        case UNION_TYPE:
169
          type_code_string = "union";
170
          break;
171
 
172
        case ENUMERAL_TYPE:
173
          type_code_string = "enum";
174
          break;
175
 
176
        case VOID_TYPE:
177
          error ("invalid use of void expression");
178
          return;
179
 
180
        case ARRAY_TYPE:
181
          if (TYPE_DOMAIN (type))
182
            {
183
              if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
184
                {
185
                  error ("invalid use of flexible array member");
186
                  return;
187
                }
188
              type = TREE_TYPE (type);
189
              goto retry;
190
            }
191
          error ("invalid use of array with unspecified bounds");
192
          return;
193
 
194
        default:
195
          gcc_unreachable ();
196
        }
197
 
198
      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
199
        error ("invalid use of undefined type %<%s %E%>",
200
               type_code_string, TYPE_NAME (type));
201
      else
202
        /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
203
        error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
204
    }
205
}
206
 
207
/* Given a type, apply default promotions wrt unnamed function
208
   arguments and return the new type.  */
209
 
210
tree
211
c_type_promotes_to (tree type)
212
{
213
  if (TYPE_MAIN_VARIANT (type) == float_type_node)
214
    return double_type_node;
215
 
216
  if (c_promoting_integer_type_p (type))
217
    {
218
      /* Preserve unsignedness if not really getting any wider.  */
219
      if (TYPE_UNSIGNED (type)
220
          && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
221
        return unsigned_type_node;
222
      return integer_type_node;
223
    }
224
 
225
  return type;
226
}
227
 
228
/* Return a variant of TYPE which has all the type qualifiers of LIKE
229
   as well as those of TYPE.  */
230
 
231
static tree
232
qualify_type (tree type, tree like)
233
{
234
  return c_build_qualified_type (type,
235
                                 TYPE_QUALS (type) | TYPE_QUALS (like));
236
}
237
 
238
/* Return the composite type of two compatible types.
239
 
240
   We assume that comptypes has already been done and returned
241
   nonzero; if that isn't so, this may crash.  In particular, we
242
   assume that qualifiers match.  */
243
 
244
tree
245
composite_type (tree t1, tree t2)
246
{
247
  enum tree_code code1;
248
  enum tree_code code2;
249
  tree attributes;
250
 
251
  /* Save time if the two types are the same.  */
252
 
253
  if (t1 == t2) return t1;
254
 
255
  /* If one type is nonsense, use the other.  */
256
  if (t1 == error_mark_node)
257
    return t2;
258
  if (t2 == error_mark_node)
259
    return t1;
260
 
261
  code1 = TREE_CODE (t1);
262
  code2 = TREE_CODE (t2);
263
 
264
  /* Merge the attributes.  */
265
  attributes = targetm.merge_type_attributes (t1, t2);
266
 
267
  /* If one is an enumerated type and the other is the compatible
268
     integer type, the composite type might be either of the two
269
     (DR#013 question 3).  For consistency, use the enumerated type as
270
     the composite type.  */
271
 
272
  if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
273
    return t1;
274
  if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
275
    return t2;
276
 
277
  gcc_assert (code1 == code2);
278
 
279
  switch (code1)
280
    {
281
    case POINTER_TYPE:
282
      /* For two pointers, do this recursively on the target type.  */
283
      {
284
        tree pointed_to_1 = TREE_TYPE (t1);
285
        tree pointed_to_2 = TREE_TYPE (t2);
286
        tree target = composite_type (pointed_to_1, pointed_to_2);
287
        t1 = build_pointer_type (target);
288
        t1 = build_type_attribute_variant (t1, attributes);
289
        return qualify_type (t1, t2);
290
      }
291
 
292
    case ARRAY_TYPE:
293
      {
294
        tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
295
        int quals;
296
        tree unqual_elt;
297
        tree d1 = TYPE_DOMAIN (t1);
298
        tree d2 = TYPE_DOMAIN (t2);
299
        bool d1_variable, d2_variable;
300
        bool d1_zero, d2_zero;
301
 
302
        /* We should not have any type quals on arrays at all.  */
303
        gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
304
 
305
        d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
306
        d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
307
 
308
        d1_variable = (!d1_zero
309
                       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
310
                           || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
311
        d2_variable = (!d2_zero
312
                       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
313
                           || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
314
 
315
        /* Save space: see if the result is identical to one of the args.  */
316
        if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
317
            && (d2_variable || d2_zero || !d1_variable))
318
          return build_type_attribute_variant (t1, attributes);
319
        if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
320
            && (d1_variable || d1_zero || !d2_variable))
321
          return build_type_attribute_variant (t2, attributes);
322
 
323
        if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
324
          return build_type_attribute_variant (t1, attributes);
325
        if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
326
          return build_type_attribute_variant (t2, attributes);
327
 
328
        /* Merge the element types, and have a size if either arg has
329
           one.  We may have qualifiers on the element types.  To set
330
           up TYPE_MAIN_VARIANT correctly, we need to form the
331
           composite of the unqualified types and add the qualifiers
332
           back at the end.  */
333
        quals = TYPE_QUALS (strip_array_types (elt));
334
        unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
335
        t1 = build_array_type (unqual_elt,
336
                               TYPE_DOMAIN ((TYPE_DOMAIN (t1)
337
                                             && (d2_variable
338
                                                 || d2_zero
339
                                                 || !d1_variable))
340
                                            ? t1
341
                                            : t2));
342
        t1 = c_build_qualified_type (t1, quals);
343
        return build_type_attribute_variant (t1, attributes);
344
      }
345
 
346
    case FUNCTION_TYPE:
347
      /* Function types: prefer the one that specified arg types.
348
         If both do, merge the arg types.  Also merge the return types.  */
349
      {
350
        tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
351
        tree p1 = TYPE_ARG_TYPES (t1);
352
        tree p2 = TYPE_ARG_TYPES (t2);
353
        int len;
354
        tree newargs, n;
355
        int i;
356
 
357
        /* Save space: see if the result is identical to one of the args.  */
358
        if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
359
          return build_type_attribute_variant (t1, attributes);
360
        if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
361
          return build_type_attribute_variant (t2, attributes);
362
 
363
        /* Simple way if one arg fails to specify argument types.  */
364
        if (TYPE_ARG_TYPES (t1) == 0)
365
         {
366
            t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
367
            t1 = build_type_attribute_variant (t1, attributes);
368
            return qualify_type (t1, t2);
369
         }
370
        if (TYPE_ARG_TYPES (t2) == 0)
371
         {
372
           t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
373
           t1 = build_type_attribute_variant (t1, attributes);
374
           return qualify_type (t1, t2);
375
         }
376
 
377
        /* If both args specify argument types, we must merge the two
378
           lists, argument by argument.  */
379
        /* Tell global_bindings_p to return false so that variable_size
380
           doesn't die on VLAs in parameter types.  */
381
        c_override_global_bindings_to_false = true;
382
 
383
        len = list_length (p1);
384
        newargs = 0;
385
 
386
        for (i = 0; i < len; i++)
387
          newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
388
 
389
        n = newargs;
390
 
391
        for (; p1;
392
             p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
393
          {
394
            /* A null type means arg type is not specified.
395
               Take whatever the other function type has.  */
396
            if (TREE_VALUE (p1) == 0)
397
              {
398
                TREE_VALUE (n) = TREE_VALUE (p2);
399
                goto parm_done;
400
              }
401
            if (TREE_VALUE (p2) == 0)
402
              {
403
                TREE_VALUE (n) = TREE_VALUE (p1);
404
                goto parm_done;
405
              }
406
 
407
            /* Given  wait (union {union wait *u; int *i} *)
408
               and  wait (union wait *),
409
               prefer  union wait *  as type of parm.  */
410
            if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
411
                && TREE_VALUE (p1) != TREE_VALUE (p2))
412
              {
413
                tree memb;
414
                tree mv2 = TREE_VALUE (p2);
415
                if (mv2 && mv2 != error_mark_node
416
                    && TREE_CODE (mv2) != ARRAY_TYPE)
417
                  mv2 = TYPE_MAIN_VARIANT (mv2);
418
                for (memb = TYPE_FIELDS (TREE_VALUE (p1));
419
                     memb; memb = TREE_CHAIN (memb))
420
                  {
421
                    tree mv3 = TREE_TYPE (memb);
422
                    if (mv3 && mv3 != error_mark_node
423
                        && TREE_CODE (mv3) != ARRAY_TYPE)
424
                      mv3 = TYPE_MAIN_VARIANT (mv3);
425
                    if (comptypes (mv3, mv2))
426
                      {
427
                        TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
428
                                                         TREE_VALUE (p2));
429
                        if (pedantic)
430
                          pedwarn ("function types not truly compatible in ISO C");
431
                        goto parm_done;
432
                      }
433
                  }
434
              }
435
            if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
436
                && TREE_VALUE (p2) != TREE_VALUE (p1))
437
              {
438
                tree memb;
439
                tree mv1 = TREE_VALUE (p1);
440
                if (mv1 && mv1 != error_mark_node
441
                    && TREE_CODE (mv1) != ARRAY_TYPE)
442
                  mv1 = TYPE_MAIN_VARIANT (mv1);
443
                for (memb = TYPE_FIELDS (TREE_VALUE (p2));
444
                     memb; memb = TREE_CHAIN (memb))
445
                  {
446
                    tree mv3 = TREE_TYPE (memb);
447
                    if (mv3 && mv3 != error_mark_node
448
                        && TREE_CODE (mv3) != ARRAY_TYPE)
449
                      mv3 = TYPE_MAIN_VARIANT (mv3);
450
                    if (comptypes (mv3, mv1))
451
                      {
452
                        TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
453
                                                         TREE_VALUE (p1));
454
                        if (pedantic)
455
                          pedwarn ("function types not truly compatible in ISO C");
456
                        goto parm_done;
457
                      }
458
                  }
459
              }
460
            TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
461
          parm_done: ;
462
          }
463
 
464
        c_override_global_bindings_to_false = false;
465
        t1 = build_function_type (valtype, newargs);
466
        t1 = qualify_type (t1, t2);
467
        /* ... falls through ...  */
468
      }
469
 
470
    default:
471
      return build_type_attribute_variant (t1, attributes);
472
    }
473
 
474
}
475
 
476
/* Return the type of a conditional expression between pointers to
477
   possibly differently qualified versions of compatible types.
478
 
479
   We assume that comp_target_types has already been done and returned
480
   nonzero; if that isn't so, this may crash.  */
481
 
482
static tree
483
common_pointer_type (tree t1, tree t2)
484
{
485
  tree attributes;
486
  tree pointed_to_1, mv1;
487
  tree pointed_to_2, mv2;
488
  tree target;
489
 
490
  /* Save time if the two types are the same.  */
491
 
492
  if (t1 == t2) return t1;
493
 
494
  /* If one type is nonsense, use the other.  */
495
  if (t1 == error_mark_node)
496
    return t2;
497
  if (t2 == error_mark_node)
498
    return t1;
499
 
500
  gcc_assert (TREE_CODE (t1) == POINTER_TYPE
501
              && TREE_CODE (t2) == POINTER_TYPE);
502
 
503
  /* Merge the attributes.  */
504
  attributes = targetm.merge_type_attributes (t1, t2);
505
 
506
  /* Find the composite type of the target types, and combine the
507
     qualifiers of the two types' targets.  Do not lose qualifiers on
508
     array element types by taking the TYPE_MAIN_VARIANT.  */
509
  mv1 = pointed_to_1 = TREE_TYPE (t1);
510
  mv2 = pointed_to_2 = TREE_TYPE (t2);
511
  if (TREE_CODE (mv1) != ARRAY_TYPE)
512
    mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
513
  if (TREE_CODE (mv2) != ARRAY_TYPE)
514
    mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
515
  target = composite_type (mv1, mv2);
516
  t1 = build_pointer_type (c_build_qualified_type
517
                           (target,
518
                            TYPE_QUALS (pointed_to_1) |
519
                            TYPE_QUALS (pointed_to_2)));
520
  return build_type_attribute_variant (t1, attributes);
521
}
522
 
523
/* Return the common type for two arithmetic types under the usual
524
   arithmetic conversions.  The default conversions have already been
525
   applied, and enumerated types converted to their compatible integer
526
   types.  The resulting type is unqualified and has no attributes.
527
 
528
   This is the type for the result of most arithmetic operations
529
   if the operands have the given two types.  */
530
 
531
static tree
532
c_common_type (tree t1, tree t2)
533
{
534
  enum tree_code code1;
535
  enum tree_code code2;
536
 
537
  /* If one type is nonsense, use the other.  */
538
  if (t1 == error_mark_node)
539
    return t2;
540
  if (t2 == error_mark_node)
541
    return t1;
542
 
543
  if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
544
    t1 = TYPE_MAIN_VARIANT (t1);
545
 
546
  if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
547
    t2 = TYPE_MAIN_VARIANT (t2);
548
 
549
  if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
550
    t1 = build_type_attribute_variant (t1, NULL_TREE);
551
 
552
  if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
553
    t2 = build_type_attribute_variant (t2, NULL_TREE);
554
 
555
  /* Save time if the two types are the same.  */
556
 
557
  if (t1 == t2) return t1;
558
 
559
  code1 = TREE_CODE (t1);
560
  code2 = TREE_CODE (t2);
561
 
562
  gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
563
              || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
564
  gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
565
              || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
566
 
567
  /* If one type is a vector type, return that type.  (How the usual
568
     arithmetic conversions apply to the vector types extension is not
569
     precisely specified.)  */
570
  if (code1 == VECTOR_TYPE)
571
    return t1;
572
 
573
  if (code2 == VECTOR_TYPE)
574
    return t2;
575
 
576
  /* If one type is complex, form the common type of the non-complex
577
     components, then make that complex.  Use T1 or T2 if it is the
578
     required type.  */
579
  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
580
    {
581
      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
582
      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
583
      tree subtype = c_common_type (subtype1, subtype2);
584
 
585
      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
586
        return t1;
587
      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
588
        return t2;
589
      else
590
        return build_complex_type (subtype);
591
    }
592
 
593
  /* If only one is real, use it as the result.  */
594
 
595
  if (code1 == REAL_TYPE && code2 != REAL_TYPE)
596
    return t1;
597
 
598
  if (code2 == REAL_TYPE && code1 != REAL_TYPE)
599
    return t2;
600
 
601
  /* Both real or both integers; use the one with greater precision.  */
602
 
603
  if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
604
    return t1;
605
  else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
606
    return t2;
607
 
608
  /* Same precision.  Prefer long longs to longs to ints when the
609
     same precision, following the C99 rules on integer type rank
610
     (which are equivalent to the C90 rules for C90 types).  */
611
 
612
  if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
613
      || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
614
    return long_long_unsigned_type_node;
615
 
616
  if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
617
      || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
618
    {
619
      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
620
        return long_long_unsigned_type_node;
621
      else
622
        return long_long_integer_type_node;
623
    }
624
 
625
  if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
626
      || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
627
    return long_unsigned_type_node;
628
 
629
  if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
630
      || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
631
    {
632
      /* But preserve unsignedness from the other type,
633
         since long cannot hold all the values of an unsigned int.  */
634
      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
635
        return long_unsigned_type_node;
636
      else
637
        return long_integer_type_node;
638
    }
639
 
640
  /* Likewise, prefer long double to double even if same size.  */
641
  if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
642
      || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
643
    return long_double_type_node;
644
 
645
  /* Otherwise prefer the unsigned one.  */
646
 
647
  if (TYPE_UNSIGNED (t1))
648
    return t1;
649
  else
650
    return t2;
651
}
652
 
653
/* Wrapper around c_common_type that is used by c-common.c and other
654
   front end optimizations that remove promotions.  ENUMERAL_TYPEs
655
   are allowed here and are converted to their compatible integer types.
656
   BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
657
   preferably a non-Boolean type as the common type.  */
658
tree
659
common_type (tree t1, tree t2)
660
{
661
  if (TREE_CODE (t1) == ENUMERAL_TYPE)
662
    t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
663
  if (TREE_CODE (t2) == ENUMERAL_TYPE)
664
    t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
665
 
666
  /* If both types are BOOLEAN_TYPE, then return boolean_type_node.  */
667
  if (TREE_CODE (t1) == BOOLEAN_TYPE
668
      && TREE_CODE (t2) == BOOLEAN_TYPE)
669
    return boolean_type_node;
670
 
671
  /* If either type is BOOLEAN_TYPE, then return the other.  */
672
  if (TREE_CODE (t1) == BOOLEAN_TYPE)
673
    return t2;
674
  if (TREE_CODE (t2) == BOOLEAN_TYPE)
675
    return t1;
676
 
677
  return c_common_type (t1, t2);
678
}
679
 
680
/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
681
   or various other operations.  Return 2 if they are compatible
682
   but a warning may be needed if you use them together.  */
683
 
684
int
685
comptypes (tree type1, tree type2)
686
{
687
  const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
688
  int val;
689
 
690
  val = comptypes_internal (type1, type2);
691
  free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
692
 
693
  return val;
694
}
695
/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
696
   or various other operations.  Return 2 if they are compatible
697
   but a warning may be needed if you use them together.  This
698
   differs from comptypes, in that we don't free the seen types.  */
699
 
700
static int
701
comptypes_internal (tree type1, tree type2)
702
{
703
  tree t1 = type1;
704
  tree t2 = type2;
705
  int attrval, val;
706
 
707
  /* Suppress errors caused by previously reported errors.  */
708
 
709
  if (t1 == t2 || !t1 || !t2
710
      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
711
    return 1;
712
 
713
  /* If either type is the internal version of sizetype, return the
714
     language version.  */
715
  if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
716
      && TYPE_ORIG_SIZE_TYPE (t1))
717
    t1 = TYPE_ORIG_SIZE_TYPE (t1);
718
 
719
  if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
720
      && TYPE_ORIG_SIZE_TYPE (t2))
721
    t2 = TYPE_ORIG_SIZE_TYPE (t2);
722
 
723
 
724
  /* Enumerated types are compatible with integer types, but this is
725
     not transitive: two enumerated types in the same translation unit
726
     are compatible with each other only if they are the same type.  */
727
 
728
  if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
729
    t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
730
  else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
731
    t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
732
 
733
  if (t1 == t2)
734
    return 1;
735
 
736
  /* Different classes of types can't be compatible.  */
737
 
738
  if (TREE_CODE (t1) != TREE_CODE (t2))
739
    return 0;
740
 
741
  /* Qualifiers must match. C99 6.7.3p9 */
742
 
743
  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
744
    return 0;
745
 
746
  /* Allow for two different type nodes which have essentially the same
747
     definition.  Note that we already checked for equality of the type
748
     qualifiers (just above).  */
749
 
750
  if (TREE_CODE (t1) != ARRAY_TYPE
751
      && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
752
    return 1;
753
 
754
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
755
  if (!(attrval = targetm.comp_type_attributes (t1, t2)))
756
     return 0;
757
 
758
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
759
  val = 0;
760
 
761
  switch (TREE_CODE (t1))
762
    {
763
    case POINTER_TYPE:
764
      /* Do not remove mode or aliasing information.  */
765
      if (TYPE_MODE (t1) != TYPE_MODE (t2)
766
          || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
767
        break;
768
      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
769
             ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
770
      break;
771
 
772
    case FUNCTION_TYPE:
773
      val = function_types_compatible_p (t1, t2);
774
      break;
775
 
776
    case ARRAY_TYPE:
777
      {
778
        tree d1 = TYPE_DOMAIN (t1);
779
        tree d2 = TYPE_DOMAIN (t2);
780
        bool d1_variable, d2_variable;
781
        bool d1_zero, d2_zero;
782
        val = 1;
783
 
784
        /* Target types must match incl. qualifiers.  */
785
        if (TREE_TYPE (t1) != TREE_TYPE (t2)
786
            && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
787
          return 0;
788
 
789
        /* Sizes must match unless one is missing or variable.  */
790
        if (d1 == 0 || d2 == 0 || d1 == d2)
791
          break;
792
 
793
        d1_zero = !TYPE_MAX_VALUE (d1);
794
        d2_zero = !TYPE_MAX_VALUE (d2);
795
 
796
        d1_variable = (!d1_zero
797
                       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
798
                           || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
799
        d2_variable = (!d2_zero
800
                       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
801
                           || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
802
 
803
        if (d1_variable || d2_variable)
804
          break;
805
        if (d1_zero && d2_zero)
806
          break;
807
        if (d1_zero || d2_zero
808
            || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
809
            || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
810
          val = 0;
811
 
812
        break;
813
      }
814
 
815
    case ENUMERAL_TYPE:
816
    case RECORD_TYPE:
817
    case UNION_TYPE:
818
      if (val != 1 && !same_translation_unit_p (t1, t2))
819
        {
820
          if (attrval != 2)
821
            return tagged_types_tu_compatible_p (t1, t2);
822
          val = tagged_types_tu_compatible_p (t1, t2);
823
        }
824
      break;
825
 
826
    case VECTOR_TYPE:
827
      val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
828
            && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
829
      break;
830
 
831
    default:
832
      break;
833
    }
834
  return attrval == 2 && val == 1 ? 2 : val;
835
}
836
 
837
/* Return 1 if TTL and TTR are pointers to types that are equivalent,
838
   ignoring their qualifiers.  */
839
 
840
static int
841
comp_target_types (tree ttl, tree ttr)
842
{
843
  int val;
844
  tree mvl, mvr;
845
 
846
  /* Do not lose qualifiers on element types of array types that are
847
     pointer targets by taking their TYPE_MAIN_VARIANT.  */
848
  mvl = TREE_TYPE (ttl);
849
  mvr = TREE_TYPE (ttr);
850
  if (TREE_CODE (mvl) != ARRAY_TYPE)
851
    mvl = TYPE_MAIN_VARIANT (mvl);
852
  if (TREE_CODE (mvr) != ARRAY_TYPE)
853
    mvr = TYPE_MAIN_VARIANT (mvr);
854
  val = comptypes (mvl, mvr);
855
 
856
  if (val == 2 && pedantic)
857
    pedwarn ("types are not quite compatible");
858
  return val;
859
}
860
 
861
/* Subroutines of `comptypes'.  */
862
 
863
/* Determine whether two trees derive from the same translation unit.
864
   If the CONTEXT chain ends in a null, that tree's context is still
865
   being parsed, so if two trees have context chains ending in null,
866
   they're in the same translation unit.  */
867
int
868
same_translation_unit_p (tree t1, tree t2)
869
{
870
  while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
871
    switch (TREE_CODE_CLASS (TREE_CODE (t1)))
872
      {
873
      case tcc_declaration:
874
        t1 = DECL_CONTEXT (t1); break;
875
      case tcc_type:
876
        t1 = TYPE_CONTEXT (t1); break;
877
      case tcc_exceptional:
878
        t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
879
      default: gcc_unreachable ();
880
      }
881
 
882
  while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
883
    switch (TREE_CODE_CLASS (TREE_CODE (t2)))
884
      {
885
      case tcc_declaration:
886
        t2 = DECL_CONTEXT (t2); break;
887
      case tcc_type:
888
        t2 = TYPE_CONTEXT (t2); break;
889
      case tcc_exceptional:
890
        t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
891
      default: gcc_unreachable ();
892
      }
893
 
894
  return t1 == t2;
895
}
896
 
897
/* Allocate the seen two types, assuming that they are compatible. */
898
 
899
static struct tagged_tu_seen_cache *
900
alloc_tagged_tu_seen_cache (tree t1, tree t2)
901
{
902
  struct tagged_tu_seen_cache *tu = xmalloc (sizeof (struct tagged_tu_seen_cache));
903
  tu->next = tagged_tu_seen_base;
904
  tu->t1 = t1;
905
  tu->t2 = t2;
906
 
907
  tagged_tu_seen_base = tu;
908
 
909
  /* The C standard says that two structures in different translation
910
     units are compatible with each other only if the types of their
911
     fields are compatible (among other things).  We assume that they
912
     are compatible until proven otherwise when building the cache.
913
     An example where this can occur is:
914
     struct a
915
     {
916
       struct a *next;
917
     };
918
     If we are comparing this against a similar struct in another TU,
919
     and did not assume they were compatible, we end up with an infinite
920
     loop.  */
921
  tu->val = 1;
922
  return tu;
923
}
924
 
925
/* Free the seen types until we get to TU_TIL. */
926
 
927
static void
928
free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
929
{
930
  const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
931
  while (tu != tu_til)
932
    {
933
      struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
934
      tu = tu1->next;
935
      free (tu1);
936
    }
937
  tagged_tu_seen_base = tu_til;
938
}
939
 
940
/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
941
   compatible.  If the two types are not the same (which has been
942
   checked earlier), this can only happen when multiple translation
943
   units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
944
   rules.  */
945
 
946
static int
947
tagged_types_tu_compatible_p (tree t1, tree t2)
948
{
949
  tree s1, s2;
950
  bool needs_warning = false;
951
 
952
  /* We have to verify that the tags of the types are the same.  This
953
     is harder than it looks because this may be a typedef, so we have
954
     to go look at the original type.  It may even be a typedef of a
955
     typedef...
956
     In the case of compiler-created builtin structs the TYPE_DECL
957
     may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
958
  while (TYPE_NAME (t1)
959
         && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
960
         && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
961
    t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
962
 
963
  while (TYPE_NAME (t2)
964
         && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
965
         && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
966
    t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
967
 
968
  /* C90 didn't have the requirement that the two tags be the same.  */
969
  if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
970
    return 0;
971
 
972
  /* C90 didn't say what happened if one or both of the types were
973
     incomplete; we choose to follow C99 rules here, which is that they
974
     are compatible.  */
975
  if (TYPE_SIZE (t1) == NULL
976
      || TYPE_SIZE (t2) == NULL)
977
    return 1;
978
 
979
  {
980
    const struct tagged_tu_seen_cache * tts_i;
981
    for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
982
      if (tts_i->t1 == t1 && tts_i->t2 == t2)
983
        return tts_i->val;
984
  }
985
 
986
  switch (TREE_CODE (t1))
987
    {
988
    case ENUMERAL_TYPE:
989
      {
990
        struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
991
        /* Speed up the case where the type values are in the same order.  */
992
        tree tv1 = TYPE_VALUES (t1);
993
        tree tv2 = TYPE_VALUES (t2);
994
 
995
        if (tv1 == tv2)
996
          {
997
            return 1;
998
          }
999
 
1000
        for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1001
          {
1002
            if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1003
              break;
1004
            if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1005
              {
1006
                tu->val = 0;
1007
                return 0;
1008
              }
1009
          }
1010
 
1011
        if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1012
          {
1013
            return 1;
1014
          }
1015
        if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1016
          {
1017
            tu->val = 0;
1018
            return 0;
1019
          }
1020
 
1021
        if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1022
          {
1023
            tu->val = 0;
1024
            return 0;
1025
          }
1026
 
1027
        for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1028
          {
1029
            s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1030
            if (s2 == NULL
1031
                || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1032
              {
1033
                tu->val = 0;
1034
                return 0;
1035
              }
1036
          }
1037
        return 1;
1038
      }
1039
 
1040
    case UNION_TYPE:
1041
      {
1042
        struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1043
        if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1044
          {
1045
            tu->val = 0;
1046
            return 0;
1047
          }
1048
 
1049
        /*  Speed up the common case where the fields are in the same order. */
1050
        for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1051
             s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1052
          {
1053
            int result;
1054
 
1055
 
1056
            if (DECL_NAME (s1) == NULL
1057
                || DECL_NAME (s1) != DECL_NAME (s2))
1058
              break;
1059
            result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1060
            if (result == 0)
1061
              {
1062
                tu->val = 0;
1063
                return 0;
1064
              }
1065
            if (result == 2)
1066
              needs_warning = true;
1067
 
1068
            if (TREE_CODE (s1) == FIELD_DECL
1069
                && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1070
                                     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1071
              {
1072
                tu->val = 0;
1073
                return 0;
1074
              }
1075
          }
1076
        if (!s1 && !s2)
1077
          {
1078
            tu->val = needs_warning ? 2 : 1;
1079
            return tu->val;
1080
          }
1081
 
1082
        for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1083
          {
1084
            bool ok = false;
1085
 
1086
            if (DECL_NAME (s1) != NULL)
1087
              for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1088
                if (DECL_NAME (s1) == DECL_NAME (s2))
1089
                  {
1090
                    int result;
1091
                    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1092
                    if (result == 0)
1093
                      {
1094
                        tu->val = 0;
1095
                        return 0;
1096
                      }
1097
                    if (result == 2)
1098
                      needs_warning = true;
1099
 
1100
                    if (TREE_CODE (s1) == FIELD_DECL
1101
                        && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1102
                                             DECL_FIELD_BIT_OFFSET (s2)) != 1)
1103
                      break;
1104
 
1105
                    ok = true;
1106
                    break;
1107
                  }
1108
            if (!ok)
1109
              {
1110
                tu->val = 0;
1111
                return 0;
1112
              }
1113
          }
1114
        tu->val = needs_warning ? 2 : 10;
1115
        return tu->val;
1116
      }
1117
 
1118
    case RECORD_TYPE:
1119
      {
1120
        struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1121
 
1122
        for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1123
             s1 && s2;
1124
             s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1125
          {
1126
            int result;
1127
            if (TREE_CODE (s1) != TREE_CODE (s2)
1128
                || DECL_NAME (s1) != DECL_NAME (s2))
1129
              break;
1130
            result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1131
            if (result == 0)
1132
              break;
1133
            if (result == 2)
1134
              needs_warning = true;
1135
 
1136
            if (TREE_CODE (s1) == FIELD_DECL
1137
                && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1138
                                     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1139
              break;
1140
          }
1141
        if (s1 && s2)
1142
          tu->val = 0;
1143
        else
1144
          tu->val = needs_warning ? 2 : 1;
1145
        return tu->val;
1146
      }
1147
 
1148
    default:
1149
      gcc_unreachable ();
1150
    }
1151
}
1152
 
1153
/* Return 1 if two function types F1 and F2 are compatible.
1154
   If either type specifies no argument types,
1155
   the other must specify a fixed number of self-promoting arg types.
1156
   Otherwise, if one type specifies only the number of arguments,
1157
   the other must specify that number of self-promoting arg types.
1158
   Otherwise, the argument types must match.  */
1159
 
1160
static int
1161
function_types_compatible_p (tree f1, tree f2)
1162
{
1163
  tree args1, args2;
1164
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1165
  int val = 1;
1166
  int val1;
1167
  tree ret1, ret2;
1168
 
1169
  ret1 = TREE_TYPE (f1);
1170
  ret2 = TREE_TYPE (f2);
1171
 
1172
  /* 'volatile' qualifiers on a function's return type used to mean
1173
     the function is noreturn.  */
1174
  if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1175
    pedwarn ("function return types not compatible due to %<volatile%>");
1176
  if (TYPE_VOLATILE (ret1))
1177
    ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1178
                                 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1179
  if (TYPE_VOLATILE (ret2))
1180
    ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1181
                                 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1182
  val = comptypes_internal (ret1, ret2);
1183
  if (val == 0)
1184
    return 0;
1185
 
1186
  args1 = TYPE_ARG_TYPES (f1);
1187
  args2 = TYPE_ARG_TYPES (f2);
1188
 
1189
  /* An unspecified parmlist matches any specified parmlist
1190
     whose argument types don't need default promotions.  */
1191
 
1192
  if (args1 == 0)
1193
    {
1194
      if (!self_promoting_args_p (args2))
1195
        return 0;
1196
      /* If one of these types comes from a non-prototype fn definition,
1197
         compare that with the other type's arglist.
1198
         If they don't match, ask for a warning (but no error).  */
1199
      if (TYPE_ACTUAL_ARG_TYPES (f1)
1200
          && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1201
        val = 2;
1202
      return val;
1203
    }
1204
  if (args2 == 0)
1205
    {
1206
      if (!self_promoting_args_p (args1))
1207
        return 0;
1208
      if (TYPE_ACTUAL_ARG_TYPES (f2)
1209
          && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1210
        val = 2;
1211
      return val;
1212
    }
1213
 
1214
  /* Both types have argument lists: compare them and propagate results.  */
1215
  val1 = type_lists_compatible_p (args1, args2);
1216
  return val1 != 1 ? val1 : val;
1217
}
1218
 
1219
/* Check two lists of types for compatibility,
1220
   returning 0 for incompatible, 1 for compatible,
1221
   or 2 for compatible with warning.  */
1222
 
1223
static int
1224
type_lists_compatible_p (tree args1, tree args2)
1225
{
1226
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1227
  int val = 1;
1228
  int newval = 0;
1229
 
1230
  while (1)
1231
    {
1232
      tree a1, mv1, a2, mv2;
1233
      if (args1 == 0 && args2 == 0)
1234
        return val;
1235
      /* If one list is shorter than the other,
1236
         they fail to match.  */
1237
      if (args1 == 0 || args2 == 0)
1238
        return 0;
1239
      mv1 = a1 = TREE_VALUE (args1);
1240
      mv2 = a2 = TREE_VALUE (args2);
1241
      if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1242
        mv1 = TYPE_MAIN_VARIANT (mv1);
1243
      if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1244
        mv2 = TYPE_MAIN_VARIANT (mv2);
1245
      /* A null pointer instead of a type
1246
         means there is supposed to be an argument
1247
         but nothing is specified about what type it has.
1248
         So match anything that self-promotes.  */
1249
      if (a1 == 0)
1250
        {
1251
          if (c_type_promotes_to (a2) != a2)
1252
            return 0;
1253
        }
1254
      else if (a2 == 0)
1255
        {
1256
          if (c_type_promotes_to (a1) != a1)
1257
            return 0;
1258
        }
1259
      /* If one of the lists has an error marker, ignore this arg.  */
1260
      else if (TREE_CODE (a1) == ERROR_MARK
1261
               || TREE_CODE (a2) == ERROR_MARK)
1262
        ;
1263
      else if (!(newval = comptypes_internal (mv1, mv2)))
1264
        {
1265
          /* Allow  wait (union {union wait *u; int *i} *)
1266
             and  wait (union wait *)  to be compatible.  */
1267
          if (TREE_CODE (a1) == UNION_TYPE
1268
              && (TYPE_NAME (a1) == 0
1269
                  || TYPE_TRANSPARENT_UNION (a1))
1270
              && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1271
              && tree_int_cst_equal (TYPE_SIZE (a1),
1272
                                     TYPE_SIZE (a2)))
1273
            {
1274
              tree memb;
1275
              for (memb = TYPE_FIELDS (a1);
1276
                   memb; memb = TREE_CHAIN (memb))
1277
                {
1278
                  tree mv3 = TREE_TYPE (memb);
1279
                  if (mv3 && mv3 != error_mark_node
1280
                      && TREE_CODE (mv3) != ARRAY_TYPE)
1281
                    mv3 = TYPE_MAIN_VARIANT (mv3);
1282
                  if (comptypes_internal (mv3, mv2))
1283
                    break;
1284
                }
1285
              if (memb == 0)
1286
                return 0;
1287
            }
1288
          else if (TREE_CODE (a2) == UNION_TYPE
1289
                   && (TYPE_NAME (a2) == 0
1290
                       || TYPE_TRANSPARENT_UNION (a2))
1291
                   && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1292
                   && tree_int_cst_equal (TYPE_SIZE (a2),
1293
                                          TYPE_SIZE (a1)))
1294
            {
1295
              tree memb;
1296
              for (memb = TYPE_FIELDS (a2);
1297
                   memb; memb = TREE_CHAIN (memb))
1298
                {
1299
                  tree mv3 = TREE_TYPE (memb);
1300
                  if (mv3 && mv3 != error_mark_node
1301
                      && TREE_CODE (mv3) != ARRAY_TYPE)
1302
                    mv3 = TYPE_MAIN_VARIANT (mv3);
1303
                  if (comptypes_internal (mv3, mv1))
1304
                    break;
1305
                }
1306
              if (memb == 0)
1307
                return 0;
1308
            }
1309
          else
1310
            return 0;
1311
        }
1312
 
