OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [c4x/] [c4x.h] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Definitions of target machine for GNU compiler.  TMS320C[34]x
2
   Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3
   2003, 2004, 2005 Free Software Foundation, Inc.
4
 
5
   Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
6
              and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
7
 
8
   This file is part of GCC.
9
 
10
   GCC is free software; you can redistribute it and/or modify
11
   it under the terms of the GNU General Public License as published by
12
   the Free Software Foundation; either version 2, or (at your option)
13
   any later version.
14
 
15
   GCC is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
   GNU General Public License for more details.
19
 
20
   You should have received a copy of the GNU General Public License
21
   along with GCC; see the file COPYING.  If not, write to
22
   the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23
   Boston, MA 02110-1301, USA.  */
24
 
25
/* RUN-TIME TARGET SPECIFICATION.  */
26
 
27
#define C4x   1
28
 
29
#define TARGET_CPU_CPP_BUILTINS()               \
30
  do                                            \
31
    {                                           \
32
      extern int flag_inline_trees;             \
33
      if (!TARGET_SMALL)                        \
34
        builtin_define ("_BIGMODEL");           \
35
      if (!TARGET_MEMPARM)                      \
36
        builtin_define ("_REGPARM");            \
37
      if (flag_inline_functions)                \
38
        builtin_define ("_INLINE");             \
39
      if (TARGET_C3X)                           \
40
        {                                       \
41
          builtin_define ("_TMS320C3x");        \
42
          builtin_define ("_C3x");              \
43
          if (TARGET_C30)                       \
44
            {                                   \
45
              builtin_define ("_TMS320C30");    \
46
              builtin_define ("_C30");          \
47
            }                                   \
48
          else if (TARGET_C31)                  \
49
            {                                   \
50
              builtin_define ("_TMS320C31");    \
51
              builtin_define ("_C31");          \
52
            }                                   \
53
          else if (TARGET_C32)                  \
54
            {                                   \
55
              builtin_define ("_TMS320C32");    \
56
              builtin_define ("_C32");          \
57
            }                                   \
58
          else if (TARGET_C33)                  \
59
            {                                   \
60
              builtin_define ("_TMS320C33");    \
61
              builtin_define ("_C33");          \
62
            }                                   \
63
        }                                       \
64
      else                                      \
65
        {                                       \
66
          builtin_define ("_TMS320C4x");        \
67
          builtin_define ("_C4x");              \
68
          if (TARGET_C40)                       \
69
            {                                   \
70
              builtin_define ("_TMS320C40");    \
71
              builtin_define ("_C40");          \
72
            }                                   \
73
          else if (TARGET_C44)                  \
74
            {                                   \
75
              builtin_define ("_TMS320C44");    \
76
              builtin_define ("_C44");          \
77
            }                                   \
78
        }                                       \
79
    }                                           \
80
  while (0)
81
 
82
/* Define assembler options.  */
83
 
84
#define ASM_SPEC "\
85
%{!mcpu=30:%{!mcpu=31:%{!mcpu=32:%{!mcpu=33:%{!mcpu=40:%{!mcpu=44:\
86
%{!m30:%{!m31:%{!m32:%{!m33:%{!m40:%{!m44:-m40}}}}}}}}}}}} \
87
%{mcpu=30} \
88
%{mcpu=31} \
89
%{mcpu=32} \
90
%{mcpu=33} \
91
%{mcpu=40} \
92
%{mcpu=44} \
93
%{m30} \
94
%{m31} \
95
%{m32} \
96
%{m33} \
97
%{m40} \
98
%{m44} \
99
%{mmemparm} %{mregparm} %{!mmemparm:%{!mregparm:-mregparm}} \
100
%{mbig} %{msmall} %{!msmall:%{!mbig:-mbig}}"
101
 
102
/* Define linker options.  */
103
 
104
#define LINK_SPEC "\
105
%{m30:--architecture c3x} \
106
%{m31:--architecture c3x} \
107
%{m32:--architecture c3x} \
108
%{m33:--architecture c3x} \
109
%{mcpu=30:--architecture c3x} \
110
%{mcpu=31:--architecture c3x} \
111
%{mcpu=32:--architecture c3x} \
112
%{mcpu=33:--architecture c3x}"
113
 
114
/* Specify the end file to link with.  */
115
 
116
#define ENDFILE_SPEC ""
117
 
118
/* Caveats:
119
   Max iteration count for RPTB/RPTS is 2^31 + 1.
120
   Max iteration count for DB is 2^31 + 1 for C40, but 2^23 + 1 for C30.
121
   RPTS blocks interrupts.  */
122
 
123
 
124
extern int c4x_cpu_version;             /* Cpu version C30/31/32/33/40/44.  */
125
 
126
#define TARGET_INLINE           (! optimize_size) /* Inline MPYI.  */
127
#define TARGET_SMALL_REG_CLASS  0
128
 
129
#define TARGET_C3X              (c4x_cpu_version >= 30 \
130
                                 && c4x_cpu_version <= 39)
131
 
132
#define TARGET_C30              (c4x_cpu_version == 30)
133
#define TARGET_C31              (c4x_cpu_version == 31)
134
#define TARGET_C32              (c4x_cpu_version == 32)
135
#define TARGET_C33              (c4x_cpu_version == 33)
136
#define TARGET_C40              (c4x_cpu_version == 40)
137
#define TARGET_C44              (c4x_cpu_version == 44)
138
 
139
/* Nonzero to use load_immed_addr pattern rather than forcing memory
140
   addresses into memory.  */
141
#define TARGET_LOAD_ADDRESS     (1 || (! TARGET_C3X && ! TARGET_SMALL))
142
 
143
/* Nonzero to convert direct memory references into HIGH/LO_SUM pairs
144
   during RTL generation.  */
145
#define TARGET_EXPOSE_LDP       0
146
 
147
/* Nonzero to force loading of direct memory references into a register.  */
148
#define TARGET_LOAD_DIRECT_MEMS 0
149
 
150
/* -mrpts            allows the use of the RPTS instruction irregardless.
151
   -mrpts=max-cycles will use RPTS if the number of cycles is constant
152
   and less than max-cycles.  */
153
 
154
#define TARGET_RPTS_CYCLES(CYCLES) (TARGET_RPTS || (CYCLES) < c4x_rpts_cycles)
155
 
156
/* Sometimes certain combinations of command options do not make sense
157
   on a particular target machine.  You can define a macro
158
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
159
   defined, is executed once just after all the command options have
160
   been parsed.  */
161
 
162
#define OVERRIDE_OPTIONS c4x_override_options ()
163
 
164
/* Define this to change the optimizations performed by default.  */
165
 
166
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) c4x_optimization_options(LEVEL, SIZE)
167
 
168
/* Run Time Target Specification.  */
169
 
170
#define TARGET_VERSION fprintf (stderr, " (TMS320C[34]x, TI syntax)");
171
 
172
/* Storage Layout.  */
173
 
174
#define BITS_BIG_ENDIAN         0
175
#define BYTES_BIG_ENDIAN        0
176
#define WORDS_BIG_ENDIAN        0
177
 
178
/* Technically, we are little endian, but we put the floats out as
179
   whole longs and this makes GCC put them out in the right order.  */
180
 
181
#define FLOAT_WORDS_BIG_ENDIAN  1
182
 
183
/* Note the ANSI C standard requires sizeof(char) = 1.  On the C[34]x
184
   all integral and floating point data types are stored in memory as
185
   32-bits (floating point types can be stored as 40-bits in the
186
   extended precision registers), so sizeof(char) = sizeof(short) =
187
   sizeof(int) = sizeof(long) = sizeof(float) = sizeof(double) = 1.  */
188
 
189
#define BITS_PER_UNIT           32
190
#define UNITS_PER_WORD          1
191
#define PARM_BOUNDARY           32
192
#define STACK_BOUNDARY          32
193
#define FUNCTION_BOUNDARY       32
194
#define BIGGEST_ALIGNMENT       32
195
#define EMPTY_FIELD_BOUNDARY    32
196
#define STRICT_ALIGNMENT        0
197
#define TARGET_FLOAT_FORMAT     C4X_FLOAT_FORMAT
198
#define MAX_FIXED_MODE_SIZE     64 /* HImode.  */
199
 
200
/* If a structure has a floating point field then force structure
201
   to have BLKMODE, unless it is the only field.  */
202
#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
203
  (TREE_CODE (TREE_TYPE (FIELD)) == REAL_TYPE && (MODE) == VOIDmode)
204
 
205
/* Number of bits in the high and low parts of a two stage
206
   load of an immediate constant.  */
207
#define BITS_PER_HIGH 16
208
#define BITS_PER_LO_SUM 16
209
 
210
/* Define register numbers.  */
211
 
212
/* Extended-precision registers.  */
213
 
214
#define R0_REGNO   0
215
#define R1_REGNO   1
216
#define R2_REGNO   2
217
#define R3_REGNO   3
218
#define R4_REGNO   4
219
#define R5_REGNO   5
220
#define R6_REGNO   6
221
#define R7_REGNO   7
222
 
223
/* Auxiliary (address) registers.  */
224
 
225
#define AR0_REGNO  8
226
#define AR1_REGNO  9
227
#define AR2_REGNO 10
228
#define AR3_REGNO 11
229
#define AR4_REGNO 12
230
#define AR5_REGNO 13
231
#define AR6_REGNO 14
232
#define AR7_REGNO 15
233
 
234
/* Data page register.  */
235
 
236
#define DP_REGNO  16
237
 
238
/* Index registers.  */
239
 
240
#define IR0_REGNO 17
241
#define IR1_REGNO 18
242
 
243
/* Block size register.  */
244
 
245
#define BK_REGNO  19
246
 
247
/* Stack pointer.  */
248
 
249
#define SP_REGNO  20
250
 
251
/* Status register.  */
252
 
253
#define ST_REGNO  21
254
 
255
/* Misc. interrupt registers.  */
256
 
257
#define DIE_REGNO 22            /* C4x only.  */
258
#define IE_REGNO  22            /* C3x only.  */
259
#define IIE_REGNO 23            /* C4x only.  */
260
#define IF_REGNO  23            /* C3x only.  */
261
#define IIF_REGNO 24            /* C4x only.  */
262
#define IOF_REGNO 24            /* C3x only.  */
263
 
