OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [arm/] [arm1136jfs.md] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
;; ARM 1136J[F]-S Pipeline Description
2
;; Copyright (C) 2003 Free Software Foundation, Inc.
3
;; Written by CodeSourcery, LLC.
4
;;
5
;; This file is part of GCC.
6
;;
7
;; GCC is free software; you can redistribute it and/or modify it
8
;; under the terms of the GNU General Public License as published by
9
;; the Free Software Foundation; either version 2, or (at your option)
10
;; any later version.
11
;;
12
;; GCC is distributed in the hope that it will be useful, but
13
;; WITHOUT ANY WARRANTY; without even the implied warranty of
14
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
;; General Public License for more details.
16
;;
17
;; You should have received a copy of the GNU General Public License
18
;; along with GCC; see the file COPYING.  If not, write to the Free
19
;; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20
;; 02110-1301, USA.  */
21
 
22
;; These descriptions are based on the information contained in the
23
;; ARM1136JF-S Technical Reference Manual, Copyright (c) 2003 ARM
24
;; Limited.
25
;;
26
 
27
;; This automaton provides a pipeline description for the ARM
28
;; 1136J-S and 1136JF-S cores.
29
;;
30
;; The model given here assumes that the condition for all conditional
31
;; instructions is "true", i.e., that all of the instructions are
32
;; actually executed.
33
 
34
(define_automaton "arm1136jfs")
35
 
36
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
37
;; Pipelines
38
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
39
 
40
;; There are three distinct pipelines (page 1-26 and following):
41
;;
42
;; - A 4-stage decode pipeline, shared by all three.  It has fetch (1),
43
;;   fetch (2), decode, and issue stages.  Since this is always involved,
44
;;   we do not model it in the scheduler.
45
;;
46
;; - A 4-stage ALU pipeline.  It has shifter, ALU (main integer operations),
47
;;   and saturation stages.  The fourth stage is writeback; see below.
48
;;
49
;; - A 4-stage multiply-accumulate pipeline.  It has three stages, called
50
;;   MAC1 through MAC3, and a fourth writeback stage.
51
;;
52
;;   The 4th-stage writeback is shared between the ALU and MAC pipelines,
53
;;   which operate in lockstep.  Results from either pipeline will be
54
;;   moved into the writeback stage.  Because the two pipelines operate
55
;;   in lockstep, we schedule them as a single "execute" pipeline.
56
;;
57
;; - A 4-stage LSU pipeline.  It has address generation, data cache (1),
58
;;   data cache (2), and writeback stages.  (Note that this pipeline,
59
;;   including the writeback stage, is independent from the ALU & LSU pipes.)
60
 
61
(define_cpu_unit "e_1,e_2,e_3,e_wb" "arm1136jfs")     ; ALU and MAC
62
; e_1 = Sh/Mac1, e_2 = ALU/Mac2, e_3 = SAT/Mac3
63
(define_cpu_unit "l_a,l_dc1,l_dc2,l_wb" "arm1136jfs") ; Load/Store
64
 
65
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
66
;; ALU Instructions
67
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
68
 
69
;; ALU instructions require eight cycles to execute, and use the ALU
70
;; pipeline in each of the eight stages.  The results are available
71
;; after the alu stage has finished.
72
;;
73
;; If the destination register is the PC, the pipelines are stalled
74
;; for several cycles.  That case is not modelled here.
75
 
76
;; ALU operations with no shifted operand
77
(define_insn_reservation "11_alu_op" 2
78
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
79
      (eq_attr "type" "alu"))
80
 "e_1,e_2,e_3,e_wb")
81
 
82
;; ALU operations with a shift-by-constant operand
83
(define_insn_reservation "11_alu_shift_op" 2
84
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
85
      (eq_attr "type" "alu_shift"))
86
 "e_1,e_2,e_3,e_wb")
87
 
88
;; ALU operations with a shift-by-register operand
89
;; These really stall in the decoder, in order to read
90
;; the shift value in a second cycle. Pretend we take two cycles in
91
;; the shift stage.
92
(define_insn_reservation "11_alu_shift_reg_op" 3
93
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
94
      (eq_attr "type" "alu_shift_reg"))
95
 "e_1*2,e_2,e_3,e_wb")
96
 
