OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [arm/] [arm926ejs.md] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
;; ARM 926EJ-S Pipeline Description
2
;; Copyright (C) 2003 Free Software Foundation, Inc.
3
;; Written by CodeSourcery, LLC.
4
;;
5
;; This file is part of GCC.
6
;;
7
;; GCC is free software; you can redistribute it and/or modify it
8
;; under the terms of the GNU General Public License as published by
9
;; the Free Software Foundation; either version 2, or (at your option)
10
;; any later version.
11
;;
12
;; GCC is distributed in the hope that it will be useful, but
13
;; WITHOUT ANY WARRANTY; without even the implied warranty of
14
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
;; General Public License for more details.
16
;;
17
;; You should have received a copy of the GNU General Public License
18
;; along with GCC; see the file COPYING.  If not, write to the Free
19
;; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20
;; 02110-1301, USA.  */
21
 
22
;; These descriptions are based on the information contained in the
23
;; ARM926EJ-S Technical Reference Manual, Copyright (c) 2002 ARM
24
;; Limited.
25
;;
26
 
27
;; This automaton provides a pipeline description for the ARM
28
;; 926EJ-S core.
29
;;
30
;; The model given here assumes that the condition for all conditional
31
;; instructions is "true", i.e., that all of the instructions are
32
;; actually executed.
33
 
34
(define_automaton "arm926ejs")
35
 
36
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
37
;; Pipelines
38
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
39
 
40
;; There is a single pipeline
41
;;
42
;;   The ALU pipeline has fetch, decode, execute, memory, and
43
;;   write stages. We only need to model the execute, memory and write
44
;;   stages.
45
 
46
(define_cpu_unit "e,m,w" "arm926ejs")
47
 
48
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
49
;; ALU Instructions
50
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
51
 
52
;; ALU instructions require three cycles to execute, and use the ALU
53
;; pipeline in each of the three stages.  The results are available
54
;; after the execute stage stage has finished.
55
;;
56
;; If the destination register is the PC, the pipelines are stalled
57
;; for several cycles.  That case is not modeled here.
58
 
59
;; ALU operations with no shifted operand
60
(define_insn_reservation "9_alu_op" 1
61
 (and (eq_attr "tune" "arm926ejs")
62
      (eq_attr "type" "alu,alu_shift"))
63
 "e,m,w")
64
 
65
;; ALU operations with a shift-by-register operand
66
;; These really stall in the decoder, in order to read
67
;; the shift value in a second cycle. Pretend we take two cycles in
68
;; the execute stage.
69
(define_insn_reservation "9_alu_shift_reg_op" 2
70
 (and (eq_attr "tune" "arm926ejs")
71
      (eq_attr "type" "alu_shift_reg"))
72
 "e*2,m,w")
73
 
74
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
75
;; Multiplication Instructions
76
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
77
 
78
;; Multiplication instructions loop in the execute stage until the
79
;; instruction has been passed through the multiplier array enough
80
;; times. Multiply operations occur in both the execute and memory
81
;; stages of the pipeline
82
 
83
(define_insn_reservation "9_mult1" 3
84
 (and (eq_attr "tune" "arm926ejs")
85
      (eq_attr "insn" "smlalxy,mul,mla"))
86
 "e*2,m,w")
87
 
88
(define_insn_reservation "9_mult2" 4
89
 (and (eq_attr "tune" "arm926ejs")
90
      (eq_attr "insn" "muls,mlas"))
91
 "e*3,m,w")
92
 
93
(define_insn_reservation "9_mult3" 4
94
 (and (eq_attr "tune" "arm926ejs")
95
      (eq_attr "insn" "umull,umlal,smull,smlal"))
96
 "e*3,m,w")
97
 
98
(define_insn_reservation "9_mult4" 5
99
 (and (eq_attr "tune" "arm926ejs")
100
      (eq_attr "insn" "umulls,umlals,smulls,smlals"))
101
 "e*4,m,w")
102
 
103
(define_insn_reservation "9_mult5" 2
104
 (and (eq_attr "tune" "arm926ejs")
105
      (eq_attr "insn" "smulxy,smlaxy,smlawx"))
106
 "e,m,w")
107
 
108
(define_insn_reservation "9_mult6" 3
109
 (and (eq_attr "tune" "arm926ejs")
110
      (eq_attr "insn" "smlalxy"))
111
 "e*2,m,w")
112
 
113
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
114
;; Load/Store Instructions
115
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
116
 
117
;; The models for load/store instructions do not accurately describe
118
;; the difference between operations with a base register writeback
119
;; (such as "ldm!").  These models assume that all memory references
120
;; hit in dcache.
121
 
122
;; Loads with a shifted offset take 3 cycles, and are (a) probably the
123
;; most common and (b) the pessimistic assumption will lead to fewer stalls.
124
(define_insn_reservation "9_load1_op" 3
125
 (and (eq_attr "tune" "arm926ejs")
126
      (eq_attr "type" "load1,load_byte"))
127
 "e*2,m,w")
128
 
129
(define_insn_reservation "9_store1_op" 0
130
 (and (eq_attr "tune" "arm926ejs")
131
      (eq_attr "type" "store1"))
132
 "e,m,w")
133
 
134
;; multiple word loads and stores
135
(define_insn_reservation "9_load2_op" 3
136
 (and (eq_attr "tune" "arm926ejs")
137
      (eq_attr "type" "load2"))
138
 "e,m*2,w")
139
 
140
(define_insn_reservation "9_load3_op" 4
141
 (and (eq_attr "tune" "arm926ejs")
142
      (eq_attr "type" "load3"))
143
 "e,m*3,w")
144
 
145
(define_insn_reservation "9_load4_op" 5
146
 (and (eq_attr "tune" "arm926ejs")
147
      (eq_attr "type" "load4"))
148
 "e,m*4,w")
149
 
150
(define_insn_reservation "9_store2_op" 0
151
 (and (eq_attr "tune" "arm926ejs")
152
      (eq_attr "type" "store2"))
153
 "e,m*2,w")
154
 
155
(define_insn_reservation "9_store3_op" 0
156
 (and (eq_attr "tune" "arm926ejs")
157
      (eq_attr "type" "store3"))
158
 "e,m*3,w")
159
 
160
(define_insn_reservation "9_store4_op" 0
161
 (and (eq_attr "tune" "arm926ejs")
162
      (eq_attr "type" "store4"))
163
 "e,m*4,w")
164
 
165
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
166
;; Branch and Call Instructions
167
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
168
 
169
;; Branch instructions are difficult to model accurately.  The ARM
170
;; core can predict most branches.  If the branch is predicted
171
;; correctly, and predicted early enough, the branch can be completely
172
;; eliminated from the instruction stream.  Some branches can
173
;; therefore appear to require zero cycles to execute.  We assume that
174
;; all branches are predicted correctly, and that the latency is
175
;; therefore the minimum value.
176
 
177
(define_insn_reservation "9_branch_op" 0
178
 (and (eq_attr "tune" "arm926ejs")
179
      (eq_attr "type" "branch"))
180
 "nothing")
181
 
182
;; The latency for a call is not predictable.  Therefore, we use 32 as
183
;; roughly equivalent to positive infinity.
184
 
185
(define_insn_reservation "9_call_op" 32
186
 (and (eq_attr "tune" "arm926ejs")
187
      (eq_attr "type" "call"))
188
 "nothing")

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.