1313
      /* comptypes said ok, but record if it said to warn.  */
1314
      if (newval > val)
1315
        val = newval;
1316
 
1317
      args1 = TREE_CHAIN (args1);
1318
      args2 = TREE_CHAIN (args2);
1319
    }
1320
}
1321
 
1322
/* Compute the size to increment a pointer by.  */
1323
 
1324
static tree
1325
c_size_in_bytes (tree type)
1326
{
1327
  enum tree_code code = TREE_CODE (type);
1328
 
1329
  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1330
    return size_one_node;
1331
 
1332
  if (!COMPLETE_OR_VOID_TYPE_P (type))
1333
    {
1334
      error ("arithmetic on pointer to an incomplete type");
1335
      return size_one_node;
1336
    }
1337
 
1338
  /* Convert in case a char is more than one unit.  */
1339
  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1340
                     size_int (TYPE_PRECISION (char_type_node)
1341
                               / BITS_PER_UNIT));
1342
}
1343
 
1344
/* Return either DECL or its known constant value (if it has one).  */
1345
 
1346
tree
1347
decl_constant_value (tree decl)
1348
{
1349
  if (/* Don't change a variable array bound or initial value to a constant
1350
         in a place where a variable is invalid.  Note that DECL_INITIAL
1351
         isn't valid for a PARM_DECL.  */
1352
      current_function_decl != 0
1353
      && TREE_CODE (decl) != PARM_DECL
1354
      && !TREE_THIS_VOLATILE (decl)
1355
      && TREE_READONLY (decl)
1356
      && DECL_INITIAL (decl) != 0
1357
      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1358
      /* This is invalid if initial value is not constant.
1359
         If it has either a function call, a memory reference,
1360
         or a variable, then re-evaluating it could give different results.  */
1361
      && TREE_CONSTANT (DECL_INITIAL (decl))
1362
      /* Check for cases where this is sub-optimal, even though valid.  */
1363
      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1364
    return DECL_INITIAL (decl);
1365
  return decl;
1366
}
1367
 
1368
/* Return either DECL or its known constant value (if it has one), but
1369
   return DECL if pedantic or DECL has mode BLKmode.  This is for
1370
   bug-compatibility with the old behavior of decl_constant_value
1371
   (before GCC 3.0); every use of this function is a bug and it should
1372
   be removed before GCC 3.1.  It is not appropriate to use pedantic
1373
   in a way that affects optimization, and BLKmode is probably not the
1374
   right test for avoiding misoptimizations either.  */
1375
 
1376
static tree
1377
decl_constant_value_for_broken_optimization (tree decl)
1378
{
1379
  tree ret;
1380
 
1381
  if (pedantic || DECL_MODE (decl) == BLKmode)
1382
    return decl;
1383
 
1384
  ret = decl_constant_value (decl);
1385
  /* Avoid unwanted tree sharing between the initializer and current
1386
     function's body where the tree can be modified e.g. by the
1387
     gimplifier.  */
1388
  if (ret != decl && TREE_STATIC (decl))
1389
    ret = unshare_expr (ret);
1390
  return ret;
1391
}
1392
 
1393
/* Convert the array expression EXP to a pointer.  */
1394
static tree
1395
array_to_pointer_conversion (tree exp)
1396
{
1397
  tree orig_exp = exp;
1398
  tree type = TREE_TYPE (exp);
1399
  tree adr;
1400
  tree restype = TREE_TYPE (type);
1401
  tree ptrtype;
1402
 
1403
  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1404
 
1405
  STRIP_TYPE_NOPS (exp);
1406
 
1407
  if (TREE_NO_WARNING (orig_exp))
1408
    TREE_NO_WARNING (exp) = 1;
1409
 
1410
  ptrtype = build_pointer_type (restype);
1411
 
1412
  if (TREE_CODE (exp) == INDIRECT_REF)
1413
    return convert (ptrtype, TREE_OPERAND (exp, 0));
1414
 
1415
  if (TREE_CODE (exp) == VAR_DECL)
1416
    {
1417
      /* We are making an ADDR_EXPR of ptrtype.  This is a valid
1418
         ADDR_EXPR because it's the best way of representing what
1419
         happens in C when we take the address of an array and place
1420
         it in a pointer to the element type.  */
1421
      adr = build1 (ADDR_EXPR, ptrtype, exp);
1422
      if (!c_mark_addressable (exp))
1423
        return error_mark_node;
1424
      TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
1425
      return adr;
1426
    }
1427
 
1428
  /* This way is better for a COMPONENT_REF since it can
1429
     simplify the offset for a component.  */
1430
  adr = build_unary_op (ADDR_EXPR, exp, 1);
1431
  return convert (ptrtype, adr);
1432
}
1433
 
1434
/* Convert the function expression EXP to a pointer.  */
1435
static tree
1436
function_to_pointer_conversion (tree exp)
1437
{
1438
  tree orig_exp = exp;
1439
 
1440
  gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1441
 
1442
  STRIP_TYPE_NOPS (exp);
1443
 
1444
  if (TREE_NO_WARNING (orig_exp))
1445
    TREE_NO_WARNING (exp) = 1;
1446
 
1447
  return build_unary_op (ADDR_EXPR, exp, 0);
1448
}
1449
 
1450
/* Perform the default conversion of arrays and functions to pointers.
1451
   Return the result of converting EXP.  For any other expression, just
1452
   return EXP after removing NOPs.  */
1453
 
1454
struct c_expr
1455
default_function_array_conversion (struct c_expr exp)
1456
{
1457
  tree orig_exp = exp.value;
1458
  tree type = TREE_TYPE (exp.value);
1459
  enum tree_code code = TREE_CODE (type);
1460
 
1461
  switch (code)
1462
    {
1463
    case ARRAY_TYPE:
1464
      {
1465
        bool not_lvalue = false;
1466
        bool lvalue_array_p;
1467
 
1468
        while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1469
                || TREE_CODE (exp.value) == NOP_EXPR)
1470
               && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1471
          {
1472
            if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1473
              not_lvalue = true;
1474
            exp.value = TREE_OPERAND (exp.value, 0);
1475
          }
1476
 
1477
        if (TREE_NO_WARNING (orig_exp))
1478
          TREE_NO_WARNING (exp.value) = 1;
1479
 
1480
        lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1481
        if (!flag_isoc99 && !lvalue_array_p)
1482
          {
1483
            /* Before C99, non-lvalue arrays do not decay to pointers.
1484
               Normally, using such an array would be invalid; but it can
1485
               be used correctly inside sizeof or as a statement expression.
1486
               Thus, do not give an error here; an error will result later.  */
1487
            return exp;
1488
          }
1489
 
1490
        exp.value = array_to_pointer_conversion (exp.value);
1491
      }
1492
      break;
1493
    case FUNCTION_TYPE:
1494
      exp.value = function_to_pointer_conversion (exp.value);
1495
      break;
1496
    default:
1497
      STRIP_TYPE_NOPS (exp.value);
1498
      if (TREE_NO_WARNING (orig_exp))
1499
        TREE_NO_WARNING (exp.value) = 1;
1500
      break;
1501
    }
1502
 
1503
  return exp;
1504
}
1505
 
1506
 
1507
/* EXP is an expression of integer type.  Apply the integer promotions
1508
   to it and return the promoted value.  */
1509
 
1510
tree
1511
perform_integral_promotions (tree exp)
1512
{
1513
  tree type = TREE_TYPE (exp);
1514
  enum tree_code code = TREE_CODE (type);
1515
 
1516
  gcc_assert (INTEGRAL_TYPE_P (type));
1517
 
1518
  /* Normally convert enums to int,
1519
     but convert wide enums to something wider.  */
1520
  if (code == ENUMERAL_TYPE)
1521
    {
1522
      type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1523
                                          TYPE_PRECISION (integer_type_node)),
1524
                                     ((TYPE_PRECISION (type)
1525
                                       >= TYPE_PRECISION (integer_type_node))
1526
                                      && TYPE_UNSIGNED (type)));
1527
 
1528
      return convert (type, exp);
1529
    }
1530
 
1531
  /* ??? This should no longer be needed now bit-fields have their
1532
     proper types.  */
1533
  if (TREE_CODE (exp) == COMPONENT_REF
1534
      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1535
      /* If it's thinner than an int, promote it like a
1536
         c_promoting_integer_type_p, otherwise leave it alone.  */
1537
      && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1538
                               TYPE_PRECISION (integer_type_node)))
1539
    return convert (integer_type_node, exp);
1540
 
1541
  if (c_promoting_integer_type_p (type))
1542
    {
1543
      /* Preserve unsignedness if not really getting any wider.  */
1544
      if (TYPE_UNSIGNED (type)
1545
          && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1546
        return convert (unsigned_type_node, exp);
1547
 
1548
      return convert (integer_type_node, exp);
1549
    }
1550
 
1551
  return exp;
1552
}
1553
 
1554
 
1555
/* Perform default promotions for C data used in expressions.
1556
   Enumeral types or short or char are converted to int.
1557
   In addition, manifest constants symbols are replaced by their values.  */
1558
 
1559
tree
1560
default_conversion (tree exp)
1561
{
1562
  tree orig_exp;
1563
  tree type = TREE_TYPE (exp);
1564
  enum tree_code code = TREE_CODE (type);
1565
 
1566
  /* Functions and arrays have been converted during parsing.  */
1567
  gcc_assert (code != FUNCTION_TYPE);
1568
  if (code == ARRAY_TYPE)
1569
    return exp;
1570
 
1571
  /* Constants can be used directly unless they're not loadable.  */
1572
  if (TREE_CODE (exp) == CONST_DECL)
1573
    exp = DECL_INITIAL (exp);
1574
 
1575
  /* Replace a nonvolatile const static variable with its value unless
1576
     it is an array, in which case we must be sure that taking the
1577
     address of the array produces consistent results.  */
1578
  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1579
    {
1580
      exp = decl_constant_value_for_broken_optimization (exp);
1581
      type = TREE_TYPE (exp);
1582
    }
1583
 
1584
  /* Strip no-op conversions.  */
1585
  orig_exp = exp;
1586
  STRIP_TYPE_NOPS (exp);
1587
 
1588
  if (TREE_NO_WARNING (orig_exp))
1589
    TREE_NO_WARNING (exp) = 1;
1590
 
1591
  if (INTEGRAL_TYPE_P (type))
1592
    return perform_integral_promotions (exp);
1593
 
1594
  if (code == VOID_TYPE)
1595
    {
1596
      error ("void value not ignored as it ought to be");
1597
      return error_mark_node;
1598
    }
1599
  return exp;
1600
}
1601
 
1602
/* Look up COMPONENT in a structure or union DECL.
1603
 
1604
   If the component name is not found, returns NULL_TREE.  Otherwise,
1605
   the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1606
   stepping down the chain to the component, which is in the last
1607
   TREE_VALUE of the list.  Normally the list is of length one, but if
1608
   the component is embedded within (nested) anonymous structures or
1609
   unions, the list steps down the chain to the component.  */
1610
 
1611
static tree
1612
lookup_field (tree decl, tree component)
1613
{
1614
  tree type = TREE_TYPE (decl);
1615
  tree field;
1616
 
1617
  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1618
     to the field elements.  Use a binary search on this array to quickly
1619
     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
1620
     will always be set for structures which have many elements.  */
1621
 
1622
  if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1623
    {
1624
      int bot, top, half;
1625
      tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1626
 
1627
      field = TYPE_FIELDS (type);
1628
      bot = 0;
1629
      top = TYPE_LANG_SPECIFIC (type)->s->len;
1630
      while (top - bot > 1)
1631
        {
1632
          half = (top - bot + 1) >> 1;
1633
          field = field_array[bot+half];
1634
 
1635
          if (DECL_NAME (field) == NULL_TREE)
1636
            {
1637
              /* Step through all anon unions in linear fashion.  */
1638
              while (DECL_NAME (field_array[bot]) == NULL_TREE)
1639
                {
1640
                  field = field_array[bot++];
1641
                  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1642
                      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1643
                    {
1644
                      tree anon = lookup_field (field, component);
1645
 
1646
                      if (anon)
1647
                        return tree_cons (NULL_TREE, field, anon);
1648
                    }
1649
                }
1650
 
1651
              /* Entire record is only anon unions.  */
1652
              if (bot > top)
1653
                return NULL_TREE;
1654
 
1655
              /* Restart the binary search, with new lower bound.  */
1656
              continue;
1657
            }
1658
 
1659
          if (DECL_NAME (field) == component)
1660
            break;
1661
          if (DECL_NAME (field) < component)
1662
            bot += half;
1663
          else
1664
            top = bot + half;
1665
        }
1666
 
1667
      if (DECL_NAME (field_array[bot]) == component)
1668
        field = field_array[bot];
1669
      else if (DECL_NAME (field) != component)
1670
        return NULL_TREE;
1671
    }
1672
  else
1673
    {
1674
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1675
        {
1676
          if (DECL_NAME (field) == NULL_TREE
1677
              && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1678
                  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1679
            {
1680
              tree anon = lookup_field (field, component);
1681
 
1682
              if (anon)
1683
                return tree_cons (NULL_TREE, field, anon);
1684
            }
1685
 
1686
          if (DECL_NAME (field) == component)
1687
            break;
1688
        }
1689
 
1690
      if (field == NULL_TREE)
1691
        return NULL_TREE;
1692
    }
1693
 
1694
  return tree_cons (NULL_TREE, field, NULL_TREE);
1695
}
1696
 
1697
/* Make an expression to refer to the COMPONENT field of
1698
   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
1699
 
1700
tree
1701
build_component_ref (tree datum, tree component)
1702
{
1703
  tree type = TREE_TYPE (datum);
1704
  enum tree_code code = TREE_CODE (type);
1705
  tree field = NULL;
1706
  tree ref;
1707
 
1708
  if (!objc_is_public (datum, component))
1709
    return error_mark_node;
1710
 
1711
  /* See if there is a field or component with name COMPONENT.  */
1712
 
1713
  if (code == RECORD_TYPE || code == UNION_TYPE)
1714
    {
1715
      if (!COMPLETE_TYPE_P (type))
1716
        {
1717
          c_incomplete_type_error (NULL_TREE, type);
1718
          return error_mark_node;
1719
        }
1720
 
1721
      field = lookup_field (datum, component);
1722
 
1723
      if (!field)
1724
        {
1725
          error ("%qT has no member named %qE", type, component);
1726
          return error_mark_node;
1727
        }
1728
 
1729
      /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1730
         This might be better solved in future the way the C++ front
1731
         end does it - by giving the anonymous entities each a
1732
         separate name and type, and then have build_component_ref
1733
         recursively call itself.  We can't do that here.  */
1734
      do
1735
        {
1736
          tree subdatum = TREE_VALUE (field);
1737
 
1738
          if (TREE_TYPE (subdatum) == error_mark_node)
1739
            return error_mark_node;
1740
 
1741
          ref = build3 (COMPONENT_REF, TREE_TYPE (subdatum), datum, subdatum,
1742
                        NULL_TREE);
1743
          if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1744
            TREE_READONLY (ref) = 1;
1745
          if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1746
            TREE_THIS_VOLATILE (ref) = 1;
1747
 
1748
          if (TREE_DEPRECATED (subdatum))
1749
            warn_deprecated_use (subdatum);
1750
 
1751
          datum = ref;
1752
 
1753
          field = TREE_CHAIN (field);
1754
        }
1755
      while (field);
1756
 
1757
      return ref;
1758
    }
1759
  else if (code != ERROR_MARK)
1760
    error ("request for member %qE in something not a structure or union",
1761
           component);
1762
 
1763
  return error_mark_node;
1764
}
1765
 
1766
/* Given an expression PTR for a pointer, return an expression
1767
   for the value pointed to.
1768
   ERRORSTRING is the name of the operator to appear in error messages.  */
1769
 
1770
tree
1771
build_indirect_ref (tree ptr, const char *errorstring)
1772
{
1773
  tree pointer = default_conversion (ptr);
1774
  tree type = TREE_TYPE (pointer);
1775
 
1776
  if (TREE_CODE (type) == POINTER_TYPE)
1777
    {
1778
      if (TREE_CODE (pointer) == ADDR_EXPR
1779
          && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1780
              == TREE_TYPE (type)))
1781
        return TREE_OPERAND (pointer, 0);
1782
      else
1783
        {
1784
          tree t = TREE_TYPE (type);
1785
          tree ref;
1786
 
1787
          ref = build1 (INDIRECT_REF, t, pointer);
1788
 
1789
          if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1790
            {
1791
              error ("dereferencing pointer to incomplete type");
1792
              return error_mark_node;
1793
            }
1794
          if (VOID_TYPE_P (t) && skip_evaluation == 0)
1795
            warning (0, "dereferencing %<void *%> pointer");
1796
 
1797
          /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1798
             so that we get the proper error message if the result is used
1799
             to assign to.  Also, &* is supposed to be a no-op.
1800
             And ANSI C seems to specify that the type of the result
1801
             should be the const type.  */
1802
          /* A de-reference of a pointer to const is not a const.  It is valid
1803
             to change it via some other pointer.  */
1804
          TREE_READONLY (ref) = TYPE_READONLY (t);
1805
          TREE_SIDE_EFFECTS (ref)
1806
            = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1807
          TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1808
          return ref;
1809
        }
1810
    }
1811
  else if (TREE_CODE (pointer) != ERROR_MARK)
1812
    error ("invalid type argument of %qs", errorstring);
1813
  return error_mark_node;
1814
}
1815
 
1816
/* This handles expressions of the form "a[i]", which denotes
1817
   an array reference.
1818
 
1819
   This is logically equivalent in C to *(a+i), but we may do it differently.
1820
   If A is a variable or a member, we generate a primitive ARRAY_REF.
1821
   This avoids forcing the array out of registers, and can work on
1822
   arrays that are not lvalues (for example, members of structures returned
1823
   by functions).  */
1824
 
1825
tree
1826
build_array_ref (tree array, tree index)
1827
{
1828
  bool swapped = false;
1829
  if (TREE_TYPE (array) == error_mark_node
1830
      || TREE_TYPE (index) == error_mark_node)
1831
    return error_mark_node;
1832
 
1833
  if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1834
      && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1835
    {
1836
      tree temp;
1837
      if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1838
          && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1839
        {
1840
          error ("subscripted value is neither array nor pointer");
1841
          return error_mark_node;
1842
        }
1843
      temp = array;
1844
      array = index;
1845
      index = temp;
1846
      swapped = true;
1847
    }
1848
 
1849
  if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1850
    {
1851
      error ("array subscript is not an integer");
1852
      return error_mark_node;
1853
    }
1854
 
1855
  if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1856
    {
1857
      error ("subscripted value is pointer to function");
1858
      return error_mark_node;
1859
    }
1860
 
1861
  /* Subscripting with type char is likely to lose on a machine where
1862
     chars are signed.  So warn on any machine, but optionally.  Don't
1863
     warn for unsigned char since that type is safe.  Don't warn for
1864
     signed char because anyone who uses that must have done so
1865
     deliberately.  ??? Existing practice has also been to warn only
1866
     when the char index is syntactically the index, not for
1867
     char[array].  */
1868
  if (!swapped
1869
      && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1870
    warning (OPT_Wchar_subscripts, "array subscript has type %<char%>");
1871
 
1872
  /* Apply default promotions *after* noticing character types.  */
1873
  index = default_conversion (index);
1874
 
1875
  gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1876
 
1877
  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1878
    {
1879
      tree rval, type;
1880
 
1881
      /* An array that is indexed by a non-constant
1882
         cannot be stored in a register; we must be able to do
1883
         address arithmetic on its address.
1884
         Likewise an array of elements of variable size.  */
1885
      if (TREE_CODE (index) != INTEGER_CST
1886
          || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1887
              && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1888
        {
1889
          if (!c_mark_addressable (array))
1890
            return error_mark_node;
1891
        }
1892
      /* An array that is indexed by a constant value which is not within
1893
         the array bounds cannot be stored in a register either; because we
1894
         would get a crash in store_bit_field/extract_bit_field when trying
1895
         to access a non-existent part of the register.  */
1896
      if (TREE_CODE (index) == INTEGER_CST
1897
          && TYPE_DOMAIN (TREE_TYPE (array))
1898
          && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
1899
        {
1900
          if (!c_mark_addressable (array))
1901
            return error_mark_node;
1902
        }
1903
 
1904
      if (pedantic)
1905
        {
1906
          tree foo = array;
1907
          while (TREE_CODE (foo) == COMPONENT_REF)
1908
            foo = TREE_OPERAND (foo, 0);
1909
          if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
1910
            pedwarn ("ISO C forbids subscripting %<register%> array");
1911
          else if (!flag_isoc99 && !lvalue_p (foo))
1912
            pedwarn ("ISO C90 forbids subscripting non-lvalue array");
1913
        }
1914
 
1915
      type = TREE_TYPE (TREE_TYPE (array));
1916
      if (TREE_CODE (type) != ARRAY_TYPE)
1917
        type = TYPE_MAIN_VARIANT (type);
1918
      rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
1919
      /* Array ref is const/volatile if the array elements are
1920
         or if the array is.  */
1921
      TREE_READONLY (rval)
1922
        |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1923
            | TREE_READONLY (array));
1924
      TREE_SIDE_EFFECTS (rval)
1925
        |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1926
            | TREE_SIDE_EFFECTS (array));
1927
      TREE_THIS_VOLATILE (rval)
1928
        |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1929
            /* This was added by rms on 16 Nov 91.
1930
               It fixes  vol struct foo *a;  a->elts[1]
1931
               in an inline function.
1932
               Hope it doesn't break something else.  */
1933
            | TREE_THIS_VOLATILE (array));
1934
      return require_complete_type (fold (rval));
1935
    }
1936
  else
1937
    {
1938
      tree ar = default_conversion (array);
1939
 
1940
      if (ar == error_mark_node)
1941
        return ar;
1942
 
1943
      gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
1944
      gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
1945
 
1946
      return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
1947
                                 "array indexing");
1948
    }
1949
}
1950
 
1951
/* Build an external reference to identifier ID.  FUN indicates
1952
   whether this will be used for a function call.  LOC is the source
1953
   location of the identifier.  */
1954
tree
1955
build_external_ref (tree id, int fun, location_t loc)
1956
{
1957
  tree ref;
1958
  tree decl = lookup_name (id);
1959
 
1960
  /* In Objective-C, an instance variable (ivar) may be preferred to
1961
     whatever lookup_name() found.  */
1962
  decl = objc_lookup_ivar (decl, id);
1963
 
1964
  if (decl && decl != error_mark_node)
1965
    ref = decl;
1966
  else if (fun)
1967
    /* Implicit function declaration.  */
1968
    ref = implicitly_declare (id);
1969
  else if (decl == error_mark_node)
1970
    /* Don't complain about something that's already been
1971
       complained about.  */
1972
    return error_mark_node;
1973
  else
1974
    {
1975
      undeclared_variable (id, loc);
1976
      return error_mark_node;
1977
    }
1978
 
1979
  if (TREE_TYPE (ref) == error_mark_node)
1980
    return error_mark_node;
1981
 
1982
  if (TREE_DEPRECATED (ref))
1983
    warn_deprecated_use (ref);
1984
 
1985
  if (!skip_evaluation)
1986
    assemble_external (ref);
1987
  TREE_USED (ref) = 1;
1988
 
1989
  if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
1990
    {
1991
      if (!in_sizeof && !in_typeof)
1992
        C_DECL_USED (ref) = 1;
1993
      else if (DECL_INITIAL (ref) == 0
1994
               && DECL_EXTERNAL (ref)
1995
               && !TREE_PUBLIC (ref))
1996
        record_maybe_used_decl (ref);
1997
    }
1998
 
1999
  if (TREE_CODE (ref) == CONST_DECL)
2000
    {
2001
      ref = DECL_INITIAL (ref);
2002
      TREE_CONSTANT (ref) = 1;
2003
      TREE_INVARIANT (ref) = 1;
2004
    }
2005
  else if (current_function_decl != 0
2006
           && !DECL_FILE_SCOPE_P (current_function_decl)
2007
           && (TREE_CODE (ref) == VAR_DECL
2008
               || TREE_CODE (ref) == PARM_DECL
2009
               || TREE_CODE (ref) == FUNCTION_DECL))
2010
    {
2011
      tree context = decl_function_context (ref);
2012
 
2013
      if (context != 0 && context != current_function_decl)
2014
        DECL_NONLOCAL (ref) = 1;
2015
    }
2016
 
2017
  return ref;
2018
}
2019
 
2020
/* Record details of decls possibly used inside sizeof or typeof.  */
2021
struct maybe_used_decl
2022
{
2023
  /* The decl.  */
2024
  tree decl;
2025
  /* The level seen at (in_sizeof + in_typeof).  */
2026
  int level;
2027
  /* The next one at this level or above, or NULL.  */
2028
  struct maybe_used_decl *next;
2029
};
2030
 
2031
static struct maybe_used_decl *maybe_used_decls;
2032
 
2033
/* Record that DECL, an undefined static function reference seen
2034
   inside sizeof or typeof, might be used if the operand of sizeof is
2035
   a VLA type or the operand of typeof is a variably modified
2036
   type.  */
2037
 
2038
static void
2039
record_maybe_used_decl (tree decl)
2040
{
2041
  struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2042
  t->decl = decl;
2043
  t->level = in_sizeof + in_typeof;
2044
  t->next = maybe_used_decls;
2045
  maybe_used_decls = t;
2046
}
2047
 
2048
/* Pop the stack of decls possibly used inside sizeof or typeof.  If
2049
   USED is false, just discard them.  If it is true, mark them used
2050
   (if no longer inside sizeof or typeof) or move them to the next
2051
   level up (if still inside sizeof or typeof).  */
2052
 
2053
void
2054
pop_maybe_used (bool used)
2055
{
2056
  struct maybe_used_decl *p = maybe_used_decls;
2057
  int cur_level = in_sizeof + in_typeof;
2058
  while (p && p->level > cur_level)
2059
    {
2060
      if (used)
2061
        {
2062
          if (cur_level == 0)
2063
            C_DECL_USED (p->decl) = 1;
2064
          else
2065
            p->level = cur_level;
2066
        }
2067
      p = p->next;
2068
    }
2069
  if (!used || cur_level == 0)
2070
    maybe_used_decls = p;
2071
}
2072
 
2073
/* Return the result of sizeof applied to EXPR.  */
2074
 
2075
struct c_expr
2076
c_expr_sizeof_expr (struct c_expr expr)
2077
{
2078
  struct c_expr ret;
2079
  if (expr.value == error_mark_node)
2080
    {
2081
      ret.value = error_mark_node;
2082
      ret.original_code = ERROR_MARK;
2083
      pop_maybe_used (false);
2084
    }
2085
  else
2086
    {
2087
      ret.value = c_sizeof (TREE_TYPE (expr.value));
2088
      ret.original_code = ERROR_MARK;
2089
      pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2090
    }
2091
  return ret;
2092
}
2093
 
2094
/* Return the result of sizeof applied to T, a structure for the type
2095
   name passed to sizeof (rather than the type itself).  */
2096
 
2097
struct c_expr
2098
c_expr_sizeof_type (struct c_type_name *t)
2099
{
2100
  tree type;
2101
  struct c_expr ret;
2102
  type = groktypename (t);
2103
  ret.value = c_sizeof (type);
2104
  ret.original_code = ERROR_MARK;
2105
  pop_maybe_used (C_TYPE_VARIABLE_SIZE (type));
2106
  return ret;
2107
}
2108
 
2109
/* Build a function call to function FUNCTION with parameters PARAMS.
2110
   PARAMS is a list--a chain of TREE_LIST nodes--in which the
2111
   TREE_VALUE of each node is a parameter-expression.
2112
   FUNCTION's data type may be a function type or a pointer-to-function.  */
2113
 
2114
tree
2115
build_function_call (tree function, tree params)
2116
{
2117
  tree fntype, fundecl = 0;
2118
  tree coerced_params;
2119
  tree name = NULL_TREE, result;
2120
  tree tem;
2121
 
2122
  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
2123
  STRIP_TYPE_NOPS (function);
2124
 
2125
  /* Convert anything with function type to a pointer-to-function.  */
2126
  if (TREE_CODE (function) == FUNCTION_DECL)
2127
    {
2128
      /* Implement type-directed function overloading for builtins.
2129
         resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2130
         handle all the type checking.  The result is a complete expression
2131
         that implements this function call.  */
2132
      tem = resolve_overloaded_builtin (function, params);
2133
      if (tem)
2134
        return tem;
2135
 
2136
      name = DECL_NAME (function);
2137
      fundecl = function;
2138
    }
2139
  if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2140
    function = function_to_pointer_conversion (function);
2141
 
2142
  /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2143
     expressions, like those used for ObjC messenger dispatches.  */
2144
  function = objc_rewrite_function_call (function, params);
2145
 
2146
  fntype = TREE_TYPE (function);
2147
 
2148
  if (TREE_CODE (fntype) == ERROR_MARK)
2149
    return error_mark_node;
2150
 
2151
  if (!(TREE_CODE (fntype) == POINTER_TYPE
2152
        && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2153
    {
2154
      error ("called object %qE is not a function", function);
2155
      return error_mark_node;
2156
    }
2157
 
2158
  if (fundecl && TREE_THIS_VOLATILE (fundecl))
2159
    current_function_returns_abnormally = 1;
2160
 
2161
  /* fntype now gets the type of function pointed to.  */
2162
  fntype = TREE_TYPE (fntype);
2163
 
2164
  /* Check that the function is called through a compatible prototype.
2165
     If it is not, replace the call by a trap, wrapped up in a compound
2166
     expression if necessary.  This has the nice side-effect to prevent
2167
     the tree-inliner from generating invalid assignment trees which may
2168
     blow up in the RTL expander later.  */
2169
  if (TREE_CODE (function) == NOP_EXPR
2170
      && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2171
      && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2172
      && !comptypes (fntype, TREE_TYPE (tem)))
2173
    {
2174
      tree return_type = TREE_TYPE (fntype);
2175
      tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2176
                                       NULL_TREE);
2177
 
2178
      /* This situation leads to run-time undefined behavior.  We can't,
2179
         therefore, simply error unless we can prove that all possible
2180
         executions of the program must execute the code.  */
2181
      warning (0, "function called through a non-compatible type");
2182
 
2183
      /* We can, however, treat "undefined" any way we please.
2184
         Call abort to encourage the user to fix the program.  */
2185
      inform ("if this code is reached, the program will abort");
2186
 
2187
      if (VOID_TYPE_P (return_type))
2188
        return trap;
2189
      else
2190
        {
2191
          tree rhs;
2192
 
2193
          if (AGGREGATE_TYPE_P (return_type))
2194
            rhs = build_compound_literal (return_type,
2195
                                          build_constructor (return_type, 0));
2196
          else
2197
            rhs = fold_build1 (NOP_EXPR, return_type, integer_zero_node);
2198
 
2199
          return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2200
        }
2201
    }
2202
 
2203
  /* Convert the parameters to the types declared in the
2204
     function prototype, or apply default promotions.  */
2205
 
2206
  coerced_params
2207
    = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2208
 
2209
  if (coerced_params == error_mark_node)
2210
    return error_mark_node;
2211
 
2212
  /* Check that the arguments to the function are valid.  */
2213
 
2214
  check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2215
                            TYPE_ARG_TYPES (fntype));
2216
 
2217
  if (require_constant_value)
2218
    {
2219
      result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2220
                                        function, coerced_params, NULL_TREE);
2221
 
2222
      if (TREE_CONSTANT (result)
2223
          && (name == NULL_TREE
2224
              || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2225
        pedwarn_init ("initializer element is not constant");
2226
    }
2227
  else
2228
    result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2229
                          function, coerced_params, NULL_TREE);
2230
 
2231
  if (VOID_TYPE_P (TREE_TYPE (result)))
2232
    return result;
2233
  return require_complete_type (result);
2234
}
2235
 
2236
/* Convert the argument expressions in the list VALUES
2237
   to the types in the list TYPELIST.  The result is a list of converted
2238
   argument expressions, unless there are too few arguments in which
2239
   case it is error_mark_node.
2240
 
2241
   If TYPELIST is exhausted, or when an element has NULL as its type,
2242
   perform the default conversions.
2243
 
2244
   PARMLIST is the chain of parm decls for the function being called.
2245
   It may be 0, if that info is not available.
2246
   It is used only for generating error messages.
2247
 
2248
   FUNCTION is a tree for the called function.  It is used only for
2249
   error messages, where it is formatted with %qE.
2250
 
2251
   This is also where warnings about wrong number of args are generated.
2252
 
2253
   Both VALUES and the returned value are chains of TREE_LIST nodes
2254
   with the elements of the list in the TREE_VALUE slots of those nodes.  */
2255
 
2256
static tree
2257
convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2258
{
2259
  tree typetail, valtail;
2260
  tree result = NULL;
2261
  int parmnum;
2262
  tree selector;
2263
 
2264
  /* Change pointer to function to the function itself for
2265
     diagnostics.  */
2266
  if (TREE_CODE (function) == ADDR_EXPR
2267
      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2268
    function = TREE_OPERAND (function, 0);
2269
 
2270
  /* Handle an ObjC selector specially for diagnostics.  */
2271
  selector = objc_message_selector ();
2272
 
2273
  /* Scan the given expressions and types, producing individual
2274
     converted arguments and pushing them on RESULT in reverse order.  */
2275
 
2276
  for (valtail = values, typetail = typelist, parmnum = 0;
2277
       valtail;
2278
       valtail = TREE_CHAIN (valtail), parmnum++)
2279
    {
2280
      tree type = typetail ? TREE_VALUE (typetail) : 0;
2281
      tree val = TREE_VALUE (valtail);
2282
      tree rname = function;
2283
      int argnum = parmnum + 1;
2284
      const char *invalid_func_diag;
2285
 