264
/* Repeat block registers.  */
265
 
266
#define RS_REGNO  25
267
#define RE_REGNO  26
268
#define RC_REGNO  27
269
 
270
/* Additional extended-precision registers.  */
271
 
272
#define R8_REGNO  28            /* C4x only.  */
273
#define R9_REGNO  29            /* C4x only.  */
274
#define R10_REGNO 30            /* C4x only.  */
275
#define R11_REGNO 31            /* C4x only.  */
276
 
277
#define FIRST_PSEUDO_REGISTER   32
278
 
279
/* Extended precision registers (low set).  */
280
 
281
#define IS_R0R1_REGNO(r) \
282
     ((unsigned int)((r) - R0_REGNO) <= (R1_REGNO - R0_REGNO))
283
#define IS_R2R3_REGNO(r) \
284
     ((unsigned int)((r) - R2_REGNO) <= (R3_REGNO - R2_REGNO))
285
#define IS_EXT_LOW_REGNO(r) \
286
     ((unsigned int)((r) - R0_REGNO) <= (R7_REGNO - R0_REGNO))
287
 
288
/* Extended precision registers (high set).  */
289
 
290
#define IS_EXT_HIGH_REGNO(r) \
291
(! TARGET_C3X \
292
 && ((unsigned int) ((r) - R8_REGNO) <= (R11_REGNO - R8_REGNO)))
293
 
294
/* Address registers.  */
295
 
296
#define IS_AUX_REGNO(r) \
297
    ((unsigned int)((r) - AR0_REGNO) <= (AR7_REGNO - AR0_REGNO))
298
#define IS_ADDR_REGNO(r)   IS_AUX_REGNO(r)
299
#define IS_DP_REGNO(r)     ((r) == DP_REGNO)
300
#define IS_INDEX_REGNO(r)  (((r) == IR0_REGNO) || ((r) == IR1_REGNO))
301
#define IS_SP_REGNO(r)     ((r) == SP_REGNO)
302
#define IS_BK_REGNO(r)     (TARGET_BK && (r) == BK_REGNO)
303
 
304
/* Misc registers.  */
305
 
306
#define IS_ST_REGNO(r)     ((r) == ST_REGNO)
307
#define IS_RC_REGNO(r)     ((r) == RC_REGNO)
308
#define IS_REPEAT_REGNO(r) (((r) >= RS_REGNO) && ((r) <= RC_REGNO))
309
 
310
/* Composite register sets.  */
311
 
312
#define IS_ADDR_OR_INDEX_REGNO(r) (IS_ADDR_REGNO(r) || IS_INDEX_REGNO(r))
313
#define IS_EXT_REGNO(r)           (IS_EXT_LOW_REGNO(r) || IS_EXT_HIGH_REGNO(r))
314
#define IS_STD_REGNO(r)           (IS_ADDR_OR_INDEX_REGNO(r) \
315
                                   || IS_REPEAT_REGNO(r) \
316
                                   || IS_SP_REGNO(r) \
317
                                   || IS_BK_REGNO(r))
318
#define IS_INT_REGNO(r)           (IS_EXT_REGNO(r) || IS_STD_REGNO(r))
319
#define IS_GROUP1_REGNO(r)        (IS_ADDR_OR_INDEX_REGNO(r) || IS_BK_REGNO(r))
320
#define IS_INT_CALL_SAVED_REGNO(r) (((r) == R4_REGNO) || ((r) == R5_REGNO) \
321
                                    || ((r) == R8_REGNO))
322
#define IS_FLOAT_CALL_SAVED_REGNO(r) (((r) == R6_REGNO) || ((r) == R7_REGNO))
323
 
324
#define IS_PSEUDO_REGNO(r)            ((r) >= FIRST_PSEUDO_REGISTER)
325
#define IS_R0R1_OR_PSEUDO_REGNO(r)    (IS_R0R1_REGNO(r) || IS_PSEUDO_REGNO(r))
326
#define IS_R2R3_OR_PSEUDO_REGNO(r)    (IS_R2R3_REGNO(r) || IS_PSEUDO_REGNO(r))
327
#define IS_EXT_OR_PSEUDO_REGNO(r)     (IS_EXT_REGNO(r) || IS_PSEUDO_REGNO(r))
328
#define IS_STD_OR_PSEUDO_REGNO(r)     (IS_STD_REGNO(r) || IS_PSEUDO_REGNO(r))
329
#define IS_INT_OR_PSEUDO_REGNO(r)     (IS_INT_REGNO(r) || IS_PSEUDO_REGNO(r))
330
#define IS_ADDR_OR_PSEUDO_REGNO(r)    (IS_ADDR_REGNO(r) || IS_PSEUDO_REGNO(r))
331
#define IS_INDEX_OR_PSEUDO_REGNO(r)   (IS_INDEX_REGNO(r) || IS_PSEUDO_REGNO(r))
332
#define IS_EXT_LOW_OR_PSEUDO_REGNO(r) (IS_EXT_LOW_REGNO(r) \
333
                                       || IS_PSEUDO_REGNO(r))
334
#define IS_DP_OR_PSEUDO_REGNO(r)      (IS_DP_REGNO(r) || IS_PSEUDO_REGNO(r))
335
#define IS_SP_OR_PSEUDO_REGNO(r)      (IS_SP_REGNO(r) || IS_PSEUDO_REGNO(r))
336
#define IS_ST_OR_PSEUDO_REGNO(r)      (IS_ST_REGNO(r) || IS_PSEUDO_REGNO(r))
337
#define IS_RC_OR_PSEUDO_REGNO(r)      (IS_RC_REGNO(r) || IS_PSEUDO_REGNO(r))
338
 
339
#define IS_PSEUDO_REG(op)          (IS_PSEUDO_REGNO(REGNO(op)))
340
#define IS_ADDR_REG(op)            (IS_ADDR_REGNO(REGNO(op)))
341
#define IS_INDEX_REG(op)           (IS_INDEX_REGNO(REGNO(op)))
342
#define IS_GROUP1_REG(r)           (IS_GROUP1_REGNO(REGNO(op)))
343
#define IS_SP_REG(op)              (IS_SP_REGNO(REGNO(op)))
344
#define IS_STD_REG(op)             (IS_STD_REGNO(REGNO(op)))
345
#define IS_EXT_REG(op)             (IS_EXT_REGNO(REGNO(op)))
346
 
347
#define IS_R0R1_OR_PSEUDO_REG(op)  (IS_R0R1_OR_PSEUDO_REGNO(REGNO(op)))
348
#define IS_R2R3_OR_PSEUDO_REG(op)  (IS_R2R3_OR_PSEUDO_REGNO(REGNO(op)))
349
#define IS_EXT_OR_PSEUDO_REG(op)   (IS_EXT_OR_PSEUDO_REGNO(REGNO(op)))
350
#define IS_STD_OR_PSEUDO_REG(op)   (IS_STD_OR_PSEUDO_REGNO(REGNO(op)))
351
#define IS_EXT_LOW_OR_PSEUDO_REG(op) (IS_EXT_LOW_OR_PSEUDO_REGNO(REGNO(op)))
352
#define IS_INT_OR_PSEUDO_REG(op)   (IS_INT_OR_PSEUDO_REGNO(REGNO(op)))
353
 
354
#define IS_ADDR_OR_PSEUDO_REG(op)  (IS_ADDR_OR_PSEUDO_REGNO(REGNO(op)))
355
#define IS_INDEX_OR_PSEUDO_REG(op) (IS_INDEX_OR_PSEUDO_REGNO(REGNO(op)))
356
#define IS_DP_OR_PSEUDO_REG(op)    (IS_DP_OR_PSEUDO_REGNO(REGNO(op)))
357
#define IS_SP_OR_PSEUDO_REG(op)    (IS_SP_OR_PSEUDO_REGNO(REGNO(op)))
358
#define IS_ST_OR_PSEUDO_REG(op)    (IS_ST_OR_PSEUDO_REGNO(REGNO(op)))
359
#define IS_RC_OR_PSEUDO_REG(op)    (IS_RC_OR_PSEUDO_REGNO(REGNO(op)))
360
 
361
/* 1 for registers that have pervasive standard uses
362
   and are not available for the register allocator.  */
363
 
364
#define FIXED_REGISTERS \
365
{                                                                       \
366
/* R0  R1  R2  R3  R4  R5  R6  R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7.  */  \
367
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,      \
368
/* DP IR0 IR1  BK  SP  ST DIE IIE IIF  RS  RE  RC  R8  R9 R10 R11.  */  \
369
    1,  0,  0,  0,  1,  1,  1,  1,  1,  0,  0,  0,  0,  0,  0,  0       \
370
}
371
 
372
/* 1 for registers not available across function calls.
373
   These must include the FIXED_REGISTERS and also any
374
   registers that can be used without being saved.
375
   The latter must include the registers where values are returned
376
   and the register where structure-value addresses are passed.
377
   Aside from that, you can include as many other registers as you like.
378
 
379
   Note that the extended precision registers are only saved in some
380
   modes.  The macro HARD_REGNO_CALL_CLOBBERED specifies which modes
381
   get clobbered for a given regno.  */
382
 
383
#define CALL_USED_REGISTERS \
384
{                                                                       \
385
/* R0  R1  R2  R3  R4  R5  R6  R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7.  */  \
386
    1,  1,  1,  1,  0,  0,  0,  0,  1,  1,  1,  0,  0,  0,  0,  0,      \
387
/* DP IR0 IR1  BK  SP  ST DIE IIE IIF  RS  RE  RC  R8  R9 R10 R11.  */  \
388
    1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  0,  1,  1,  1       \
389
}
390
 
