OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [arm/] [arm1026ejs.md] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
;; ARM 1026EJ-S Pipeline Description
2
;; Copyright (C) 2003 Free Software Foundation, Inc.
3
;; Written by CodeSourcery, LLC.
4
;;
5
;; This file is part of GCC.
6
;;
7
;; GCC is free software; you can redistribute it and/or modify it
8
;; under the terms of the GNU General Public License as published by
9
;; the Free Software Foundation; either version 2, or (at your option)
10
;; any later version.
11
;;
12
;; GCC is distributed in the hope that it will be useful, but
13
;; WITHOUT ANY WARRANTY; without even the implied warranty of
14
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
;; General Public License for more details.
16
;;
17
;; You should have received a copy of the GNU General Public License
18
;; along with GCC; see the file COPYING.  If not, write to the Free
19
;; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20
;; 02110-1301, USA.  */
21
 
22
;; These descriptions are based on the information contained in the
23
;; ARM1026EJ-S Technical Reference Manual, Copyright (c) 2003 ARM
24
;; Limited.
25
;;
26
 
27
;; This automaton provides a pipeline description for the ARM
28
;; 1026EJ-S core.
29
;;
30
;; The model given here assumes that the condition for all conditional
31
;; instructions is "true", i.e., that all of the instructions are
32
;; actually executed.
33
 
34
(define_automaton "arm1026ejs")
35
 
36
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
37
;; Pipelines
38
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
39
 
40
;; There are two pipelines:
41
;;
42
;; - An Arithmetic Logic Unit (ALU) pipeline.
43
;;
44
;;   The ALU pipeline has fetch, issue, decode, execute, memory, and
45
;;   write stages. We only need to model the execute, memory and write
46
;;   stages.
47
;;
48
;; - A Load-Store Unit (LSU) pipeline.
49
;;
50
;;   The LSU pipeline has decode, execute, memory, and write stages.
51
;;   We only model the execute, memory and write stages.
52
 
53
(define_cpu_unit "a_e,a_m,a_w" "arm1026ejs")
54
(define_cpu_unit "l_e,l_m,l_w" "arm1026ejs")
55
 
56
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
57
;; ALU Instructions
58
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
59
 
60
;; ALU instructions require three cycles to execute, and use the ALU
61
;; pipeline in each of the three stages.  The results are available
62
;; after the execute stage stage has finished.
63
;;
64
;; If the destination register is the PC, the pipelines are stalled
65
;; for several cycles.  That case is not modeled here.
66
 
67
;; ALU operations with no shifted operand
68
(define_insn_reservation "alu_op" 1
69
 (and (eq_attr "tune" "arm1026ejs")
70
      (eq_attr "type" "alu"))
71
 "a_e,a_m,a_w")
72
 
73
;; ALU operations with a shift-by-constant operand
74
(define_insn_reservation "alu_shift_op" 1
75
 (and (eq_attr "tune" "arm1026ejs")
76
      (eq_attr "type" "alu_shift"))
77
 "a_e,a_m,a_w")
78
 
79
;; ALU operations with a shift-by-register operand
80
;; These really stall in the decoder, in order to read
81
;; the shift value in a second cycle. Pretend we take two cycles in
82
;; the execute stage.
83
(define_insn_reservation "alu_shift_reg_op" 2
84
 (and (eq_attr "tune" "arm1026ejs")
85
      (eq_attr "type" "alu_shift_reg"))
86
 "a_e*2,a_m,a_w")
87
 
88
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
89
;; Multiplication Instructions
90
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
91
 
92
;; Multiplication instructions loop in the execute stage until the
93
;; instruction has been passed through the multiplier array enough
94
;; times.
95
 
96
;; The result of the "smul" and "smulw" instructions is not available
97
;; until after the memory stage.
98
(define_insn_reservation "mult1" 2
99
 (and (eq_attr "tune" "arm1026ejs")
100
      (eq_attr "insn" "smulxy,smulwy"))
101
 "a_e,a_m,a_w")
102
 
103
;; The "smlaxy" and "smlawx" instructions require two iterations through
104
;; the execute stage; the result is available immediately following
105
;; the execute stage.
106
(define_insn_reservation "mult2" 2
107
 (and (eq_attr "tune" "arm1026ejs")
108
      (eq_attr "insn" "smlaxy,smlalxy,smlawx"))
109
 "a_e*2,a_m,a_w")
110
 
111
;; The "smlalxy", "mul", and "mla" instructions require two iterations
112
;; through the execute stage; the result is not available until after
113
;; the memory stage.
114
(define_insn_reservation "mult3" 3
115
 (and (eq_attr "tune" "arm1026ejs")
116
      (eq_attr "insn" "smlalxy,mul,mla"))
117
 "a_e*2,a_m,a_w")
118
 
119
;; The "muls" and "mlas" instructions loop in the execute stage for
120
;; four iterations in order to set the flags.  The value result is
121
;; available after three iterations.
122
(define_insn_reservation "mult4" 3
123
 (and (eq_attr "tune" "arm1026ejs")
124
      (eq_attr "insn" "muls,mlas"))
125
 "a_e*4,a_m,a_w")
126
 