2286
      if (type == void_type_node)
2287
        {
2288
          error ("too many arguments to function %qE", function);
2289
          break;
2290
        }
2291
 
2292
      if (selector && argnum > 2)
2293
        {
2294
          rname = selector;
2295
          argnum -= 2;
2296
        }
2297
 
2298
      STRIP_TYPE_NOPS (val);
2299
 
2300
      val = require_complete_type (val);
2301
 
2302
      if (type != 0)
2303
        {
2304
          /* Formal parm type is specified by a function prototype.  */
2305
          tree parmval;
2306
 
2307
          if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2308
            {
2309
              error ("type of formal parameter %d is incomplete", parmnum + 1);
2310
              parmval = val;
2311
            }
2312
          else
2313
            {
2314
              /* Optionally warn about conversions that
2315
                 differ from the default conversions.  */
2316
              if (warn_conversion || warn_traditional)
2317
                {
2318
                  unsigned int formal_prec = TYPE_PRECISION (type);
2319
 
2320
                  if (INTEGRAL_TYPE_P (type)
2321
                      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2322
                    warning (0, "passing argument %d of %qE as integer "
2323
                             "rather than floating due to prototype",
2324
                             argnum, rname);
2325
                  if (INTEGRAL_TYPE_P (type)
2326
                      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2327
                    warning (0, "passing argument %d of %qE as integer "
2328
                             "rather than complex due to prototype",
2329
                             argnum, rname);
2330
                  else if (TREE_CODE (type) == COMPLEX_TYPE
2331
                           && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2332
                    warning (0, "passing argument %d of %qE as complex "
2333
                             "rather than floating due to prototype",
2334
                             argnum, rname);
2335
                  else if (TREE_CODE (type) == REAL_TYPE
2336
                           && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2337
                    warning (0, "passing argument %d of %qE as floating "
2338
                             "rather than integer due to prototype",
2339
                             argnum, rname);
2340
                  else if (TREE_CODE (type) == COMPLEX_TYPE
2341
                           && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2342
                    warning (0, "passing argument %d of %qE as complex "
2343
                             "rather than integer due to prototype",
2344
                             argnum, rname);
2345
                  else if (TREE_CODE (type) == REAL_TYPE
2346
                           && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2347
                    warning (0, "passing argument %d of %qE as floating "
2348
                             "rather than complex due to prototype",
2349
                             argnum, rname);
2350
                  /* ??? At some point, messages should be written about
2351
                     conversions between complex types, but that's too messy
2352
                     to do now.  */
2353
                  else if (TREE_CODE (type) == REAL_TYPE
2354
                           && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2355
                    {
2356
                      /* Warn if any argument is passed as `float',
2357
                         since without a prototype it would be `double'.  */
2358
                      if (formal_prec == TYPE_PRECISION (float_type_node))
2359
                        warning (0, "passing argument %d of %qE as %<float%> "
2360
                                 "rather than %<double%> due to prototype",
2361
                                 argnum, rname);
2362
                    }
2363
                  /* Detect integer changing in width or signedness.
2364
                     These warnings are only activated with
2365
                     -Wconversion, not with -Wtraditional.  */
2366
                  else if (warn_conversion && INTEGRAL_TYPE_P (type)
2367
                           && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2368
                    {
2369
                      tree would_have_been = default_conversion (val);
2370
                      tree type1 = TREE_TYPE (would_have_been);
2371
 
2372
                      if (TREE_CODE (type) == ENUMERAL_TYPE
2373
                          && (TYPE_MAIN_VARIANT (type)
2374
                              == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2375
                        /* No warning if function asks for enum
2376
                           and the actual arg is that enum type.  */
2377
                        ;
2378
                      else if (formal_prec != TYPE_PRECISION (type1))
2379
                        warning (OPT_Wconversion, "passing argument %d of %qE "
2380
                                 "with different width due to prototype",
2381
                                 argnum, rname);
2382
                      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2383
                        ;
2384
                      /* Don't complain if the formal parameter type
2385
                         is an enum, because we can't tell now whether
2386
                         the value was an enum--even the same enum.  */
2387
                      else if (TREE_CODE (type) == ENUMERAL_TYPE)
2388
                        ;
2389
                      else if (TREE_CODE (val) == INTEGER_CST
2390
                               && int_fits_type_p (val, type))
2391
                        /* Change in signedness doesn't matter
2392
                           if a constant value is unaffected.  */
2393
                        ;
2394
                      /* If the value is extended from a narrower
2395
                         unsigned type, it doesn't matter whether we
2396
                         pass it as signed or unsigned; the value
2397
                         certainly is the same either way.  */
2398
                      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2399
                               && TYPE_UNSIGNED (TREE_TYPE (val)))
2400
                        ;
2401
                      else if (TYPE_UNSIGNED (type))
2402
                        warning (OPT_Wconversion, "passing argument %d of %qE "
2403
                                 "as unsigned due to prototype",
2404
                                 argnum, rname);
2405
                      else
2406
                        warning (OPT_Wconversion, "passing argument %d of %qE "
2407
                                 "as signed due to prototype", argnum, rname);
2408
                    }
2409
                }
2410
 
2411
              parmval = convert_for_assignment (type, val, ic_argpass,
2412
                                                fundecl, function,
2413
                                                parmnum + 1);
2414
 
2415
              if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2416
                  && INTEGRAL_TYPE_P (type)
2417
                  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2418
                parmval = default_conversion (parmval);
2419
            }
2420
          result = tree_cons (NULL_TREE, parmval, result);
2421
        }
2422
      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2423
               && (TYPE_PRECISION (TREE_TYPE (val))
2424
                   < TYPE_PRECISION (double_type_node)))
2425
        /* Convert `float' to `double'.  */
2426
        result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2427
      else if ((invalid_func_diag =
2428
                targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2429
        {
2430
          error (invalid_func_diag);
2431
          return error_mark_node;
2432
        }
2433
      else
2434
        /* Convert `short' and `char' to full-size `int'.  */
2435
        result = tree_cons (NULL_TREE, default_conversion (val), result);
2436
 
2437
      if (typetail)
2438
        typetail = TREE_CHAIN (typetail);
2439
    }
2440
 
2441
  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2442
    {
2443
      error ("too few arguments to function %qE", function);
2444
      return error_mark_node;
2445
    }
2446
 
2447
  return nreverse (result);
2448
}
2449
 
2450
/* This is the entry point used by the parser to build unary operators
2451
   in the input.  CODE, a tree_code, specifies the unary operator, and
2452
   ARG is the operand.  For unary plus, the C parser currently uses
2453
   CONVERT_EXPR for code.  */
2454
 
2455
struct c_expr
2456
parser_build_unary_op (enum tree_code code, struct c_expr arg)
2457
{
2458
  struct c_expr result;
2459
 
2460
  result.original_code = ERROR_MARK;
2461
  result.value = build_unary_op (code, arg.value, 0);
2462
  overflow_warning (result.value);
2463
  return result;
2464
}
2465
 
2466
/* This is the entry point used by the parser to build binary operators
2467
   in the input.  CODE, a tree_code, specifies the binary operator, and
2468
   ARG1 and ARG2 are the operands.  In addition to constructing the
2469
   expression, we check for operands that were written with other binary
2470
   operators in a way that is likely to confuse the user.  */
2471
 
2472
struct c_expr
2473
parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2474
                        struct c_expr arg2)
2475
{
2476
  struct c_expr result;
2477
 
2478
  enum tree_code code1 = arg1.original_code;
2479
  enum tree_code code2 = arg2.original_code;
2480
 
2481
  result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2482
  result.original_code = code;
2483
 
2484
  if (TREE_CODE (result.value) == ERROR_MARK)
2485
    return result;
2486
 
2487
  /* Check for cases such as x+y<<z which users are likely
2488
     to misinterpret.  */
2489
  if (warn_parentheses)
2490
    {
2491
      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
2492
        {
2493
          if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2494
              || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2495
            warning (OPT_Wparentheses,
2496
                     "suggest parentheses around + or - inside shift");
2497
        }
2498
 
2499
      if (code == TRUTH_ORIF_EXPR)
2500
        {
2501
          if (code1 == TRUTH_ANDIF_EXPR
2502
              || code2 == TRUTH_ANDIF_EXPR)
2503
            warning (OPT_Wparentheses,
2504
                     "suggest parentheses around && within ||");
2505
        }
2506
 
2507
      if (code == BIT_IOR_EXPR)
2508
        {
2509
          if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
2510
              || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2511
              || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
2512
              || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2513
            warning (OPT_Wparentheses,
2514
                     "suggest parentheses around arithmetic in operand of |");
2515
          /* Check cases like x|y==z */
2516
          if (TREE_CODE_CLASS (code1) == tcc_comparison
2517
              || TREE_CODE_CLASS (code2) == tcc_comparison)
2518
            warning (OPT_Wparentheses,
2519
                     "suggest parentheses around comparison in operand of |");
2520
        }
2521
 
2522
      if (code == BIT_XOR_EXPR)
2523
        {
2524
          if (code1 == BIT_AND_EXPR
2525
              || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2526
              || code2 == BIT_AND_EXPR
2527
              || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2528
            warning (OPT_Wparentheses,
2529
                     "suggest parentheses around arithmetic in operand of ^");
2530
          /* Check cases like x^y==z */
2531
          if (TREE_CODE_CLASS (code1) == tcc_comparison
2532
              || TREE_CODE_CLASS (code2) == tcc_comparison)
2533
            warning (OPT_Wparentheses,
2534
                     "suggest parentheses around comparison in operand of ^");
2535
        }
2536
 
2537
      if (code == BIT_AND_EXPR)
2538
        {
2539
          if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2540
              || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2541
            warning (OPT_Wparentheses,
2542
                     "suggest parentheses around + or - in operand of &");
2543
          /* Check cases like x&y==z */
2544
          if (TREE_CODE_CLASS (code1) == tcc_comparison
2545
              || TREE_CODE_CLASS (code2) == tcc_comparison)
2546
            warning (OPT_Wparentheses,
2547
                     "suggest parentheses around comparison in operand of &");
2548
        }
2549
      /* Similarly, check for cases like 1<=i<=10 that are probably errors.  */
2550
      if (TREE_CODE_CLASS (code) == tcc_comparison
2551
          && (TREE_CODE_CLASS (code1) == tcc_comparison
2552
              || TREE_CODE_CLASS (code2) == tcc_comparison))
2553
        warning (OPT_Wparentheses, "comparisons like X<=Y<=Z do not "
2554
                 "have their mathematical meaning");
2555
 
2556
    }
2557
 
2558
  unsigned_conversion_warning (result.value, arg1.value);
2559
  unsigned_conversion_warning (result.value, arg2.value);
2560
  overflow_warning (result.value);
2561
 
2562
  return result;
2563
}
2564
 
2565
/* Return a tree for the difference of pointers OP0 and OP1.
2566
   The resulting tree has type int.  */
2567
 
2568
static tree
2569
pointer_diff (tree op0, tree op1)
2570
{
2571
  tree restype = ptrdiff_type_node;
2572
 
2573
  tree target_type = TREE_TYPE (TREE_TYPE (op0));
2574
  tree con0, con1, lit0, lit1;
2575
  tree orig_op1 = op1;
2576
 
2577
  if (pedantic || warn_pointer_arith)
2578
    {
2579
      if (TREE_CODE (target_type) == VOID_TYPE)
2580
        pedwarn ("pointer of type %<void *%> used in subtraction");
2581
      if (TREE_CODE (target_type) == FUNCTION_TYPE)
2582
        pedwarn ("pointer to a function used in subtraction");
2583
    }
2584
 
2585
  /* If the conversion to ptrdiff_type does anything like widening or
2586
     converting a partial to an integral mode, we get a convert_expression
2587
     that is in the way to do any simplifications.
2588
     (fold-const.c doesn't know that the extra bits won't be needed.
2589
     split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2590
     different mode in place.)
2591
     So first try to find a common term here 'by hand'; we want to cover
2592
     at least the cases that occur in legal static initializers.  */
2593
  con0 = TREE_CODE (op0) == NOP_EXPR ? TREE_OPERAND (op0, 0) : op0;
2594
  con1 = TREE_CODE (op1) == NOP_EXPR ? TREE_OPERAND (op1, 0) : op1;
2595
 
2596
  if (TREE_CODE (con0) == PLUS_EXPR)
2597
    {
2598
      lit0 = TREE_OPERAND (con0, 1);
2599
      con0 = TREE_OPERAND (con0, 0);
2600
    }
2601
  else
2602
    lit0 = integer_zero_node;
2603
 
2604
  if (TREE_CODE (con1) == PLUS_EXPR)
2605
    {
2606
      lit1 = TREE_OPERAND (con1, 1);
2607
      con1 = TREE_OPERAND (con1, 0);
2608
    }
2609
  else
2610
    lit1 = integer_zero_node;
2611
 
2612
  if (operand_equal_p (con0, con1, 0))
2613
    {
2614
      op0 = lit0;
2615
      op1 = lit1;
2616
    }
2617
 
2618
 
2619
  /* First do the subtraction as integers;
2620
     then drop through to build the divide operator.
2621
     Do not do default conversions on the minus operator
2622
     in case restype is a short type.  */
2623
 
2624
  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2625
                         convert (restype, op1), 0);
2626
  /* This generates an error if op1 is pointer to incomplete type.  */
2627
  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2628
    error ("arithmetic on pointer to an incomplete type");
2629
 
2630
  /* This generates an error if op0 is pointer to incomplete type.  */
2631
  op1 = c_size_in_bytes (target_type);
2632
 
2633
  /* Divide by the size, in easiest possible way.  */
2634
  return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2635
}
2636
 
2637
/* Construct and perhaps optimize a tree representation
2638
   for a unary operation.  CODE, a tree_code, specifies the operation
2639
   and XARG is the operand.
2640
   For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2641
   the default promotions (such as from short to int).
2642
   For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2643
   allows non-lvalues; this is only used to handle conversion of non-lvalue
2644
   arrays to pointers in C99.  */
2645
 
2646
tree
2647
build_unary_op (enum tree_code code, tree xarg, int flag)
2648
{
2649
  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
2650
  tree arg = xarg;
2651
  tree argtype = 0;
2652
  enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2653
  tree val;
2654
  int noconvert = flag;
2655
  const char *invalid_op_diag;
2656
 
2657
  if (typecode == ERROR_MARK)
2658
    return error_mark_node;
2659
  if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2660
    typecode = INTEGER_TYPE;
2661
 
2662
  if ((invalid_op_diag
2663
       = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2664
    {
2665
      error (invalid_op_diag);
2666
      return error_mark_node;
2667
    }
2668
 
2669
  switch (code)
2670
    {
2671
    case CONVERT_EXPR:
2672
      /* This is used for unary plus, because a CONVERT_EXPR
2673
         is enough to prevent anybody from looking inside for
2674
         associativity, but won't generate any code.  */
2675
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2676
            || typecode == COMPLEX_TYPE
2677
            || typecode == VECTOR_TYPE))
2678
        {
2679
          error ("wrong type argument to unary plus");
2680
          return error_mark_node;
2681
        }
2682
      else if (!noconvert)
2683
        arg = default_conversion (arg);
2684
      arg = non_lvalue (arg);
2685
      break;
2686
 
2687
    case NEGATE_EXPR:
2688
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2689
            || typecode == COMPLEX_TYPE
2690
            || typecode == VECTOR_TYPE))
2691
        {
2692
          error ("wrong type argument to unary minus");
2693
          return error_mark_node;
2694
        }
2695
      else if (!noconvert)
2696
        arg = default_conversion (arg);
2697
      break;
2698
 
2699
    case BIT_NOT_EXPR:
2700
      if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2701
        {
2702
          if (!noconvert)
2703
            arg = default_conversion (arg);
2704
        }
2705
      else if (typecode == COMPLEX_TYPE)
2706
        {
2707
          code = CONJ_EXPR;
2708
          if (pedantic)
2709
            pedwarn ("ISO C does not support %<~%> for complex conjugation");
2710
          if (!noconvert)
2711
            arg = default_conversion (arg);
2712
        }
2713
      else
2714
        {
2715
          error ("wrong type argument to bit-complement");
2716
          return error_mark_node;
2717
        }
2718
      break;
2719
 
2720
    case ABS_EXPR:
2721
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2722
        {
2723
          error ("wrong type argument to abs");
2724
          return error_mark_node;
2725
        }
2726
      else if (!noconvert)
2727
        arg = default_conversion (arg);
2728
      break;
2729
 
2730
    case CONJ_EXPR:
2731
      /* Conjugating a real value is a no-op, but allow it anyway.  */
2732
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2733
            || typecode == COMPLEX_TYPE))
2734
        {
2735
          error ("wrong type argument to conjugation");
2736
          return error_mark_node;
2737
        }
2738
      else if (!noconvert)
2739
        arg = default_conversion (arg);
2740
      break;
2741
 
2742
    case TRUTH_NOT_EXPR:
2743
      if (typecode != INTEGER_TYPE
2744
          && typecode != REAL_TYPE && typecode != POINTER_TYPE
2745
          && typecode != COMPLEX_TYPE)
2746
        {
2747
          error ("wrong type argument to unary exclamation mark");
2748
          return error_mark_node;
2749
        }
2750
      arg = c_objc_common_truthvalue_conversion (arg);
2751
      return invert_truthvalue (arg);
2752
 
2753
    case NOP_EXPR:
2754
      break;
2755
 
2756
    case REALPART_EXPR:
2757
      if (TREE_CODE (arg) == COMPLEX_CST)
2758
        return TREE_REALPART (arg);
2759
      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2760
        return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2761
      else
2762
        return arg;
2763
 
2764
    case IMAGPART_EXPR:
2765
      if (TREE_CODE (arg) == COMPLEX_CST)
2766
        return TREE_IMAGPART (arg);
2767
      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2768
        return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2769
      else
2770
        return convert (TREE_TYPE (arg), integer_zero_node);
2771
 
2772
    case PREINCREMENT_EXPR:
2773
    case POSTINCREMENT_EXPR:
2774
    case PREDECREMENT_EXPR:
2775
    case POSTDECREMENT_EXPR:
2776
 
2777
      /* Increment or decrement the real part of the value,
2778
         and don't change the imaginary part.  */
2779
      if (typecode == COMPLEX_TYPE)
2780
        {
2781
          tree real, imag;
2782
 
2783
          if (pedantic)
2784
            pedwarn ("ISO C does not support %<++%> and %<--%>"
2785
                     " on complex types");
2786
 
2787
          arg = stabilize_reference (arg);
2788
          real = build_unary_op (REALPART_EXPR, arg, 1);
2789
          imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2790
          return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2791
                         build_unary_op (code, real, 1), imag);
2792
        }
2793
 
2794
      /* Report invalid types.  */
2795
 
2796
      if (typecode != POINTER_TYPE
2797
          && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2798
        {
2799
          if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2800
            error ("wrong type argument to increment");
2801
          else
2802
            error ("wrong type argument to decrement");
2803
 
2804
          return error_mark_node;
2805
        }
2806
 
2807
      {
2808
        tree inc;
2809
        tree result_type = TREE_TYPE (arg);
2810
 
2811
        arg = get_unwidened (arg, 0);
2812
        argtype = TREE_TYPE (arg);
2813
 
2814
        /* Compute the increment.  */
2815
 
2816
        if (typecode == POINTER_TYPE)
2817
          {
2818
            /* If pointer target is an undefined struct,
2819
               we just cannot know how to do the arithmetic.  */
2820
            if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2821
              {
2822
                if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2823
                  error ("increment of pointer to unknown structure");
2824
                else
2825
                  error ("decrement of pointer to unknown structure");
2826
              }
2827
            else if ((pedantic || warn_pointer_arith)
2828
                     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2829
                         || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2830
              {
2831
                if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2832
                  pedwarn ("wrong type argument to increment");
2833
                else
2834
                  pedwarn ("wrong type argument to decrement");
2835
              }
2836
 
2837
            inc = c_size_in_bytes (TREE_TYPE (result_type));
2838
          }
2839
        else
2840
          inc = integer_one_node;
2841
 
2842
        inc = convert (argtype, inc);
2843
 
2844
        /* Complain about anything else that is not a true lvalue.  */
2845
        if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2846
                                    || code == POSTINCREMENT_EXPR)
2847
                                   ? lv_increment
2848
                                   : lv_decrement)))
2849
          return error_mark_node;
2850
 
2851
        /* Report a read-only lvalue.  */
2852
        if (TREE_READONLY (arg))
2853
          readonly_error (arg,
2854
                          ((code == PREINCREMENT_EXPR
2855
                            || code == POSTINCREMENT_EXPR)
2856
                           ? lv_increment : lv_decrement));
2857
 
2858
        if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2859
          val = boolean_increment (code, arg);
2860
        else
2861
          val = build2 (code, TREE_TYPE (arg), arg, inc);
2862
        TREE_SIDE_EFFECTS (val) = 1;
2863
        val = convert (result_type, val);
2864
        if (TREE_CODE (val) != code)
2865
          TREE_NO_WARNING (val) = 1;
2866
        return val;
2867
      }
2868
 
2869
    case ADDR_EXPR:
2870
      /* Note that this operation never does default_conversion.  */
2871
 
2872
      /* Let &* cancel out to simplify resulting code.  */
2873
      if (TREE_CODE (arg) == INDIRECT_REF)
2874
        {
2875
          /* Don't let this be an lvalue.  */
2876
          if (lvalue_p (TREE_OPERAND (arg, 0)))
2877
            return non_lvalue (TREE_OPERAND (arg, 0));
2878
          return TREE_OPERAND (arg, 0);
2879
        }
2880
 
2881
      /* For &x[y], return x+y */
2882
      if (TREE_CODE (arg) == ARRAY_REF)
2883
        {
2884
          tree op0 = TREE_OPERAND (arg, 0);
2885
          if (!c_mark_addressable (op0))
2886
            return error_mark_node;
2887
          return build_binary_op (PLUS_EXPR,
2888
                                  (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
2889
                                   ? array_to_pointer_conversion (op0)
2890
                                   : op0),
2891
                                  TREE_OPERAND (arg, 1), 1);
2892
        }
2893
 
2894
      /* Anything not already handled and not a true memory reference
2895
         or a non-lvalue array is an error.  */
2896
      else if (typecode != FUNCTION_TYPE && !flag
2897
               && !lvalue_or_else (arg, lv_addressof))
2898
        return error_mark_node;
2899
 
2900
      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
2901
      argtype = TREE_TYPE (arg);
2902
 
2903
      /* If the lvalue is const or volatile, merge that into the type
2904
         to which the address will point.  Note that you can't get a
2905
         restricted pointer by taking the address of something, so we
2906
         only have to deal with `const' and `volatile' here.  */
2907
      if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
2908
          && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
2909
          argtype = c_build_type_variant (argtype,
2910
                                          TREE_READONLY (arg),
2911
                                          TREE_THIS_VOLATILE (arg));
2912
 
2913
      if (!c_mark_addressable (arg))
2914
        return error_mark_node;
2915
 
2916
      gcc_assert (TREE_CODE (arg) != COMPONENT_REF
2917
                  || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
2918
 
2919
      argtype = build_pointer_type (argtype);
2920
 
2921
      /* ??? Cope with user tricks that amount to offsetof.  Delete this
2922
         when we have proper support for integer constant expressions.  */
2923
      val = get_base_address (arg);
2924
      if (val && TREE_CODE (val) == INDIRECT_REF
2925
          && TREE_CONSTANT (TREE_OPERAND (val, 0)))
2926
        {
2927
          tree op0 = fold_convert (argtype, fold_offsetof (arg)), op1;
2928
 
2929
          op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
2930
          return fold_build2 (PLUS_EXPR, argtype, op0, op1);
2931
        }
2932
 
2933
      val = build1 (ADDR_EXPR, argtype, arg);
2934
 
2935
      return val;
2936
 
2937
    default:
2938
      break;
2939
    }
2940
 
2941
  if (argtype == 0)
2942
    argtype = TREE_TYPE (arg);
2943
  return require_constant_value ? fold_build1_initializer (code, argtype, arg)
2944
                                : fold_build1 (code, argtype, arg);
2945
}
2946
 
2947
/* Return nonzero if REF is an lvalue valid for this language.
2948
   Lvalues can be assigned, unless their type has TYPE_READONLY.
2949
   Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */
2950
 
2951
static int
2952
lvalue_p (tree ref)
2953
{
2954
  enum tree_code code = TREE_CODE (ref);
2955
 
2956
  switch (code)
2957
    {
2958
    case REALPART_EXPR:
2959
    case IMAGPART_EXPR:
2960
    case COMPONENT_REF:
2961
      return lvalue_p (TREE_OPERAND (ref, 0));
2962
 
2963
    case COMPOUND_LITERAL_EXPR:
2964
    case STRING_CST:
2965
      return 1;
2966
 
2967
    case INDIRECT_REF:
2968
    case ARRAY_REF:
2969
    case VAR_DECL:
2970
    case PARM_DECL:
2971
    case RESULT_DECL:
2972
    case ERROR_MARK:
2973
      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
2974
              && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
2975
 
2976
    case BIND_EXPR:
2977
      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
2978
 
2979
    default:
2980
      return 0;
2981
    }
2982
}
2983
 
2984
/* Give an error for storing in something that is 'const'.  */
2985
 
2986
static void
2987
readonly_error (tree arg, enum lvalue_use use)
2988
{
2989
  gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
2990
              || use == lv_asm);
2991
  /* Using this macro rather than (for example) arrays of messages
2992
     ensures that all the format strings are checked at compile
2993
     time.  */
2994
#define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A)               \
2995
                                   : (use == lv_increment ? (I)         \
2996
                                   : (use == lv_decrement ? (D) : (AS))))
2997
  if (TREE_CODE (arg) == COMPONENT_REF)
2998
    {
2999
      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3000
        readonly_error (TREE_OPERAND (arg, 0), use);
3001
      else
3002
        error (READONLY_MSG (G_("assignment of read-only member %qD"),
3003
                             G_("increment of read-only member %qD"),
3004
                             G_("decrement of read-only member %qD"),
3005
                             G_("read-only member %qD used as %<asm%> output")),
3006
               TREE_OPERAND (arg, 1));
3007
    }
3008
  else if (TREE_CODE (arg) == VAR_DECL)
3009
    error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3010
                         G_("increment of read-only variable %qD"),
3011
                         G_("decrement of read-only variable %qD"),
3012
                         G_("read-only variable %qD used as %<asm%> output")),
3013
           arg);
3014
  else
3015
    error (READONLY_MSG (G_("assignment of read-only location"),
3016
                         G_("increment of read-only location"),
3017
                         G_("decrement of read-only location"),
3018
                         G_("read-only location used as %<asm%> output")));
3019
}
3020
 
3021
 
3022
/* Return nonzero if REF is an lvalue valid for this language;
3023
   otherwise, print an error message and return zero.  USE says
3024
   how the lvalue is being used and so selects the error message.  */
3025
 
3026
static int
3027
lvalue_or_else (tree ref, enum lvalue_use use)
3028
{
3029
  int win = lvalue_p (ref);
3030
 
3031
  if (!win)
3032
    lvalue_error (use);
3033
 
3034
  return win;
3035
}
3036
 
3037
/* Mark EXP saying that we need to be able to take the
3038
   address of it; it should not be allocated in a register.
3039
   Returns true if successful.  */
3040
 
3041
bool
3042
c_mark_addressable (tree exp)
3043
{
3044
  tree x = exp;
3045
 
3046
  while (1)
3047
    switch (TREE_CODE (x))
3048
      {
3049
      case COMPONENT_REF:
3050
        if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3051
          {
3052
            error
3053
              ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3054
            return false;
3055
          }
3056
 
3057
        /* ... fall through ...  */
3058
 
3059
      case ADDR_EXPR:
3060
      case ARRAY_REF:
3061
      case REALPART_EXPR:
3062
      case IMAGPART_EXPR:
3063
        x = TREE_OPERAND (x, 0);
3064
        break;
3065
 
3066
      case COMPOUND_LITERAL_EXPR:
3067
      case CONSTRUCTOR:
3068
        TREE_ADDRESSABLE (x) = 1;
3069
        return true;
3070
 
3071
      case VAR_DECL:
3072
      case CONST_DECL:
3073
      case PARM_DECL:
3074
      case RESULT_DECL:
3075
        if (C_DECL_REGISTER (x)
3076
            && DECL_NONLOCAL (x))
3077
          {
3078
            if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3079
              {
3080
                error
3081
                  ("global register variable %qD used in nested function", x);
3082
                return false;
3083
              }
3084
            pedwarn ("register variable %qD used in nested function", x);
3085
          }
3086
        else if (C_DECL_REGISTER (x))
3087
          {
3088
            if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3089
              error ("address of global register variable %qD requested", x);
3090
            else
3091
              error ("address of register variable %qD requested", x);
3092
            return false;
3093
          }
3094
 
3095
        /* drops in */
3096
      case FUNCTION_DECL:
3097
        TREE_ADDRESSABLE (x) = 1;
3098
        /* drops out */
3099
      default:
3100
        return true;
3101
    }
3102
}
3103
 
3104
/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
3105
 
3106
tree
3107
build_conditional_expr (tree ifexp, tree op1, tree op2)
3108
{
3109
  tree type1;
3110
  tree type2;
3111
  enum tree_code code1;
3112
  enum tree_code code2;
3113
  tree result_type = NULL;
3114
  tree orig_op1 = op1, orig_op2 = op2;
3115
 
3116
  /* Promote both alternatives.  */
3117
 
3118
  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3119
    op1 = default_conversion (op1);
3120
  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3121
    op2 = default_conversion (op2);
3122
 
3123
  if (TREE_CODE (ifexp) == ERROR_MARK
3124
      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3125
      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3126
    return error_mark_node;
3127
 
3128
  type1 = TREE_TYPE (op1);
3129
  code1 = TREE_CODE (type1);
3130
  type2 = TREE_TYPE (op2);
3131
  code2 = TREE_CODE (type2);
3132
 
3133
  /* C90 does not permit non-lvalue arrays in conditional expressions.
3134
     In C99 they will be pointers by now.  */
3135
  if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3136
    {
3137
      error ("non-lvalue array in conditional expression");
3138
      return error_mark_node;
3139
    }
3140
 
3141
  /* Quickly detect the usual case where op1 and op2 have the same type
3142
     after promotion.  */
3143
  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3144
    {
3145
      if (type1 == type2)
3146
        result_type = type1;
3147
      else
3148
        result_type = TYPE_MAIN_VARIANT (type1);
3149
    }
3150
  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3151
            || code1 == COMPLEX_TYPE)
3152
           && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3153
               || code2 == COMPLEX_TYPE))
3154
    {
3155
      result_type = c_common_type (type1, type2);
3156
 
3157
      /* If -Wsign-compare, warn here if type1 and type2 have
3158
         different signedness.  We'll promote the signed to unsigned
3159
         and later code won't know it used to be different.
3160
         Do this check on the original types, so that explicit casts
3161
         will be considered, but default promotions won't.  */
3162
      if (warn_sign_compare && !skip_evaluation)
3163
        {
3164
          int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3165
          int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3166
 
3167
          if (unsigned_op1 ^ unsigned_op2)
3168
            {
3169
              /* Do not warn if the result type is signed, since the
3170
                 signed type will only be chosen if it can represent
3171
                 all the values of the unsigned type.  */
3172
              if (!TYPE_UNSIGNED (result_type))
3173
                /* OK */;
3174
              /* Do not warn if the signed quantity is an unsuffixed
3175
                 integer literal (or some static constant expression
3176
                 involving such literals) and it is non-negative.  */
3177
              else if ((unsigned_op2 && tree_expr_nonnegative_p (op1))
3178
                       || (unsigned_op1 && tree_expr_nonnegative_p (op2)))
3179
                /* OK */;
3180
              else
3181
                warning (0, "signed and unsigned type in conditional expression");
3182
            }
3183
        }
3184
    }
3185
  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3186
    {
3187
      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3188
        pedwarn ("ISO C forbids conditional expr with only one void side");
3189
      result_type = void_type_node;
3190
    }
3191
  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3192
    {
3193
      if (comp_target_types (type1, type2))
3194
        result_type = common_pointer_type (type1, type2);
3195
      else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
3196
               && TREE_CODE (orig_op1) != NOP_EXPR)
3197
        result_type = qualify_type (type2, type1);
3198
      else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
3199
               && TREE_CODE (orig_op2) != NOP_EXPR)
3200
        result_type = qualify_type (type1, type2);
3201
      else if (VOID_TYPE_P (TREE_TYPE (type1)))
3202
        {
3203
          if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3204
            pedwarn ("ISO C forbids conditional expr between "
3205
                     "%<void *%> and function pointer");
3206
          result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3207
                                                          TREE_TYPE (type2)));
3208
        }
3209
      else if (VOID_TYPE_P (TREE_TYPE (type2)))
3210
        {
3211
          if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3212
            pedwarn ("ISO C forbids conditional expr between "
3213
                     "%<void *%> and function pointer");
3214
          result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3215
                                                          TREE_TYPE (type1)));
3216
        }
3217
      else
3218
        {
3219
          pedwarn ("pointer type mismatch in conditional expression");
3220
          result_type = build_pointer_type (void_type_node);
3221
        }
3222
    }
3223
  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3224
    {
3225
      if (!integer_zerop (op2))
3226
        pedwarn ("pointer/integer type mismatch in conditional expression");
3227
      else
3228
        {
3229
          op2 = null_pointer_node;
3230
        }
3231
      result_type = type1;
3232
    }
3233
  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3234
    {
3235
      if (!integer_zerop (op1))
3236
        pedwarn ("pointer/integer type mismatch in conditional expression");
3237
      else
3238
        {
3239
          op1 = null_pointer_node;
3240
        }
3241
      result_type = type2;
3242
    }
3243
 
3244
  if (!result_type)
3245
    {
3246
      if (flag_cond_mismatch)
3247
        result_type = void_type_node;
3248
      else
3249
        {
3250
          error ("type mismatch in conditional expression");
3251
          return error_mark_node;
3252
        }
3253
    }
3254
 
3255
  /* Merge const and volatile flags of the incoming types.  */
3256
  result_type
3257
    = build_type_variant (result_type,
3258
                          TREE_READONLY (op1) || TREE_READONLY (op2),
3259
                          TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3260
 
3261
  if (result_type != TREE_TYPE (op1))
3262
    op1 = convert_and_check (result_type, op1);
3263
  if (result_type != TREE_TYPE (op2))
3264
    op2 = convert_and_check (result_type, op2);
3265
 
3266
  return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3267
}
3268
 
3269
/* Return a compound expression that performs two expressions and
3270
   returns the value of the second of them.  */
3271
 