391
/* Macro to conditionally modify fixed_regs/call_used_regs.  */
392
 
393
#define CONDITIONAL_REGISTER_USAGE                      \
394
  {                                                     \
395
    if (! TARGET_BK)                                    \
396
      {                                                 \
397
        fixed_regs[BK_REGNO] = 1;                       \
398
        call_used_regs[BK_REGNO] = 1;                   \
399
        c4x_regclass_map[BK_REGNO] = NO_REGS;           \
400
      }                                                 \
401
    if (TARGET_C3X)                                     \
402
      {                                                 \
403
         int i;                                          \
404
                                                         \
405
         reg_names[DIE_REGNO] = "ie";  /* Clobber die.  */ \
406
         reg_names[IF_REGNO] = "if";   /* Clobber iie.  */ \
407
         reg_names[IOF_REGNO] = "iof"; /* Clobber iif.  */ \
408
                                                        \
409
         for (i = R8_REGNO; i <= R11_REGNO; i++)        \
410
         {                                              \
411
             fixed_regs[i] = call_used_regs[i] = 1;     \
412
             c4x_regclass_map[i] = NO_REGS;             \
413
         }                                              \
414
      }                                                 \
415
    if (TARGET_PRESERVE_FLOAT)                          \
416
      {                                                 \
417
        c4x_caller_save_map[R6_REGNO] = HFmode;         \
418
        c4x_caller_save_map[R7_REGNO] = HFmode;         \
419
      }                                                 \
420
   }
421
 
422
/* Order of Allocation of Registers.  */
423
 
424
/* List the order in which to allocate registers.  Each register must be
425
   listed once, even those in FIXED_REGISTERS.
426
 
427
   First allocate registers that don't need preservation across calls,
428
   except index and address registers.  Then allocate data registers
429
   that require preservation across calls (even though this invokes an
430
   extra overhead of having to save/restore these registers).  Next
431
   allocate the address and index registers, since using these
432
   registers for arithmetic can cause pipeline stalls.  Finally
433
   allocated the fixed registers which won't be allocated anyhow.  */
434
 
435
#define REG_ALLOC_ORDER                                 \
436
{R0_REGNO, R1_REGNO, R2_REGNO, R3_REGNO,                \
437
 R9_REGNO, R10_REGNO, R11_REGNO,                        \
438
 RS_REGNO, RE_REGNO, RC_REGNO, BK_REGNO,                \
439
 R4_REGNO, R5_REGNO, R6_REGNO, R7_REGNO, R8_REGNO,      \
440
 AR0_REGNO, AR1_REGNO, AR2_REGNO, AR3_REGNO,            \
441
 AR4_REGNO, AR5_REGNO, AR6_REGNO, AR7_REGNO,            \
442
 IR0_REGNO, IR1_REGNO,                                  \
443
 SP_REGNO, DP_REGNO, ST_REGNO, IE_REGNO, IF_REGNO, IOF_REGNO}
444
 
445
/* A C expression that is nonzero if hard register number REGNO2 can be
446
   considered for use as a rename register for REGNO1 */
447
 
448
#define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
449
  c4x_hard_regno_rename_ok((REGNO1), (REGNO2))
450
 
451
/* Determine which register classes are very likely used by spill registers.
452
   local-alloc.c won't allocate pseudos that have these classes as their
453
   preferred class unless they are "preferred or nothing".  */
454
 
455
#define CLASS_LIKELY_SPILLED_P(CLASS) ((CLASS) == INDEX_REGS)
456
 
457
/* CCmode is wrongly defined in machmode.def.  It should have a size
458
   of UNITS_PER_WORD.  HFmode is 40-bits and thus fits within a single
459
   extended precision register.  Similarly, HCmode fits within two
460
   extended precision registers.  */
461
 
462
#define HARD_REGNO_NREGS(REGNO, MODE)                           \
463
(((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : \
464
 ((MODE) == HFmode) ? 1 : \
465
 ((MODE) == HCmode) ? 2 : \
466
 ((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
467
 
468
 
469
/* A C expression that is nonzero if the hard register REGNO is preserved
470
   across a call in mode MODE.  This does not have to include the call used
471
   registers.  */
472
 
473
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)                           \
474
     ((IS_FLOAT_CALL_SAVED_REGNO (REGNO) && ! ((MODE) == QFmode))             \
475
      || (IS_INT_CALL_SAVED_REGNO (REGNO)                                     \
476
          && ! ((MODE) == QImode || (MODE) == HImode || (MODE) == Pmode)))
477
 
478
/* Specify the modes required to caller save a given hard regno.  */
479
 
480
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) (c4x_caller_save_map[REGNO])
481
 
482
#define HARD_REGNO_MODE_OK(REGNO, MODE) c4x_hard_regno_mode_ok(REGNO, MODE)
483
 
484
/* A C expression that is nonzero if it is desirable to choose
485
   register allocation so as to avoid move instructions between a
486
   value of mode MODE1 and a value of mode MODE2.
487
 
488
   Value is 1 if it is a good idea to tie two pseudo registers
489
   when one has mode MODE1 and one has mode MODE2.
490
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
491
   for any hard reg, then this must be 0 for correct output.  */
492
 
493
#define MODES_TIEABLE_P(MODE1, MODE2) 0
494
 
495
 
496
/* Define the classes of registers for register constraints in the
497
   machine description.  Also define ranges of constants.
498
 
499
   One of the classes must always be named ALL_REGS and include all hard regs.
500
   If there is more than one class, another class must be named NO_REGS
501
   and contain no registers.
502
 
503
   The name GENERAL_REGS must be the name of a class (or an alias for
504
   another name such as ALL_REGS).  This is the class of registers
505
   that is allowed by "g" or "r" in a register constraint.
506
   Also, registers outside this class are allocated only when
507
   instructions express preferences for them.
508
 
509
   The classes must be numbered in nondecreasing order; that is,
510
   a larger-numbered class must never be contained completely
511
   in a smaller-numbered class.
512
 
513
   For any two classes, it is very desirable that there be another
514
   class that represents their union.  */
515
 
516
enum reg_class
517
  {
518
    NO_REGS,
519
    R0R1_REGS,                  /* 't'.  */
520
    R2R3_REGS,                  /* 'u'.  */
521
    EXT_LOW_REGS,               /* 'q'.  */
522
    EXT_REGS,                   /* 'f'.  */
523
    ADDR_REGS,                  /* 'a'.  */
524
    INDEX_REGS,                 /* 'x'.  */
525
    BK_REG,                     /* 'k'.  */
526
    SP_REG,                     /* 'b'.  */
527
    RC_REG,                     /* 'v'.  */
528
    COUNTER_REGS,               /*  */
529
    INT_REGS,                   /* 'c'.  */
530
    GENERAL_REGS,               /* 'r'.  */
531
    DP_REG,                     /* 'z'.  */
532
    ST_REG,                     /* 'y'.  */
533
    ALL_REGS,
534
    LIM_REG_CLASSES
535
  };
536
 
537
#define N_REG_CLASSES (int) LIM_REG_CLASSES
538
 
539
#define REG_CLASS_NAMES \
540
{                       \
541
   "NO_REGS",           \
542
   "R0R1_REGS",         \
543
   "R2R3_REGS",         \
544
   "EXT_LOW_REGS",      \
545
   "EXT_REGS",          \
546
   "ADDR_REGS",         \
547
   "INDEX_REGS",        \
548
   "BK_REG",            \
549
   "SP_REG",            \
550
   "RC_REG",            \
551
   "COUNTER_REGS",      \
552
   "INT_REGS",          \
553
   "GENERAL_REGS",      \
554
   "DP_REG",            \
555
   "ST_REG",            \
556
   "ALL_REGS"           \
557
}
558
 
559
/* Define which registers fit in which classes.
560
   This is an initializer for a vector of HARD_REG_SET
561
   of length N_REG_CLASSES.  RC is not included in GENERAL_REGS
562
   since the register allocator will often choose a general register
563
   in preference to RC for the decrement_and_branch_on_count pattern.  */
564
 
565
#define REG_CLASS_CONTENTS \
566
{                                               \
567
 {0x00000000}, /*     No registers.  */         \
568
 {0x00000003}, /* 't' R0-R1     .  */           \
569
 {0x0000000c}, /* 'u' R2-R3     .  */           \
570
 {0x000000ff}, /* 'q' R0-R7     .  */           \
571
 {0xf00000ff}, /* 'f' R0-R11       */           \
572
 {0x0000ff00}, /* 'a' AR0-AR7.  */              \
573
 {0x00060000}, /* 'x' IR0-IR1.  */              \
574
 {0x00080000}, /* 'k' BK.  */                   \
575
 {0x00100000}, /* 'b' SP.  */                   \
576
 {0x08000000}, /* 'v' RC.  */                   \
577
 {0x0800ff00}, /*     RC,AR0-AR7.  */           \
578
 {0x0e1eff00}, /* 'c' AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC.  */ \
579
 {0xfe1effff}, /* 'r' R0-R11, AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC.  */\
580
 {0x00010000}, /* 'z' DP.  */                   \
581
 {0x00200000}, /* 'y' ST.  */                   \
582
 {0xffffffff}, /*     All registers.  */                \
583
}
584
 
585
/* The same information, inverted:
586
   Return the class number of the smallest class containing
587
   reg number REGNO.  This could be a conditional expression
588
   or could index an array.  */
589
 
590
#define REGNO_REG_CLASS(REGNO) (c4x_regclass_map[REGNO])
591
 
592
/* When SMALL_REGISTER_CLASSES is defined, the lifetime of registers
593
   explicitly used in the rtl is kept as short as possible.
594
 
595
   We only need to define SMALL_REGISTER_CLASSES if TARGET_PARALLEL_MPY
596
   is defined since the MPY|ADD insns require the classes R0R1_REGS and
597
   R2R3_REGS which are used by the function return registers (R0,R1) and
598
   the register arguments (R2,R3), respectively.  I'm reluctant to define
599
   this macro since it stomps on many potential optimizations.  Ideally
600
   it should have a register class argument so that not all the register
601
   classes gets penalized for the sake of a naughty few...  For long
602
   double arithmetic we need two additional registers that we can use as
603
   spill registers.  */
604
 