97
;; alu_ops can start sooner, if there is no shifter dependency
98
(define_bypass 1 "11_alu_op,11_alu_shift_op"
99
               "11_alu_op")
100
(define_bypass 1 "11_alu_op,11_alu_shift_op"
101
               "11_alu_shift_op"
102
               "arm_no_early_alu_shift_value_dep")
103
(define_bypass 1 "11_alu_op,11_alu_shift_op"
104
               "11_alu_shift_reg_op"
105
               "arm_no_early_alu_shift_dep")
106
(define_bypass 2 "11_alu_shift_reg_op"
107
               "11_alu_op")
108
(define_bypass 2 "11_alu_shift_reg_op"
109
               "11_alu_shift_op"
110
               "arm_no_early_alu_shift_value_dep")
111
(define_bypass 2 "11_alu_shift_reg_op"
112
               "11_alu_shift_reg_op"
113
               "arm_no_early_alu_shift_dep")
114
 
115
(define_bypass 1 "11_alu_op,11_alu_shift_op"
116
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
117
               "arm_no_early_mul_dep")
118
(define_bypass 2 "11_alu_shift_reg_op"
119
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
120
               "arm_no_early_mul_dep")
121
 
122
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
123
;; Multiplication Instructions
124
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
125
 
126
;; Multiplication instructions loop in the first two execute stages until
127
;; the instruction has been passed through the multiplier array enough
128
;; times.
129
 
130
;; Multiply and multiply-accumulate results are available after four stages.
131
(define_insn_reservation "11_mult1" 4
132
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
133
      (eq_attr "insn" "mul,mla"))
134
 "e_1*2,e_2,e_3,e_wb")
135
 
136
;; The *S variants set the condition flags, which requires three more cycles.
137
(define_insn_reservation "11_mult2" 4
138
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
139
      (eq_attr "insn" "muls,mlas"))
140
 "e_1*2,e_2,e_3,e_wb")
141
 
142
(define_bypass 3 "11_mult1,11_mult2"
143
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
144
               "arm_no_early_mul_dep")
145
(define_bypass 3 "11_mult1,11_mult2"
146
               "11_alu_op")
147
(define_bypass 3 "11_mult1,11_mult2"
148
               "11_alu_shift_op"
149
               "arm_no_early_alu_shift_value_dep")
150
(define_bypass 3 "11_mult1,11_mult2"
151
               "11_alu_shift_reg_op"
152
               "arm_no_early_alu_shift_dep")
153
(define_bypass 3 "11_mult1,11_mult2"
154
               "11_store1"
155
               "arm_no_early_store_addr_dep")
156
 
157
;; Signed and unsigned multiply long results are available across two cycles;
158
;; the less significant word is available one cycle before the more significant
159
;; word.  Here we conservatively wait until both are available, which is
160
;; after three iterations and the memory cycle.  The same is also true of
161
;; the two multiply-accumulate instructions.
162
(define_insn_reservation "11_mult3" 5
163
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
164
      (eq_attr "insn" "smull,umull,smlal,umlal"))
165
 "e_1*3,e_2,e_3,e_wb*2")
166
 
167
;; The *S variants set the condition flags, which requires three more cycles.
168
(define_insn_reservation "11_mult4" 5
169
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
170
      (eq_attr "insn" "smulls,umulls,smlals,umlals"))
171
 "e_1*3,e_2,e_3,e_wb*2")
172
 
173
(define_bypass 4 "11_mult3,11_mult4"
174
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
175
               "arm_no_early_mul_dep")
176
(define_bypass 4 "11_mult3,11_mult4"
177
               "11_alu_op")
178
(define_bypass 4 "11_mult3,11_mult4"
179
               "11_alu_shift_op"
180
               "arm_no_early_alu_shift_value_dep")
181
(define_bypass 4 "11_mult3,11_mult4"
182
               "11_alu_shift_reg_op"
183
               "arm_no_early_alu_shift_dep")
184
(define_bypass 4 "11_mult3,11_mult4"
185
               "11_store1"
186
               "arm_no_early_store_addr_dep")
187
 