3272
tree
3273
build_compound_expr (tree expr1, tree expr2)
3274
{
3275
  if (!TREE_SIDE_EFFECTS (expr1))
3276
    {
3277
      /* The left-hand operand of a comma expression is like an expression
3278
         statement: with -Wextra or -Wunused, we should warn if it doesn't have
3279
         any side-effects, unless it was explicitly cast to (void).  */
3280
      if (warn_unused_value)
3281
        {
3282
          if (VOID_TYPE_P (TREE_TYPE (expr1))
3283
              && TREE_CODE (expr1) == CONVERT_EXPR)
3284
            ; /* (void) a, b */
3285
          else if (VOID_TYPE_P (TREE_TYPE (expr1))
3286
                   && TREE_CODE (expr1) == COMPOUND_EXPR
3287
                   && TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR)
3288
            ; /* (void) a, (void) b, c */
3289
          else
3290
            warning (0, "left-hand operand of comma expression has no effect");
3291
        }
3292
    }
3293
 
3294
  /* With -Wunused, we should also warn if the left-hand operand does have
3295
     side-effects, but computes a value which is not used.  For example, in
3296
     `foo() + bar(), baz()' the result of the `+' operator is not used,
3297
     so we should issue a warning.  */
3298
  else if (warn_unused_value)
3299
    warn_if_unused_value (expr1, input_location);
3300
 
3301
  return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3302
}
3303
 
3304
/* Build an expression representing a cast to type TYPE of expression EXPR.  */
3305
 
3306
tree
3307
build_c_cast (tree type, tree expr)
3308
{
3309
  tree value = expr;
3310
 
3311
  if (type == error_mark_node || expr == error_mark_node)
3312
    return error_mark_node;
3313
 
3314
  /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3315
     only in <protocol> qualifications.  But when constructing cast expressions,
3316
     the protocols do matter and must be kept around.  */
3317
  if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3318
    return build1 (NOP_EXPR, type, expr);
3319
 
3320
  type = TYPE_MAIN_VARIANT (type);
3321
 
3322
  if (TREE_CODE (type) == ARRAY_TYPE)
3323
    {
3324
      error ("cast specifies array type");
3325
      return error_mark_node;
3326
    }
3327
 
3328
  if (TREE_CODE (type) == FUNCTION_TYPE)
3329
    {
3330
      error ("cast specifies function type");
3331
      return error_mark_node;
3332
    }
3333
 
3334
  if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3335
    {
3336
      if (pedantic)
3337
        {
3338
          if (TREE_CODE (type) == RECORD_TYPE
3339
              || TREE_CODE (type) == UNION_TYPE)
3340
            pedwarn ("ISO C forbids casting nonscalar to the same type");
3341
        }
3342
    }
3343
  else if (TREE_CODE (type) == UNION_TYPE)
3344
    {
3345
      tree field;
3346
 
3347
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3348
        if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3349
                       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3350
          break;
3351
 
3352
      if (field)
3353
        {
3354
          tree t;
3355
 
3356
          if (pedantic)
3357
            pedwarn ("ISO C forbids casts to union type");
3358
          t = digest_init (type,
3359
                           build_constructor_single (type, field, value),
3360
                           true, 0);
3361
          TREE_CONSTANT (t) = TREE_CONSTANT (value);
3362
          TREE_INVARIANT (t) = TREE_INVARIANT (value);
3363
          return t;
3364
        }
3365
      error ("cast to union type from type not present in union");
3366
      return error_mark_node;
3367
    }
3368
  else
3369
    {
3370
      tree otype, ovalue;
3371
 
3372
      if (type == void_type_node)
3373
        return build1 (CONVERT_EXPR, type, value);
3374
 
3375
      otype = TREE_TYPE (value);
3376
 
3377
      /* Optionally warn about potentially worrisome casts.  */
3378
 
3379
      if (warn_cast_qual
3380
          && TREE_CODE (type) == POINTER_TYPE
3381
          && TREE_CODE (otype) == POINTER_TYPE)
3382
        {
3383
          tree in_type = type;
3384
          tree in_otype = otype;
3385
          int added = 0;
3386
          int discarded = 0;
3387
 
3388
          /* Check that the qualifiers on IN_TYPE are a superset of
3389
             the qualifiers of IN_OTYPE.  The outermost level of
3390
             POINTER_TYPE nodes is uninteresting and we stop as soon
3391
             as we hit a non-POINTER_TYPE node on either type.  */
3392
          do
3393
            {
3394
              in_otype = TREE_TYPE (in_otype);
3395
              in_type = TREE_TYPE (in_type);
3396
 
3397
              /* GNU C allows cv-qualified function types.  'const'
3398
                 means the function is very pure, 'volatile' means it
3399
                 can't return.  We need to warn when such qualifiers
3400
                 are added, not when they're taken away.  */
3401
              if (TREE_CODE (in_otype) == FUNCTION_TYPE
3402
                  && TREE_CODE (in_type) == FUNCTION_TYPE)
3403
                added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3404
              else
3405
                discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3406
            }
3407
          while (TREE_CODE (in_type) == POINTER_TYPE
3408
                 && TREE_CODE (in_otype) == POINTER_TYPE);
3409
 
3410
          if (added)
3411
            warning (0, "cast adds new qualifiers to function type");
3412
 
3413
          if (discarded)
3414
            /* There are qualifiers present in IN_OTYPE that are not
3415
               present in IN_TYPE.  */
3416
            warning (0, "cast discards qualifiers from pointer target type");
3417
        }
3418
 
3419
      /* Warn about possible alignment problems.  */
3420
      if (STRICT_ALIGNMENT
3421
          && TREE_CODE (type) == POINTER_TYPE
3422
          && TREE_CODE (otype) == POINTER_TYPE
3423
          && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3424
          && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3425
          /* Don't warn about opaque types, where the actual alignment
3426
             restriction is unknown.  */
3427
          && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3428
                || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3429
               && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3430
          && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3431
        warning (OPT_Wcast_align,
3432
                 "cast increases required alignment of target type");
3433
 
3434
      if (TREE_CODE (type) == INTEGER_TYPE
3435
          && TREE_CODE (otype) == POINTER_TYPE
3436
          && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3437
          && !TREE_CONSTANT (value))
3438
        warning (OPT_Wpointer_to_int_cast,
3439
                 "cast from pointer to integer of different size");
3440
 
3441
      if (TREE_CODE (value) == CALL_EXPR
3442
          && TREE_CODE (type) != TREE_CODE (otype))
3443
        warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3444
                 "to non-matching type %qT", otype, type);
3445
 
3446
      if (TREE_CODE (type) == POINTER_TYPE
3447
          && TREE_CODE (otype) == INTEGER_TYPE
3448
          && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3449
          /* Don't warn about converting any constant.  */
3450
          && !TREE_CONSTANT (value))
3451
        warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3452
                 "of different size");
3453
 
3454
      strict_aliasing_warning (otype, type, expr);
3455
 
3456
      /* If pedantic, warn for conversions between function and object
3457
         pointer types, except for converting a null pointer constant
3458
         to function pointer type.  */
3459
      if (pedantic
3460
          && TREE_CODE (type) == POINTER_TYPE
3461
          && TREE_CODE (otype) == POINTER_TYPE
3462
          && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3463
          && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3464
        pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3465
 
3466
      if (pedantic
3467
          && TREE_CODE (type) == POINTER_TYPE
3468
          && TREE_CODE (otype) == POINTER_TYPE
3469
          && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3470
          && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3471
          && !(integer_zerop (value) && TREE_TYPE (otype) == void_type_node
3472
               && TREE_CODE (expr) != NOP_EXPR))
3473
        pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3474
 
3475
      ovalue = value;
3476
      value = convert (type, value);
3477
 
3478
      /* Ignore any integer overflow caused by the cast.  */
3479
      if (TREE_CODE (value) == INTEGER_CST)
3480
        {
3481
          if (CONSTANT_CLASS_P (ovalue)
3482
              && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3483
            {
3484
              /* Avoid clobbering a shared constant.  */
3485
              value = copy_node (value);
3486
              TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3487
              TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3488
            }
3489
          else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3490
            /* Reset VALUE's overflow flags, ensuring constant sharing.  */
3491
            value = build_int_cst_wide (TREE_TYPE (value),
3492
                                        TREE_INT_CST_LOW (value),
3493
                                        TREE_INT_CST_HIGH (value));
3494
        }
3495
    }
3496
 
3497
  /* Don't let a cast be an lvalue.  */
3498
  if (value == expr)
3499
    value = non_lvalue (value);
3500
 
3501
  return value;
3502
}
3503
 
3504
/* Interpret a cast of expression EXPR to type TYPE.  */
3505
tree
3506
c_cast_expr (struct c_type_name *type_name, tree expr)
3507
{
3508
  tree type;
3509
  int saved_wsp = warn_strict_prototypes;
3510
 
3511
  /* This avoids warnings about unprototyped casts on
3512
     integers.  E.g. "#define SIG_DFL (void(*)())0".  */
3513
  if (TREE_CODE (expr) == INTEGER_CST)
3514
    warn_strict_prototypes = 0;
3515
  type = groktypename (type_name);
3516
  warn_strict_prototypes = saved_wsp;
3517
 
3518
  return build_c_cast (type, expr);
3519
}
3520
 
3521
 
3522
/* Build an assignment expression of lvalue LHS from value RHS.
3523
   MODIFYCODE is the code for a binary operator that we use
3524
   to combine the old value of LHS with RHS to get the new value.
3525
   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
3526
 
3527
tree
3528
build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3529
{
3530
  tree result;
3531
  tree newrhs;
3532
  tree lhstype = TREE_TYPE (lhs);
3533
  tree olhstype = lhstype;
3534
 
3535
  /* Types that aren't fully specified cannot be used in assignments.  */
3536
  lhs = require_complete_type (lhs);
3537
 
3538
  /* Avoid duplicate error messages from operands that had errors.  */
3539
  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3540
    return error_mark_node;
3541
 
3542
  STRIP_TYPE_NOPS (rhs);
3543
 
3544
  newrhs = rhs;
3545
 
3546
  /* If a binary op has been requested, combine the old LHS value with the RHS
3547
     producing the value we should actually store into the LHS.  */
3548
 
3549
  if (modifycode != NOP_EXPR)
3550
    {
3551
      lhs = stabilize_reference (lhs);
3552
      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3553
    }
3554
 
3555
  if (!lvalue_or_else (lhs, lv_assign))
3556
    return error_mark_node;
3557
 
3558
  /* Give an error for storing in something that is 'const'.  */
3559
 
3560
  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3561
      || ((TREE_CODE (lhstype) == RECORD_TYPE
3562
           || TREE_CODE (lhstype) == UNION_TYPE)
3563
          && C_TYPE_FIELDS_READONLY (lhstype)))
3564
    readonly_error (lhs, lv_assign);
3565
 
3566
  /* If storing into a structure or union member,
3567
     it has probably been given type `int'.
3568
     Compute the type that would go with
3569
     the actual amount of storage the member occupies.  */
3570
 
3571
  if (TREE_CODE (lhs) == COMPONENT_REF
3572
      && (TREE_CODE (lhstype) == INTEGER_TYPE
3573
          || TREE_CODE (lhstype) == BOOLEAN_TYPE
3574
          || TREE_CODE (lhstype) == REAL_TYPE
3575
          || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3576
    lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3577
 
3578
  /* If storing in a field that is in actuality a short or narrower than one,
3579
     we must store in the field in its actual type.  */
3580
 
3581
  if (lhstype != TREE_TYPE (lhs))
3582
    {
3583
      lhs = copy_node (lhs);
3584
      TREE_TYPE (lhs) = lhstype;
3585
    }
3586
 
3587
  /* Convert new value to destination type.  */
3588
 
3589
  newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3590
                                   NULL_TREE, NULL_TREE, 0);
3591
  if (TREE_CODE (newrhs) == ERROR_MARK)
3592
    return error_mark_node;
3593
 
3594
  /* Emit ObjC write barrier, if necessary.  */
3595
  if (c_dialect_objc () && flag_objc_gc)
3596
    {
3597
      result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3598
      if (result)
3599
        return result;
3600
    }
3601
 
3602
  /* Scan operands.  */
3603
 
3604
  result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3605
  TREE_SIDE_EFFECTS (result) = 1;
3606
 
3607
  /* If we got the LHS in a different type for storing in,
3608
     convert the result back to the nominal type of LHS
3609
     so that the value we return always has the same type
3610
     as the LHS argument.  */
3611
 
3612
  if (olhstype == TREE_TYPE (result))
3613
    return result;
3614
  return convert_for_assignment (olhstype, result, ic_assign,
3615
                                 NULL_TREE, NULL_TREE, 0);
3616
}
3617
 
3618
/* Convert value RHS to type TYPE as preparation for an assignment
3619
   to an lvalue of type TYPE.
3620
   The real work of conversion is done by `convert'.
3621
   The purpose of this function is to generate error messages
3622
   for assignments that are not allowed in C.
3623
   ERRTYPE says whether it is argument passing, assignment,
3624
   initialization or return.
3625
 
3626
   FUNCTION is a tree for the function being called.
3627
   PARMNUM is the number of the argument, for printing in error messages.  */
3628
 
3629
static tree
3630
convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3631
                        tree fundecl, tree function, int parmnum)
3632
{
3633
  enum tree_code codel = TREE_CODE (type);
3634
  tree rhstype;
3635
  enum tree_code coder;
3636
  tree rname = NULL_TREE;
3637
  bool objc_ok = false;
3638
 
3639
  if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3640
    {
3641
      tree selector;
3642
      /* Change pointer to function to the function itself for
3643
         diagnostics.  */
3644
      if (TREE_CODE (function) == ADDR_EXPR
3645
          && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3646
        function = TREE_OPERAND (function, 0);
3647
 
3648
      /* Handle an ObjC selector specially for diagnostics.  */
3649
      selector = objc_message_selector ();
3650
      rname = function;
3651
      if (selector && parmnum > 2)
3652
        {
3653
          rname = selector;
3654
          parmnum -= 2;
3655
        }
3656
    }
3657
 
3658
  /* This macro is used to emit diagnostics to ensure that all format
3659
     strings are complete sentences, visible to gettext and checked at
3660
     compile time.  */
3661
#define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE)     \
3662
  do {                                          \
3663
    switch (errtype)                            \
3664
      {                                         \
3665
      case ic_argpass:                          \
3666
        pedwarn (AR, parmnum, rname);           \
3667
        break;                                  \
3668
      case ic_argpass_nonproto:                 \
3669
        warning (0, AR, parmnum, rname);         \
3670
        break;                                  \
3671
      case ic_assign:                           \
3672
        pedwarn (AS);                           \
3673
        break;                                  \
3674
      case ic_init:                             \
3675
        pedwarn (IN);                           \
3676
        break;                                  \
3677
      case ic_return:                           \
3678
        pedwarn (RE);                           \
3679
        break;                                  \
3680
      default:                                  \
3681
        gcc_unreachable ();                     \
3682
      }                                         \
3683
  } while (0)
3684
 
3685
  STRIP_TYPE_NOPS (rhs);
3686
 
3687
  if (optimize && TREE_CODE (rhs) == VAR_DECL
3688
           && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3689
    rhs = decl_constant_value_for_broken_optimization (rhs);
3690
 
3691
  rhstype = TREE_TYPE (rhs);
3692
  coder = TREE_CODE (rhstype);
3693
 
3694
  if (coder == ERROR_MARK)
3695
    return error_mark_node;
3696
 
3697
  if (c_dialect_objc ())
3698
    {
3699
      int parmno;
3700
 
3701
      switch (errtype)
3702
        {
3703
        case ic_return:
3704
          parmno = 0;
3705
          break;
3706
 
3707
        case ic_assign:
3708
          parmno = -1;
3709
          break;
3710
 
3711
        case ic_init:
3712
          parmno = -2;
3713
          break;
3714
 
3715
        default:
3716
          parmno = parmnum;
3717
          break;
3718
        }
3719
 
3720
      objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3721
    }
3722
 
3723
  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3724
    {
3725
      overflow_warning (rhs);
3726
      return rhs;
3727
    }
3728
 
3729
  if (coder == VOID_TYPE)
3730
    {
3731
      /* Except for passing an argument to an unprototyped function,
3732
         this is a constraint violation.  When passing an argument to
3733
         an unprototyped function, it is compile-time undefined;
3734
         making it a constraint in that case was rejected in
3735
         DR#252.  */
3736
      error ("void value not ignored as it ought to be");
3737
      return error_mark_node;
3738
    }
3739
  /* A type converts to a reference to it.
3740
     This code doesn't fully support references, it's just for the
3741
     special case of va_start and va_copy.  */
3742
  if (codel == REFERENCE_TYPE
3743
      && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3744
    {
3745
      if (!lvalue_p (rhs))
3746
        {
3747
          error ("cannot pass rvalue to reference parameter");
3748
          return error_mark_node;
3749
        }
3750
      if (!c_mark_addressable (rhs))
3751
        return error_mark_node;
3752
      rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3753
 
3754
      /* We already know that these two types are compatible, but they
3755
         may not be exactly identical.  In fact, `TREE_TYPE (type)' is
3756
         likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3757
         likely to be va_list, a typedef to __builtin_va_list, which
3758
         is different enough that it will cause problems later.  */
3759
      if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3760
        rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3761
 
3762
      rhs = build1 (NOP_EXPR, type, rhs);
3763
      return rhs;
3764
    }
3765
  /* Some types can interconvert without explicit casts.  */
3766
  else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3767
           && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3768
    return convert (type, rhs);
3769
  /* Arithmetic types all interconvert, and enum is treated like int.  */
3770
  else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3771
            || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3772
            || codel == BOOLEAN_TYPE)
3773
           && (coder == INTEGER_TYPE || coder == REAL_TYPE
3774
               || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3775
               || coder == BOOLEAN_TYPE))
3776
    return convert_and_check (type, rhs);
3777
 
3778
  /* Conversion to a transparent union from its member types.
3779
     This applies only to function arguments.  */
3780
  else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3781
           && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3782
    {
3783
      tree memb, marginal_memb = NULL_TREE;
3784
 
3785
      for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3786
        {
3787
          tree memb_type = TREE_TYPE (memb);
3788
 
3789
          if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3790
                         TYPE_MAIN_VARIANT (rhstype)))
3791
            break;
3792
 
3793
          if (TREE_CODE (memb_type) != POINTER_TYPE)
3794
            continue;
3795
 
3796
          if (coder == POINTER_TYPE)
3797
            {
3798
              tree ttl = TREE_TYPE (memb_type);
3799
              tree ttr = TREE_TYPE (rhstype);
3800
 
3801
              /* Any non-function converts to a [const][volatile] void *
3802
                 and vice versa; otherwise, targets must be the same.
3803
                 Meanwhile, the lhs target must have all the qualifiers of
3804
                 the rhs.  */
3805
              if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3806
                  || comp_target_types (memb_type, rhstype))
3807
                {
3808
                  /* If this type won't generate any warnings, use it.  */
3809
                  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3810
                      || ((TREE_CODE (ttr) == FUNCTION_TYPE
3811
                           && TREE_CODE (ttl) == FUNCTION_TYPE)
3812
                          ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3813
                             == TYPE_QUALS (ttr))
3814
                          : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3815
                             == TYPE_QUALS (ttl))))
3816
                    break;
3817
 
3818
                  /* Keep looking for a better type, but remember this one.  */
3819
                  if (!marginal_memb)
3820
                    marginal_memb = memb;
3821
                }
3822
            }
3823
 
3824
          /* Can convert integer zero to any pointer type.  */
3825
          if (integer_zerop (rhs)
3826
              || (TREE_CODE (rhs) == NOP_EXPR
3827
                  && integer_zerop (TREE_OPERAND (rhs, 0))))
3828
            {
3829
              rhs = null_pointer_node;
3830
              break;
3831
            }
3832
        }
3833
 
3834
      if (memb || marginal_memb)
3835
        {
3836
          if (!memb)
3837
            {
3838
              /* We have only a marginally acceptable member type;
3839
                 it needs a warning.  */
3840
              tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3841
              tree ttr = TREE_TYPE (rhstype);
3842
 
3843
              /* Const and volatile mean something different for function
3844
                 types, so the usual warnings are not appropriate.  */
3845
              if (TREE_CODE (ttr) == FUNCTION_TYPE
3846
                  && TREE_CODE (ttl) == FUNCTION_TYPE)
3847
                {
3848
                  /* Because const and volatile on functions are
3849
                     restrictions that say the function will not do
3850
                     certain things, it is okay to use a const or volatile
3851
                     function where an ordinary one is wanted, but not
3852
                     vice-versa.  */
3853
                  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3854
                    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
3855
                                            "makes qualified function "
3856
                                            "pointer from unqualified"),
3857
                                         G_("assignment makes qualified "
3858
                                            "function pointer from "
3859
                                            "unqualified"),
3860
                                         G_("initialization makes qualified "
3861
                                            "function pointer from "
3862
                                            "unqualified"),
3863
                                         G_("return makes qualified function "
3864
                                            "pointer from unqualified"));
3865
                }
3866
              else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
3867
                WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
3868
                                        "qualifiers from pointer target type"),
3869
                                     G_("assignment discards qualifiers "
3870
                                        "from pointer target type"),
3871
                                     G_("initialization discards qualifiers "
3872
                                        "from pointer target type"),
3873
                                     G_("return discards qualifiers from "
3874
                                        "pointer target type"));
3875
 
3876
              memb = marginal_memb;
3877
            }
3878
 
3879
          if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
3880
            pedwarn ("ISO C prohibits argument conversion to union type");
3881
 
3882
          return build_constructor_single (type, memb, rhs);
3883
        }
3884
    }
3885
 
3886
  /* Conversions among pointers */
3887
  else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
3888
           && (coder == codel))
3889
    {
3890
      tree ttl = TREE_TYPE (type);
3891
      tree ttr = TREE_TYPE (rhstype);
3892
      tree mvl = ttl;
3893
      tree mvr = ttr;
3894
      bool is_opaque_pointer;
3895
      int target_cmp = 0;   /* Cache comp_target_types () result.  */
3896
 
3897
      if (TREE_CODE (mvl) != ARRAY_TYPE)
3898
        mvl = TYPE_MAIN_VARIANT (mvl);
3899
      if (TREE_CODE (mvr) != ARRAY_TYPE)
3900
        mvr = TYPE_MAIN_VARIANT (mvr);
3901
      /* Opaque pointers are treated like void pointers.  */
3902
      is_opaque_pointer = (targetm.vector_opaque_p (type)
3903
                           || targetm.vector_opaque_p (rhstype))
3904
        && TREE_CODE (ttl) == VECTOR_TYPE
3905
        && TREE_CODE (ttr) == VECTOR_TYPE;
3906
 
3907
      /* C++ does not allow the implicit conversion void* -> T*.  However,
3908
         for the purpose of reducing the number of false positives, we
3909
         tolerate the special case of
3910
 
3911
                int *p = NULL;
3912
 
3913
         where NULL is typically defined in C to be '(void *) 0'.  */
3914
      if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
3915
        warning (OPT_Wc___compat, "request for implicit conversion from "
3916
                 "%qT to %qT not permitted in C++", rhstype, type);
3917
 
3918
      /* Check if the right-hand side has a format attribute but the
3919
         left-hand side doesn't.  */
3920
      if (warn_missing_format_attribute
3921
          && check_missing_format_attribute (type, rhstype))
3922
        {
3923
          switch (errtype)
3924
          {
3925
          case ic_argpass:
3926
          case ic_argpass_nonproto:
3927
            warning (OPT_Wmissing_format_attribute,
3928
                     "argument %d of %qE might be "
3929
                     "a candidate for a format attribute",
3930
                     parmnum, rname);
3931
            break;
3932
          case ic_assign:
3933
            warning (OPT_Wmissing_format_attribute,
3934
                     "assignment left-hand side might be "
3935
                     "a candidate for a format attribute");
3936
            break;
3937
          case ic_init:
3938
            warning (OPT_Wmissing_format_attribute,
3939
                     "initialization left-hand side might be "
3940
                     "a candidate for a format attribute");
3941
            break;
3942
          case ic_return:
3943
            warning (OPT_Wmissing_format_attribute,
3944
                     "return type might be "
3945
                     "a candidate for a format attribute");
3946
            break;
3947
          default:
3948
            gcc_unreachable ();
3949
          }
3950
        }
3951
 
3952
      /* Any non-function converts to a [const][volatile] void *
3953
         and vice versa; otherwise, targets must be the same.
3954
         Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
3955
      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3956
          || (target_cmp = comp_target_types (type, rhstype))
3957
          || is_opaque_pointer
3958
          || (c_common_unsigned_type (mvl)
3959
              == c_common_unsigned_type (mvr)))
3960
        {
3961
          if (pedantic
3962
              && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
3963
                  ||
3964
                  (VOID_TYPE_P (ttr)
3965
                   /* Check TREE_CODE to catch cases like (void *) (char *) 0
3966
                      which are not ANSI null ptr constants.  */
3967
                   && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
3968
                   && TREE_CODE (ttl) == FUNCTION_TYPE)))
3969
            WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
3970
                                    "%qE between function pointer "
3971
                                    "and %<void *%>"),
3972
                                 G_("ISO C forbids assignment between "
3973
                                    "function pointer and %<void *%>"),
3974
                                 G_("ISO C forbids initialization between "
3975
                                    "function pointer and %<void *%>"),
3976
                                 G_("ISO C forbids return between function "
3977
                                    "pointer and %<void *%>"));
3978
          /* Const and volatile mean something different for function types,
3979
             so the usual warnings are not appropriate.  */
3980
          else if (TREE_CODE (ttr) != FUNCTION_TYPE
3981
                   && TREE_CODE (ttl) != FUNCTION_TYPE)
3982
            {
3983
              if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
3984
                {
3985
                  /* Types differing only by the presence of the 'volatile'
3986
                     qualifier are acceptable if the 'volatile' has been added
3987
                     in by the Objective-C EH machinery.  */
3988
                  if (!objc_type_quals_match (ttl, ttr))
3989
                    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
3990
                                            "qualifiers from pointer target type"),
3991
                                         G_("assignment discards qualifiers "
3992
                                            "from pointer target type"),
3993
                                         G_("initialization discards qualifiers "
3994
                                            "from pointer target type"),
3995
                                         G_("return discards qualifiers from "
3996
                                            "pointer target type"));
3997
                }
3998
              /* If this is not a case of ignoring a mismatch in signedness,
3999
                 no warning.  */
4000
              else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4001
                       || target_cmp)
4002
                ;
4003
              /* If there is a mismatch, do warn.  */
4004
              else if (warn_pointer_sign)
4005
                WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4006
                                        "%d of %qE differ in signedness"),
4007
                                     G_("pointer targets in assignment "
4008
                                        "differ in signedness"),
4009
                                     G_("pointer targets in initialization "
4010
                                        "differ in signedness"),
4011
                                     G_("pointer targets in return differ "
4012
                                        "in signedness"));
4013
            }
4014
          else if (TREE_CODE (ttl) == FUNCTION_TYPE
4015
                   && TREE_CODE (ttr) == FUNCTION_TYPE)
4016
            {
4017
              /* Because const and volatile on functions are restrictions
4018
                 that say the function will not do certain things,
4019
                 it is okay to use a const or volatile function
4020
                 where an ordinary one is wanted, but not vice-versa.  */
4021
              if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4022
                WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4023
                                        "qualified function pointer "
4024
                                        "from unqualified"),
4025
                                     G_("assignment makes qualified function "
4026
                                        "pointer from unqualified"),
4027
                                     G_("initialization makes qualified "
4028
                                        "function pointer from unqualified"),
4029
                                     G_("return makes qualified function "
4030
                                        "pointer from unqualified"));
4031
            }
4032
        }
4033
      else
4034
        /* Avoid warning about the volatile ObjC EH puts on decls.  */
4035
        if (!objc_ok)
4036
          WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4037
                                  "incompatible pointer type"),
4038
                               G_("assignment from incompatible pointer type"),
4039
                               G_("initialization from incompatible "
4040
                                  "pointer type"),
4041
                               G_("return from incompatible pointer type"));
4042
 
4043
      return convert (type, rhs);
4044
    }
4045
  else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4046
    {
4047
      /* ??? This should not be an error when inlining calls to
4048
         unprototyped functions.  */
4049
      error ("invalid use of non-lvalue array");
4050
      return error_mark_node;
4051
    }
4052
  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4053
    {
4054
      /* An explicit constant 0 can convert to a pointer,
4055
         or one that results from arithmetic, even including
4056
         a cast to integer type.  */
4057
      if (!(TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
4058
          &&
4059
          !(TREE_CODE (rhs) == NOP_EXPR
4060
            && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
4061
            && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
4062
            && integer_zerop (TREE_OPERAND (rhs, 0))))
4063
        WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4064
                                "pointer from integer without a cast"),
4065
                             G_("assignment makes pointer from integer "
4066
                                "without a cast"),
4067
                             G_("initialization makes pointer from "
4068
                                "integer without a cast"),
4069
                             G_("return makes pointer from integer "
4070
                                "without a cast"));
4071
 
4072
      return convert (type, rhs);
4073
    }
4074
  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4075
    {
4076
      WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4077
                              "from pointer without a cast"),
4078
                           G_("assignment makes integer from pointer "
4079
                              "without a cast"),
4080
                           G_("initialization makes integer from pointer "
4081
                              "without a cast"),
4082
                           G_("return makes integer from pointer "
4083
                              "without a cast"));
4084
      return convert (type, rhs);
4085
    }
4086
  else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4087
    return convert (type, rhs);
4088
 
4089
  switch (errtype)
4090
    {
4091
    case ic_argpass:
4092
    case ic_argpass_nonproto:
4093
      /* ??? This should not be an error when inlining calls to
4094
         unprototyped functions.  */
4095
      error ("incompatible type for argument %d of %qE", parmnum, rname);
4096
      break;
4097
    case ic_assign:
4098
      error ("incompatible types in assignment");
4099
      break;
4100
    case ic_init:
4101
      error ("incompatible types in initialization");
4102
      break;
4103
    case ic_return:
4104
      error ("incompatible types in return");
4105
      break;
4106
    default:
4107
      gcc_unreachable ();
4108
    }
4109
 
4110
  return error_mark_node;
4111
}
4112
 
4113
/* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
4114
   is used for error and waring reporting and indicates which argument
4115
   is being processed.  */
4116
 
4117
tree
4118
c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4119
{
4120
  tree ret, type;
4121
 
4122
  /* If FN was prototyped, the value has been converted already
4123
     in convert_arguments.  */
4124
  if (!value || TYPE_ARG_TYPES (TREE_TYPE (fn)))
4125
    return value;
4126
 
4127
  type = TREE_TYPE (parm);
4128
  ret = convert_for_assignment (type, value,
4129
                                ic_argpass_nonproto, fn,
4130
                                fn, argnum);
4131
  if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4132
      && INTEGRAL_TYPE_P (type)
4133
      && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4134
    ret = default_conversion (ret);
4135
  return ret;
4136
}
4137
 
4138
/* If VALUE is a compound expr all of whose expressions are constant, then
4139
   return its value.  Otherwise, return error_mark_node.
4140
 
4141
   This is for handling COMPOUND_EXPRs as initializer elements
4142
   which is allowed with a warning when -pedantic is specified.  */
4143
 
4144
static tree
4145
valid_compound_expr_initializer (tree value, tree endtype)
4146
{
4147
  if (TREE_CODE (value) == COMPOUND_EXPR)
4148
    {
4149
      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4150
          == error_mark_node)
4151
        return error_mark_node;
4152
      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4153
                                              endtype);
4154
    }
4155
  else if (!initializer_constant_valid_p (value, endtype))
4156
    return error_mark_node;
4157
  else
4158
    return value;
4159
}
4160
 
4161
/* Perform appropriate conversions on the initial value of a variable,
4162
   store it in the declaration DECL,
4163
   and print any error messages that are appropriate.
4164
   If the init is invalid, store an ERROR_MARK.  */
4165
 
4166
void
4167
store_init_value (tree decl, tree init)
4168
{
4169
  tree value, type;
4170
 
4171
  /* If variable's type was invalidly declared, just ignore it.  */
4172
 
4173
  type = TREE_TYPE (decl);
4174
  if (TREE_CODE (type) == ERROR_MARK)
4175
    return;
4176
 
4177
  /* Digest the specified initializer into an expression.  */
4178
 
4179
  value = digest_init (type, init, true, TREE_STATIC (decl));
4180
 
4181
  /* Store the expression if valid; else report error.  */
4182
 
4183
  if (!in_system_header
4184
      && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4185
    warning (OPT_Wtraditional, "traditional C rejects automatic "
4186
             "aggregate initialization");
4187
 
4188
  DECL_INITIAL (decl) = value;
4189
 
4190
  /* ANSI wants warnings about out-of-range constant initializers.  */
4191
  STRIP_TYPE_NOPS (value);
4192
  constant_expression_warning (value);
4193
 
4194
  /* Check if we need to set array size from compound literal size.  */
4195
  if (TREE_CODE (type) == ARRAY_TYPE
4196
      && TYPE_DOMAIN (type) == 0
4197
      && value != error_mark_node)
4198
    {
4199
      tree inside_init = init;
4200
 
4201
      STRIP_TYPE_NOPS (inside_init);
4202
      inside_init = fold (inside_init);
4203
 
4204
      if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4205
        {
4206
          tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4207
 
4208
          if (TYPE_DOMAIN (TREE_TYPE (decl)))
4209
            {
4210
              /* For int foo[] = (int [3]){1}; we need to set array size
4211
                 now since later on array initializer will be just the
4212
                 brace enclosed list of the compound literal.  */
4213
              TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (decl));
4214
              layout_type (type);
4215
              layout_decl (decl, 0);
4216
            }
4217
        }
4218
    }
4219
}
4220
 
4221
/* Methods for storing and printing names for error messages.  */
4222
 
4223
/* Implement a spelling stack that allows components of a name to be pushed
4224
   and popped.  Each element on the stack is this structure.  */
4225
 
4226
struct spelling
4227
{
4228
  int kind;
4229
  union
4230
    {
4231
      unsigned HOST_WIDE_INT i;
4232
      const char *s;
4233
    } u;
4234
};
4235
 
4236
#define SPELLING_STRING 1
4237
#define SPELLING_MEMBER 2
4238
#define SPELLING_BOUNDS 3
4239
 
4240
static struct spelling *spelling;       /* Next stack element (unused).  */
4241
static struct spelling *spelling_base;  /* Spelling stack base.  */
4242
static int spelling_size;               /* Size of the spelling stack.  */
4243
 
4244
/* Macros to save and restore the spelling stack around push_... functions.
4245
   Alternative to SAVE_SPELLING_STACK.  */
4246
 
4247
#define SPELLING_DEPTH() (spelling - spelling_base)
4248
#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4249
 
4250
/* Push an element on the spelling stack with type KIND and assign VALUE
4251
   to MEMBER.  */
4252
 