127
;; Long multiply instructions that produce two registers of
128
;; output (such as umull) make their results available in two cycles;
129
;; the least significant word is available before the most significant
130
;; word.  That fact is not modeled; instead, the instructions are
131
;; described.as if the entire result was available at the end of the
132
;; cycle in which both words are available.
133
 
134
;; The "umull", "umlal", "smull", and "smlal" instructions all take
135
;; three iterations through the execute cycle, and make their results
136
;; available after the memory cycle.
137
(define_insn_reservation "mult5" 4
138
 (and (eq_attr "tune" "arm1026ejs")
139
      (eq_attr "insn" "umull,umlal,smull,smlal"))
140
 "a_e*3,a_m,a_w")
141
 
142
;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
143
;; the execute stage for five iterations in order to set the flags.
144
;; The value result is available after four iterations.
145
(define_insn_reservation "mult6" 4
146
 (and (eq_attr "tune" "arm1026ejs")
147
      (eq_attr "insn" "umulls,umlals,smulls,smlals"))
148
 "a_e*5,a_m,a_w")
149
 
150
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
151
;; Load/Store Instructions
152
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
153
 
154
;; The models for load/store instructions do not accurately describe
155
;; the difference between operations with a base register writeback
156
;; (such as "ldm!").  These models assume that all memory references
157
;; hit in dcache.
158
 
159
;; LSU instructions require six cycles to execute.  They use the ALU
160
;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
161
;; three through six.
162
;; Loads and stores which use a scaled register offset or scaled
163
;; register pre-indexed addressing mode take three cycles EXCEPT for
164
;; those that are base + offset with LSL of 0 or 2, or base - offset
165
;; with LSL of zero.  The remainder take 1 cycle to execute.
166
;; For 4byte loads there is a bypass from the load stage
167
 
168
(define_insn_reservation "load1_op" 2
169
 (and (eq_attr "tune" "arm1026ejs")
170
      (eq_attr "type" "load_byte,load1"))
171
 "a_e+l_e,l_m,a_w+l_w")
172
 
173
(define_insn_reservation "store1_op" 0
174
 (and (eq_attr "tune" "arm1026ejs")
175
      (eq_attr "type" "store1"))
176
 "a_e+l_e,l_m,a_w+l_w")
177
 
178
;; A load's result can be stored by an immediately following store
179
(define_bypass 1 "load1_op" "store1_op" "arm_no_early_store_addr_dep")
180
 
181
;; On a LDM/STM operation, the LSU pipeline iterates until all of the
182
;; registers have been processed.
183
;;
184
;; The time it takes to load the data depends on whether or not the
185
;; base address is 64-bit aligned; if it is not, an additional cycle
186
;; is required.  This model assumes that the address is always 64-bit
187
;; aligned.  Because the processor can load two registers per cycle,
188
;; that assumption means that we use the same instruction reservations
189
;; for loading 2k and 2k - 1 registers.
190
;;
191
;; The ALU pipeline is stalled until the completion of the last memory
192
;; stage in the LSU pipeline.  That is modeled by keeping the ALU
193
;; execute stage busy until that point.
194
;;
195
;; As with ALU operations, if one of the destination registers is the
196
;; PC, there are additional stalls; that is not modeled.
197
 
198
(define_insn_reservation "load2_op" 2
199
 (and (eq_attr "tune" "arm1026ejs")
200
      (eq_attr "type" "load2"))
201
 "a_e+l_e,l_m,a_w+l_w")
202
 
203
(define_insn_reservation "store2_op" 0
204
 (and (eq_attr "tune" "arm1026ejs")
205
      (eq_attr "type" "store2"))
206
 "a_e+l_e,l_m,a_w+l_w")
207
 
208
(define_insn_reservation "load34_op" 3
209
 (and (eq_attr "tune" "arm1026ejs")
210
      (eq_attr "type" "load3,load4"))
211
 "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")
212
 
213
(define_insn_reservation "store34_op" 0
214
 (and (eq_attr "tune" "arm1026ejs")
215
      (eq_attr "type" "store3,store4"))
216
 "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")
217
 
218
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
219
;; Branch and Call Instructions
220
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
221
 
222
;; Branch instructions are difficult to model accurately.  The ARM
223
;; core can predict most branches.  If the branch is predicted
224
;; correctly, and predicted early enough, the branch can be completely
225
;; eliminated from the instruction stream.  Some branches can
226
;; therefore appear to require zero cycles to execute.  We assume that
227
;; all branches are predicted correctly, and that the latency is
228
;; therefore the minimum value.
229
 
230
(define_insn_reservation "branch_op" 0
231
 (and (eq_attr "tune" "arm1026ejs")
232
      (eq_attr "type" "branch"))
233
 "nothing")
234
 
235
;; The latency for a call is not predictable.  Therefore, we use 32 as
236
;; roughly equivalent to positive infinity.
237
 
238
(define_insn_reservation "call_op" 32
239
 (and (eq_attr "tune" "arm1026ejs")
240
      (eq_attr "type" "call"))
241
 "nothing")

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.