605
#define SMALL_REGISTER_CLASSES (TARGET_SMALL_REG_CLASS && TARGET_PARALLEL_MPY)
606
 
607
#define BASE_REG_CLASS  ADDR_REGS
608
#define INDEX_REG_CLASS INDEX_REGS
609
 
610
/*
611
  Register constraints for the C4x
612
 
613
  a - address reg (ar0-ar7)
614
  b - stack reg (sp)
615
  c - other gp int-only reg
616
  d - data/int reg (equiv. to f)
617
  f - data/float reg
618
  h - data/long double reg (equiv. to f)
619
  k - block count (bk)
620
  q - r0-r7
621
  t - r0-r1
622
  u - r2-r3
623
  v - repeat count (rc)
624
  x - index register (ir0-ir1)
625
  y - status register (st)
626
  z - dp reg (dp)
627
 
628
  Memory/constant constraints for the C4x
629
 
630
  G - short float 16-bit
631
  I - signed 16-bit constant (sign extended)
632
  J - signed 8-bit constant (sign extended)  (C4x only)
633
  K - signed 5-bit constant (sign extended)  (C4x only for stik)
634
  L - unsigned 16-bit constant
635
  M - unsigned 8-bit constant                (C4x only)
636
  N - ones complement of unsigned 16-bit constant
637
  Q - indirect arx + 9-bit signed displacement
638
      (a *-arx(n) or *+arx(n) is used to account for the sign bit)
639
  R - indirect arx + 5-bit unsigned displacement  (C4x only)
640
  S - indirect arx + 0, 1, or irn displacement
641
  T - direct symbol ref
642
  > - indirect with autoincrement
643
  < - indirect with autodecrement
644
  } - indirect with post-modify
645
  { - indirect with pre-modify
646
  */
647
 
648
#define REG_CLASS_FROM_LETTER(CC)                               \
649
     ( ((CC) == 'a') ? ADDR_REGS                                \
650
     : ((CC) == 'b') ? SP_REG                                   \
651
     : ((CC) == 'c') ? INT_REGS                                 \
652
     : ((CC) == 'd') ? EXT_REGS                                 \
653
     : ((CC) == 'f') ? EXT_REGS                                 \
654
     : ((CC) == 'h') ? EXT_REGS                                 \
655
     : ((CC) == 'k') ? BK_REG                                   \
656
     : ((CC) == 'q') ? EXT_LOW_REGS                             \
657
     : ((CC) == 't') ? R0R1_REGS                                \
658
     : ((CC) == 'u') ? R2R3_REGS                                \
659
     : ((CC) == 'v') ? RC_REG                                   \
660
     : ((CC) == 'x') ? INDEX_REGS                               \
661
     : ((CC) == 'y') ? ST_REG                                   \
662
     : ((CC) == 'z') ? DP_REG                                   \
663
     : NO_REGS )
664
 
665
/* These assume that REGNO is a hard or pseudo reg number.
666
   They give nonzero only if REGNO is a hard reg of the suitable class
667
   or a pseudo reg currently allocated to a suitable hard reg.
668
   Since they use reg_renumber, they are safe only once reg_renumber
669
   has been allocated, which happens in local-alloc.c.  */
670
 
671
#define REGNO_OK_FOR_BASE_P(REGNO)  \
672
     (IS_ADDR_REGNO(REGNO) || IS_ADDR_REGNO((unsigned)reg_renumber[REGNO]))
673
 
674
#define REGNO_OK_FOR_INDEX_P(REGNO) \
675
     (IS_INDEX_REGNO(REGNO) || IS_INDEX_REGNO((unsigned)reg_renumber[REGNO]))
676
 
677
/* If we have to generate framepointer + constant prefer an ADDR_REGS
678
   register.  This avoids using EXT_REGS in addqi3_noclobber_reload.  */
679
 
680
#define PREFERRED_RELOAD_CLASS(X, CLASS)                        \
681
     (GET_CODE (X) == PLUS                                      \
682
      && GET_MODE (X) == Pmode                                  \
683
      && GET_CODE (XEXP ((X), 0)) == REG                        \
684
      && GET_MODE (XEXP ((X), 0)) == Pmode                      \
685
      && REGNO (XEXP ((X), 0)) == FRAME_POINTER_REGNUM          \
686
      && GET_CODE (XEXP ((X), 1)) == CONST_INT                  \
687
        ? ADDR_REGS : (CLASS))
688
 
689
#define LIMIT_RELOAD_CLASS(X, CLASS) (CLASS)
690
 
691
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) 0
692
 
693
#define CLASS_MAX_NREGS(CLASS, MODE)                    \
694
(((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : ((MODE) == HFmode) ? 1 : \
695
((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
696
 
697
#define IS_INT5_CONST(VAL) (((VAL) <= 15) && ((VAL) >= -16))    /* 'K'.  */
698
 
699
#define IS_UINT5_CONST(VAL) (((VAL) <= 31) && ((VAL) >= 0))     /* 'R'.  */
700
 
701
#define IS_INT8_CONST(VAL) (((VAL) <= 127) && ((VAL) >= -128))  /* 'J'.  */
702
 
703
#define IS_UINT8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= 0))    /* 'M'.  */
704
 
705
#define IS_INT16_CONST(VAL) (((VAL) <= 32767) && ((VAL) >= -32768)) /* 'I'.  */
706
 
707
#define IS_UINT16_CONST(VAL) (((VAL) <= 65535) && ((VAL) >= 0)) /* 'L'.  */
708
 
709
#define IS_NOT_UINT16_CONST(VAL) IS_UINT16_CONST(~(VAL))        /* 'N'.  */
710
 
711
#define IS_HIGH_CONST(VAL) \
712
(! TARGET_C3X && (((VAL) & 0xffff) == 0)) /* 'O'.  */
713
 
714
 
715
#define IS_DISP1_CONST(VAL) (((VAL) <= 1) && ((VAL) >= -1)) /* 'S'.  */
716
 
717
#define IS_DISP8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= -255)) /* 'Q'.  */
718
 
719
#define IS_DISP1_OFF_CONST(VAL) (IS_DISP1_CONST (VAL) \
720
                                 && IS_DISP1_CONST (VAL + 1))
721
 
722
#define IS_DISP8_OFF_CONST(VAL) (IS_DISP8_CONST (VAL) \
723
                                 && IS_DISP8_CONST (VAL + 1))
724
 
725
#define CONST_OK_FOR_LETTER_P(VAL, C)                                   \
726
        ( ((C) == 'I') ? (IS_INT16_CONST (VAL))                         \
727
        : ((C) == 'J') ? (! TARGET_C3X && IS_INT8_CONST (VAL))          \
728
        : ((C) == 'K') ? (! TARGET_C3X && IS_INT5_CONST (VAL))          \
729
        : ((C) == 'L') ? (IS_UINT16_CONST (VAL))                        \
730
        : ((C) == 'M') ? (! TARGET_C3X && IS_UINT8_CONST (VAL))         \
731
        : ((C) == 'N') ? (IS_NOT_UINT16_CONST (VAL))                    \
732
        : ((C) == 'O') ? (IS_HIGH_CONST (VAL))                          \
733
        : 0 )
734
 
735
#define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C)                             \
736
        ( ((C) == 'G') ? (fp_zero_operand (OP, QFmode))                 \
737
        : ((C) == 'H') ? (c4x_H_constant (OP))                          \
738
        : 0 )
739
 
740
#define EXTRA_CONSTRAINT(OP, C) \
741
        ( ((C) == 'Q') ? (c4x_Q_constraint (OP))                        \
742
        : ((C) == 'R') ? (c4x_R_constraint (OP))                        \
743
        : ((C) == 'S') ? (c4x_S_constraint (OP))                        \
744
        : ((C) == 'T') ? (c4x_T_constraint (OP))                        \
745
        : ((C) == 'U') ? (c4x_U_constraint (OP))                        \
746
        : 0 )
747
 
748
#define SMALL_CONST(VAL, insn)                                          \
749
     (  ((insn == NULL_RTX) || (get_attr_data (insn) == DATA_INT16))    \
750
        ? IS_INT16_CONST (VAL)                                          \
751
        : ( (get_attr_data (insn) == DATA_NOT_UINT16)                   \
752
            ? IS_NOT_UINT16_CONST (VAL)                                 \
753
            :  ( (get_attr_data (insn) == DATA_HIGH_16)                 \
754
               ? IS_HIGH_CONST (VAL)                                    \
755
               : IS_UINT16_CONST (VAL)                                  \
756
            )                                                           \
757
          )                                                             \
758
        )
759
 
760
/*
761
   I. Routine calling with arguments in registers
762
   ----------------------------------------------
763
 
764
   The TI C3x compiler has a rather unusual register passing algorithm.
765
   Data is passed in the following registers (in order):
766
 
767
   AR2, R2, R3, RC, RS, RE
768
 
769
   However, the first and second floating point values are always in R2
770
   and R3 (and all other floats are on the stack).  Structs are always
771
   passed on the stack.  If the last argument is an ellipsis, the
772
   previous argument is passed on the stack so that its address can be
773
   taken for the stdargs macros.
774
 
775
   Because of this, we have to pre-scan the list of arguments to figure
776
   out what goes where in the list.
777
 
778
   II. Routine calling with arguments on stack
779
   -------------------------------------------
780
 
781
   Let the subroutine declared as "foo(arg0, arg1, arg2);" have local
782
   variables loc0, loc1, and loc2.  After the function prologue has
783
   been executed, the stack frame will look like:
784
 
785
   [stack grows towards increasing addresses]
786
       I-------------I
787
   5   I saved reg1  I  <= SP points here
788
       I-------------I
789
   4   I saved reg0  I
790
       I-------------I
791
   3   I       loc2  I
792
       I-------------I
793
   2   I       loc1  I
794
       I-------------I
795
   1   I       loc0  I
796
       I-------------I
797
 
798
       I-------------I
799
   -1  I  return PC  I
800
       I-------------I
801
   -2  I       arg0  I
802
       I-------------I
803
   -3  I       arg1  I
804
       I-------------I
805
   -4  I       arg2  I
806
       I-------------I
807
 
808
   All local variables (locn) are accessible by means of +FP(n+1)
809
   addressing, where n is the local variable number.
810
 