4253
#define PUSH_SPELLING(KIND, VALUE, MEMBER)                              \
4254
{                                                                       \
4255
  int depth = SPELLING_DEPTH ();                                        \
4256
                                                                        \
4257
  if (depth >= spelling_size)                                           \
4258
    {                                                                   \
4259
      spelling_size += 10;                                              \
4260
      spelling_base = XRESIZEVEC (struct spelling, spelling_base,       \
4261
                                  spelling_size);                       \
4262
      RESTORE_SPELLING_DEPTH (depth);                                   \
4263
    }                                                                   \
4264
                                                                        \
4265
  spelling->kind = (KIND);                                              \
4266
  spelling->MEMBER = (VALUE);                                           \
4267
  spelling++;                                                           \
4268
}
4269
 
4270
/* Push STRING on the stack.  Printed literally.  */
4271
 
4272
static void
4273
push_string (const char *string)
4274
{
4275
  PUSH_SPELLING (SPELLING_STRING, string, u.s);
4276
}
4277
 
4278
/* Push a member name on the stack.  Printed as '.' STRING.  */
4279
 
4280
static void
4281
push_member_name (tree decl)
4282
{
4283
  const char *const string
4284
    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4285
  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4286
}
4287
 
4288
/* Push an array bounds on the stack.  Printed as [BOUNDS].  */
4289
 
4290
static void
4291
push_array_bounds (unsigned HOST_WIDE_INT bounds)
4292
{
4293
  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4294
}
4295
 
4296
/* Compute the maximum size in bytes of the printed spelling.  */
4297
 
4298
static int
4299
spelling_length (void)
4300
{
4301
  int size = 0;
4302
  struct spelling *p;
4303
 
4304
  for (p = spelling_base; p < spelling; p++)
4305
    {
4306
      if (p->kind == SPELLING_BOUNDS)
4307
        size += 25;
4308
      else
4309
        size += strlen (p->u.s) + 1;
4310
    }
4311
 
4312
  return size;
4313
}
4314
 
4315
/* Print the spelling to BUFFER and return it.  */
4316
 
4317
static char *
4318
print_spelling (char *buffer)
4319
{
4320
  char *d = buffer;
4321
  struct spelling *p;
4322
 
4323
  for (p = spelling_base; p < spelling; p++)
4324
    if (p->kind == SPELLING_BOUNDS)
4325
      {
4326
        sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4327
        d += strlen (d);
4328
      }
4329
    else
4330
      {
4331
        const char *s;
4332
        if (p->kind == SPELLING_MEMBER)
4333
          *d++ = '.';
4334
        for (s = p->u.s; (*d = *s++); d++)
4335
          ;
4336
      }
4337
  *d++ = '\0';
4338
  return buffer;
4339
}
4340
 
4341
/* Issue an error message for a bad initializer component.
4342
   MSGID identifies the message.
4343
   The component name is taken from the spelling stack.  */
4344
 
4345
void
4346
error_init (const char *msgid)
4347
{
4348
  char *ofwhat;
4349
 
4350
  error ("%s", _(msgid));
4351
  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4352
  if (*ofwhat)
4353
    error ("(near initialization for %qs)", ofwhat);
4354
}
4355
 
4356
/* Issue a pedantic warning for a bad initializer component.
4357
   MSGID identifies the message.
4358
   The component name is taken from the spelling stack.  */
4359
 
4360
void
4361
pedwarn_init (const char *msgid)
4362
{
4363
  char *ofwhat;
4364
 
4365
  pedwarn ("%s", _(msgid));
4366
  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4367
  if (*ofwhat)
4368
    pedwarn ("(near initialization for %qs)", ofwhat);
4369
}
4370
 
4371
/* Issue a warning for a bad initializer component.
4372
   MSGID identifies the message.
4373
   The component name is taken from the spelling stack.  */
4374
 
4375
static void
4376
warning_init (const char *msgid)
4377
{
4378
  char *ofwhat;
4379
 
4380
  warning (0, "%s", _(msgid));
4381
  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4382
  if (*ofwhat)
4383
    warning (0, "(near initialization for %qs)", ofwhat);
4384
}
4385
 
4386
/* If TYPE is an array type and EXPR is a parenthesized string
4387
   constant, warn if pedantic that EXPR is being used to initialize an
4388
   object of type TYPE.  */
4389
 
4390
void
4391
maybe_warn_string_init (tree type, struct c_expr expr)
4392
{
4393
  if (pedantic
4394
      && TREE_CODE (type) == ARRAY_TYPE
4395
      && TREE_CODE (expr.value) == STRING_CST
4396
      && expr.original_code != STRING_CST)
4397
    pedwarn_init ("array initialized from parenthesized string constant");
4398
}
4399
 
4400
/* Digest the parser output INIT as an initializer for type TYPE.
4401
   Return a C expression of type TYPE to represent the initial value.
4402
 
4403
   If INIT is a string constant, STRICT_STRING is true if it is
4404
   unparenthesized or we should not warn here for it being parenthesized.
4405
   For other types of INIT, STRICT_STRING is not used.
4406
 
4407
   REQUIRE_CONSTANT requests an error if non-constant initializers or
4408
   elements are seen.  */
4409
 
4410
static tree
4411
digest_init (tree type, tree init, bool strict_string, int require_constant)
4412
{
4413
  enum tree_code code = TREE_CODE (type);
4414
  tree inside_init = init;
4415
 
4416
  if (type == error_mark_node
4417
      || !init
4418
      || init == error_mark_node
4419
      || TREE_TYPE (init) == error_mark_node)
4420
    return error_mark_node;
4421
 
4422
  STRIP_TYPE_NOPS (inside_init);
4423
 
4424
  inside_init = fold (inside_init);
4425
 
4426
  /* Initialization of an array of chars from a string constant
4427
     optionally enclosed in braces.  */
4428
 
4429
  if (code == ARRAY_TYPE && inside_init
4430
      && TREE_CODE (inside_init) == STRING_CST)
4431
    {
4432
      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4433
      /* Note that an array could be both an array of character type
4434
         and an array of wchar_t if wchar_t is signed char or unsigned
4435
         char.  */
4436
      bool char_array = (typ1 == char_type_node
4437
                         || typ1 == signed_char_type_node
4438
                         || typ1 == unsigned_char_type_node);
4439
      bool wchar_array = !!comptypes (typ1, wchar_type_node);
4440
      if (char_array || wchar_array)
4441
        {
4442
          struct c_expr expr;
4443
          bool char_string;
4444
          expr.value = inside_init;
4445
          expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4446
          maybe_warn_string_init (type, expr);
4447
 
4448
          char_string
4449
            = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4450
               == char_type_node);
4451
 
4452
          if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4453
                         TYPE_MAIN_VARIANT (type)))
4454
            return inside_init;
4455
 
4456
          if (!wchar_array && !char_string)
4457
            {
4458
              error_init ("char-array initialized from wide string");
4459
              return error_mark_node;
4460
            }
4461
          if (char_string && !char_array)
4462
            {
4463
              error_init ("wchar_t-array initialized from non-wide string");
4464
              return error_mark_node;
4465
            }
4466
 
4467
          TREE_TYPE (inside_init) = type;
4468
          if (TYPE_DOMAIN (type) != 0
4469
              && TYPE_SIZE (type) != 0
4470
              && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4471
              /* Subtract 1 (or sizeof (wchar_t))
4472
                 because it's ok to ignore the terminating null char
4473
                 that is counted in the length of the constant.  */
4474
              && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4475
                                       TREE_STRING_LENGTH (inside_init)
4476
                                       - ((TYPE_PRECISION (typ1)
4477
                                           != TYPE_PRECISION (char_type_node))
4478
                                          ? (TYPE_PRECISION (wchar_type_node)
4479
                                             / BITS_PER_UNIT)
4480
                                          : 1)))
4481
            pedwarn_init ("initializer-string for array of chars is too long");
4482
 
4483
          return inside_init;
4484
        }
4485
      else if (INTEGRAL_TYPE_P (typ1))
4486
        {
4487
          error_init ("array of inappropriate type initialized "
4488
                      "from string constant");
4489
          return error_mark_node;
4490
        }
4491
    }
4492
 
4493
  /* Build a VECTOR_CST from a *constant* vector constructor.  If the
4494
     vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4495
     below and handle as a constructor.  */
4496
  if (code == VECTOR_TYPE
4497
      && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4498
      && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4499
      && TREE_CONSTANT (inside_init))
4500
    {
4501
      if (TREE_CODE (inside_init) == VECTOR_CST
4502
          && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4503
                        TYPE_MAIN_VARIANT (type)))
4504
        return inside_init;
4505
 
4506
      if (TREE_CODE (inside_init) == CONSTRUCTOR)
4507
        {
4508
          unsigned HOST_WIDE_INT ix;
4509
          tree value;
4510
          bool constant_p = true;
4511
 
4512
          /* Iterate through elements and check if all constructor
4513
             elements are *_CSTs.  */
4514
          FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4515
            if (!CONSTANT_CLASS_P (value))
4516
              {
4517
                constant_p = false;
4518
                break;
4519
              }
4520
 
4521
          if (constant_p)
4522
            return build_vector_from_ctor (type,
4523
                                           CONSTRUCTOR_ELTS (inside_init));
4524
        }
4525
    }
4526
 
4527
  /* Any type can be initialized
4528
     from an expression of the same type, optionally with braces.  */
4529
 
4530
  if (inside_init && TREE_TYPE (inside_init) != 0
4531
      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4532
                     TYPE_MAIN_VARIANT (type))
4533
          || (code == ARRAY_TYPE
4534
              && comptypes (TREE_TYPE (inside_init), type))
4535
          || (code == VECTOR_TYPE
4536
              && comptypes (TREE_TYPE (inside_init), type))
4537
          || (code == POINTER_TYPE
4538
              && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4539
              && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4540
                            TREE_TYPE (type)))))
4541
    {
4542
      if (code == POINTER_TYPE)
4543
        {
4544
          if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4545
            {
4546
              if (TREE_CODE (inside_init) == STRING_CST
4547
                  || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4548
                inside_init = array_to_pointer_conversion (inside_init);
4549
              else
4550
                {
4551
                  error_init ("invalid use of non-lvalue array");
4552
                  return error_mark_node;
4553
                }
4554
            }
4555
        }
4556
 
4557
      if (code == VECTOR_TYPE)
4558
        /* Although the types are compatible, we may require a
4559
           conversion.  */
4560
        inside_init = convert (type, inside_init);
4561
 
4562
      if (require_constant && !flag_isoc99
4563
          && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4564
        {
4565
          /* As an extension, allow initializing objects with static storage
4566
             duration with compound literals (which are then treated just as
4567
             the brace enclosed list they contain).  */
4568
          tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4569
          inside_init = DECL_INITIAL (decl);
4570
        }
4571
 
4572
      if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4573
          && TREE_CODE (inside_init) != CONSTRUCTOR)
4574
        {
4575
          error_init ("array initialized from non-constant array expression");
4576
          return error_mark_node;
4577
        }
4578
 
4579
      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4580
        inside_init = decl_constant_value_for_broken_optimization (inside_init);
4581
 
4582
      /* Compound expressions can only occur here if -pedantic or
4583
         -pedantic-errors is specified.  In the later case, we always want
4584
         an error.  In the former case, we simply want a warning.  */
4585
      if (require_constant && pedantic
4586
          && TREE_CODE (inside_init) == COMPOUND_EXPR)
4587
        {
4588
          inside_init
4589
            = valid_compound_expr_initializer (inside_init,
4590
                                               TREE_TYPE (inside_init));
4591
          if (inside_init == error_mark_node)
4592
            error_init ("initializer element is not constant");
4593
          else
4594
            pedwarn_init ("initializer element is not constant");
4595
          if (flag_pedantic_errors)
4596
            inside_init = error_mark_node;
4597
        }
4598
      else if (require_constant
4599
               && !initializer_constant_valid_p (inside_init,
4600
                                                 TREE_TYPE (inside_init)))
4601
        {
4602
          error_init ("initializer element is not constant");
4603
          inside_init = error_mark_node;
4604
        }
4605
 
4606
      /* Added to enable additional -Wmissing-format-attribute warnings.  */
4607
      if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4608
        inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4609
                                              NULL_TREE, 0);
4610
      return inside_init;
4611
    }
4612
 
4613
  /* Handle scalar types, including conversions.  */
4614
 
4615
  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4616
      || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4617
      || code == VECTOR_TYPE)
4618
    {
4619
      if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4620
          && (TREE_CODE (init) == STRING_CST
4621
              || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4622
        init = array_to_pointer_conversion (init);
4623
      inside_init
4624
        = convert_for_assignment (type, init, ic_init,
4625
                                  NULL_TREE, NULL_TREE, 0);
4626
 
4627
      /* Check to see if we have already given an error message.  */
4628
      if (inside_init == error_mark_node)
4629
        ;
4630
      else if (require_constant && !TREE_CONSTANT (inside_init))
4631
        {
4632
          error_init ("initializer element is not constant");
4633
          inside_init = error_mark_node;
4634
        }
4635
      else if (require_constant
4636
               && !initializer_constant_valid_p (inside_init,
4637
                                                 TREE_TYPE (inside_init)))
4638
        {
4639
          error_init ("initializer element is not computable at load time");
4640
          inside_init = error_mark_node;
4641
        }
4642
 
4643
      return inside_init;
4644
    }
4645
 
4646
  /* Come here only for records and arrays.  */
4647
 
4648
  if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4649
    {
4650
      error_init ("variable-sized object may not be initialized");
4651
      return error_mark_node;
4652
    }
4653
 
4654
  error_init ("invalid initializer");
4655
  return error_mark_node;
4656
}
4657
 
4658
/* Handle initializers that use braces.  */
4659
 
4660
/* Type of object we are accumulating a constructor for.
4661
   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
4662
static tree constructor_type;
4663
 
4664
/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4665
   left to fill.  */
4666
static tree constructor_fields;
4667
 
4668
/* For an ARRAY_TYPE, this is the specified index
4669
   at which to store the next element we get.  */
4670
static tree constructor_index;
4671
 
4672
/* For an ARRAY_TYPE, this is the maximum index.  */
4673
static tree constructor_max_index;
4674
 
4675
/* For a RECORD_TYPE, this is the first field not yet written out.  */
4676
static tree constructor_unfilled_fields;
4677
 
4678
/* For an ARRAY_TYPE, this is the index of the first element
4679
   not yet written out.  */
4680
static tree constructor_unfilled_index;
4681
 
4682
/* In a RECORD_TYPE, the byte index of the next consecutive field.
4683
   This is so we can generate gaps between fields, when appropriate.  */
4684
static tree constructor_bit_index;
4685
 
4686
/* If we are saving up the elements rather than allocating them,
4687
   this is the list of elements so far (in reverse order,
4688
   most recent first).  */
4689
static VEC(constructor_elt,gc) *constructor_elements;
4690
 
4691
/* 1 if constructor should be incrementally stored into a constructor chain,
4692
 
4693
static int constructor_incremental;
4694
 
4695
/* 1 if so far this constructor's elements are all compile-time constants.  */
4696
static int constructor_constant;
4697
 
4698
/* 1 if so far this constructor's elements are all valid address constants.  */
4699
static int constructor_simple;
4700
 
4701
/* 1 if this constructor is erroneous so far.  */
4702
static int constructor_erroneous;
4703
 
4704
/* Structure for managing pending initializer elements, organized as an
4705
   AVL tree.  */
4706
 
4707
struct init_node
4708
{
4709
  struct init_node *left, *right;
4710
  struct init_node *parent;
4711
  int balance;
4712
  tree purpose;
4713
  tree value;
4714
};
4715
 
4716
/* Tree of pending elements at this constructor level.
4717
   These are elements encountered out of order
4718
   which belong at places we haven't reached yet in actually
4719
   writing the output.
4720
   Will never hold tree nodes across GC runs.  */
4721
static struct init_node *constructor_pending_elts;
4722
 
4723
/* The SPELLING_DEPTH of this constructor.  */
4724
static int constructor_depth;
4725
 
4726
/* DECL node for which an initializer is being read.
4727
 
4728
   such as (struct foo) {...}.  */
4729
static tree constructor_decl;
4730
 
4731
/* Nonzero if this is an initializer for a top-level decl.  */
4732
static int constructor_top_level;
4733
 
4734
/* Nonzero if there were any member designators in this initializer.  */
4735
static int constructor_designated;
4736
 
4737
/* Nesting depth of designator list.  */
4738
static int designator_depth;
4739
 
4740
/* Nonzero if there were diagnosed errors in this designator list.  */
4741
static int designator_erroneous;
4742
 
4743
 
4744
/* This stack has a level for each implicit or explicit level of
4745
   structuring in the initializer, including the outermost one.  It
4746
   saves the values of most of the variables above.  */
4747
 
4748
struct constructor_range_stack;
4749
 
4750
struct constructor_stack
4751
{
4752
  struct constructor_stack *next;
4753
  tree type;
4754
  tree fields;
4755
  tree index;
4756
  tree max_index;
4757
  tree unfilled_index;
4758
  tree unfilled_fields;
4759
  tree bit_index;
4760
  VEC(constructor_elt,gc) *elements;
4761
  struct init_node *pending_elts;
4762
  int offset;
4763
  int depth;
4764
  /* If value nonzero, this value should replace the entire
4765
     constructor at this level.  */
4766
  struct c_expr replacement_value;
4767
  struct constructor_range_stack *range_stack;
4768
  char constant;
4769
  char simple;
4770
  char implicit;
4771
  char erroneous;
4772
  char outer;
4773
  char incremental;
4774
  char designated;
4775
};
4776
 
4777
static struct constructor_stack *constructor_stack;
4778
 
4779
/* This stack represents designators from some range designator up to
4780
   the last designator in the list.  */
4781
 
4782
struct constructor_range_stack
4783
{
4784
  struct constructor_range_stack *next, *prev;
4785
  struct constructor_stack *stack;
4786
  tree range_start;
4787
  tree index;
4788
  tree range_end;
4789
  tree fields;
4790
};
4791
 
4792
static struct constructor_range_stack *constructor_range_stack;
4793
 
4794
/* This stack records separate initializers that are nested.
4795
   Nested initializers can't happen in ANSI C, but GNU C allows them
4796
   in cases like { ... (struct foo) { ... } ... }.  */
4797
 
4798
struct initializer_stack
4799
{
4800
  struct initializer_stack *next;
4801
  tree decl;
4802
  struct constructor_stack *constructor_stack;
4803
  struct constructor_range_stack *constructor_range_stack;
4804
  VEC(constructor_elt,gc) *elements;
4805
  struct spelling *spelling;
4806
  struct spelling *spelling_base;
4807
  int spelling_size;
4808
  char top_level;
4809
  char require_constant_value;
4810
  char require_constant_elements;
4811
};
4812
 
4813
static struct initializer_stack *initializer_stack;
4814
 
4815
/* Prepare to parse and output the initializer for variable DECL.  */
4816
 
4817
void
4818
start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4819
{
4820
  const char *locus;
4821
  struct initializer_stack *p = xmalloc (sizeof (struct initializer_stack));
4822
 
4823
  p->decl = constructor_decl;
4824
  p->require_constant_value = require_constant_value;
4825
  p->require_constant_elements = require_constant_elements;
4826
  p->constructor_stack = constructor_stack;
4827
  p->constructor_range_stack = constructor_range_stack;
4828
  p->elements = constructor_elements;
4829
  p->spelling = spelling;
4830
  p->spelling_base = spelling_base;
4831
  p->spelling_size = spelling_size;
4832
  p->top_level = constructor_top_level;
4833
  p->next = initializer_stack;
4834
  initializer_stack = p;
4835
 
4836
  constructor_decl = decl;
4837
  constructor_designated = 0;
4838
  constructor_top_level = top_level;
4839
 
4840
  if (decl != 0 && decl != error_mark_node)
4841
    {
4842
      require_constant_value = TREE_STATIC (decl);
4843
      require_constant_elements
4844
        = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4845
           /* For a scalar, you can always use any value to initialize,
4846
              even within braces.  */
4847
           && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4848
               || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4849
               || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4850
               || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4851
      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4852
    }
4853
  else
4854
    {
4855
      require_constant_value = 0;
4856
      require_constant_elements = 0;
4857
      locus = "(anonymous)";
4858
    }
4859
 
4860
  constructor_stack = 0;
4861
  constructor_range_stack = 0;
4862
 
4863
  missing_braces_mentioned = 0;
4864
 
4865
  spelling_base = 0;
4866
  spelling_size = 0;
4867
  RESTORE_SPELLING_DEPTH (0);
4868
 
4869
  if (locus)
4870
    push_string (locus);
4871
}
4872
 
4873
void
4874
finish_init (void)
4875
{
4876
  struct initializer_stack *p = initializer_stack;
4877
 
4878
  /* Free the whole constructor stack of this initializer.  */
4879
  while (constructor_stack)
4880
    {
4881
      struct constructor_stack *q = constructor_stack;
4882
      constructor_stack = q->next;
4883
      free (q);
4884
    }
4885
 
4886
  gcc_assert (!constructor_range_stack);
4887
 
4888
  /* Pop back to the data of the outer initializer (if any).  */
4889
  free (spelling_base);
4890
 
4891
  constructor_decl = p->decl;
4892
  require_constant_value = p->require_constant_value;
4893
  require_constant_elements = p->require_constant_elements;
4894
  constructor_stack = p->constructor_stack;
4895
  constructor_range_stack = p->constructor_range_stack;
4896
  constructor_elements = p->elements;
4897
  spelling = p->spelling;
4898
  spelling_base = p->spelling_base;
4899
  spelling_size = p->spelling_size;
4900
  constructor_top_level = p->top_level;
4901
  initializer_stack = p->next;
4902
  free (p);
4903
}
4904
 
4905
/* Call here when we see the initializer is surrounded by braces.
4906
   This is instead of a call to push_init_level;
4907
   it is matched by a call to pop_init_level.
4908
 
4909
   TYPE is the type to initialize, for a constructor expression.
4910
   For an initializer for a decl, TYPE is zero.  */
4911
 
4912
void
4913
really_start_incremental_init (tree type)
4914
{
4915
  struct constructor_stack *p = XNEW (struct constructor_stack);
4916
 
4917
  if (type == 0)
4918
    type = TREE_TYPE (constructor_decl);
4919
 
4920
  if (targetm.vector_opaque_p (type))
4921
    error ("opaque vector types cannot be initialized");
4922
 
4923
  p->type = constructor_type;
4924
  p->fields = constructor_fields;
4925
  p->index = constructor_index;
4926
  p->max_index = constructor_max_index;
4927
  p->unfilled_index = constructor_unfilled_index;
4928
  p->unfilled_fields = constructor_unfilled_fields;
4929
  p->bit_index = constructor_bit_index;
4930
  p->elements = constructor_elements;
4931
  p->constant = constructor_constant;
4932
  p->simple = constructor_simple;
4933
  p->erroneous = constructor_erroneous;
4934
  p->pending_elts = constructor_pending_elts;
4935
  p->depth = constructor_depth;
4936
  p->replacement_value.value = 0;
4937
  p->replacement_value.original_code = ERROR_MARK;
4938
  p->implicit = 0;
4939
  p->range_stack = 0;
4940
  p->outer = 0;
4941
  p->incremental = constructor_incremental;
4942
  p->designated = constructor_designated;
4943
  p->next = 0;
4944
  constructor_stack = p;
4945
 
4946
  constructor_constant = 1;
4947
  constructor_simple = 1;
4948
  constructor_depth = SPELLING_DEPTH ();
4949
  constructor_elements = 0;
4950
  constructor_pending_elts = 0;
4951
  constructor_type = type;
4952
  constructor_incremental = 1;
4953
  constructor_designated = 0;
4954
  designator_depth = 0;
4955
  designator_erroneous = 0;
4956
 
4957
  if (TREE_CODE (constructor_type) == RECORD_TYPE
4958
      || TREE_CODE (constructor_type) == UNION_TYPE)
4959
    {
4960
      constructor_fields = TYPE_FIELDS (constructor_type);
4961
      /* Skip any nameless bit fields at the beginning.  */
4962
      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
4963
             && DECL_NAME (constructor_fields) == 0)
4964
        constructor_fields = TREE_CHAIN (constructor_fields);
4965
 
4966
      constructor_unfilled_fields = constructor_fields;
4967
      constructor_bit_index = bitsize_zero_node;
4968
    }
4969
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
4970
    {
4971
      if (TYPE_DOMAIN (constructor_type))
4972
        {
4973
          constructor_max_index
4974
            = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
4975
 
4976
          /* Detect non-empty initializations of zero-length arrays.  */
4977
          if (constructor_max_index == NULL_TREE
4978
              && TYPE_SIZE (constructor_type))
4979
            constructor_max_index = build_int_cst (NULL_TREE, -1);
4980
 
4981
          /* constructor_max_index needs to be an INTEGER_CST.  Attempts
4982
             to initialize VLAs will cause a proper error; avoid tree
4983
             checking errors as well by setting a safe value.  */
4984
          if (constructor_max_index
4985
              && TREE_CODE (constructor_max_index) != INTEGER_CST)
4986
            constructor_max_index = build_int_cst (NULL_TREE, -1);
4987
 
4988
          constructor_index
4989
            = convert (bitsizetype,
4990
                       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
4991
        }
4992
      else
4993
        {
4994
          constructor_index = bitsize_zero_node;
4995
          constructor_max_index = NULL_TREE;
4996
        }
4997
 
4998
      constructor_unfilled_index = constructor_index;
4999
    }
5000
  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5001
    {
5002
      /* Vectors are like simple fixed-size arrays.  */
5003
      constructor_max_index =
5004
        build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5005
      constructor_index = bitsize_zero_node;
5006
      constructor_unfilled_index = constructor_index;
5007
    }
5008
  else
5009
    {
5010
      /* Handle the case of int x = {5}; */
5011
      constructor_fields = constructor_type;
5012
      constructor_unfilled_fields = constructor_type;
5013
    }
5014
}
5015
 
5016
/* Push down into a subobject, for initialization.
5017
   If this is for an explicit set of braces, IMPLICIT is 0.
5018
   If it is because the next element belongs at a lower level,
5019
   IMPLICIT is 1 (or 2 if the push is because of designator list).  */
5020
 
5021
void
5022
push_init_level (int implicit)
5023
{
5024
  struct constructor_stack *p;
5025
  tree value = NULL_TREE;
5026
 
5027
  /* If we've exhausted any levels that didn't have braces,
5028
     pop them now.  If implicit == 1, this will have been done in
5029
     process_init_element; do not repeat it here because in the case
5030
     of excess initializers for an empty aggregate this leads to an
5031
     infinite cycle of popping a level and immediately recreating
5032
     it.  */
5033
  if (implicit != 1)
5034
    {
5035
      while (constructor_stack->implicit)
5036
        {
5037
          if ((TREE_CODE (constructor_type) == RECORD_TYPE
5038
               || TREE_CODE (constructor_type) == UNION_TYPE)
5039
              && constructor_fields == 0)
5040
            process_init_element (pop_init_level (1));
5041
          else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5042
                   && constructor_max_index
5043
                   && tree_int_cst_lt (constructor_max_index,
5044
                                       constructor_index))
5045
            process_init_element (pop_init_level (1));
5046
          else
5047
            break;
5048
        }
5049
    }
5050
 
5051
  /* Unless this is an explicit brace, we need to preserve previous
5052
     content if any.  */
5053
  if (implicit)
5054
    {
5055
      if ((TREE_CODE (constructor_type) == RECORD_TYPE
5056
           || TREE_CODE (constructor_type) == UNION_TYPE)
5057
          && constructor_fields)
5058
        value = find_init_member (constructor_fields);
5059
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5060
        value = find_init_member (constructor_index);
5061
    }
5062
 
5063
  p = XNEW (struct constructor_stack);
5064
  p->type = constructor_type;
5065
  p->fields = constructor_fields;
5066
  p->index = constructor_index;
5067
  p->max_index = constructor_max_index;
5068
  p->unfilled_index = constructor_unfilled_index;
5069
  p->unfilled_fields = constructor_unfilled_fields;
5070
  p->bit_index = constructor_bit_index;
5071
  p->elements = constructor_elements;
5072
  p->constant = constructor_constant;
5073
  p->simple = constructor_simple;
5074
  p->erroneous = constructor_erroneous;
5075
  p->pending_elts = constructor_pending_elts;
5076
  p->depth = constructor_depth;
5077
  p->replacement_value.value = 0;
5078
  p->replacement_value.original_code = ERROR_MARK;
5079
  p->implicit = implicit;
5080
  p->outer = 0;
5081
  p->incremental = constructor_incremental;
5082
  p->designated = constructor_designated;
5083
  p->next = constructor_stack;
5084
  p->range_stack = 0;
5085
  constructor_stack = p;
5086
 
5087
  constructor_constant = 1;
5088
  constructor_simple = 1;
5089
  constructor_depth = SPELLING_DEPTH ();
5090
  constructor_elements = 0;
5091
  constructor_incremental = 1;
5092
  constructor_designated = 0;
5093
  constructor_pending_elts = 0;
5094
  if (!implicit)
5095
    {
5096
      p->range_stack = constructor_range_stack;
5097
      constructor_range_stack = 0;
5098
      designator_depth = 0;
5099
      designator_erroneous = 0;
5100
    }
5101
 
5102
  /* Don't die if an entire brace-pair level is superfluous
5103
     in the containing level.  */
5104
  if (constructor_type == 0)
5105
    ;
5106
  else if (TREE_CODE (constructor_type) == RECORD_TYPE
5107
           || TREE_CODE (constructor_type) == UNION_TYPE)
5108
    {
5109
      /* Don't die if there are extra init elts at the end.  */
5110
      if (constructor_fields == 0)
5111
        constructor_type = 0;
5112
      else
5113
        {
5114
          constructor_type = TREE_TYPE (constructor_fields);
5115
          push_member_name (constructor_fields);
5116
          constructor_depth++;
5117
        }
5118
    }
5119
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5120
    {
5121
      constructor_type = TREE_TYPE (constructor_type);
5122
      push_array_bounds (tree_low_cst (constructor_index, 1));
5123
      constructor_depth++;
5124
    }
5125
 
5126
  if (constructor_type == 0)
5127
    {
5128
      error_init ("extra brace group at end of initializer");
5129
      constructor_fields = 0;
5130
      constructor_unfilled_fields = 0;
5131
      return;
5132
    }
5133
 
5134
  if (value && TREE_CODE (value) == CONSTRUCTOR)
5135
    {
5136
      constructor_constant = TREE_CONSTANT (value);
5137
      constructor_simple = TREE_STATIC (value);
5138
      constructor_elements = CONSTRUCTOR_ELTS (value);
5139
      if (!VEC_empty (constructor_elt, constructor_elements)
5140
          && (TREE_CODE (constructor_type) == RECORD_TYPE
5141
              || TREE_CODE (constructor_type) == ARRAY_TYPE))
5142
        set_nonincremental_init ();
5143
    }
5144
 
5145
  if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5146
    {
5147
      missing_braces_mentioned = 1;
5148
      warning_init ("missing braces around initializer");
5149
    }
5150
 
5151
  if (TREE_CODE (constructor_type) == RECORD_TYPE
5152
           || TREE_CODE (constructor_type) == UNION_TYPE)
5153
    {
5154
      constructor_fields = TYPE_FIELDS (constructor_type);
5155
      /* Skip any nameless bit fields at the beginning.  */
5156
      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5157
             && DECL_NAME (constructor_fields) == 0)
5158
        constructor_fields = TREE_CHAIN (constructor_fields);
5159
 
5160
      constructor_unfilled_fields = constructor_fields;
5161
      constructor_bit_index = bitsize_zero_node;
5162
    }
5163
  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5164
    {
5165
      /* Vectors are like simple fixed-size arrays.  */
5166
      constructor_max_index =
5167
        build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5168
      constructor_index = convert (bitsizetype, integer_zero_node);
5169
      constructor_unfilled_index = constructor_index;
5170
    }
5171
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5172
    {
5173
      if (TYPE_DOMAIN (constructor_type))
5174
        {
5175
          constructor_max_index
5176
            = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5177
 
5178
          /* Detect non-empty initializations of zero-length arrays.  */
5179
          if (constructor_max_index == NULL_TREE
5180
              && TYPE_SIZE (constructor_type))
5181
            constructor_max_index = build_int_cst (NULL_TREE, -1);
5182
 
5183
          /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5184
             to initialize VLAs will cause a proper error; avoid tree
5185
             checking errors as well by setting a safe value.  */
5186
          if (constructor_max_index
5187
              && TREE_CODE (constructor_max_index) != INTEGER_CST)
5188
            constructor_max_index = build_int_cst (NULL_TREE, -1);
5189
 
5190
          constructor_index
5191
            = convert (bitsizetype,
5192
                       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5193
        }
5194
      else
5195
        constructor_index = bitsize_zero_node;
5196
 
5197
      constructor_unfilled_index = constructor_index;
5198
      if (value && TREE_CODE (value) == STRING_CST)
5199
        {
5200
          /* We need to split the char/wchar array into individual
5201
             characters, so that we don't have to special case it
5202
             everywhere.  */
5203
          set_nonincremental_init_from_string (value);
5204
        }
5205
    }
5206
  else
5207
    {
5208
      if (constructor_type != error_mark_node)
5209
        warning_init ("braces around scalar initializer");
5210
      constructor_fields = constructor_type;
5211
      constructor_unfilled_fields = constructor_type;
5212
    }
5213
}
5214
 
5215
/* At the end of an implicit or explicit brace level,
5216
   finish up that level of constructor.  If a single expression
5217
   with redundant braces initialized that level, return the
5218
   c_expr structure for that expression.  Otherwise, the original_code
5219
   element is set to ERROR_MARK.
5220
   If we were outputting the elements as they are read, return 0 as the value
5221
   from inner levels (process_init_element ignores that),
5222
   but return error_mark_node as the value from the outermost level
5223
   (that's what we want to put in DECL_INITIAL).
5224
   Otherwise, return a CONSTRUCTOR expression as the value.  */
5225
 
5226
struct c_expr
5227
pop_init_level (int implicit)
5228
{
5229
  struct constructor_stack *p;
5230
  struct c_expr ret;
5231
  ret.value = 0;
5232
  ret.original_code = ERROR_MARK;
5233
 
5234
  if (implicit == 0)
5235
    {
5236
      /* When we come to an explicit close brace,
5237
         pop any inner levels that didn't have explicit braces.  */
5238
      while (constructor_stack->implicit)
5239
        process_init_element (pop_init_level (1));
5240
 
5241
      gcc_assert (!constructor_range_stack);
5242
    }
5243
 
5244
  /* Now output all pending elements.  */
5245
  constructor_incremental = 1;
5246
  output_pending_init_elements (1);
5247
 