188
;; Various 16x16->32 multiplies and multiply-accumulates, using combinations
189
;; of high and low halves of the argument registers.  They take a single
190
;; pass through the pipeline and make the result available after three
191
;; cycles.
192
(define_insn_reservation "11_mult5" 3
193
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
194
      (eq_attr "insn" "smulxy,smlaxy,smulwy,smlawy,smuad,smuadx,smlad,smladx,smusd,smusdx,smlsd,smlsdx"))
195
 "e_1,e_2,e_3,e_wb")
196
 
197
(define_bypass 2 "11_mult5"
198
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
199
               "arm_no_early_mul_dep")
200
(define_bypass 2 "11_mult5"
201
               "11_alu_op")
202
(define_bypass 2 "11_mult5"
203
               "11_alu_shift_op"
204
               "arm_no_early_alu_shift_value_dep")
205
(define_bypass 2 "11_mult5"
206
               "11_alu_shift_reg_op"
207
               "arm_no_early_alu_shift_dep")
208
(define_bypass 2 "11_mult5"
209
               "11_store1"
210
               "arm_no_early_store_addr_dep")
211
 
212
;; The same idea, then the 32-bit result is added to a 64-bit quantity.
213
(define_insn_reservation "11_mult6" 4
214
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
215
      (eq_attr "insn" "smlalxy"))
216
 "e_1*2,e_2,e_3,e_wb*2")
217
 
218
;; Signed 32x32 multiply, then the most significant 32 bits are extracted
219
;; and are available after the memory stage.
220
(define_insn_reservation "11_mult7" 4
221
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
222
      (eq_attr "insn" "smmul,smmulr"))
223
 "e_1*2,e_2,e_3,e_wb")
224
 
225
(define_bypass 3 "11_mult6,11_mult7"
226
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
227
               "arm_no_early_mul_dep")
228
(define_bypass 3 "11_mult6,11_mult7"
229
               "11_alu_op")
230
(define_bypass 3 "11_mult6,11_mult7"
231
               "11_alu_shift_op"
232
               "arm_no_early_alu_shift_value_dep")
233
(define_bypass 3 "11_mult6,11_mult7"
234
               "11_alu_shift_reg_op"
235
               "arm_no_early_alu_shift_dep")
236
(define_bypass 3 "11_mult6,11_mult7"
237
               "11_store1"
238
               "arm_no_early_store_addr_dep")
239
 
240
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
241
;; Branch Instructions
242
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
243
 
244
;; These vary greatly depending on their arguments and the results of
245
;; stat prediction.  Cycle count ranges from zero (unconditional branch,
246
;; folded dynamic prediction) to seven (incorrect predictions, etc).  We
247
;; assume an optimal case for now, because the cost of a cache miss
248
;; overwhelms the cost of everything else anyhow.
249
 
250
(define_insn_reservation "11_branches" 0
251
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
252
      (eq_attr "type" "branch"))
253
 "nothing")
254
 
255
;; Call latencies are not predictable.  A semi-arbitrary very large
256
;; number is used as "positive infinity" so that everything should be
257
;; finished by the time of return.
258
(define_insn_reservation "11_call" 32
259
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
260
      (eq_attr "type" "call"))
261
 "nothing")
262
 
263
;; Branches are predicted. A correctly predicted branch will be no
264
;; cost, but we're conservative here, and use the timings a
265
;; late-register would give us.
266
(define_bypass 1 "11_alu_op,11_alu_shift_op"
267
               "11_branches")
268
(define_bypass 2 "11_alu_shift_reg_op"
269
               "11_branches")
270
(define_bypass 2 "11_load1,11_load2"
271
               "11_branches")
272
(define_bypass 3 "11_load34"
273
               "11_branches")
274
 
275
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
276
;; Load/Store Instructions
277
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
278
 