811
   All stack arguments (argn) are accessible by means of -FP(n-2).
812
 
813
   The stack pointer (SP) points to the last register saved in the
814
   prologue (regn).
815
 
816
   Note that a push instruction performs a preincrement of the stack
817
   pointer.  (STACK_PUSH_CODE == PRE_INC)
818
 
819
   III. Registers used in function calling convention
820
   --------------------------------------------------
821
 
822
   Preserved across calls: R4...R5 (only by PUSH,  i.e. lower 32 bits)
823
   R6...R7 (only by PUSHF, i.e. upper 32 bits)
824
   AR3...AR7
825
 
826
   (Because of this model, we only assign FP values in R6, R7 and
827
   only assign integer values in R4, R5.)
828
 
829
   These registers are saved at each function entry and restored at
830
   the exit. Also it is expected any of these not affected by any
831
   call to user-defined (not service) functions.
832
 
833
   Not preserved across calls: R0...R3
834
   R4...R5 (upper 8 bits)
835
   R6...R7 (lower 8 bits)
836
   AR0...AR2, IR0, IR1, BK, ST, RS, RE, RC
837
 
838
   These registers are used arbitrary in a function without being preserved.
839
   It is also expected that any of these can be clobbered by any call.
840
 
841
   Not used by GCC (except for in user "asm" statements):
842
   IE (DIE), IF (IIE), IOF (IIF)
843
 
844
   These registers are never used by GCC for any data, but can be used
845
   with "asm" statements.  */
846
 
847
#define C4X_ARG0 -2
848
#define C4X_LOC0 1
849
 
850
/* Basic Stack Layout.  */
851
 
852
/* The stack grows upward, stack frame grows upward, and args grow
853
   downward.  */
854
 
855
#define STARTING_FRAME_OFFSET           C4X_LOC0
856
#define FIRST_PARM_OFFSET(FNDECL)      (C4X_ARG0 + 1)
857
#define ARGS_GROW_DOWNWARD
858
#define STACK_POINTER_OFFSET 1
859
 
860
/* Define this if pushing a word on the stack
861
   makes the stack pointer a smaller address.  */
862
 
863
/* #define STACK_GROWS_DOWNWARD.  */
864
/* Like the dsp16xx, i370, i960, and we32k ports.  */
865
 
866
/* Define this to nonzero if the nominal address of the stack frame
867
   is at the high-address end of the local variables;
868
   that is, each additional local variable allocated
869
   goes at a more negative offset in the frame.  */
870
 
871
#define FRAME_GROWS_DOWNWARD 0
872
 
873
 
874
/* Registers That Address the Stack Frame.  */
875
 
876
#define STACK_POINTER_REGNUM    SP_REGNO        /* SP.  */
877
#define FRAME_POINTER_REGNUM    AR3_REGNO       /* AR3.  */
878
#define ARG_POINTER_REGNUM      AR3_REGNO       /* AR3.  */
879
#define STATIC_CHAIN_REGNUM     AR0_REGNO       /* AR0.  */
880
 
881
/* Eliminating Frame Pointer and Arg Pointer.  */
882
 
883
#define FRAME_POINTER_REQUIRED  0
884
 
885
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH)                     \
886
{                                                               \
887
 int regno;                                                     \
888
 int offset = 0;                                                \
889
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)       \
890
    if (regs_ever_live[regno] && ! call_used_regs[regno])       \
891
      offset += TARGET_PRESERVE_FLOAT                           \
892
                && IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1;   \
893
  (DEPTH) = -(offset + get_frame_size ());                      \
894
}
895
 
896
/* This is a hack...  We need to specify a register.  */
897
#define ELIMINABLE_REGS                                         \
898
  {{ FRAME_POINTER_REGNUM, FRAME_POINTER_REGNUM }}
899
 
900
#define CAN_ELIMINATE(FROM, TO)                                 \
901
  (! (((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
902
  || ((FROM) == FRAME_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)))
903
 
904
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)            \
905
{                                                               \
906
 int regno;                                                     \
907
 int offset = 0;                                                \
908
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)       \
909
    if (regs_ever_live[regno] && ! call_used_regs[regno])       \
910
      offset += TARGET_PRESERVE_FLOAT                           \
911
                && IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1;   \
912
  (OFFSET) = -(offset + get_frame_size ());                     \
913
}
914
 
915
 
916
/* Passing Function Arguments on the Stack.  */
917
 
918
#define PUSH_ARGS 1
919
#define PUSH_ROUNDING(BYTES) (BYTES)
920
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
921
 
922
/* The following structure is used by calls.c, function.c, c4x.c.  */
923
 
924
typedef struct c4x_args
925
{
926
  int floats;
927
  int ints;
928
  int maxfloats;
929
  int maxints;
930
  int init;
931
  int var;
932
  int prototype;
933
  int args;
934
}
935
CUMULATIVE_ARGS;
936
 
937
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
938
  (c4x_init_cumulative_args (&CUM, FNTYPE, LIBNAME))
939
 
940
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
941
  (c4x_function_arg_advance (&CUM, MODE, TYPE, NAMED))
942
 
943
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
944
  (c4x_function_arg(&CUM, MODE, TYPE, NAMED))
945
 
946
/* Define the profitability of saving registers around calls.
947
   We disable caller save to avoid a bug in flow.c (this also affects
948
   other targets such as m68k).  Since we must use stf/sti,
949
   the profitability is marginal anyway.  */
950
 
951
#define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
952
 
953
/* 1 if N is a possible register number for function argument passing.  */
954
 
955
#define FUNCTION_ARG_REGNO_P(REGNO) \
956
        (  (   ((REGNO) == AR2_REGNO)   /* AR2.  */     \
957
            || ((REGNO) == R2_REGNO)    /* R2.  */      \
958
            || ((REGNO) == R3_REGNO)    /* R3.  */      \
959
            || ((REGNO) == RC_REGNO)    /* RC.  */      \
960
            || ((REGNO) == RS_REGNO)    /* RS.  */      \
961
            || ((REGNO) == RE_REGNO))   /* RE.  */      \
962
         ? 1                                            \
963
         : 0)
964
 
965
/* How Scalar Function Values Are Returned.  */
966
 
967
#define FUNCTION_VALUE(VALTYPE, FUNC) \
968
        gen_rtx_REG (TYPE_MODE(VALTYPE), R0_REGNO)      /* Return in R0.  */
969
 
970
#define LIBCALL_VALUE(MODE) \
971
        gen_rtx_REG (MODE, R0_REGNO)    /* Return in R0.  */
972
 
973
#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == R0_REGNO)
974
 
975
/* How Large Values Are Returned.  */
976
 
977
#define DEFAULT_PCC_STRUCT_RETURN       0
978
 
979
/* Generating Code for Profiling.  */
980
 
981
/* Note that the generated assembly uses the ^ operator to load the 16
982
   MSBs of the address.  This is not supported by the TI assembler.
983
   The FUNCTION profiler needs a function mcount which gets passed
984
   a pointer to the LABELNO.  */
985
 
986
#define FUNCTION_PROFILER(FILE, LABELNO)                        \
987
     if (! TARGET_C3X)                                          \
988
     {                                                          \
989
        fprintf (FILE, "\tpush\tar2\n");                        \
990
        fprintf (FILE, "\tldhi\t^LP%d,ar2\n", (LABELNO));       \
991
        fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO));         \
992
        fprintf (FILE, "\tcall\tmcount\n");                     \
993
        fprintf (FILE, "\tpop\tar2\n");                         \
994
     }                                                          \
995
     else                                                       \
996
     {                                                          \
997
        fprintf (FILE, "\tpush\tar2\n");                        \
998
        fprintf (FILE, "\tldiu\t^LP%d,ar2\n", (LABELNO));       \
999
        fprintf (FILE, "\tlsh\t16,ar2\n");                      \
1000
        fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO));         \
1001
        fprintf (FILE, "\tcall\tmcount\n");                     \
1002
        fprintf (FILE, "\tpop\tar2\n");                         \
1003
     }
1004
 
1005
/* CC_NOOVmode should be used when the first operand is a PLUS, MINUS, NEG
1006
   or MULT.
1007
   CCmode should be used when no special processing is needed.  */
1008
#define SELECT_CC_MODE(OP,X,Y) \
1009
  ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS               \
1010
    || GET_CODE (X) == NEG || GET_CODE (X) == MULT              \
1011
    || GET_MODE (X) == ABS                                      \
1012
    || GET_CODE (Y) == PLUS || GET_CODE (Y) == MINUS            \
1013
    || GET_CODE (Y) == NEG || GET_CODE (Y) == MULT              \
1014
    || GET_MODE (Y) == ABS)                                     \
1015
    ? CC_NOOVmode : CCmode)
1016
 
1017
/* Addressing Modes.  */
1018
 
1019
#define HAVE_POST_INCREMENT 1
1020
#define HAVE_PRE_INCREMENT 1
1021
#define HAVE_POST_DECREMENT 1
1022
#define HAVE_PRE_DECREMENT 1
1023
#define HAVE_PRE_MODIFY_REG 1
1024
#define HAVE_POST_MODIFY_REG 1
1025
#define HAVE_PRE_MODIFY_DISP 1
1026
#define HAVE_POST_MODIFY_DISP 1
1027
 
1028
/* The number of insns that can be packed into a single opcode.  */
1029
#define PACK_INSNS 2
1030
 
1031
/* Recognize any constant value that is a valid address.
1032
   We could allow arbitrary constant addresses in the large memory
1033
   model but for the small memory model we can only accept addresses
1034
   within the data page.  I suppose we could also allow
1035
   CONST PLUS SYMBOL_REF.  */
1036
#define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == SYMBOL_REF)
1037
 
1038
/* Maximum number of registers that can appear in a valid memory
1039
   address.  */
1040
#define MAX_REGS_PER_ADDRESS    2
1041
 
1042
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1043
   and check its validity for a certain class.
1044
   We have two alternate definitions for each of them.
1045
   The usual definition accepts all pseudo regs; the other rejects
1046
   them unless they have been allocated suitable hard regs.
1047
   The symbol REG_OK_STRICT causes the latter definition to be used.
1048
 