5248
  p = constructor_stack;
5249
 
5250
  /* Error for initializing a flexible array member, or a zero-length
5251
     array member in an inappropriate context.  */
5252
  if (constructor_type && constructor_fields
5253
      && TREE_CODE (constructor_type) == ARRAY_TYPE
5254
      && TYPE_DOMAIN (constructor_type)
5255
      && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5256
    {
5257
      /* Silently discard empty initializations.  The parser will
5258
         already have pedwarned for empty brackets.  */
5259
      if (integer_zerop (constructor_unfilled_index))
5260
        constructor_type = NULL_TREE;
5261
      else
5262
        {
5263
          gcc_assert (!TYPE_SIZE (constructor_type));
5264
 
5265
          if (constructor_depth > 2)
5266
            error_init ("initialization of flexible array member in a nested context");
5267
          else if (pedantic)
5268
            pedwarn_init ("initialization of a flexible array member");
5269
 
5270
          /* We have already issued an error message for the existence
5271
             of a flexible array member not at the end of the structure.
5272
             Discard the initializer so that we do not die later.  */
5273
          if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5274
            constructor_type = NULL_TREE;
5275
        }
5276
    }
5277
 
5278
  /* Warn when some struct elements are implicitly initialized to zero.  */
5279
  if (warn_missing_field_initializers
5280
      && constructor_type
5281
      && TREE_CODE (constructor_type) == RECORD_TYPE
5282
      && constructor_unfilled_fields)
5283
    {
5284
        /* Do not warn for flexible array members or zero-length arrays.  */
5285
        while (constructor_unfilled_fields
5286
               && (!DECL_SIZE (constructor_unfilled_fields)
5287
                   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5288
          constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5289
 
5290
        /* Do not warn if this level of the initializer uses member
5291
           designators; it is likely to be deliberate.  */
5292
        if (constructor_unfilled_fields && !constructor_designated)
5293
          {
5294
            push_member_name (constructor_unfilled_fields);
5295
            warning_init ("missing initializer");
5296
            RESTORE_SPELLING_DEPTH (constructor_depth);
5297
          }
5298
    }
5299
 
5300
  /* Pad out the end of the structure.  */
5301
  if (p->replacement_value.value)
5302
    /* If this closes a superfluous brace pair,
5303
       just pass out the element between them.  */
5304
    ret = p->replacement_value;
5305
  else if (constructor_type == 0)
5306
    ;
5307
  else if (TREE_CODE (constructor_type) != RECORD_TYPE
5308
           && TREE_CODE (constructor_type) != UNION_TYPE
5309
           && TREE_CODE (constructor_type) != ARRAY_TYPE
5310
           && TREE_CODE (constructor_type) != VECTOR_TYPE)
5311
    {
5312
      /* A nonincremental scalar initializer--just return
5313
         the element, after verifying there is just one.  */
5314
      if (VEC_empty (constructor_elt,constructor_elements))
5315
        {
5316
          if (!constructor_erroneous)
5317
            error_init ("empty scalar initializer");
5318
          ret.value = error_mark_node;
5319
        }
5320
      else if (VEC_length (constructor_elt,constructor_elements) != 1)
5321
        {
5322
          error_init ("extra elements in scalar initializer");
5323
          ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5324
        }
5325
      else
5326
        ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5327
    }
5328
  else
5329
    {
5330
      if (constructor_erroneous)
5331
        ret.value = error_mark_node;
5332
      else
5333
        {
5334
          ret.value = build_constructor (constructor_type,
5335
                                         constructor_elements);
5336
          if (constructor_constant)
5337
            TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5338
          if (constructor_constant && constructor_simple)
5339
            TREE_STATIC (ret.value) = 1;
5340
        }
5341
    }
5342
 
5343
  constructor_type = p->type;
5344
  constructor_fields = p->fields;
5345
  constructor_index = p->index;
5346
  constructor_max_index = p->max_index;
5347
  constructor_unfilled_index = p->unfilled_index;
5348
  constructor_unfilled_fields = p->unfilled_fields;
5349
  constructor_bit_index = p->bit_index;
5350
  constructor_elements = p->elements;
5351
  constructor_constant = p->constant;
5352
  constructor_simple = p->simple;
5353
  constructor_erroneous = p->erroneous;
5354
  constructor_incremental = p->incremental;
5355
  constructor_designated = p->designated;
5356
  constructor_pending_elts = p->pending_elts;
5357
  constructor_depth = p->depth;
5358
  if (!p->implicit)
5359
    constructor_range_stack = p->range_stack;
5360
  RESTORE_SPELLING_DEPTH (constructor_depth);
5361
 
5362
  constructor_stack = p->next;
5363
  free (p);
5364
 
5365
  if (ret.value == 0)
5366
    {
5367
      if (constructor_stack == 0)
5368
        {
5369
          ret.value = error_mark_node;
5370
          return ret;
5371
        }
5372
      return ret;
5373
    }
5374
  return ret;
5375
}
5376
 
5377
/* Common handling for both array range and field name designators.
5378
   ARRAY argument is nonzero for array ranges.  Returns zero for success.  */
5379
 
5380
static int
5381
set_designator (int array)
5382
{
5383
  tree subtype;
5384
  enum tree_code subcode;
5385
 
5386
  /* Don't die if an entire brace-pair level is superfluous
5387
     in the containing level.  */
5388
  if (constructor_type == 0)
5389
    return 1;
5390
 
5391
  /* If there were errors in this designator list already, bail out
5392
     silently.  */
5393
  if (designator_erroneous)
5394
    return 1;
5395
 
5396
  if (!designator_depth)
5397
    {
5398
      gcc_assert (!constructor_range_stack);
5399
 
5400
      /* Designator list starts at the level of closest explicit
5401
         braces.  */
5402
      while (constructor_stack->implicit)
5403
        process_init_element (pop_init_level (1));
5404
      constructor_designated = 1;
5405
      return 0;
5406
    }
5407
 
5408
  switch (TREE_CODE (constructor_type))
5409
    {
5410
    case  RECORD_TYPE:
5411
    case  UNION_TYPE:
5412
      subtype = TREE_TYPE (constructor_fields);
5413
      if (subtype != error_mark_node)
5414
        subtype = TYPE_MAIN_VARIANT (subtype);
5415
      break;
5416
    case ARRAY_TYPE:
5417
      subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5418
      break;
5419
    default:
5420
      gcc_unreachable ();
5421
    }
5422
 
5423
  subcode = TREE_CODE (subtype);
5424
  if (array && subcode != ARRAY_TYPE)
5425
    {
5426
      error_init ("array index in non-array initializer");
5427
      return 1;
5428
    }
5429
  else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5430
    {
5431
      error_init ("field name not in record or union initializer");
5432
      return 1;
5433
    }
5434
 
5435
  constructor_designated = 1;
5436
  push_init_level (2);
5437
  return 0;
5438
}
5439
 
5440
/* If there are range designators in designator list, push a new designator
5441
   to constructor_range_stack.  RANGE_END is end of such stack range or
5442
   NULL_TREE if there is no range designator at this level.  */
5443
 
5444
static void
5445
push_range_stack (tree range_end)
5446
{
5447
  struct constructor_range_stack *p;
5448
 
5449
  p = GGC_NEW (struct constructor_range_stack);
5450
  p->prev = constructor_range_stack;
5451
  p->next = 0;
5452
  p->fields = constructor_fields;
5453
  p->range_start = constructor_index;
5454
  p->index = constructor_index;
5455
  p->stack = constructor_stack;
5456
  p->range_end = range_end;
5457
  if (constructor_range_stack)
5458
    constructor_range_stack->next = p;
5459
  constructor_range_stack = p;
5460
}
5461
 
5462
/* Within an array initializer, specify the next index to be initialized.
5463
   FIRST is that index.  If LAST is nonzero, then initialize a range
5464
   of indices, running from FIRST through LAST.  */
5465
 
5466
void
5467
set_init_index (tree first, tree last)
5468
{
5469
  if (set_designator (1))
5470
    return;
5471
 
5472
  designator_erroneous = 1;
5473
 
5474
  if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5475
      || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5476
    {
5477
      error_init ("array index in initializer not of integer type");
5478
      return;
5479
    }
5480
 
5481
  if (TREE_CODE (first) != INTEGER_CST)
5482
    error_init ("nonconstant array index in initializer");
5483
  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5484
    error_init ("nonconstant array index in initializer");
5485
  else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5486
    error_init ("array index in non-array initializer");
5487
  else if (tree_int_cst_sgn (first) == -1)
5488
    error_init ("array index in initializer exceeds array bounds");
5489
  else if (constructor_max_index
5490
           && tree_int_cst_lt (constructor_max_index, first))
5491
    error_init ("array index in initializer exceeds array bounds");
5492
  else
5493
    {
5494
      constructor_index = convert (bitsizetype, first);
5495
 
5496
      if (last)
5497
        {
5498
          if (tree_int_cst_equal (first, last))
5499
            last = 0;
5500
          else if (tree_int_cst_lt (last, first))
5501
            {
5502
              error_init ("empty index range in initializer");
5503
              last = 0;
5504
            }
5505
          else
5506
            {
5507
              last = convert (bitsizetype, last);
5508
              if (constructor_max_index != 0
5509
                  && tree_int_cst_lt (constructor_max_index, last))
5510
                {
5511
                  error_init ("array index range in initializer exceeds array bounds");
5512
                  last = 0;
5513
                }
5514
            }
5515
        }
5516
 
5517
      designator_depth++;
5518
      designator_erroneous = 0;
5519
      if (constructor_range_stack || last)
5520
        push_range_stack (last);
5521
    }
5522
}
5523
 
5524
/* Within a struct initializer, specify the next field to be initialized.  */
5525
 
5526
void
5527
set_init_label (tree fieldname)
5528
{
5529
  tree tail;
5530
 
5531
  if (set_designator (0))
5532
    return;
5533
 
5534
  designator_erroneous = 1;
5535
 
5536
  if (TREE_CODE (constructor_type) != RECORD_TYPE
5537
      && TREE_CODE (constructor_type) != UNION_TYPE)
5538
    {
5539
      error_init ("field name not in record or union initializer");
5540
      return;
5541
    }
5542
 
5543
  for (tail = TYPE_FIELDS (constructor_type); tail;
5544
       tail = TREE_CHAIN (tail))
5545
    {
5546
      if (DECL_NAME (tail) == fieldname)
5547
        break;
5548
    }
5549
 
5550
  if (tail == 0)
5551
    error ("unknown field %qE specified in initializer", fieldname);
5552
  else
5553
    {
5554
      constructor_fields = tail;
5555
      designator_depth++;
5556
      designator_erroneous = 0;
5557
      if (constructor_range_stack)
5558
        push_range_stack (NULL_TREE);
5559
    }
5560
}
5561
 
5562
/* Add a new initializer to the tree of pending initializers.  PURPOSE
5563
   identifies the initializer, either array index or field in a structure.
5564
   VALUE is the value of that index or field.  */
5565
 
5566
static void
5567
add_pending_init (tree purpose, tree value)
5568
{
5569
  struct init_node *p, **q, *r;
5570
 
5571
  q = &constructor_pending_elts;
5572
  p = 0;
5573
 
5574
  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5575
    {
5576
      while (*q != 0)
5577
        {
5578
          p = *q;
5579
          if (tree_int_cst_lt (purpose, p->purpose))
5580
            q = &p->left;
5581
          else if (tree_int_cst_lt (p->purpose, purpose))
5582
            q = &p->right;
5583
          else
5584
            {
5585
              if (TREE_SIDE_EFFECTS (p->value))
5586
                warning_init ("initialized field with side-effects overwritten");
5587
              p->value = value;
5588
              return;
5589
            }
5590
        }
5591
    }
5592
  else
5593
    {
5594
      tree bitpos;
5595
 
5596
      bitpos = bit_position (purpose);
5597
      while (*q != NULL)
5598
        {
5599
          p = *q;
5600
          if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5601
            q = &p->left;
5602
          else if (p->purpose != purpose)
5603
            q = &p->right;
5604
          else
5605
            {
5606
              if (TREE_SIDE_EFFECTS (p->value))
5607
                warning_init ("initialized field with side-effects overwritten");
5608
              p->value = value;
5609
              return;
5610
            }
5611
        }
5612
    }
5613
 
5614
  r = GGC_NEW (struct init_node);
5615
  r->purpose = purpose;
5616
  r->value = value;
5617
 
5618
  *q = r;
5619
  r->parent = p;
5620
  r->left = 0;
5621
  r->right = 0;
5622
  r->balance = 0;
5623
 
5624
  while (p)
5625
    {
5626
      struct init_node *s;
5627
 
5628
      if (r == p->left)
5629
        {
5630
          if (p->balance == 0)
5631
            p->balance = -1;
5632
          else if (p->balance < 0)
5633
            {
5634
              if (r->balance < 0)
5635
                {
5636
                  /* L rotation.  */
5637
                  p->left = r->right;
5638
                  if (p->left)
5639
                    p->left->parent = p;
5640
                  r->right = p;
5641
 
5642
                  p->balance = 0;
5643
                  r->balance = 0;
5644
 
5645
                  s = p->parent;
5646
                  p->parent = r;
5647
                  r->parent = s;
5648
                  if (s)
5649
                    {
5650
                      if (s->left == p)
5651
                        s->left = r;
5652
                      else
5653
                        s->right = r;
5654
                    }
5655
                  else
5656
                    constructor_pending_elts = r;
5657
                }
5658
              else
5659
                {
5660
                  /* LR rotation.  */
5661
                  struct init_node *t = r->right;
5662
 
5663
                  r->right = t->left;
5664
                  if (r->right)
5665
                    r->right->parent = r;
5666
                  t->left = r;
5667
 
5668
                  p->left = t->right;
5669
                  if (p->left)
5670
                    p->left->parent = p;
5671
                  t->right = p;
5672
 
5673
                  p->balance = t->balance < 0;
5674
                  r->balance = -(t->balance > 0);
5675
                  t->balance = 0;
5676
 
5677
                  s = p->parent;
5678
                  p->parent = t;
5679
                  r->parent = t;
5680
                  t->parent = s;
5681
                  if (s)
5682
                    {
5683
                      if (s->left == p)
5684
                        s->left = t;
5685
                      else
5686
                        s->right = t;
5687
                    }
5688
                  else
5689
                    constructor_pending_elts = t;
5690
                }
5691
              break;
5692
            }
5693
          else
5694
            {
5695
              /* p->balance == +1; growth of left side balances the node.  */
5696
              p->balance = 0;
5697
              break;
5698
            }
5699
        }
5700
      else /* r == p->right */
5701
        {
5702
          if (p->balance == 0)
5703
            /* Growth propagation from right side.  */
5704
            p->balance++;
5705
          else if (p->balance > 0)
5706
            {
5707
              if (r->balance > 0)
5708
                {
5709
                  /* R rotation.  */
5710
                  p->right = r->left;
5711
                  if (p->right)
5712
                    p->right->parent = p;
5713
                  r->left = p;
5714
 
5715
                  p->balance = 0;
5716
                  r->balance = 0;
5717
 
5718
                  s = p->parent;
5719
                  p->parent = r;
5720
                  r->parent = s;
5721
                  if (s)
5722
                    {
5723
                      if (s->left == p)
5724
                        s->left = r;
5725
                      else
5726
                        s->right = r;
5727
                    }
5728
                  else
5729
                    constructor_pending_elts = r;
5730
                }
5731
              else /* r->balance == -1 */
5732
                {
5733
                  /* RL rotation */
5734
                  struct init_node *t = r->left;
5735
 
5736
                  r->left = t->right;
5737
                  if (r->left)
5738
                    r->left->parent = r;
5739
                  t->right = r;
5740
 
5741
                  p->right = t->left;
5742
                  if (p->right)
5743
                    p->right->parent = p;
5744
                  t->left = p;
5745
 
5746
                  r->balance = (t->balance < 0);
5747
                  p->balance = -(t->balance > 0);
5748
                  t->balance = 0;
5749
 
5750
                  s = p->parent;
5751
                  p->parent = t;
5752
                  r->parent = t;
5753
                  t->parent = s;
5754
                  if (s)
5755
                    {
5756
                      if (s->left == p)
5757
                        s->left = t;
5758
                      else
5759
                        s->right = t;
5760
                    }
5761
                  else
5762
                    constructor_pending_elts = t;
5763
                }
5764
              break;
5765
            }
5766
          else
5767
            {
5768
              /* p->balance == -1; growth of right side balances the node.  */
5769
              p->balance = 0;
5770
              break;
5771
            }
5772
        }
5773
 
5774
      r = p;
5775
      p = p->parent;
5776
    }
5777
}
5778
 
5779
/* Build AVL tree from a sorted chain.  */
5780
 
5781
static void
5782
set_nonincremental_init (void)
5783
{
5784
  unsigned HOST_WIDE_INT ix;
5785
  tree index, value;
5786
 
5787
  if (TREE_CODE (constructor_type) != RECORD_TYPE
5788
      && TREE_CODE (constructor_type) != ARRAY_TYPE)
5789
    return;
5790
 
5791
  FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5792
    add_pending_init (index, value);
5793
  constructor_elements = 0;
5794
  if (TREE_CODE (constructor_type) == RECORD_TYPE)
5795
    {
5796
      constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5797
      /* Skip any nameless bit fields at the beginning.  */
5798
      while (constructor_unfilled_fields != 0
5799
             && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5800
             && DECL_NAME (constructor_unfilled_fields) == 0)
5801
        constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5802
 
5803
    }
5804
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5805
    {
5806
      if (TYPE_DOMAIN (constructor_type))
5807
        constructor_unfilled_index
5808
            = convert (bitsizetype,
5809
                       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5810
      else
5811
        constructor_unfilled_index = bitsize_zero_node;
5812
    }
5813
  constructor_incremental = 0;
5814
}
5815
 
5816
/* Build AVL tree from a string constant.  */
5817
 
5818
static void
5819
set_nonincremental_init_from_string (tree str)
5820
{
5821
  tree value, purpose, type;
5822
  HOST_WIDE_INT val[2];
5823
  const char *p, *end;
5824
  int byte, wchar_bytes, charwidth, bitpos;
5825
 
5826
  gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5827
 
5828
  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5829
      == TYPE_PRECISION (char_type_node))
5830
    wchar_bytes = 1;
5831
  else
5832
    {
5833
      gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5834
                  == TYPE_PRECISION (wchar_type_node));
5835
      wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5836
    }
5837
  charwidth = TYPE_PRECISION (char_type_node);
5838
  type = TREE_TYPE (constructor_type);
5839
  p = TREE_STRING_POINTER (str);
5840
  end = p + TREE_STRING_LENGTH (str);
5841
 
5842
  for (purpose = bitsize_zero_node;
5843
       p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5844
       purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5845
    {
5846
      if (wchar_bytes == 1)
5847
        {
5848
          val[1] = (unsigned char) *p++;
5849
          val[0] = 0;
5850
        }
5851
      else
5852
        {
5853
          val[0] = 0;
5854
          val[1] = 0;
5855
          for (byte = 0; byte < wchar_bytes; byte++)
5856
            {
5857
              if (BYTES_BIG_ENDIAN)
5858
                bitpos = (wchar_bytes - byte - 1) * charwidth;
5859
              else
5860
                bitpos = byte * charwidth;
5861
              val[bitpos < HOST_BITS_PER_WIDE_INT]
5862
                |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
5863
                   << (bitpos % HOST_BITS_PER_WIDE_INT);
5864
            }
5865
        }
5866
 
5867
      if (!TYPE_UNSIGNED (type))
5868
        {
5869
          bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
5870
          if (bitpos < HOST_BITS_PER_WIDE_INT)
5871
            {
5872
              if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
5873
                {
5874
                  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
5875
                  val[0] = -1;
5876
                }
5877
            }
5878
          else if (bitpos == HOST_BITS_PER_WIDE_INT)
5879
            {
5880
              if (val[1] < 0)
5881
                val[0] = -1;
5882
            }
5883
          else if (val[0] & (((HOST_WIDE_INT) 1)
5884
                             << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
5885
            val[0] |= ((HOST_WIDE_INT) -1)
5886
                      << (bitpos - HOST_BITS_PER_WIDE_INT);
5887
        }
5888
 
5889
      value = build_int_cst_wide (type, val[1], val[0]);
5890
      add_pending_init (purpose, value);
5891
    }
5892
 
5893
  constructor_incremental = 0;
5894
}
5895
 
5896
/* Return value of FIELD in pending initializer or zero if the field was
5897
   not initialized yet.  */
5898
 
5899
static tree
5900
find_init_member (tree field)
5901
{
5902
  struct init_node *p;
5903
 
5904
  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5905
    {
5906
      if (constructor_incremental
5907
          && tree_int_cst_lt (field, constructor_unfilled_index))
5908
        set_nonincremental_init ();
5909
 
5910
      p = constructor_pending_elts;
5911
      while (p)
5912
        {
5913
          if (tree_int_cst_lt (field, p->purpose))
5914
            p = p->left;
5915
          else if (tree_int_cst_lt (p->purpose, field))
5916
            p = p->right;
5917
          else
5918
            return p->value;
5919
        }
5920
    }
5921
  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
5922
    {
5923
      tree bitpos = bit_position (field);
5924
 
5925
      if (constructor_incremental
5926
          && (!constructor_unfilled_fields
5927
              || tree_int_cst_lt (bitpos,
5928
                                  bit_position (constructor_unfilled_fields))))
5929
        set_nonincremental_init ();
5930
 
5931
      p = constructor_pending_elts;
5932
      while (p)
5933
        {
5934
          if (field == p->purpose)
5935
            return p->value;
5936
          else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5937
            p = p->left;
5938
          else
5939
            p = p->right;
5940
        }
5941
    }
5942
  else if (TREE_CODE (constructor_type) == UNION_TYPE)
5943
    {
5944
      if (!VEC_empty (constructor_elt, constructor_elements)
5945
          && (VEC_last (constructor_elt, constructor_elements)->index
5946
              == field))
5947
        return VEC_last (constructor_elt, constructor_elements)->value;
5948
    }
5949
  return 0;
5950
}
5951
 
5952
/* "Output" the next constructor element.
5953
   At top level, really output it to assembler code now.
5954
   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
5955
   TYPE is the data type that the containing data type wants here.
5956
   FIELD is the field (a FIELD_DECL) or the index that this element fills.
5957
   If VALUE is a string constant, STRICT_STRING is true if it is
5958
   unparenthesized or we should not warn here for it being parenthesized.
5959
   For other types of VALUE, STRICT_STRING is not used.
5960
 
5961
   PENDING if non-nil means output pending elements that belong
5962
   right after this element.  (PENDING is normally 1;
5963
   it is 0 while outputting pending elements, to avoid recursion.)  */
5964
 
5965
static void
5966
output_init_element (tree value, bool strict_string, tree type, tree field,
5967
                     int pending)
5968
{
5969
  constructor_elt *celt;
5970
 
5971
  if (type == error_mark_node || value == error_mark_node)
5972
    {
5973
      constructor_erroneous = 1;
5974
      return;
5975
    }
5976
  if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
5977
      && (TREE_CODE (value) == STRING_CST
5978
          || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
5979
      && !(TREE_CODE (value) == STRING_CST
5980
           && TREE_CODE (type) == ARRAY_TYPE
5981
           && INTEGRAL_TYPE_P (TREE_TYPE (type)))
5982
      && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
5983
                     TYPE_MAIN_VARIANT (type)))
5984
    value = array_to_pointer_conversion (value);
5985
 
5986
  if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
5987
      && require_constant_value && !flag_isoc99 && pending)
5988
    {
5989
      /* As an extension, allow initializing objects with static storage
5990
         duration with compound literals (which are then treated just as
5991
         the brace enclosed list they contain).  */
5992
      tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
5993
      value = DECL_INITIAL (decl);
5994
    }
5995
 
5996
  if (value == error_mark_node)
5997
    constructor_erroneous = 1;
5998
  else if (!TREE_CONSTANT (value))
5999
    constructor_constant = 0;
6000
  else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6001
           || ((TREE_CODE (constructor_type) == RECORD_TYPE
6002
                || TREE_CODE (constructor_type) == UNION_TYPE)
6003
               && DECL_C_BIT_FIELD (field)
6004
               && TREE_CODE (value) != INTEGER_CST))
6005
    constructor_simple = 0;
6006
 
6007
  if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6008
    {
6009
      if (require_constant_value)
6010
        {
6011
          error_init ("initializer element is not constant");
6012
          value = error_mark_node;
6013
        }
6014
      else if (require_constant_elements)
6015
        pedwarn ("initializer element is not computable at load time");
6016
    }
6017
 
6018
  /* If this field is empty (and not at the end of structure),
6019
     don't do anything other than checking the initializer.  */
6020
  if (field
6021
      && (TREE_TYPE (field) == error_mark_node
6022
          || (COMPLETE_TYPE_P (TREE_TYPE (field))
6023
              && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6024
              && (TREE_CODE (constructor_type) == ARRAY_TYPE
6025
                  || TREE_CHAIN (field)))))
6026
    return;
6027
 
6028
  value = digest_init (type, value, strict_string, require_constant_value);
6029
  if (value == error_mark_node)
6030
    {
6031
      constructor_erroneous = 1;
6032
      return;
6033
    }
6034
 
6035
  /* If this element doesn't come next in sequence,
6036
     put it on constructor_pending_elts.  */
6037
  if (TREE_CODE (constructor_type) == ARRAY_TYPE
6038
      && (!constructor_incremental
6039
          || !tree_int_cst_equal (field, constructor_unfilled_index)))
6040
    {
6041
      if (constructor_incremental
6042
          && tree_int_cst_lt (field, constructor_unfilled_index))
6043
        set_nonincremental_init ();
6044
 
6045
      add_pending_init (field, value);
6046
      return;
6047
    }
6048
  else if (TREE_CODE (constructor_type) == RECORD_TYPE
6049
           && (!constructor_incremental
6050
               || field != constructor_unfilled_fields))
6051
    {
6052
      /* We do this for records but not for unions.  In a union,
6053
         no matter which field is specified, it can be initialized
6054
         right away since it starts at the beginning of the union.  */
6055
      if (constructor_incremental)
6056
        {
6057
          if (!constructor_unfilled_fields)
6058
            set_nonincremental_init ();
6059
          else
6060
            {
6061
              tree bitpos, unfillpos;
6062
 
6063
              bitpos = bit_position (field);
6064
              unfillpos = bit_position (constructor_unfilled_fields);
6065
 
6066
              if (tree_int_cst_lt (bitpos, unfillpos))
6067
                set_nonincremental_init ();
6068
            }
6069
        }
6070
 
6071
      add_pending_init (field, value);
6072
      return;
6073
    }
6074
  else if (TREE_CODE (constructor_type) == UNION_TYPE
6075
           && !VEC_empty (constructor_elt, constructor_elements))
6076
    {
6077
      if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6078
                                       constructor_elements)->value))
6079
        warning_init ("initialized field with side-effects overwritten");
6080
 
6081
      /* We can have just one union field set.  */
6082
      constructor_elements = 0;
6083
    }
6084
 
6085
  /* Otherwise, output this element either to
6086
     constructor_elements or to the assembler file.  */
6087
 
6088
  celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6089
  celt->index = field;
6090
  celt->value = value;
6091
 
6092
  /* Advance the variable that indicates sequential elements output.  */
6093
  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6094
    constructor_unfilled_index
6095
      = size_binop (PLUS_EXPR, constructor_unfilled_index,
6096
                    bitsize_one_node);
6097
  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6098
    {
6099
      constructor_unfilled_fields
6100
        = TREE_CHAIN (constructor_unfilled_fields);
6101
 
6102
      /* Skip any nameless bit fields.  */
6103
      while (constructor_unfilled_fields != 0
6104
             && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6105
             && DECL_NAME (constructor_unfilled_fields) == 0)
6106
        constructor_unfilled_fields =
6107
          TREE_CHAIN (constructor_unfilled_fields);
6108
    }
6109
  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6110
    constructor_unfilled_fields = 0;
6111
 
6112
  /* Now output any pending elements which have become next.  */
6113
  if (pending)
6114
    output_pending_init_elements (0);
6115
}
6116
 
6117
/* Output any pending elements which have become next.
6118
   As we output elements, constructor_unfilled_{fields,index}
6119
   advances, which may cause other elements to become next;
6120
   if so, they too are output.
6121
 
6122
   If ALL is 0, we return when there are
6123
   no more pending elements to output now.
6124
 
6125
   If ALL is 1, we output space as necessary so that
6126
   we can output all the pending elements.  */
6127
 
6128
static void
6129
output_pending_init_elements (int all)
6130
{
6131
  struct init_node *elt = constructor_pending_elts;
6132
  tree next;
6133
 
6134
 retry:
6135
 
6136
  /* Look through the whole pending tree.
6137
     If we find an element that should be output now,
6138
     output it.  Otherwise, set NEXT to the element
6139
     that comes first among those still pending.  */
6140
 
6141
  next = 0;
6142
  while (elt)
6143
    {
6144
      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6145
        {
6146
          if (tree_int_cst_equal (elt->purpose,
6147
                                  constructor_unfilled_index))
6148
            output_init_element (elt->value, true,
6149
                                 TREE_TYPE (constructor_type),
6150
                                 constructor_unfilled_index, 0);
6151
          else if (tree_int_cst_lt (constructor_unfilled_index,
6152
                                    elt->purpose))
6153
            {
6154
              /* Advance to the next smaller node.  */
6155
              if (elt->left)
6156
                elt = elt->left;
6157
              else
6158
                {
6159
                  /* We have reached the smallest node bigger than the
6160
                     current unfilled index.  Fill the space first.  */
6161
                  next = elt->purpose;
6162
                  break;
6163
                }
6164
            }
6165
          else
6166
            {
6167
              /* Advance to the next bigger node.  */
6168
              if (elt->right)
6169
                elt = elt->right;
6170
              else
6171
                {
6172
                  /* We have reached the biggest node in a subtree.  Find
6173
                     the parent of it, which is the next bigger node.  */
6174
                  while (elt->parent && elt->parent->right == elt)
6175
                    elt = elt->parent;
6176
                  elt = elt->parent;
6177
                  if (elt && tree_int_cst_lt (constructor_unfilled_index,
6178
                                              elt->purpose))
6179
                    {
6180
                      next = elt->purpose;
6181
                      break;
6182
                    }
6183
                }
6184
            }
6185
        }
6186
      else if (TREE_CODE (constructor_type) == RECORD_TYPE
6187
               || TREE_CODE (constructor_type) == UNION_TYPE)
6188
        {
6189
          tree ctor_unfilled_bitpos, elt_bitpos;
6190
 
6191
          /* If the current record is complete we are done.  */
6192
          if (constructor_unfilled_fields == 0)
6193
            break;
6194
 
6195
          ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6196
          elt_bitpos = bit_position (elt->purpose);
6197
          /* We can't compare fields here because there might be empty
6198
             fields in between.  */
6199
          if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6200
            {
6201
              constructor_unfilled_fields = elt->purpose;
6202
              output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6203
                                   elt->purpose, 0);
6204
            }
6205
          else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6206
            {
6207
              /* Advance to the next smaller node.  */
6208
              if (elt->left)
6209
                elt = elt->left;
6210
              else
6211
                {
6212
                  /* We have reached the smallest node bigger than the
6213
                     current unfilled field.  Fill the space first.  */
6214
                  next = elt->purpose;
6215
                  break;
6216
                }
6217
            }
6218
          else
6219
            {
6220
              /* Advance to the next bigger node.  */
6221
              if (elt->right)
6222
                elt = elt->right;
6223
              else
6224
                {
6225
                  /* We have reached the biggest node in a subtree.  Find
6226
                     the parent of it, which is the next bigger node.  */
6227
                  while (elt->parent && elt->parent->right == elt)
6228
                    elt = elt->parent;
6229
                  elt = elt->parent;
6230
                  if (elt
6231
                      && (tree_int_cst_lt (ctor_unfilled_bitpos,
6232
                                           bit_position (elt->purpose))))
6233
                    {
6234
                      next = elt->purpose;
6235
                      break;
6236
                    }
6237
                }
6238
            }
6239
        }
6240
    }
6241
 
6242
  /* Ordinarily return, but not if we want to output all
6243
     and there are elements left.  */
6244
  if (!(all && next != 0))
6245
    return;
6246
 
6247
  /* If it's not incremental, just skip over the gap, so that after
6248
     jumping to retry we will output the next successive element.  */
6249
  if (TREE_CODE (constructor_type) == RECORD_TYPE
6250
      || TREE_CODE (constructor_type) == UNION_TYPE)
6251
    constructor_unfilled_fields = next;
6252
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6253
    constructor_unfilled_index = next;
6254
 
6255
  /* ELT now points to the node in the pending tree with the next
6256
     initializer to output.  */
6257
  goto retry;
6258
}
6259
 
6260
/* Add one non-braced element to the current constructor level.
6261
   This adjusts the current position within the constructor's type.
6262
   This may also start or terminate implicit levels
6263
   to handle a partly-braced initializer.
6264
 
6265
   Once this has found the correct level for the new element,
6266
   it calls output_init_element.  */
6267
 
6268
void
6269
process_init_element (struct c_expr value)
6270
{
6271
  tree orig_value = value.value;
6272
  int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6273
  bool strict_string = value.original_code == STRING_CST;
6274
 
6275
  designator_depth = 0;
6276
  designator_erroneous = 0;
6277
 
6278
  /* Handle superfluous braces around string cst as in
6279
     char x[] = {"foo"}; */
6280
  if (string_flag
6281
      && constructor_type
6282
      && TREE_CODE (constructor_type) == ARRAY_TYPE
6283
      && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6284
      && integer_zerop (constructor_unfilled_index))
6285
    {
6286
      if (constructor_stack->replacement_value.value)
6287
        error_init ("excess elements in char array initializer");
6288
      constructor_stack->replacement_value = value;
6289
      return;
6290
    }
6291
 
6292
  if (constructor_stack->replacement_value.value != 0)
6293
    {
6294
      error_init ("excess elements in struct initializer");
6295
      return;
6296
    }
6297
 
6298
  /* Ignore elements of a brace group if it is entirely superfluous
6299
     and has already been diagnosed.  */
6300
  if (constructor_type == 0)
6301
    return;
6302
 
6303
  /* If we've exhausted any levels that didn't have braces,
6304
     pop them now.  */
6305
  while (constructor_stack->implicit)
6306
    {
6307
      if ((TREE_CODE (constructor_type) == RECORD_TYPE
6308
           || TREE_CODE (constructor_type) == UNION_TYPE)
6309
          && constructor_fields == 0)
6310
        process_init_element (pop_init_level (1));
6311
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6312
               && (constructor_max_index == 0
6313
                   || tree_int_cst_lt (constructor_max_index,
6314
                                       constructor_index)))
6315
        process_init_element (pop_init_level (1));
6316
      else
6317
        break;
6318
    }
6319
 
6320
  /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
6321
  if (constructor_range_stack)
6322
    {
6323
      /* If value is a compound literal and we'll be just using its
6324
         content, don't put it into a SAVE_EXPR.  */
6325
      if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6326
          || !require_constant_value
6327
          || flag_isoc99)
6328
        value.value = save_expr (value.value);
6329
    }
6330
 