279
;; The models for load/store instructions do not accurately describe
280
;; the difference between operations with a base register writeback.
281
;; These models assume that all memory references hit in dcache.  Also,
282
;; if the PC is one of the registers involved, there are additional stalls
283
;; not modelled here.  Addressing modes are also not modelled.
284
 
285
(define_insn_reservation "11_load1" 3
286
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
287
      (eq_attr "type" "load1"))
288
 "l_a+e_1,l_dc1,l_dc2,l_wb")
289
 
290
;; Load byte results are not available until the writeback stage, where
291
;; the correct byte is extracted.
292
 
293
(define_insn_reservation "11_loadb" 4
294
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
295
      (eq_attr "type" "load_byte"))
296
 "l_a+e_1,l_dc1,l_dc2,l_wb")
297
 
298
(define_insn_reservation "11_store1" 0
299
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
300
      (eq_attr "type" "store1"))
301
 "l_a+e_1,l_dc1,l_dc2,l_wb")
302
 
303
;; Load/store double words into adjacent registers.  The timing and
304
;; latencies are different depending on whether the address is 64-bit
305
;; aligned.  This model assumes that it is.
306
(define_insn_reservation "11_load2" 3
307
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
308
      (eq_attr "type" "load2"))
309
 "l_a+e_1,l_dc1,l_dc2,l_wb")
310
 
311
(define_insn_reservation "11_store2" 0
312
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
313
      (eq_attr "type" "store2"))
314
 "l_a+e_1,l_dc1,l_dc2,l_wb")
315
 
316
;; Load/store multiple registers.  Two registers are stored per cycle.
317
;; Actual timing depends on how many registers are affected, so we
318
;; optimistically schedule a low latency.
319
(define_insn_reservation "11_load34" 4
320
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
321
      (eq_attr "type" "load3,load4"))
322
 "l_a+e_1,l_dc1*2,l_dc2,l_wb")
323
 
324
(define_insn_reservation "11_store34" 0
325
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
326
      (eq_attr "type" "store3,store4"))
327
 "l_a+e_1,l_dc1*2,l_dc2,l_wb")
328
 
329
;; A store can start immediately after an alu op, if that alu op does
330
;; not provide part of the address to access.
331
(define_bypass 1 "11_alu_op,11_alu_shift_op"
332
               "11_store1"
333
               "arm_no_early_store_addr_dep")
334
(define_bypass 2 "11_alu_shift_reg_op"
335
               "11_store1"
336
               "arm_no_early_store_addr_dep")
337
 
338
;; An alu op can start sooner after a load, if that alu op does not
339
;; have an early register dependency on the load
340
(define_bypass 2 "11_load1"
341
               "11_alu_op")
342
(define_bypass 2 "11_load1"
343
               "11_alu_shift_op"
344
               "arm_no_early_alu_shift_value_dep")
345
(define_bypass 2 "11_load1"
346
               "11_alu_shift_reg_op"
347
               "arm_no_early_alu_shift_dep")
348
 
349
(define_bypass 3 "11_loadb"
350
               "11_alu_op")
351
(define_bypass 3 "11_loadb"
352
               "11_alu_shift_op"
353
               "arm_no_early_alu_shift_value_dep")
354
(define_bypass 3 "11_loadb"
355
               "11_alu_shift_reg_op"
356
               "arm_no_early_alu_shift_dep")
357
 
358
;; A mul op can start sooner after a load, if that mul op does not
359
;; have an early multiply dependency
360
(define_bypass 2 "11_load1"
361
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
362
               "arm_no_early_mul_dep")
363
(define_bypass 3 "11_load34"
364
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
365
               "arm_no_early_mul_dep")
366
(define_bypass 3 "11_loadb"
367
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
368
               "arm_no_early_mul_dep")
369
 
370
;; A store can start sooner after a load, if that load does not
371
;; produce part of the address to access
372
(define_bypass 2 "11_load1"
373
               "11_store1"
374
               "arm_no_early_store_addr_dep")
375
(define_bypass 3 "11_loadb"
376
               "11_store1"
377
               "arm_no_early_store_addr_dep")

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.