1049
   Most source files want to accept pseudo regs in the hope that
1050
   they will get allocated to the class that the insn wants them to be in.
1051
   Source files for reload pass need to be strict.
1052
   After reload, it makes no difference, since pseudo regs have
1053
   been eliminated by then.  */
1054
 
1055
#ifndef REG_OK_STRICT
1056
 
1057
/* Nonzero if X is a hard or pseudo reg that can be used as a base.  */
1058
 
1059
#define REG_OK_FOR_BASE_P(X) IS_ADDR_OR_PSEUDO_REG(X)
1060
 
1061
/* Nonzero if X is a hard or pseudo reg that can be used as an index.  */
1062
 
1063
#define REG_OK_FOR_INDEX_P(X) IS_INDEX_OR_PSEUDO_REG(X)
1064
 
1065
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)                         \
1066
{                                                                       \
1067
  if (c4x_legitimate_address_p (MODE, X, 0))                             \
1068
    goto ADDR;                                                          \
1069
}
1070
 
1071
#else
1072
 
1073
/* Nonzero if X is a hard reg that can be used as an index.  */
1074
 
1075
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1076
 
1077
/* Nonzero if X is a hard reg that can be used as a base reg.  */
1078
 
1079
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1080
 
1081
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)                         \
1082
{                                                                       \
1083
  if (c4x_legitimate_address_p (MODE, X, 1))                            \
1084
    goto ADDR;                                                          \
1085
}
1086
 
1087
#endif
1088
 
1089
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1090
{                                                                       \
1091
  rtx new;                                                              \
1092
                                                                        \
1093
  new = c4x_legitimize_address (X, MODE);                               \
1094
  if (new != NULL_RTX)                                                  \
1095
  {                                                                     \
1096
    (X) = new;                                                          \
1097
    goto WIN;                                                           \
1098
  }                                                                     \
1099
}
1100
 
1101
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)     \
1102
{                                                                       \
1103
  if (MODE != HImode                                                    \
1104
      && MODE != HFmode                                                 \
1105
      && GET_MODE (X) != HImode                                         \
1106
      && GET_MODE (X) != HFmode                                         \
1107
      && (GET_CODE (X) == CONST                                         \
1108
          || GET_CODE (X) == SYMBOL_REF                                 \
1109
          || GET_CODE (X) == LABEL_REF))                                \
1110
    {                                                                   \
1111
      if (! TARGET_SMALL)                                               \
1112
        {                                                               \
1113
          int i;                                                        \
1114
          (X) = gen_rtx_LO_SUM (GET_MODE (X),                           \
1115
                              gen_rtx_HIGH (GET_MODE (X), X), X);       \
1116
          i = push_reload (XEXP (X, 0), NULL_RTX,                        \
1117
                           &XEXP (X, 0), NULL,                           \
1118
                           DP_REG, GET_MODE (X), VOIDmode, 0, 0,  \
1119
                           OPNUM, TYPE);                                \
1120
          /* The only valid reg is DP. This is a fixed reg and will     \
1121
             normally not be used so force it.  */                      \
1122
          rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO);               \
1123
          rld[i].nocombine = 1;                                         \
1124
        }                                                               \
1125
      else                                                              \
1126
        {                                                               \
1127
          /* make_memloc in reload will substitute invalid memory       \
1128
             references.  We need to fix them up.  */                   \
1129
          (X) = gen_rtx_LO_SUM (Pmode, gen_rtx_REG (Pmode, DP_REGNO), (X)); \
1130
        }                                                               \
1131
      goto WIN;                                                         \
1132
   }                                                                    \
1133
  else if (MODE != HImode                                               \
1134
           && MODE != HFmode                                            \
1135
           && GET_MODE (X) != HImode                                    \
1136
           && GET_MODE (X) != HFmode                                    \
1137
           && GET_CODE (X) == LO_SUM                                    \
1138
           && GET_CODE (XEXP (X,0)) == HIGH                              \
1139
           && (GET_CODE (XEXP (XEXP (X,0),0)) == CONST                    \
1140
               || GET_CODE (XEXP (XEXP (X,0),0)) == SYMBOL_REF            \
1141
               || GET_CODE (XEXP (XEXP (X,0),0)) == LABEL_REF))           \
1142
    {                                                                   \
1143
      if (! TARGET_SMALL)                                               \
1144
        {                                                               \
1145
          int i = push_reload (XEXP (X, 0), NULL_RTX,                    \
1146
                               &XEXP (X, 0), NULL,                       \
1147
                               DP_REG, GET_MODE (X), VOIDmode, 0, 0,      \
1148
                               OPNUM, TYPE);                            \
1149
          /* The only valid reg is DP. This is a fixed reg and will     \
1150
             normally not be used so force it.  */                      \
1151
          rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO);               \
1152
          rld[i].nocombine = 1;                                         \
1153
        }                                                               \
1154
      goto WIN;                                                         \
1155
   }                                                                    \
1156
}
1157
 
1158
/* No mode-dependent addresses on the C4x are autoincrements.  */
1159
 
1160
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)       \
1161
  if (GET_CODE (ADDR) == PRE_DEC        \
1162
      || GET_CODE (ADDR) == POST_DEC    \
1163
      || GET_CODE (ADDR) == PRE_INC     \
1164
      || GET_CODE (ADDR) == POST_INC    \
1165
      || GET_CODE (ADDR) == POST_MODIFY \
1166
      || GET_CODE (ADDR) == PRE_MODIFY) \
1167
    goto LABEL
1168
 
1169
 
1170
/* Nonzero if the constant value X is a legitimate general operand.
1171
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1172
 
1173
   The C4x can only load 16-bit immediate values, so we only allow a
1174
   restricted subset of CONST_INT and CONST_DOUBLE.  Disallow
1175
   LABEL_REF and SYMBOL_REF (except on the C40 with the big memory
1176
   model) so that the symbols will be forced into the constant pool.
1177
   On second thoughts, let's do this with the move expanders since
1178
   the alias analysis has trouble if we force constant addresses
1179
   into memory.
1180
*/
1181
 
1182
#define LEGITIMATE_CONSTANT_P(X)                                \
1183
  ((GET_CODE (X) == CONST_DOUBLE && c4x_H_constant (X))         \
1184
  || (GET_CODE (X) == CONST_INT)                                \
1185
  || (GET_CODE (X) == SYMBOL_REF)                               \
1186
  || (GET_CODE (X) == LABEL_REF)                                \
1187
  || (GET_CODE (X) == CONST)                                    \
1188
  || (GET_CODE (X) == HIGH && ! TARGET_C3X)                     \
1189
  || (GET_CODE (X) == LO_SUM && ! TARGET_C3X))
1190
 
1191
#define LEGITIMATE_DISPLACEMENT_P(X) IS_DISP8_CONST (INTVAL (X))
1192
 
1193
/* Describing Relative Cost of Operations.  */
1194
 
1195
#define CANONICALIZE_COMPARISON(CODE, OP0, OP1)         \
1196
if (REG_P (OP1) && ! REG_P (OP0))                       \
1197
{                                                       \
1198
  rtx tmp = OP0; OP0 = OP1 ; OP1 = tmp;                 \
1199
  CODE = swap_condition (CODE);                         \
1200
}
1201
 
1202
#define EXT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, EXT_REGS))
1203
#define ADDR_CLASS_P(CLASS) (reg_class_subset_p (CLASS, ADDR_REGS))
1204
#define INDEX_CLASS_P(CLASS) (reg_class_subset_p (CLASS, INDEX_REGS))
1205
#define EXPENSIVE_CLASS_P(CLASS) (ADDR_CLASS_P(CLASS) \
1206
                          || INDEX_CLASS_P(CLASS) || (CLASS) == SP_REG)
1207
 
1208
/* Compute extra cost of moving data between one register class
1209
   and another.  */
1210
 
1211
#define REGISTER_MOVE_COST(MODE, FROM, TO)      2
1212
 
1213
/* Memory move cost is same as fast register move.  Maybe this should
1214
   be bumped up?.  */
1215
 
1216
#define MEMORY_MOVE_COST(M,C,I)         4
1217
 
1218
/* Branches are kind of expensive (even with delayed branching) so
1219
   make their cost higher.  */
1220
 
1221
#define BRANCH_COST                     8
1222
 
1223
#define WORD_REGISTER_OPERATIONS
1224
 
1225
/* Dividing the Output into Sections.  */
1226
 
1227
#define TEXT_SECTION_ASM_OP "\t.text"
1228
 
1229
#define DATA_SECTION_ASM_OP "\t.data"
1230
 
1231
#define READONLY_DATA_SECTION_ASM_OP "\t.sect\t\".const\""
1232
 
1233
/* Do not use .init section so __main will be called on startup. This will
1234
   call __do_global_ctors and prepare for __do_global_dtors on exit.  */
1235
 
1236
#if 0
1237
#define INIT_SECTION_ASM_OP  "\t.sect\t\".init\""
1238
#endif
1239
 
1240
#define FINI_SECTION_ASM_OP  "\t.sect\t\".fini\""
1241
 
1242
#undef EXTRA_SECTIONS
1243
#define EXTRA_SECTIONS in_init, in_fini
1244
 
1245
#undef EXTRA_SECTION_FUNCTIONS
1246
#define EXTRA_SECTION_FUNCTIONS                                 \
1247
  INIT_SECTION_FUNCTION                                         \
1248
  FINI_SECTION_FUNCTION
1249
 
1250
#define INIT_SECTION_FUNCTION                                   \
1251
extern void init_section (void);                                \
1252
void                                                            \
1253
init_section (void)                                             \
1254
{                                                               \
1255
  if (in_section != in_init)                                    \
1256
    {                                                           \
1257
      fprintf (asm_out_file, ";\t.init\n");                     \
1258
      in_section = in_init;                                     \
1259
    }                                                           \
1260
}
1261
 
1262
#define FINI_SECTION_FUNCTION                                   \
1263
void                                                            \
1264
fini_section ()                                                 \
1265
{                                                               \
1266
  if (in_section != in_fini)                                    \
1267
    {                                                           \
1268
      fprintf (asm_out_file, "%s\n", FINI_SECTION_ASM_OP);      \
1269
      in_section = in_fini;                                     \
1270
    }                                                           \
1271
}
1272
 