6331
  while (1)
6332
    {
6333
      if (TREE_CODE (constructor_type) == RECORD_TYPE)
6334
        {
6335
          tree fieldtype;
6336
          enum tree_code fieldcode;
6337
 
6338
          if (constructor_fields == 0)
6339
            {
6340
              pedwarn_init ("excess elements in struct initializer");
6341
              break;
6342
            }
6343
 
6344
          fieldtype = TREE_TYPE (constructor_fields);
6345
          if (fieldtype != error_mark_node)
6346
            fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6347
          fieldcode = TREE_CODE (fieldtype);
6348
 
6349
          /* Error for non-static initialization of a flexible array member.  */
6350
          if (fieldcode == ARRAY_TYPE
6351
              && !require_constant_value
6352
              && TYPE_SIZE (fieldtype) == NULL_TREE
6353
              && TREE_CHAIN (constructor_fields) == NULL_TREE)
6354
            {
6355
              error_init ("non-static initialization of a flexible array member");
6356
              break;
6357
            }
6358
 
6359
          /* Accept a string constant to initialize a subarray.  */
6360
          if (value.value != 0
6361
              && fieldcode == ARRAY_TYPE
6362
              && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6363
              && string_flag)
6364
            value.value = orig_value;
6365
          /* Otherwise, if we have come to a subaggregate,
6366
             and we don't have an element of its type, push into it.  */
6367
          else if (value.value != 0
6368
                   && value.value != error_mark_node
6369
                   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6370
                   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6371
                       || fieldcode == UNION_TYPE))
6372
            {
6373
              push_init_level (1);
6374
              continue;
6375
            }
6376
 
6377
          if (value.value)
6378
            {
6379
              push_member_name (constructor_fields);
6380
              output_init_element (value.value, strict_string,
6381
                                   fieldtype, constructor_fields, 1);
6382
              RESTORE_SPELLING_DEPTH (constructor_depth);
6383
            }
6384
          else
6385
            /* Do the bookkeeping for an element that was
6386
               directly output as a constructor.  */
6387
            {
6388
              /* For a record, keep track of end position of last field.  */
6389
              if (DECL_SIZE (constructor_fields))
6390
                constructor_bit_index
6391
                  = size_binop (PLUS_EXPR,
6392
                                bit_position (constructor_fields),
6393
                                DECL_SIZE (constructor_fields));
6394
 
6395
              /* If the current field was the first one not yet written out,
6396
                 it isn't now, so update.  */
6397
              if (constructor_unfilled_fields == constructor_fields)
6398
                {
6399
                  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6400
                  /* Skip any nameless bit fields.  */
6401
                  while (constructor_unfilled_fields != 0
6402
                         && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6403
                         && DECL_NAME (constructor_unfilled_fields) == 0)
6404
                    constructor_unfilled_fields =
6405
                      TREE_CHAIN (constructor_unfilled_fields);
6406
                }
6407
            }
6408
 
6409
          constructor_fields = TREE_CHAIN (constructor_fields);
6410
          /* Skip any nameless bit fields at the beginning.  */
6411
          while (constructor_fields != 0
6412
                 && DECL_C_BIT_FIELD (constructor_fields)
6413
                 && DECL_NAME (constructor_fields) == 0)
6414
            constructor_fields = TREE_CHAIN (constructor_fields);
6415
        }
6416
      else if (TREE_CODE (constructor_type) == UNION_TYPE)
6417
        {
6418
          tree fieldtype;
6419
          enum tree_code fieldcode;
6420
 
6421
          if (constructor_fields == 0)
6422
            {
6423
              pedwarn_init ("excess elements in union initializer");
6424
              break;
6425
            }
6426
 
6427
          fieldtype = TREE_TYPE (constructor_fields);
6428
          if (fieldtype != error_mark_node)
6429
            fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6430
          fieldcode = TREE_CODE (fieldtype);
6431
 
6432
          /* Warn that traditional C rejects initialization of unions.
6433
             We skip the warning if the value is zero.  This is done
6434
             under the assumption that the zero initializer in user
6435
             code appears conditioned on e.g. __STDC__ to avoid
6436
             "missing initializer" warnings and relies on default
6437
             initialization to zero in the traditional C case.
6438
             We also skip the warning if the initializer is designated,
6439
             again on the assumption that this must be conditional on
6440
             __STDC__ anyway (and we've already complained about the
6441
             member-designator already).  */
6442
          if (!in_system_header && !constructor_designated
6443
              && !(value.value && (integer_zerop (value.value)
6444
                                   || real_zerop (value.value))))
6445
            warning (OPT_Wtraditional, "traditional C rejects initialization "
6446
                     "of unions");
6447
 
6448
          /* Accept a string constant to initialize a subarray.  */
6449
          if (value.value != 0
6450
              && fieldcode == ARRAY_TYPE
6451
              && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6452
              && string_flag)
6453
            value.value = orig_value;
6454
          /* Otherwise, if we have come to a subaggregate,
6455
             and we don't have an element of its type, push into it.  */
6456
          else if (value.value != 0
6457
                   && value.value != error_mark_node
6458
                   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6459
                   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6460
                       || fieldcode == UNION_TYPE))
6461
            {
6462
              push_init_level (1);
6463
              continue;
6464
            }
6465
 
6466
          if (value.value)
6467
            {
6468
              push_member_name (constructor_fields);
6469
              output_init_element (value.value, strict_string,
6470
                                   fieldtype, constructor_fields, 1);
6471
              RESTORE_SPELLING_DEPTH (constructor_depth);
6472
            }
6473
          else
6474
            /* Do the bookkeeping for an element that was
6475
               directly output as a constructor.  */
6476
            {
6477
              constructor_bit_index = DECL_SIZE (constructor_fields);
6478
              constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6479
            }
6480
 
6481
          constructor_fields = 0;
6482
        }
6483
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6484
        {
6485
          tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6486
          enum tree_code eltcode = TREE_CODE (elttype);
6487
 
6488
          /* Accept a string constant to initialize a subarray.  */
6489
          if (value.value != 0
6490
              && eltcode == ARRAY_TYPE
6491
              && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6492
              && string_flag)
6493
            value.value = orig_value;
6494
          /* Otherwise, if we have come to a subaggregate,
6495
             and we don't have an element of its type, push into it.  */
6496
          else if (value.value != 0
6497
                   && value.value != error_mark_node
6498
                   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6499
                   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6500
                       || eltcode == UNION_TYPE))
6501
            {
6502
              push_init_level (1);
6503
              continue;
6504
            }
6505
 
6506
          if (constructor_max_index != 0
6507
              && (tree_int_cst_lt (constructor_max_index, constructor_index)
6508
                  || integer_all_onesp (constructor_max_index)))
6509
            {
6510
              pedwarn_init ("excess elements in array initializer");
6511
              break;
6512
            }
6513
 
6514
          /* Now output the actual element.  */
6515
          if (value.value)
6516
            {
6517
              push_array_bounds (tree_low_cst (constructor_index, 1));
6518
              output_init_element (value.value, strict_string,
6519
                                   elttype, constructor_index, 1);
6520
              RESTORE_SPELLING_DEPTH (constructor_depth);
6521
            }
6522
 
6523
          constructor_index
6524
            = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6525
 
6526
          if (!value.value)
6527
            /* If we are doing the bookkeeping for an element that was
6528
               directly output as a constructor, we must update
6529
               constructor_unfilled_index.  */
6530
            constructor_unfilled_index = constructor_index;
6531
        }
6532
      else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6533
        {
6534
          tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6535
 
6536
         /* Do a basic check of initializer size.  Note that vectors
6537
            always have a fixed size derived from their type.  */
6538
          if (tree_int_cst_lt (constructor_max_index, constructor_index))
6539
            {
6540
              pedwarn_init ("excess elements in vector initializer");
6541
              break;
6542
            }
6543
 
6544
          /* Now output the actual element.  */
6545
          if (value.value)
6546
            output_init_element (value.value, strict_string,
6547
                                 elttype, constructor_index, 1);
6548
 
6549
          constructor_index
6550
            = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6551
 
6552
          if (!value.value)
6553
            /* If we are doing the bookkeeping for an element that was
6554
               directly output as a constructor, we must update
6555
               constructor_unfilled_index.  */
6556
            constructor_unfilled_index = constructor_index;
6557
        }
6558
 
6559
      /* Handle the sole element allowed in a braced initializer
6560
         for a scalar variable.  */
6561
      else if (constructor_type != error_mark_node
6562
               && constructor_fields == 0)
6563
        {
6564
          pedwarn_init ("excess elements in scalar initializer");
6565
          break;
6566
        }
6567
      else
6568
        {
6569
          if (value.value)
6570
            output_init_element (value.value, strict_string,
6571
                                 constructor_type, NULL_TREE, 1);
6572
          constructor_fields = 0;
6573
        }
6574
 
6575
      /* Handle range initializers either at this level or anywhere higher
6576
         in the designator stack.  */
6577
      if (constructor_range_stack)
6578
        {
6579
          struct constructor_range_stack *p, *range_stack;
6580
          int finish = 0;
6581
 
6582
          range_stack = constructor_range_stack;
6583
          constructor_range_stack = 0;
6584
          while (constructor_stack != range_stack->stack)
6585
            {
6586
              gcc_assert (constructor_stack->implicit);
6587
              process_init_element (pop_init_level (1));
6588
            }
6589
          for (p = range_stack;
6590
               !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6591
               p = p->prev)
6592
            {
6593
              gcc_assert (constructor_stack->implicit);
6594
              process_init_element (pop_init_level (1));
6595
            }
6596
 
6597
          p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6598
          if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6599
            finish = 1;
6600
 
6601
          while (1)
6602
            {
6603
              constructor_index = p->index;
6604
              constructor_fields = p->fields;
6605
              if (finish && p->range_end && p->index == p->range_start)
6606
                {
6607
                  finish = 0;
6608
                  p->prev = 0;
6609
                }
6610
              p = p->next;
6611
              if (!p)
6612
                break;
6613
              push_init_level (2);
6614
              p->stack = constructor_stack;
6615
              if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6616
                p->index = p->range_start;
6617
            }
6618
 
6619
          if (!finish)
6620
            constructor_range_stack = range_stack;
6621
          continue;
6622
        }
6623
 
6624
      break;
6625
    }
6626
 
6627
  constructor_range_stack = 0;
6628
}
6629
 
6630
/* Build a complete asm-statement, whose components are a CV_QUALIFIER
6631
   (guaranteed to be 'volatile' or null) and ARGS (represented using
6632
   an ASM_EXPR node).  */
6633
tree
6634
build_asm_stmt (tree cv_qualifier, tree args)
6635
{
6636
  if (!ASM_VOLATILE_P (args) && cv_qualifier)
6637
    ASM_VOLATILE_P (args) = 1;
6638
  return add_stmt (args);
6639
}
6640
 
6641
/* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6642
   some INPUTS, and some CLOBBERS.  The latter three may be NULL.
6643
   SIMPLE indicates whether there was anything at all after the
6644
   string in the asm expression -- asm("blah") and asm("blah" : )
6645
   are subtly different.  We use a ASM_EXPR node to represent this.  */
6646
tree
6647
build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6648
                bool simple)
6649
{
6650
  tree tail;
6651
  tree args;
6652
  int i;
6653
  const char *constraint;
6654
  const char **oconstraints;
6655
  bool allows_mem, allows_reg, is_inout;
6656
  int ninputs, noutputs;
6657
 
6658
  ninputs = list_length (inputs);
6659
  noutputs = list_length (outputs);
6660
  oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6661
 
6662
  string = resolve_asm_operand_names (string, outputs, inputs);
6663
 
6664
  /* Remove output conversions that change the type but not the mode.  */
6665
  for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6666
    {
6667
      tree output = TREE_VALUE (tail);
6668
 
6669
      /* ??? Really, this should not be here.  Users should be using a
6670
         proper lvalue, dammit.  But there's a long history of using casts
6671
         in the output operands.  In cases like longlong.h, this becomes a
6672
         primitive form of typechecking -- if the cast can be removed, then
6673
         the output operand had a type of the proper width; otherwise we'll
6674
         get an error.  Gross, but ...  */
6675
      STRIP_NOPS (output);
6676
 
6677
      if (!lvalue_or_else (output, lv_asm))
6678
        output = error_mark_node;
6679
 
6680
      if (output != error_mark_node
6681
          && (TREE_READONLY (output)
6682
              || TYPE_READONLY (TREE_TYPE (output))
6683
              || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6684
                   || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6685
                  && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6686
        readonly_error (output, lv_asm);
6687
 
6688
      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6689
      oconstraints[i] = constraint;
6690
 
6691
      if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6692
                                   &allows_mem, &allows_reg, &is_inout))
6693
        {
6694
          /* If the operand is going to end up in memory,
6695
             mark it addressable.  */
6696
          if (!allows_reg && !c_mark_addressable (output))
6697
            output = error_mark_node;
6698
        }
6699
      else
6700
        output = error_mark_node;
6701
 
6702
      TREE_VALUE (tail) = output;
6703
    }
6704
 
6705
  for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6706
    {
6707
      tree input;
6708
 
6709
      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6710
      input = TREE_VALUE (tail);
6711
 
6712
      if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6713
                                  oconstraints, &allows_mem, &allows_reg))
6714
        {
6715
          /* If the operand is going to end up in memory,
6716
             mark it addressable.  */
6717
          if (!allows_reg && allows_mem)
6718
            {
6719
              /* Strip the nops as we allow this case.  FIXME, this really
6720
                 should be rejected or made deprecated.  */
6721
              STRIP_NOPS (input);
6722
              if (!c_mark_addressable (input))
6723
                input = error_mark_node;
6724
          }
6725
        }
6726
      else
6727
        input = error_mark_node;
6728
 
6729
      TREE_VALUE (tail) = input;
6730
    }
6731
 
6732
  args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6733
 
6734
  /* asm statements without outputs, including simple ones, are treated
6735
     as volatile.  */
6736
  ASM_INPUT_P (args) = simple;
6737
  ASM_VOLATILE_P (args) = (noutputs == 0);
6738
 
6739
  return args;
6740
}
6741
 
6742
/* Generate a goto statement to LABEL.  */
6743
 
6744
tree
6745
c_finish_goto_label (tree label)
6746
{
6747
  tree decl = lookup_label (label);
6748
  if (!decl)
6749
    return NULL_TREE;
6750
 
6751
  if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6752
    {
6753
      error ("jump into statement expression");
6754
      return NULL_TREE;
6755
    }
6756
 
6757
  if (C_DECL_UNJUMPABLE_VM (decl))
6758
    {
6759
      error ("jump into scope of identifier with variably modified type");
6760
      return NULL_TREE;
6761
    }
6762
 
6763
  if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6764
    {
6765
      /* No jump from outside this statement expression context, so
6766
         record that there is a jump from within this context.  */
6767
      struct c_label_list *nlist;
6768
      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6769
      nlist->next = label_context_stack_se->labels_used;
6770
      nlist->label = decl;
6771
      label_context_stack_se->labels_used = nlist;
6772
    }
6773
 
6774
  if (!C_DECL_UNDEFINABLE_VM (decl))
6775
    {
6776
      /* No jump from outside this context context of identifiers with
6777
         variably modified type, so record that there is a jump from
6778
         within this context.  */
6779
      struct c_label_list *nlist;
6780
      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6781
      nlist->next = label_context_stack_vm->labels_used;
6782
      nlist->label = decl;
6783
      label_context_stack_vm->labels_used = nlist;
6784
    }
6785
 
6786
  TREE_USED (decl) = 1;
6787
  return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6788
}
6789
 
6790
/* Generate a computed goto statement to EXPR.  */
6791
 
6792
tree
6793
c_finish_goto_ptr (tree expr)
6794
{
6795
  if (pedantic)
6796
    pedwarn ("ISO C forbids %<goto *expr;%>");
6797
  expr = convert (ptr_type_node, expr);
6798
  return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6799
}
6800
 
6801
/* Generate a C `return' statement.  RETVAL is the expression for what
6802
   to return, or a null pointer for `return;' with no value.  */
6803
 
6804
tree
6805
c_finish_return (tree retval)
6806
{
6807
  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6808
  bool no_warning = false;
6809
 
6810
  if (TREE_THIS_VOLATILE (current_function_decl))
6811
    warning (0, "function declared %<noreturn%> has a %<return%> statement");
6812
 
6813
  if (!retval)
6814
    {
6815
      current_function_returns_null = 1;
6816
      if ((warn_return_type || flag_isoc99)
6817
          && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6818
        {
6819
          pedwarn_c99 ("%<return%> with no value, in "
6820
                       "function returning non-void");
6821
          no_warning = true;
6822
        }
6823
    }
6824
  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6825
    {
6826
      current_function_returns_null = 1;
6827
      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6828
        pedwarn ("%<return%> with a value, in function returning void");
6829
    }
6830
  else
6831
    {
6832
      tree t = convert_for_assignment (valtype, retval, ic_return,
6833
                                       NULL_TREE, NULL_TREE, 0);
6834
      tree res = DECL_RESULT (current_function_decl);
6835
      tree inner;
6836
 
6837
      current_function_returns_value = 1;
6838
      if (t == error_mark_node)
6839
        return NULL_TREE;
6840
 
6841
      inner = t = convert (TREE_TYPE (res), t);
6842
 
6843
      /* Strip any conversions, additions, and subtractions, and see if
6844
         we are returning the address of a local variable.  Warn if so.  */
6845
      while (1)
6846
        {
6847
          switch (TREE_CODE (inner))
6848
            {
6849
            case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
6850
            case PLUS_EXPR:
6851
              inner = TREE_OPERAND (inner, 0);
6852
              continue;
6853
 
6854
            case MINUS_EXPR:
6855
              /* If the second operand of the MINUS_EXPR has a pointer
6856
                 type (or is converted from it), this may be valid, so
6857
                 don't give a warning.  */
6858
              {
6859
                tree op1 = TREE_OPERAND (inner, 1);
6860
 
6861
                while (!POINTER_TYPE_P (TREE_TYPE (op1))
6862
                       && (TREE_CODE (op1) == NOP_EXPR
6863
                           || TREE_CODE (op1) == NON_LVALUE_EXPR
6864
                           || TREE_CODE (op1) == CONVERT_EXPR))
6865
                  op1 = TREE_OPERAND (op1, 0);
6866
 
6867
                if (POINTER_TYPE_P (TREE_TYPE (op1)))
6868
                  break;
6869
 
6870
                inner = TREE_OPERAND (inner, 0);
6871
                continue;
6872
              }
6873
 
6874
            case ADDR_EXPR:
6875
              inner = TREE_OPERAND (inner, 0);
6876
 
6877
              while (REFERENCE_CLASS_P (inner)
6878
                     && TREE_CODE (inner) != INDIRECT_REF)
6879
                inner = TREE_OPERAND (inner, 0);
6880
 
6881
              if (DECL_P (inner)
6882
                  && !DECL_EXTERNAL (inner)
6883
                  && !TREE_STATIC (inner)
6884
                  && DECL_CONTEXT (inner) == current_function_decl)
6885
                warning (0, "function returns address of local variable");
6886
              break;
6887
 
6888
            default:
6889
              break;
6890
            }
6891
 
6892
          break;
6893
        }
6894
 
6895
      retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
6896
    }
6897
 
6898
  ret_stmt = build_stmt (RETURN_EXPR, retval);
6899
  TREE_NO_WARNING (ret_stmt) |= no_warning;
6900
  return add_stmt (ret_stmt);
6901
}
6902
 
6903
struct c_switch {
6904
  /* The SWITCH_EXPR being built.  */
6905
  tree switch_expr;
6906
 
6907
  /* The original type of the testing expression, i.e. before the
6908
     default conversion is applied.  */
6909
  tree orig_type;
6910
 
6911
  /* A splay-tree mapping the low element of a case range to the high
6912
     element, or NULL_TREE if there is no high element.  Used to
6913
     determine whether or not a new case label duplicates an old case
6914
     label.  We need a tree, rather than simply a hash table, because
6915
     of the GNU case range extension.  */
6916
  splay_tree cases;
6917
 
6918
  /* Number of nested statement expressions within this switch
6919
     statement; if nonzero, case and default labels may not
6920
     appear.  */
6921
  unsigned int blocked_stmt_expr;
6922
 
6923
  /* Scope of outermost declarations of identifiers with variably
6924
     modified type within this switch statement; if nonzero, case and
6925
     default labels may not appear.  */
6926
  unsigned int blocked_vm;
6927
 
6928
  /* The next node on the stack.  */
6929
  struct c_switch *next;
6930
};
6931
 
6932
/* A stack of the currently active switch statements.  The innermost
6933
   switch statement is on the top of the stack.  There is no need to
6934
   mark the stack for garbage collection because it is only active
6935
   during the processing of the body of a function, and we never
6936
   collect at that point.  */
6937
 
6938
struct c_switch *c_switch_stack;
6939
 
6940
/* Start a C switch statement, testing expression EXP.  Return the new
6941
   SWITCH_EXPR.  */
6942
 
6943
tree
6944
c_start_case (tree exp)
6945
{
6946
  enum tree_code code;
6947
  tree type, orig_type = error_mark_node;
6948
  struct c_switch *cs;
6949
 
6950
  if (exp != error_mark_node)
6951
    {
6952
      code = TREE_CODE (TREE_TYPE (exp));
6953
      orig_type = TREE_TYPE (exp);
6954
 
6955
      if (!INTEGRAL_TYPE_P (orig_type)
6956
          && code != ERROR_MARK)
6957
        {
6958
          error ("switch quantity not an integer");
6959
          exp = integer_zero_node;
6960
          orig_type = error_mark_node;
6961
        }
6962
      else
6963
        {
6964
          type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
6965
 
6966
          if (!in_system_header
6967
              && (type == long_integer_type_node
6968
                  || type == long_unsigned_type_node))
6969
            warning (OPT_Wtraditional, "%<long%> switch expression not "
6970
                     "converted to %<int%> in ISO C");
6971
 
6972
          exp = default_conversion (exp);
6973
          type = TREE_TYPE (exp);
6974
        }
6975
    }
6976
 
6977
  /* Add this new SWITCH_EXPR to the stack.  */
6978
  cs = XNEW (struct c_switch);
6979
  cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
6980
  cs->orig_type = orig_type;
6981
  cs->cases = splay_tree_new (case_compare, NULL, NULL);
6982
  cs->blocked_stmt_expr = 0;
6983
  cs->blocked_vm = 0;
6984
  cs->next = c_switch_stack;
6985
  c_switch_stack = cs;
6986
 
6987
  return add_stmt (cs->switch_expr);
6988
}
6989
 
6990
/* Process a case label.  */
6991
 
6992
tree
6993
do_case (tree low_value, tree high_value)
6994
{
6995
  tree label = NULL_TREE;
6996
 
6997
  if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
6998
      && !c_switch_stack->blocked_vm)
6999
    {
7000
      label = c_add_case_label (c_switch_stack->cases,
7001
                                SWITCH_COND (c_switch_stack->switch_expr),
7002
                                c_switch_stack->orig_type,
7003
                                low_value, high_value);
7004
      if (label == error_mark_node)
7005
        label = NULL_TREE;
7006
    }
7007
  else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7008
    {
7009
      if (low_value)
7010
        error ("case label in statement expression not containing "
7011
               "enclosing switch statement");
7012
      else
7013
        error ("%<default%> label in statement expression not containing "
7014
               "enclosing switch statement");
7015
    }
7016
  else if (c_switch_stack && c_switch_stack->blocked_vm)
7017
    {
7018
      if (low_value)
7019
        error ("case label in scope of identifier with variably modified "
7020
               "type not containing enclosing switch statement");
7021
      else
7022
        error ("%<default%> label in scope of identifier with variably "
7023
               "modified type not containing enclosing switch statement");
7024
    }
7025
  else if (low_value)
7026
    error ("case label not within a switch statement");
7027
  else
7028
    error ("%<default%> label not within a switch statement");
7029
 
7030
  return label;
7031
}
7032
 
7033
/* Finish the switch statement.  */
7034
 
7035
void
7036
c_finish_case (tree body)
7037
{
7038
  struct c_switch *cs = c_switch_stack;
7039
  location_t switch_location;
7040
 
7041
  SWITCH_BODY (cs->switch_expr) = body;
7042
 
7043
  /* We must not be within a statement expression nested in the switch
7044
     at this point; we might, however, be within the scope of an
7045
     identifier with variably modified type nested in the switch.  */
7046
  gcc_assert (!cs->blocked_stmt_expr);
7047
 
7048
  /* Emit warnings as needed.  */
7049
  if (EXPR_HAS_LOCATION (cs->switch_expr))
7050
    switch_location = EXPR_LOCATION (cs->switch_expr);
7051
  else
7052
    switch_location = input_location;
7053
  c_do_switch_warnings (cs->cases, switch_location,
7054
                        TREE_TYPE (cs->switch_expr),
7055
                        SWITCH_COND (cs->switch_expr));
7056
 
7057
  /* Pop the stack.  */
7058
  c_switch_stack = cs->next;
7059
  splay_tree_delete (cs->cases);
7060
  XDELETE (cs);
7061
}
7062
 
7063
/* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
7064
   THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7065
   may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
7066
   statement, and was not surrounded with parenthesis.  */
7067
 
7068
void
7069
c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7070
                  tree else_block, bool nested_if)
7071
{
7072
  tree stmt;
7073
 
7074
  /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
7075
  if (warn_parentheses && nested_if && else_block == NULL)
7076
    {
7077
      tree inner_if = then_block;
7078
 
7079
      /* We know from the grammar productions that there is an IF nested
7080
         within THEN_BLOCK.  Due to labels and c99 conditional declarations,
7081
         it might not be exactly THEN_BLOCK, but should be the last
7082
         non-container statement within.  */
7083
      while (1)
7084
        switch (TREE_CODE (inner_if))
7085
          {
7086
          case COND_EXPR:
7087
            goto found;
7088
          case BIND_EXPR:
7089
            inner_if = BIND_EXPR_BODY (inner_if);
7090
            break;
7091
          case STATEMENT_LIST:
7092
            inner_if = expr_last (then_block);
7093
            break;
7094
          case TRY_FINALLY_EXPR:
7095
          case TRY_CATCH_EXPR:
7096
            inner_if = TREE_OPERAND (inner_if, 0);
7097
            break;
7098
          default:
7099
            gcc_unreachable ();
7100
          }
7101
    found:
7102
 
7103
      if (COND_EXPR_ELSE (inner_if))
7104
         warning (OPT_Wparentheses,
7105
                  "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7106
                  &if_locus);
7107
    }
7108
 
7109
  /* Diagnose ";" via the special empty statement node that we create.  */
7110
  if (extra_warnings)
7111
    {
7112
      tree *inner_then = &then_block, *inner_else = &else_block;
7113
 
7114
      if (TREE_CODE (*inner_then) == STATEMENT_LIST
7115
          && STATEMENT_LIST_TAIL (*inner_then))
7116
        inner_then = &STATEMENT_LIST_TAIL (*inner_then)->stmt;
7117
      if (*inner_else && TREE_CODE (*inner_else) == STATEMENT_LIST
7118
          && STATEMENT_LIST_TAIL (*inner_else))
7119
        inner_else = &STATEMENT_LIST_TAIL (*inner_else)->stmt;
7120
 
7121
      if (TREE_CODE (*inner_then) == NOP_EXPR && !TREE_TYPE (*inner_then))
7122
        {
7123
          if (!*inner_else)
7124
            warning (0, "%Hempty body in an if-statement",
7125
                     EXPR_LOCUS (*inner_then));
7126
 
7127
          *inner_then = alloc_stmt_list ();
7128
        }
7129
      if (*inner_else
7130
          && TREE_CODE (*inner_else) == NOP_EXPR
7131
          && !TREE_TYPE (*inner_else))
7132
        {
7133
          warning (0, "%Hempty body in an else-statement",
7134
                   EXPR_LOCUS (*inner_else));
7135
 
7136
          *inner_else = alloc_stmt_list ();
7137
        }
7138
    }
7139
 
7140
  stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7141
  SET_EXPR_LOCATION (stmt, if_locus);
7142
  add_stmt (stmt);
7143
}
7144
 
7145
/* Emit a general-purpose loop construct.  START_LOCUS is the location of
7146
   the beginning of the loop.  COND is the loop condition.  COND_IS_FIRST
7147
   is false for DO loops.  INCR is the FOR increment expression.  BODY is
7148
   the statement controlled by the loop.  BLAB is the break label.  CLAB is
7149
   the continue label.  Everything is allowed to be NULL.  */
7150
 
7151
void
7152
c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7153
               tree blab, tree clab, bool cond_is_first)
7154
{
7155
  tree entry = NULL, exit = NULL, t;
7156
 
7157
  /* If the condition is zero don't generate a loop construct.  */
7158
  if (cond && integer_zerop (cond))
7159
    {
7160
      if (cond_is_first)
7161
        {
7162
          t = build_and_jump (&blab);
7163
          SET_EXPR_LOCATION (t, start_locus);
7164
          add_stmt (t);
7165
        }
7166
    }
7167
  else
7168
    {
7169
      tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7170
 
7171
      /* If we have an exit condition, then we build an IF with gotos either
7172
         out of the loop, or to the top of it.  If there's no exit condition,
7173
         then we just build a jump back to the top.  */
7174
      exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7175
 
7176
      if (cond && !integer_nonzerop (cond))
7177
        {
7178
          /* Canonicalize the loop condition to the end.  This means
7179
             generating a branch to the loop condition.  Reuse the
7180
             continue label, if possible.  */
7181
          if (cond_is_first)
7182
            {
7183
              if (incr || !clab)
7184
                {
7185
                  entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7186
                  t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7187
                }
7188
              else
7189
                t = build1 (GOTO_EXPR, void_type_node, clab);
7190
              SET_EXPR_LOCATION (t, start_locus);
7191
              add_stmt (t);
7192
            }
7193
 
7194
          t = build_and_jump (&blab);
7195
          exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7196
          if (cond_is_first)
7197
            SET_EXPR_LOCATION (exit, start_locus);
7198
          else
7199
            SET_EXPR_LOCATION (exit, input_location);
7200
        }
7201
 
7202
      add_stmt (top);
7203
    }
7204
 
7205
  if (body)
7206
    add_stmt (body);
7207
  if (clab)
7208
    add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7209
  if (incr)
7210
    add_stmt (incr);
7211
  if (entry)
7212
    add_stmt (entry);
7213
  if (exit)
7214
    add_stmt (exit);
7215
  if (blab)
7216
    add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7217
}
7218
 
7219
tree
7220
c_finish_bc_stmt (tree *label_p, bool is_break)
7221
{
7222
  bool skip;
7223
  tree label = *label_p;
7224
 
7225
  /* In switch statements break is sometimes stylistically used after
7226
     a return statement.  This can lead to spurious warnings about
7227
     control reaching the end of a non-void function when it is
7228
     inlined.  Note that we are calling block_may_fallthru with
7229
     language specific tree nodes; this works because
7230
     block_may_fallthru returns true when given something it does not
7231
     understand.  */
7232
  skip = !block_may_fallthru (cur_stmt_list);
7233
 
7234
  if (!label)
7235
    {
7236
      if (!skip)
7237
        *label_p = label = create_artificial_label ();
7238
    }
7239
  else if (TREE_CODE (label) != LABEL_DECL)
7240
    {
7241
      if (is_break)
7242
        error ("break statement not within loop or switch");
7243
      else
7244
        error ("continue statement not within a loop");
7245
      return NULL_TREE;
7246
    }
7247
 
7248
  if (skip)
7249
    return NULL_TREE;
7250
 
7251
  return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7252
}
7253
 
7254
/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */
7255
 
7256
static void
7257
emit_side_effect_warnings (tree expr)
7258
{
7259
  if (expr == error_mark_node)
7260
    ;
7261
  else if (!TREE_SIDE_EFFECTS (expr))
7262
    {
7263
      if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7264
        warning (0, "%Hstatement with no effect",
7265
                 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7266
    }
7267
  else if (warn_unused_value)
7268
    warn_if_unused_value (expr, input_location);
7269
}
7270
 
7271
/* Process an expression as if it were a complete statement.  Emit
7272
   diagnostics, but do not call ADD_STMT.  */
7273
 
7274
tree
7275
c_process_expr_stmt (tree expr)
7276
{
7277
  if (!expr)
7278
    return NULL_TREE;
7279
 
7280
  if (warn_sequence_point)
7281
    verify_sequence_points (expr);
7282
 
7283
  if (TREE_TYPE (expr) != error_mark_node
7284
      && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7285
      && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7286
    error ("expression statement has incomplete type");
7287
 
7288
  /* If we're not processing a statement expression, warn about unused values.
7289
     Warnings for statement expressions will be emitted later, once we figure
7290
     out which is the result.  */
7291
  if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7292
      && (extra_warnings || warn_unused_value))
7293
    emit_side_effect_warnings (expr);
7294
 
7295
  /* If the expression is not of a type to which we cannot assign a line
7296
     number, wrap the thing in a no-op NOP_EXPR.  */
7297
  if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7298
    expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7299
 
7300
  if (EXPR_P (expr))
7301
    SET_EXPR_LOCATION (expr, input_location);
7302
 
7303
  return expr;
7304
}
7305
 
7306
/* Emit an expression as a statement.  */
7307
 
7308
tree
7309
c_finish_expr_stmt (tree expr)
7310
{
7311
  if (expr)
7312
    return add_stmt (c_process_expr_stmt (expr));
7313
  else
7314
    return NULL;
7315
}
7316
 
7317
/* Do the opposite and emit a statement as an expression.  To begin,
7318
   create a new binding level and return it.  */
7319
 
7320
tree
7321
c_begin_stmt_expr (void)
7322
{
7323
  tree ret;
7324
  struct c_label_context_se *nstack;
7325
  struct c_label_list *glist;
7326
 
7327
  /* We must force a BLOCK for this level so that, if it is not expanded
7328
     later, there is a way to turn off the entire subtree of blocks that
7329
     are contained in it.  */
7330
  keep_next_level ();
7331
  ret = c_begin_compound_stmt (true);
7332
  if (c_switch_stack)
7333
    {
7334
      c_switch_stack->blocked_stmt_expr++;
7335
      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7336
    }
7337
  for (glist = label_context_stack_se->labels_used;
7338
       glist != NULL;
7339
       glist = glist->next)
7340
    {
7341
      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7342
    }
7343
  nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7344
  nstack->labels_def = NULL;
7345
  nstack->labels_used = NULL;
7346
  nstack->next = label_context_stack_se;
7347
  label_context_stack_se = nstack;
7348
 
7349
  /* Mark the current statement list as belonging to a statement list.  */
7350
  STATEMENT_LIST_STMT_EXPR (ret) = 1;
7351
 