1273
/* Switch into a generic section.  */
1274
#define TARGET_ASM_NAMED_SECTION c4x_asm_named_section
1275
 
1276
 
1277
/* Overall Framework of an Assembler File.  */
1278
 
1279
#define ASM_COMMENT_START ";"
1280
 
1281
#define ASM_APP_ON ""
1282
#define ASM_APP_OFF ""
1283
 
1284
#define ASM_OUTPUT_ASCII(FILE, PTR, LEN) c4x_output_ascii (FILE, PTR, LEN)
1285
 
1286
/* Output and Generation of Labels.  */
1287
 
1288
#define NO_DOT_IN_LABEL         /* Only required for TI format.  */
1289
 
1290
/* Globalizing directive for a label.  */
1291
#define GLOBAL_ASM_OP "\t.global\t"
1292
 
1293
#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1294
c4x_external_ref (NAME)
1295
 
1296
/* The prefix to add to user-visible assembler symbols.  */
1297
 
1298
#define USER_LABEL_PREFIX "_"
1299
 
1300
/* This is how to store into the string LABEL
1301
   the symbol_ref name of an internal numbered label where
1302
   PREFIX is the class of label and NUM is the number within the class.
1303
   This is suitable for output with `assemble_name'.  */
1304
 
1305
#define ASM_GENERATE_INTERNAL_LABEL(BUFFER, PREFIX, NUM) \
1306
    sprintf (BUFFER, "*%s%lu", PREFIX, (unsigned long)(NUM))
1307
 
1308
/* A C statement to output to the stdio stream STREAM assembler code which
1309
   defines (equates) the symbol NAME to have the value VALUE.  */
1310
 
1311
#define ASM_OUTPUT_DEF(STREAM, NAME, VALUE)     \
1312
do {                                            \
1313
  assemble_name (STREAM, NAME);                 \
1314
  fprintf (STREAM, "\t.set\t%s\n", VALUE);      \
1315
} while (0)
1316
 
1317
/* Output of Dispatch Tables.  */
1318
 
1319
/* This is how to output an element of a case-vector that is absolute.  */
1320
 
1321
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1322
    fprintf (FILE, "\t.long\tL%d\n", VALUE);
1323
 
1324
/* This is how to output an element of a case-vector that is relative.  */
1325
 
1326
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1327
    fprintf (FILE, "\t.long\tL%d-L%d\n", VALUE, REL);
1328
 
1329
#undef SIZE_TYPE
1330
#define SIZE_TYPE "unsigned int"
1331
 
1332
#undef PTRDIFF_TYPE
1333
#define PTRDIFF_TYPE "int"
1334
 
1335
#undef WCHAR_TYPE
1336
#define WCHAR_TYPE "long int"
1337
 
1338
#undef WCHAR_TYPE_SIZE
1339
#define WCHAR_TYPE_SIZE 32
1340
 
1341
#define INT_TYPE_SIZE           32
1342
#define LONG_LONG_TYPE_SIZE     64
1343
#define FLOAT_TYPE_SIZE         32
1344
#define DOUBLE_TYPE_SIZE        32
1345
#define LONG_DOUBLE_TYPE_SIZE   64 /* Actually only 40.  */
1346
 
1347
/* Output #ident as a .ident.  */
1348
 
1349
#define ASM_OUTPUT_IDENT(FILE, NAME) \
1350
  fprintf (FILE, "\t.ident \"%s\"\n", NAME);
1351
 
1352
/* Output of Uninitialized Variables.  */
1353
 
1354
/* This says how to output an assembler line to define a local
1355
   uninitialized variable.  */
1356
 
1357
#undef ASM_OUTPUT_LOCAL
1358
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)  \
1359
( fputs ("\t.bss\t", FILE),                     \
1360
  assemble_name (FILE, (NAME)),         \
1361
  fprintf (FILE, ",%u\n", (int)(ROUNDED)))
1362
 
1363
/* This says how to output an assembler line to define a global
1364
   uninitialized variable.  */
1365
 
1366
#undef ASM_OUTPUT_COMMON
1367
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1368
(  fputs ("\t.globl\t", FILE),  \
1369
   assemble_name (FILE, (NAME)),        \
1370
   fputs ("\n\t.bss\t", FILE),  \
1371
   assemble_name (FILE, (NAME)),        \
1372
   fprintf (FILE, ",%u\n", (int)(ROUNDED)))
1373
 
1374
#undef ASM_OUTPUT_BSS
1375
#define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ALIGN)   \
1376
(  fputs ("\t.globl\t", FILE),  \
1377
   assemble_name (FILE, (NAME)),        \
1378
   fputs ("\n\t.bss\t", FILE),  \
1379
   assemble_name (FILE, (NAME)),        \
1380
   fprintf (FILE, ",%u\n", (int)(SIZE)))
1381
 
1382
/* Macros Controlling Initialization Routines.  */
1383
 
1384
#define OBJECT_FORMAT_COFF
1385
#define REAL_NM_FILE_NAME "c4x-nm"
1386
 
1387
/* Output of Assembler Instructions.  */
1388
 
1389
/* Register names when used for integer modes.  */
1390
 
1391
#define REGISTER_NAMES \
1392
{                                                               \
1393
 "r0",   "r1", "r2",   "r3",  "r4",  "r5",  "r6",  "r7",        \
1394
 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7",        \
1395
 "dp",  "ir0", "ir1",  "bk",  "sp",  "st", "die", "iie",        \
1396
 "iif",  "rs",  "re",  "rc",  "r8",  "r9", "r10", "r11"         \
1397
}
1398
 
1399
/* Alternate register names when used for floating point modes.  */
1400
 
1401
#define FLOAT_REGISTER_NAMES \
1402
{                                                               \
1403
 "f0",   "f1", "f2",   "f3",  "f4",  "f5",  "f6",  "f7",        \
1404
 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7",        \
1405
 "dp",  "ir0", "ir1",  "bk",  "sp",  "st", "die", "iie",        \
1406
 "iif",  "rs",  "re",  "rc",  "f8",  "f9", "f10", "f11"         \
1407
}
1408
 
1409
#define PRINT_OPERAND(FILE, X, CODE) c4x_print_operand(FILE, X, CODE)
1410
 
1411
/* Determine which codes are valid without a following integer.  These must
1412
   not be alphabetic.  */
1413
 
1414
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '#')
1415
 
1416
#define PRINT_OPERAND_ADDRESS(FILE, X) c4x_print_operand_address(FILE, X)
1417
 
1418
/* C4x specific pragmas.  */
1419
#define REGISTER_TARGET_PRAGMAS() do {                                    \
1420
  c_register_pragma (0, "CODE_SECTION", c4x_pr_CODE_SECTION);              \
1421
  c_register_pragma (0, "DATA_SECTION", c4x_pr_DATA_SECTION);              \
1422
  c_register_pragma (0, "FUNC_CANNOT_INLINE", c4x_pr_ignored);             \
1423
  c_register_pragma (0, "FUNC_EXT_CALLED", c4x_pr_ignored);                \
1424
  c_register_pragma (0, "FUNC_IS_PURE", c4x_pr_FUNC_IS_PURE);              \
1425
  c_register_pragma (0, "FUNC_IS_SYSTEM", c4x_pr_ignored);                 \
1426
  c_register_pragma (0, "FUNC_NEVER_RETURNS", c4x_pr_FUNC_NEVER_RETURNS); \
1427
  c_register_pragma (0, "FUNC_NO_GLOBAL_ASG", c4x_pr_ignored);             \
1428
  c_register_pragma (0, "FUNC_NO_IND_ASG", c4x_pr_ignored);                \
1429
  c_register_pragma (0, "INTERRUPT", c4x_pr_INTERRUPT);                    \
1430
} while (0)
1431
 
1432
/* Assembler Commands for Alignment.  */
1433
 
1434
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
1435
{ int c = SIZE; \
1436
  for (; c > 0; --c) \
1437
   fprintf (FILE,"\t.word\t0\n"); \
1438
}
1439
 
1440
#define ASM_NO_SKIP_IN_TEXT 1
1441
 
1442
/* I'm not sure about this one.  FIXME.  */
1443
 
1444
#define ASM_OUTPUT_ALIGN(FILE, LOG)     \
1445
  if ((LOG) != 0)                        \
1446
    fprintf (FILE, "\t.align\t%d\n", (1 << (LOG)))
1447
 
1448
 
1449
/* Macros for SDB and DWARF Output  (use .sdef instead of .def
1450
   to avoid conflict with TI's use of .def).  */
1451
 
1452
#define SDB_DELIM "\n"
1453
#define SDB_DEBUGGING_INFO 1
1454
 
1455
/* Don't use octal since this can confuse gas for the c4x.  */
1456
#define PUT_SDB_TYPE(a) fprintf(asm_out_file, "\t.type\t0x%x%s", a, SDB_DELIM)
1457
 
1458
#define PUT_SDB_DEF(A)                          \
1459
do { fprintf (asm_out_file, "\t.sdef\t");       \
1460
     ASM_OUTPUT_LABELREF (asm_out_file, A);     \
1461
     fprintf (asm_out_file, SDB_DELIM); } while (0)
1462
 
1463
#define PUT_SDB_PLAIN_DEF(A)                    \
1464
  fprintf (asm_out_file,"\t.sdef\t.%s%s", A, SDB_DELIM)
1465
 
1466
#define PUT_SDB_BLOCK_START(LINE)               \
1467
  fprintf (asm_out_file,                        \
1468
           "\t.sdef\t.bb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
1469
           SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1470
 
1471
#define PUT_SDB_BLOCK_END(LINE)                 \
1472
  fprintf (asm_out_file,                        \
1473
           "\t.sdef\t.eb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
1474
           SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1475
 
1476
#define PUT_SDB_FUNCTION_START(LINE)            \
1477
  fprintf (asm_out_file,                        \
1478
           "\t.sdef\t.bf%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
1479
           SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1480
 
1481
/* Note we output relative line numbers for .ef which gas converts
1482
   to absolute line numbers.  The TI compiler outputs absolute line numbers
1483
   in the .sym directive which gas does not support.  */
1484
#define PUT_SDB_FUNCTION_END(LINE)              \
1485
  fprintf (asm_out_file,                        \
1486
           "\t.sdef\t.ef%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
1487
           SDB_DELIM, SDB_DELIM, SDB_DELIM, \
1488
           (LINE), SDB_DELIM)
1489
 
1490
#define PUT_SDB_EPILOGUE_END(NAME)                      \
1491
do { fprintf (asm_out_file, "\t.sdef\t");               \
1492
     ASM_OUTPUT_LABELREF (asm_out_file, NAME);          \
1493
     fprintf (asm_out_file,                             \
1494
              "%s\t.val\t.%s\t.scl\t-1%s\t.endef\n",    \
1495
              SDB_DELIM, SDB_DELIM, SDB_DELIM); } while (0)
1496
 
1497
/* Define this as 1 if `char' should by default be signed; else as 0.  */
1498
 
1499
#define DEFAULT_SIGNED_CHAR 1
1500
 
1501
/* A function address in a call instruction is a byte address (for
1502
   indexing purposes) so give the MEM rtx a byte's mode.  */
1503
 
1504
#define FUNCTION_MODE QImode
1505
 
1506
#define SLOW_BYTE_ACCESS 0
1507
 
1508
/* Specify the machine mode that pointers have.  After generation of
1509
   RTL, the compiler makes no further distinction between pointers and
1510
   any other objects of this machine mode.  */
1511
 
1512
#define Pmode QImode
1513
 
1514
/* On the C4x we can write the following code. We have to clear the cache
1515
   every time we execute it because the data in the stack could change.
1516
 
1517
   laj   $+4
1518
   addi3 4,r11,ar0
1519
   lda   *ar0,ar1
1520
   lda   *+ar0(1),ar0
1521
   bud   ar1
1522
   nop
1523
   nop
1524
   or   1000h,st
1525
   .word FNADDR
1526
   .word CXT
1527
 
1528
   On the c3x this is a bit more difficult. We have to write self
1529
   modifying code here. So we have to clear the cache every time
1530
   we execute it because the data in the stack could change.
1531
 
1532
   ldiu TOP_OF_FUNCTION,ar1
1533
   lsh  16,ar1
1534
   or   BOTTOM_OF_FUNCTION,ar1
1535
   ldiu TOP_OF_STATIC,ar0
1536
   bud  ar1
1537
   lsh  16,ar0
1538
   or   BOTTOM_OF_STATIC,ar0
1539
   or   1000h,st
1540
 
1541
  */
1542
 
1543
#define TRAMPOLINE_SIZE (TARGET_C3X ? 8 : 10)
1544
 
1545
#define TRAMPOLINE_TEMPLATE(FILE)                               \
1546
{                                                               \
1547
  if (TARGET_C3X)                                               \
1548
    {                                                           \
1549
      fprintf (FILE, "\tldiu\t0,ar1\n");                        \
1550
      fprintf (FILE, "\tlsh\t16,ar1\n");                        \
1551
      fprintf (FILE, "\tor\t0,ar1\n");                          \
1552
      fprintf (FILE, "\tldiu\t0,ar0\n");                        \
1553
      fprintf (FILE, "\tbud\tar1\n");                           \
1554
      fprintf (FILE, "\tlsh\t16,ar0\n");                        \
1555
      fprintf (FILE, "\tor\t0,ar0\n");                          \
1556
      fprintf (FILE, "\tor\t1000h,st\n");                       \
1557
    }                                                           \
1558
  else                                                          \
1559
    {                                                           \
1560
      fprintf (FILE, "\tlaj\t$+4\n");                           \
1561
      fprintf (FILE, "\taddi3\t4,r11,ar0\n");                   \
1562
      fprintf (FILE, "\tlda\t*ar0,ar1\n");                      \
1563
      fprintf (FILE, "\tlda\t*+ar0(1),ar0\n");                  \
1564
      fprintf (FILE, "\tbud\tar1\n");                           \
1565
      fprintf (FILE, "\tnop\n");                                \
1566
      fprintf (FILE, "\tnop\n");                                \
1567
      fprintf (FILE, "\tor\t1000h,st\n");                       \
1568
      fprintf (FILE, "\t.word\t0\n");                            \
1569
      fprintf (FILE, "\t.word\t0\n");                            \
1570
    }                                                           \
1571
}
1572
 
1573
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)                       \
1574
{                                                                       \
1575
  if (TARGET_C3X)                                                       \
1576
    {                                                                   \
1577
      rtx tmp1, tmp2;                                                   \
1578
      tmp1 = expand_shift (RSHIFT_EXPR, QImode, FNADDR,                 \
1579
                           size_int (16), 0, 1);                 \
1580
      tmp2 = expand_shift (LSHIFT_EXPR, QImode,                         \
1581
                           GEN_INT (0x5069), size_int (16), 0, 1);       \
1582
      emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2));                        \
1583
      emit_move_insn (gen_rtx_MEM (QImode,                              \
1584
                               plus_constant (TRAMP, 0)), tmp1); \
1585
      tmp1 = expand_and (QImode, FNADDR, GEN_INT (0xffff), 0);           \
1586
      tmp2 = expand_shift (LSHIFT_EXPR, QImode,                         \
1587
                           GEN_INT (0x1069), size_int (16), 0, 1);       \
1588
      emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2));                        \
1589
      emit_move_insn (gen_rtx_MEM (QImode,                              \
1590
                               plus_constant (TRAMP, 2)), tmp1);        \
1591
      tmp1 = expand_shift (RSHIFT_EXPR, QImode, CXT,                    \
1592
                           size_int (16), 0, 1);                 \
1593
      tmp2 = expand_shift (LSHIFT_EXPR, QImode,                         \
1594
                           GEN_INT (0x5068), size_int (16), 0, 1);       \
1595
      emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2));                        \
1596
      emit_move_insn (gen_rtx_MEM (QImode,                              \
1597
                               plus_constant (TRAMP, 3)), tmp1);        \
1598
      tmp1 = expand_and (QImode, CXT, GEN_INT (0xffff), 0);              \
1599
      tmp2 = expand_shift (LSHIFT_EXPR, QImode,                         \
1600
                           GEN_INT (0x1068), size_int (16), 0, 1);       \
1601
      emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2));                        \
1602
      emit_move_insn (gen_rtx_MEM (QImode,                              \
1603
                               plus_constant (TRAMP, 6)), tmp1);        \
1604
    }                                                                   \
1605
  else                                                                  \
1606
    {                                                                   \
1607
      emit_move_insn (gen_rtx_MEM (QImode,                              \
1608
                               plus_constant (TRAMP, 8)), FNADDR);      \
1609
      emit_move_insn (gen_rtx_MEM (QImode,                              \
1610
                               plus_constant (TRAMP, 9)), CXT);         \
1611
    }                                                                   \
1612
}
1613
 
1614
/* Specify the machine mode that this machine uses for the index in
1615
   the tablejump instruction.  */
1616
 
1617
#define CASE_VECTOR_MODE Pmode
1618
 
1619
/* Max number of (32-bit) bytes we can move from memory to memory
1620
   in one reasonably fast instruction.  */
1621
 
1622
#define MOVE_MAX 1
1623
 
1624
/* MOVE_RATIO is the number of move instructions that is better than a
1625
   block move.  */
1626
 
1627
#define MOVE_RATIO 3
1628
 
1629
#define BSS_SECTION_ASM_OP "\t.bss"
1630
 
1631
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
1632
  fprintf (FILE, "\tpush\t%s\n", reg_names[REGNO])
1633
 
1634
/* This is how to output an insn to pop a register from the stack.
1635
   It need not be very fast code.  */
1636
 
1637
#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
1638
  fprintf (FILE, "\tpop\t%s\n", reg_names[REGNO])
1639
 
1640
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1641
   is done just by pretending it is already truncated.  */
1642
 
1643
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1644
 
1645
#define DBR_OUTPUT_SEQEND(FILE)                         \
1646
if (final_sequence != NULL_RTX)                         \
1647
{                                                       \
1648
 int count;                                             \
1649
 rtx insn = XVECEXP (final_sequence, 0, 0);               \
1650
 int laj = GET_CODE (insn) == CALL_INSN                 \
1651
           || (GET_CODE (insn) == INSN                  \
1652
               && GET_CODE (PATTERN (insn)) == TRAP_IF);\
1653
                                                        \
1654
 count = dbr_sequence_length();                         \
1655
 while (count < (laj ? 2 : 3))                          \
1656
 {                                                      \
1657
    fputs("\tnop\n", FILE);                             \
1658
    count++;                                            \
1659
 }                                                      \
1660
 if (laj)                                               \
1661
    fputs("\tpush\tr11\n", FILE);                       \
1662
}
1663
 
1664
#define NO_FUNCTION_CSE
1665
 
1666
/* We don't want a leading tab.  */
1667
 
1668
#define ASM_OUTPUT_ASM(FILE, STRING) fprintf (FILE, "%s\n", STRING)
1669
 
1670
/* Define the intrinsic functions for the c3x/c4x.  */
1671
 
1672
enum c4x_builtins
1673
{
1674
                        /*      intrinsic name          */
1675
  C4X_BUILTIN_FIX,      /*      fast_ftoi               */
1676
  C4X_BUILTIN_FIX_ANSI, /*      ansi_ftoi               */
1677
  C4X_BUILTIN_MPYI,     /*      fast_imult (only C3x)   */
1678
  C4X_BUILTIN_TOIEEE,   /*      toieee     (only C4x)   */
1679
  C4X_BUILTIN_FRIEEE,   /*      frieee     (only C4x)   */
1680
  C4X_BUILTIN_RCPF      /*      fast_invf  (only C4x)   */
1681
};
1682
 
1683
 
1684
/* Hack to overcome use of libgcc2.c using auto-host.h to determine
1685
   HAVE_GAS_HIDDEN.  */
1686
#undef HAVE_GAS_HIDDEN

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.