7352
  return ret;
7353
}
7354
 
7355
tree
7356
c_finish_stmt_expr (tree body)
7357
{
7358
  tree last, type, tmp, val;
7359
  tree *last_p;
7360
  struct c_label_list *dlist, *glist, *glist_prev = NULL;
7361
 
7362
  body = c_end_compound_stmt (body, true);
7363
  if (c_switch_stack)
7364
    {
7365
      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7366
      c_switch_stack->blocked_stmt_expr--;
7367
    }
7368
  /* It is no longer possible to jump to labels defined within this
7369
     statement expression.  */
7370
  for (dlist = label_context_stack_se->labels_def;
7371
       dlist != NULL;
7372
       dlist = dlist->next)
7373
    {
7374
      C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7375
    }
7376
  /* It is again possible to define labels with a goto just outside
7377
     this statement expression.  */
7378
  for (glist = label_context_stack_se->next->labels_used;
7379
       glist != NULL;
7380
       glist = glist->next)
7381
    {
7382
      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7383
      glist_prev = glist;
7384
    }
7385
  if (glist_prev != NULL)
7386
    glist_prev->next = label_context_stack_se->labels_used;
7387
  else
7388
    label_context_stack_se->next->labels_used
7389
      = label_context_stack_se->labels_used;
7390
  label_context_stack_se = label_context_stack_se->next;
7391
 
7392
  /* Locate the last statement in BODY.  See c_end_compound_stmt
7393
     about always returning a BIND_EXPR.  */
7394
  last_p = &BIND_EXPR_BODY (body);
7395
  last = BIND_EXPR_BODY (body);
7396
 
7397
 continue_searching:
7398
  if (TREE_CODE (last) == STATEMENT_LIST)
7399
    {
7400
      tree_stmt_iterator i;
7401
 
7402
      /* This can happen with degenerate cases like ({ }).  No value.  */
7403
      if (!TREE_SIDE_EFFECTS (last))
7404
        return body;
7405
 
7406
      /* If we're supposed to generate side effects warnings, process
7407
         all of the statements except the last.  */
7408
      if (extra_warnings || warn_unused_value)
7409
        {
7410
          for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7411
            emit_side_effect_warnings (tsi_stmt (i));
7412
        }
7413
      else
7414
        i = tsi_last (last);
7415
      last_p = tsi_stmt_ptr (i);
7416
      last = *last_p;
7417
    }
7418
 
7419
  /* If the end of the list is exception related, then the list was split
7420
     by a call to push_cleanup.  Continue searching.  */
7421
  if (TREE_CODE (last) == TRY_FINALLY_EXPR
7422
      || TREE_CODE (last) == TRY_CATCH_EXPR)
7423
    {
7424
      last_p = &TREE_OPERAND (last, 0);
7425
      last = *last_p;
7426
      goto continue_searching;
7427
    }
7428
 
7429
  /* In the case that the BIND_EXPR is not necessary, return the
7430
     expression out from inside it.  */
7431
  if (last == error_mark_node
7432
      || (last == BIND_EXPR_BODY (body)
7433
          && BIND_EXPR_VARS (body) == NULL))
7434
    {
7435
      /* Do not warn if the return value of a statement expression is
7436
         unused.  */
7437
      if (EXPR_P (last))
7438
        TREE_NO_WARNING (last) = 1;
7439
      return last;
7440
    }
7441
 
7442
  /* Extract the type of said expression.  */
7443
  type = TREE_TYPE (last);
7444
 
7445
  /* If we're not returning a value at all, then the BIND_EXPR that
7446
     we already have is a fine expression to return.  */
7447
  if (!type || VOID_TYPE_P (type))
7448
    return body;
7449
 
7450
  /* Now that we've located the expression containing the value, it seems
7451
     silly to make voidify_wrapper_expr repeat the process.  Create a
7452
     temporary of the appropriate type and stick it in a TARGET_EXPR.  */
7453
  tmp = create_tmp_var_raw (type, NULL);
7454
 
7455
  /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
7456
     tree_expr_nonnegative_p giving up immediately.  */
7457
  val = last;
7458
  if (TREE_CODE (val) == NOP_EXPR
7459
      && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7460
    val = TREE_OPERAND (val, 0);
7461
 
7462
  *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7463
  SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7464
 
7465
  return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7466
}
7467
 
7468
/* Begin the scope of an identifier of variably modified type, scope
7469
   number SCOPE.  Jumping from outside this scope to inside it is not
7470
   permitted.  */
7471
 
7472
void
7473
c_begin_vm_scope (unsigned int scope)
7474
{
7475
  struct c_label_context_vm *nstack;
7476
  struct c_label_list *glist;
7477
 
7478
  gcc_assert (scope > 0);
7479
  if (c_switch_stack && !c_switch_stack->blocked_vm)
7480
    c_switch_stack->blocked_vm = scope;
7481
  for (glist = label_context_stack_vm->labels_used;
7482
       glist != NULL;
7483
       glist = glist->next)
7484
    {
7485
      C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7486
    }
7487
  nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7488
  nstack->labels_def = NULL;
7489
  nstack->labels_used = NULL;
7490
  nstack->scope = scope;
7491
  nstack->next = label_context_stack_vm;
7492
  label_context_stack_vm = nstack;
7493
}
7494
 
7495
/* End a scope which may contain identifiers of variably modified
7496
   type, scope number SCOPE.  */
7497
 
7498
void
7499
c_end_vm_scope (unsigned int scope)
7500
{
7501
  if (label_context_stack_vm == NULL)
7502
    return;
7503
  if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7504
    c_switch_stack->blocked_vm = 0;
7505
  /* We may have a number of nested scopes of identifiers with
7506
     variably modified type, all at this depth.  Pop each in turn.  */
7507
  while (label_context_stack_vm->scope == scope)
7508
    {
7509
      struct c_label_list *dlist, *glist, *glist_prev = NULL;
7510
 
7511
      /* It is no longer possible to jump to labels defined within this
7512
         scope.  */
7513
      for (dlist = label_context_stack_vm->labels_def;
7514
           dlist != NULL;
7515
           dlist = dlist->next)
7516
        {
7517
          C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7518
        }
7519
      /* It is again possible to define labels with a goto just outside
7520
         this scope.  */
7521
      for (glist = label_context_stack_vm->next->labels_used;
7522
           glist != NULL;
7523
           glist = glist->next)
7524
        {
7525
          C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7526
          glist_prev = glist;
7527
        }
7528
      if (glist_prev != NULL)
7529
        glist_prev->next = label_context_stack_vm->labels_used;
7530
      else
7531
        label_context_stack_vm->next->labels_used
7532
          = label_context_stack_vm->labels_used;
7533
      label_context_stack_vm = label_context_stack_vm->next;
7534
    }
7535
}
7536
 
7537
/* Begin and end compound statements.  This is as simple as pushing
7538
   and popping new statement lists from the tree.  */
7539
 
7540
tree
7541
c_begin_compound_stmt (bool do_scope)
7542
{
7543
  tree stmt = push_stmt_list ();
7544
  if (do_scope)
7545
    push_scope ();
7546
  return stmt;
7547
}
7548
 
7549
tree
7550
c_end_compound_stmt (tree stmt, bool do_scope)
7551
{
7552
  tree block = NULL;
7553
 
7554
  if (do_scope)
7555
    {
7556
      if (c_dialect_objc ())
7557
        objc_clear_super_receiver ();
7558
      block = pop_scope ();
7559
    }
7560
 
7561
  stmt = pop_stmt_list (stmt);
7562
  stmt = c_build_bind_expr (block, stmt);
7563
 
7564
  /* If this compound statement is nested immediately inside a statement
7565
     expression, then force a BIND_EXPR to be created.  Otherwise we'll
7566
     do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
7567
     STATEMENT_LISTs merge, and thus we can lose track of what statement
7568
     was really last.  */
7569
  if (cur_stmt_list
7570
      && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7571
      && TREE_CODE (stmt) != BIND_EXPR)
7572
    {
7573
      stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7574
      TREE_SIDE_EFFECTS (stmt) = 1;
7575
    }
7576
 
7577
  return stmt;
7578
}
7579
 
7580
/* Queue a cleanup.  CLEANUP is an expression/statement to be executed
7581
   when the current scope is exited.  EH_ONLY is true when this is not
7582
   meant to apply to normal control flow transfer.  */
7583
 
7584
void
7585
push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7586
{
7587
  enum tree_code code;
7588
  tree stmt, list;
7589
  bool stmt_expr;
7590
 
7591
  code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7592
  stmt = build_stmt (code, NULL, cleanup);
7593
  add_stmt (stmt);
7594
  stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7595
  list = push_stmt_list ();
7596
  TREE_OPERAND (stmt, 0) = list;
7597
  STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7598
}
7599
 
7600
/* Build a binary-operation expression without default conversions.
7601
   CODE is the kind of expression to build.
7602
   This function differs from `build' in several ways:
7603
   the data type of the result is computed and recorded in it,
7604
   warnings are generated if arg data types are invalid,
7605
   special handling for addition and subtraction of pointers is known,
7606
   and some optimization is done (operations on narrow ints
7607
   are done in the narrower type when that gives the same result).
7608
   Constant folding is also done before the result is returned.
7609
 
7610
   Note that the operands will never have enumeral types, or function
7611
   or array types, because either they will have the default conversions
7612
   performed or they have both just been converted to some other type in which
7613
   the arithmetic is to be done.  */
7614
 
7615
tree
7616
build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7617
                 int convert_p)
7618
{
7619
  tree type0, type1;
7620
  enum tree_code code0, code1;
7621
  tree op0, op1;
7622
  const char *invalid_op_diag;
7623
 
7624
  /* Expression code to give to the expression when it is built.
7625
     Normally this is CODE, which is what the caller asked for,
7626
     but in some special cases we change it.  */
7627
  enum tree_code resultcode = code;
7628
 
7629
  /* Data type in which the computation is to be performed.
7630
     In the simplest cases this is the common type of the arguments.  */
7631
  tree result_type = NULL;
7632
 
7633
  /* Nonzero means operands have already been type-converted
7634
     in whatever way is necessary.
7635
     Zero means they need to be converted to RESULT_TYPE.  */
7636
  int converted = 0;
7637
 
7638
  /* Nonzero means create the expression with this type, rather than
7639
     RESULT_TYPE.  */
7640
  tree build_type = 0;
7641
 
7642
  /* Nonzero means after finally constructing the expression
7643
     convert it to this type.  */
7644
  tree final_type = 0;
7645
 
7646
  /* Nonzero if this is an operation like MIN or MAX which can
7647
     safely be computed in short if both args are promoted shorts.
7648
     Also implies COMMON.
7649
     -1 indicates a bitwise operation; this makes a difference
7650
     in the exact conditions for when it is safe to do the operation
7651
     in a narrower mode.  */
7652
  int shorten = 0;
7653
 
7654
  /* Nonzero if this is a comparison operation;
7655
     if both args are promoted shorts, compare the original shorts.
7656
     Also implies COMMON.  */
7657
  int short_compare = 0;
7658
 
7659
  /* Nonzero if this is a right-shift operation, which can be computed on the
7660
     original short and then promoted if the operand is a promoted short.  */
7661
  int short_shift = 0;
7662
 
7663
  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
7664
  int common = 0;
7665
 
7666
  /* True means types are compatible as far as ObjC is concerned.  */
7667
  bool objc_ok;
7668
 
7669
  if (convert_p)
7670
    {
7671
      op0 = default_conversion (orig_op0);
7672
      op1 = default_conversion (orig_op1);
7673
    }
7674
  else
7675
    {
7676
      op0 = orig_op0;
7677
      op1 = orig_op1;
7678
    }
7679
 
7680
  type0 = TREE_TYPE (op0);
7681
  type1 = TREE_TYPE (op1);
7682
 
7683
  /* The expression codes of the data types of the arguments tell us
7684
     whether the arguments are integers, floating, pointers, etc.  */
7685
  code0 = TREE_CODE (type0);
7686
  code1 = TREE_CODE (type1);
7687
 
7688
  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
7689
  STRIP_TYPE_NOPS (op0);
7690
  STRIP_TYPE_NOPS (op1);
7691
 
7692
  /* If an error was already reported for one of the arguments,
7693
     avoid reporting another error.  */
7694
 
7695
  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7696
    return error_mark_node;
7697
 
7698
  if ((invalid_op_diag
7699
       = targetm.invalid_binary_op (code, type0, type1)))
7700
    {
7701
      error (invalid_op_diag);
7702
      return error_mark_node;
7703
    }
7704
 
7705
  objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7706
 
7707
  switch (code)
7708
    {
7709
    case PLUS_EXPR:
7710
      /* Handle the pointer + int case.  */
7711
      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7712
        return pointer_int_sum (PLUS_EXPR, op0, op1);
7713
      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7714
        return pointer_int_sum (PLUS_EXPR, op1, op0);
7715
      else
7716
        common = 1;
7717
      break;
7718
 
7719
    case MINUS_EXPR:
7720
      /* Subtraction of two similar pointers.
7721
         We must subtract them as integers, then divide by object size.  */
7722
      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7723
          && comp_target_types (type0, type1))
7724
        return pointer_diff (op0, op1);
7725
      /* Handle pointer minus int.  Just like pointer plus int.  */
7726
      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7727
        return pointer_int_sum (MINUS_EXPR, op0, op1);
7728
      else
7729
        common = 1;
7730
      break;
7731
 
7732
    case MULT_EXPR:
7733
      common = 1;
7734
      break;
7735
 
7736
    case TRUNC_DIV_EXPR:
7737
    case CEIL_DIV_EXPR:
7738
    case FLOOR_DIV_EXPR:
7739
    case ROUND_DIV_EXPR:
7740
    case EXACT_DIV_EXPR:
7741
      /* Floating point division by zero is a legitimate way to obtain
7742
         infinities and NaNs.  */
7743
      if (skip_evaluation == 0 && integer_zerop (op1))
7744
        warning (OPT_Wdiv_by_zero, "division by zero");
7745
 
7746
      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7747
           || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7748
          && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7749
              || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7750
        {
7751
          enum tree_code tcode0 = code0, tcode1 = code1;
7752
 
7753
          if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7754
            tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7755
          if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7756
            tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7757
 
7758
          if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7759
            resultcode = RDIV_EXPR;
7760
          else
7761
            /* Although it would be tempting to shorten always here, that
7762
               loses on some targets, since the modulo instruction is
7763
               undefined if the quotient can't be represented in the
7764
               computation mode.  We shorten only if unsigned or if
7765
               dividing by something we know != -1.  */
7766
            shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7767
                       || (TREE_CODE (op1) == INTEGER_CST
7768
                           && !integer_all_onesp (op1)));
7769
          common = 1;
7770
        }
7771
      break;
7772
 
7773
    case BIT_AND_EXPR:
7774
    case BIT_IOR_EXPR:
7775
    case BIT_XOR_EXPR:
7776
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7777
        shorten = -1;
7778
      else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7779
        common = 1;
7780
      break;
7781
 
7782
    case TRUNC_MOD_EXPR:
7783
    case FLOOR_MOD_EXPR:
7784
      if (skip_evaluation == 0 && integer_zerop (op1))
7785
        warning (OPT_Wdiv_by_zero, "division by zero");
7786
 
7787
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7788
        {
7789
          /* Although it would be tempting to shorten always here, that loses
7790
             on some targets, since the modulo instruction is undefined if the
7791
             quotient can't be represented in the computation mode.  We shorten
7792
             only if unsigned or if dividing by something we know != -1.  */
7793
          shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7794
                     || (TREE_CODE (op1) == INTEGER_CST
7795
                         && !integer_all_onesp (op1)));
7796
          common = 1;
7797
        }
7798
      break;
7799
 
7800
    case TRUTH_ANDIF_EXPR:
7801
    case TRUTH_ORIF_EXPR:
7802
    case TRUTH_AND_EXPR:
7803
    case TRUTH_OR_EXPR:
7804
    case TRUTH_XOR_EXPR:
7805
      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7806
           || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7807
          && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7808
              || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7809
        {
7810
          /* Result of these operations is always an int,
7811
             but that does not mean the operands should be
7812
             converted to ints!  */
7813
          result_type = integer_type_node;
7814
          op0 = c_common_truthvalue_conversion (op0);
7815
          op1 = c_common_truthvalue_conversion (op1);
7816
          converted = 1;
7817
        }
7818
      break;
7819
 
7820
      /* Shift operations: result has same type as first operand;
7821
         always convert second operand to int.
7822
         Also set SHORT_SHIFT if shifting rightward.  */
7823
 
7824
    case RSHIFT_EXPR:
7825
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7826
        {
7827
          if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7828
            {
7829
              if (tree_int_cst_sgn (op1) < 0)
7830
                warning (0, "right shift count is negative");
7831
              else
7832
                {
7833
                  if (!integer_zerop (op1))
7834
                    short_shift = 1;
7835
 
7836
                  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7837
                    warning (0, "right shift count >= width of type");
7838
                }
7839
            }
7840
 
7841
          /* Use the type of the value to be shifted.  */
7842
          result_type = type0;
7843
          /* Convert the shift-count to an integer, regardless of size
7844
             of value being shifted.  */
7845
          if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7846
            op1 = convert (integer_type_node, op1);
7847
          /* Avoid converting op1 to result_type later.  */
7848
          converted = 1;
7849
        }
7850
      break;
7851
 
7852
    case LSHIFT_EXPR:
7853
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7854
        {
7855
          if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7856
            {
7857
              if (tree_int_cst_sgn (op1) < 0)
7858
                warning (0, "left shift count is negative");
7859
 
7860
              else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7861
                warning (0, "left shift count >= width of type");
7862
            }
7863
 
7864
          /* Use the type of the value to be shifted.  */
7865
          result_type = type0;
7866
          /* Convert the shift-count to an integer, regardless of size
7867
             of value being shifted.  */
7868
          if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7869
            op1 = convert (integer_type_node, op1);
7870
          /* Avoid converting op1 to result_type later.  */
7871
          converted = 1;
7872
        }
7873
      break;
7874
 
7875
    case EQ_EXPR:
7876
    case NE_EXPR:
7877
      if (code0 == REAL_TYPE || code1 == REAL_TYPE)
7878
        warning (OPT_Wfloat_equal,
7879
                 "comparing floating point with == or != is unsafe");
7880
      /* Result of comparison is always int,
7881
         but don't convert the args to int!  */
7882
      build_type = integer_type_node;
7883
      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7884
           || code0 == COMPLEX_TYPE)
7885
          && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7886
              || code1 == COMPLEX_TYPE))
7887
        short_compare = 1;
7888
      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
7889
        {
7890
          tree tt0 = TREE_TYPE (type0);
7891
          tree tt1 = TREE_TYPE (type1);
7892
          /* Anything compares with void *.  void * compares with anything.
7893
             Otherwise, the targets must be compatible
7894
             and both must be object or both incomplete.  */
7895
          if (comp_target_types (type0, type1))
7896
            result_type = common_pointer_type (type0, type1);
7897
          else if (VOID_TYPE_P (tt0))
7898
            {
7899
              /* op0 != orig_op0 detects the case of something
7900
                 whose value is 0 but which isn't a valid null ptr const.  */
7901
              if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
7902
                  && TREE_CODE (tt1) == FUNCTION_TYPE)
7903
                pedwarn ("ISO C forbids comparison of %<void *%>"
7904
                         " with function pointer");
7905
            }
7906
          else if (VOID_TYPE_P (tt1))
7907
            {
7908
              if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
7909
                  && TREE_CODE (tt0) == FUNCTION_TYPE)
7910
                pedwarn ("ISO C forbids comparison of %<void *%>"
7911
                         " with function pointer");
7912
            }
7913
          else
7914
            /* Avoid warning about the volatile ObjC EH puts on decls.  */
7915
            if (!objc_ok)
7916
              pedwarn ("comparison of distinct pointer types lacks a cast");
7917
 
7918
          if (result_type == NULL_TREE)
7919
            result_type = ptr_type_node;
7920
        }
7921
      else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
7922
               && integer_zerop (op1))
7923
        result_type = type0;
7924
      else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
7925
               && integer_zerop (op0))
7926
        result_type = type1;
7927
      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7928
        {
7929
          result_type = type0;
7930
          pedwarn ("comparison between pointer and integer");
7931
        }
7932
      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
7933
        {
7934
          result_type = type1;
7935
          pedwarn ("comparison between pointer and integer");
7936
        }
7937
      break;
7938
 
7939
    case LE_EXPR:
7940
    case GE_EXPR:
7941
    case LT_EXPR:
7942
    case GT_EXPR:
7943
      build_type = integer_type_node;
7944
      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
7945
          && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
7946
        short_compare = 1;
7947
      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
7948
        {
7949
          if (comp_target_types (type0, type1))
7950
            {
7951
              result_type = common_pointer_type (type0, type1);
7952
              if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
7953
                  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
7954
                pedwarn ("comparison of complete and incomplete pointers");
7955
              else if (pedantic
7956
                       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
7957
                pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
7958
            }
7959
          else
7960
            {
7961
              result_type = ptr_type_node;
7962
              pedwarn ("comparison of distinct pointer types lacks a cast");
7963
            }
7964
        }
7965
      else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
7966
               && integer_zerop (op1))
7967
        {
7968
          result_type = type0;
7969
          if (pedantic || extra_warnings)
7970
            pedwarn ("ordered comparison of pointer with integer zero");
7971
        }
7972
      else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
7973
               && integer_zerop (op0))
7974
        {
7975
          result_type = type1;
7976
          if (pedantic)
7977
            pedwarn ("ordered comparison of pointer with integer zero");
7978
        }
7979
      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7980
        {
7981
          result_type = type0;
7982
          pedwarn ("comparison between pointer and integer");
7983
        }
7984
      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
7985
        {
7986
          result_type = type1;
7987
          pedwarn ("comparison between pointer and integer");
7988
        }
7989
      break;
7990
 
7991
    default:
7992
      gcc_unreachable ();
7993
    }
7994
 
7995
  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7996
    return error_mark_node;
7997
 
7998
  if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
7999
      && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8000
          || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8001
                                                    TREE_TYPE (type1))))
8002
    {
8003
      binary_op_error (code);
8004
      return error_mark_node;
8005
    }
8006
 
8007
  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8008
       || code0 == VECTOR_TYPE)
8009
      &&
8010
      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8011
       || code1 == VECTOR_TYPE))
8012
    {
8013
      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8014
 
8015
      if (shorten || common || short_compare)
8016
        result_type = c_common_type (type0, type1);
8017
 
8018
      /* For certain operations (which identify themselves by shorten != 0)
8019
         if both args were extended from the same smaller type,
8020
         do the arithmetic in that type and then extend.
8021
 
8022
         shorten !=0 and !=1 indicates a bitwise operation.
8023
         For them, this optimization is safe only if
8024
         both args are zero-extended or both are sign-extended.
8025
         Otherwise, we might change the result.
8026
         Eg, (short)-1 | (unsigned short)-1 is (int)-1
8027
         but calculated in (unsigned short) it would be (unsigned short)-1.  */
8028
 
8029
      if (shorten && none_complex)
8030
        {
8031
          int unsigned0, unsigned1;
8032
          tree arg0 = get_narrower (op0, &unsigned0);
8033
          tree arg1 = get_narrower (op1, &unsigned1);
8034
          /* UNS is 1 if the operation to be done is an unsigned one.  */
8035
          int uns = TYPE_UNSIGNED (result_type);
8036
          tree type;
8037
 
8038
          final_type = result_type;
8039
 
8040
          /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8041
             but it *requires* conversion to FINAL_TYPE.  */
8042
 
8043
          if ((TYPE_PRECISION (TREE_TYPE (op0))
8044
               == TYPE_PRECISION (TREE_TYPE (arg0)))
8045
              && TREE_TYPE (op0) != final_type)
8046
            unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8047
          if ((TYPE_PRECISION (TREE_TYPE (op1))
8048
               == TYPE_PRECISION (TREE_TYPE (arg1)))
8049
              && TREE_TYPE (op1) != final_type)
8050
            unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8051
 
8052
          /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
8053
 
8054
          /* For bitwise operations, signedness of nominal type
8055
             does not matter.  Consider only how operands were extended.  */
8056
          if (shorten == -1)
8057
            uns = unsigned0;
8058
 
8059
          /* Note that in all three cases below we refrain from optimizing
8060
             an unsigned operation on sign-extended args.
8061
             That would not be valid.  */
8062
 
8063
          /* Both args variable: if both extended in same way
8064
             from same width, do it in that width.
8065
             Do it unsigned if args were zero-extended.  */
8066
          if ((TYPE_PRECISION (TREE_TYPE (arg0))
8067
               < TYPE_PRECISION (result_type))
8068
              && (TYPE_PRECISION (TREE_TYPE (arg1))
8069
                  == TYPE_PRECISION (TREE_TYPE (arg0)))
8070
              && unsigned0 == unsigned1
8071
              && (unsigned0 || !uns))
8072
            result_type
8073
              = c_common_signed_or_unsigned_type
8074
              (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8075
          else if (TREE_CODE (arg0) == INTEGER_CST
8076
                   && (unsigned1 || !uns)
8077
                   && (TYPE_PRECISION (TREE_TYPE (arg1))
8078
                       < TYPE_PRECISION (result_type))
8079
                   && (type
8080
                       = c_common_signed_or_unsigned_type (unsigned1,
8081
                                                           TREE_TYPE (arg1)),
8082
                       int_fits_type_p (arg0, type)))
8083
            result_type = type;
8084
          else if (TREE_CODE (arg1) == INTEGER_CST
8085
                   && (unsigned0 || !uns)
8086
                   && (TYPE_PRECISION (TREE_TYPE (arg0))
8087
                       < TYPE_PRECISION (result_type))
8088
                   && (type
8089
                       = c_common_signed_or_unsigned_type (unsigned0,
8090
                                                           TREE_TYPE (arg0)),
8091
                       int_fits_type_p (arg1, type)))
8092
            result_type = type;
8093
        }
8094
 
8095
      /* Shifts can be shortened if shifting right.  */
8096
 
8097
      if (short_shift)
8098
        {
8099
          int unsigned_arg;
8100
          tree arg0 = get_narrower (op0, &unsigned_arg);
8101
 
8102
          final_type = result_type;
8103
 
8104
          if (arg0 == op0 && final_type == TREE_TYPE (op0))
8105
            unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8106
 
8107
          if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8108
              /* We can shorten only if the shift count is less than the
8109
                 number of bits in the smaller type size.  */
8110
              && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8111
              /* We cannot drop an unsigned shift after sign-extension.  */
8112
              && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8113
            {
8114
              /* Do an unsigned shift if the operand was zero-extended.  */
8115
              result_type
8116
                = c_common_signed_or_unsigned_type (unsigned_arg,
8117
                                                    TREE_TYPE (arg0));
8118
              /* Convert value-to-be-shifted to that type.  */
8119
              if (TREE_TYPE (op0) != result_type)
8120
                op0 = convert (result_type, op0);
8121
              converted = 1;
8122
            }
8123
        }
8124
 
8125
      /* Comparison operations are shortened too but differently.
8126
         They identify themselves by setting short_compare = 1.  */
8127
 
8128
      if (short_compare)
8129
        {
8130
          /* Don't write &op0, etc., because that would prevent op0
8131
             from being kept in a register.
8132
             Instead, make copies of the our local variables and
8133
             pass the copies by reference, then copy them back afterward.  */
8134
          tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8135
          enum tree_code xresultcode = resultcode;
8136
          tree val
8137
            = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8138
 
8139
          if (val != 0)
8140
            return val;
8141
 
8142
          op0 = xop0, op1 = xop1;
8143
          converted = 1;
8144
          resultcode = xresultcode;
8145
 
8146
          if (warn_sign_compare && skip_evaluation == 0)
8147
            {
8148
              int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8149
              int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8150
              int unsignedp0, unsignedp1;
8151
              tree primop0 = get_narrower (op0, &unsignedp0);
8152
              tree primop1 = get_narrower (op1, &unsignedp1);
8153
 
8154
              xop0 = orig_op0;
8155
              xop1 = orig_op1;
8156
              STRIP_TYPE_NOPS (xop0);
8157
              STRIP_TYPE_NOPS (xop1);
8158
 
8159
              /* Give warnings for comparisons between signed and unsigned
8160
                 quantities that may fail.
8161
 
8162
                 Do the checking based on the original operand trees, so that
8163
                 casts will be considered, but default promotions won't be.
8164
 
8165
                 Do not warn if the comparison is being done in a signed type,
8166
                 since the signed type will only be chosen if it can represent
8167
                 all the values of the unsigned type.  */
8168
              if (!TYPE_UNSIGNED (result_type))
8169
                /* OK */;
8170
              /* Do not warn if both operands are the same signedness.  */
8171
              else if (op0_signed == op1_signed)
8172
                /* OK */;
8173
              else
8174
                {
8175
                  tree sop, uop;
8176
 
8177
                  if (op0_signed)
8178
                    sop = xop0, uop = xop1;
8179
                  else
8180
                    sop = xop1, uop = xop0;
8181
 
8182
                  /* Do not warn if the signed quantity is an
8183
                     unsuffixed integer literal (or some static
8184
                     constant expression involving such literals or a
8185
                     conditional expression involving such literals)
8186
                     and it is non-negative.  */
8187
                  if (tree_expr_nonnegative_p (sop))
8188
                    /* OK */;
8189
                  /* Do not warn if the comparison is an equality operation,
8190
                     the unsigned quantity is an integral constant, and it
8191
                     would fit in the result if the result were signed.  */
8192
                  else if (TREE_CODE (uop) == INTEGER_CST
8193
                           && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8194
                           && int_fits_type_p
8195
                           (uop, c_common_signed_type (result_type)))
8196
                    /* OK */;
8197
                  /* Do not warn if the unsigned quantity is an enumeration
8198
                     constant and its maximum value would fit in the result
8199
                     if the result were signed.  */
8200
                  else if (TREE_CODE (uop) == INTEGER_CST
8201
                           && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8202
                           && int_fits_type_p
8203
                           (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8204
                            c_common_signed_type (result_type)))
8205
                    /* OK */;
8206
                  else
8207
                    warning (0, "comparison between signed and unsigned");
8208
                }
8209
 
8210
              /* Warn if two unsigned values are being compared in a size
8211
                 larger than their original size, and one (and only one) is the
8212
                 result of a `~' operator.  This comparison will always fail.
8213
 
8214
                 Also warn if one operand is a constant, and the constant
8215
                 does not have all bits set that are set in the ~ operand
8216
                 when it is extended.  */
8217
 
8218
              if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8219
                  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8220
                {
8221
                  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8222
                    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8223
                                            &unsignedp0);
8224
                  else
8225
                    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8226
                                            &unsignedp1);
8227
 
8228
                  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8229
                    {
8230
                      tree primop;
8231
                      HOST_WIDE_INT constant, mask;
8232
                      int unsignedp, bits;
8233
 
8234
                      if (host_integerp (primop0, 0))
8235
                        {
8236
                          primop = primop1;
8237
                          unsignedp = unsignedp1;
8238
                          constant = tree_low_cst (primop0, 0);
8239
                        }
8240
                      else
8241
                        {
8242
                          primop = primop0;
8243
                          unsignedp = unsignedp0;
8244
                          constant = tree_low_cst (primop1, 0);
8245
                        }
8246
 
8247
                      bits = TYPE_PRECISION (TREE_TYPE (primop));
8248
                      if (bits < TYPE_PRECISION (result_type)
8249
                          && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8250
                        {
8251
                          mask = (~(HOST_WIDE_INT) 0) << bits;
8252
                          if ((mask & constant) != mask)
8253
                            warning (0, "comparison of promoted ~unsigned with constant");
8254
                        }
8255
                    }
8256
                  else if (unsignedp0 && unsignedp1
8257
                           && (TYPE_PRECISION (TREE_TYPE (primop0))
8258
                               < TYPE_PRECISION (result_type))
8259
                           && (TYPE_PRECISION (TREE_TYPE (primop1))
8260
                               < TYPE_PRECISION (result_type)))
8261
                    warning (0, "comparison of promoted ~unsigned with unsigned");
8262
                }
8263
            }
8264
        }
8265
    }
8266
 
8267
  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8268
     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8269
     Then the expression will be built.
8270
     It will be given type FINAL_TYPE if that is nonzero;
8271
     otherwise, it will be given type RESULT_TYPE.  */
8272
 
8273
  if (!result_type)
8274
    {
8275
      binary_op_error (code);
8276
      return error_mark_node;
8277
    }
8278
 
8279
  if (!converted)
8280
    {
8281
      if (TREE_TYPE (op0) != result_type)
8282
        op0 = convert (result_type, op0);
8283
      if (TREE_TYPE (op1) != result_type)
8284
        op1 = convert (result_type, op1);
8285
 
8286
      /* This can happen if one operand has a vector type, and the other
8287
         has a different type.  */
8288
      if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8289
        return error_mark_node;
8290
    }
8291
 
8292
  if (build_type == NULL_TREE)
8293
    build_type = result_type;
8294
 
8295
  {
8296
    /* Treat expressions in initializers specially as they can't trap.  */
8297
    tree result = require_constant_value ? fold_build2_initializer (resultcode,
8298
                                                                    build_type,
8299
                                                                    op0, op1)
8300
                                         : fold_build2 (resultcode, build_type,
8301
                                                        op0, op1);
8302
 
8303
    if (final_type != 0)
8304
      result = convert (final_type, result);
8305
    return result;
8306
  }
8307
}
8308
 
8309
 
8310
/* Convert EXPR to be a truth-value, validating its type for this
8311
   purpose.  */
8312
 
8313
tree
8314
c_objc_common_truthvalue_conversion (tree expr)
8315
{
8316
  switch (TREE_CODE (TREE_TYPE (expr)))
8317
    {
8318
    case ARRAY_TYPE:
8319
      error ("used array that cannot be converted to pointer where scalar is required");
8320
      return error_mark_node;
8321
 
8322
    case RECORD_TYPE:
8323
      error ("used struct type value where scalar is required");
8324
      return error_mark_node;
8325
 
8326
    case UNION_TYPE:
8327
      error ("used union type value where scalar is required");
8328
      return error_mark_node;
8329
 
8330
    case FUNCTION_TYPE:
8331
      gcc_unreachable ();
8332
 
8333
    default:
8334
      break;
8335
    }
8336
 
8337
  /* ??? Should we also give an error for void and vectors rather than
8338
     leaving those to give errors later?  */
8339
  return c_common_truthvalue_conversion (expr);
8340
}
8341
 
8342
 
8343
/* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8344
   required.  */
8345
 
8346
tree
8347
c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8348
                bool *ti ATTRIBUTE_UNUSED, bool *se)
8349
{
8350
  if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8351
    {
8352
      tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8353
      /* Executing a compound literal inside a function reinitializes
8354
         it.  */
8355
      if (!TREE_STATIC (decl))
8356
        *se = true;
8357
      return decl;
8358
    }
8359
  else
8360
    return expr;
8361
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.