OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [crx/] [crx.c] - Blame information for rev 20

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Output routines for GCC for CRX.
2
   Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3
   2002, 2003, 2004  Free Software Foundation, Inc.
4
 
5
   This file is part of GCC.
6
 
7
   GCC is free software; you can redistribute it and/or modify it
8
   under the terms of the GNU General Public License as published
9
   by the Free Software Foundation; either version 2, or (at your
10
   option) any later version.
11
 
12
   GCC is distributed in the hope that it will be useful, but WITHOUT
13
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15
   License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with GCC; see the file COPYING.  If not, write to
19
   the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20
   Boston, MA 02110-1301, USA.  */
21
 
22
/*****************************************************************************/
23
/* HEADER INCLUDES                                                           */
24
/*****************************************************************************/
25
 
26
#include "config.h"
27
#include "system.h"
28
#include "coretypes.h"
29
#include "tm.h"
30
#include "rtl.h"
31
#include "tree.h"
32
#include "tm_p.h"
33
#include "regs.h"
34
#include "hard-reg-set.h"
35
#include "real.h"
36
#include "insn-config.h"
37
#include "conditions.h"
38
#include "output.h"
39
#include "insn-codes.h"
40
#include "insn-attr.h"
41
#include "flags.h"
42
#include "except.h"
43
#include "function.h"
44
#include "recog.h"
45
#include "expr.h"
46
#include "optabs.h"
47
#include "toplev.h"
48
#include "basic-block.h"
49
#include "target.h"
50
#include "target-def.h"
51
 
52
/*****************************************************************************/
53
/* DEFINITIONS                                                               */
54
/*****************************************************************************/
55
 
56
/* Maximum number of register used for passing parameters.  */
57
#define MAX_REG_FOR_PASSING_ARGS 6
58
 
59
/* Minimum number register used for passing parameters.  */
60
#define MIN_REG_FOR_PASSING_ARGS 2
61
 
62
/* The maximum count of words supported in the assembly of the architecture in
63
 * a push/pop instruction.  */
64
#define MAX_COUNT               8
65
 
66
/* Predicate is true if the current function is a 'noreturn' function, i.e. it
67
 * is qualified as volatile.  */
68
#define FUNC_IS_NORETURN_P(decl) (TREE_THIS_VOLATILE (decl))
69
 
70
/* The following macros are used in crx_decompose_address () */
71
 
72
/* Returns the factor of a scaled index address or -1 if invalid. */
73
#define SCALE_FOR_INDEX_P(X)    \
74
 (GET_CODE (X) == CONST_INT ?   \
75
  (INTVAL (X) == 1 ? 1 :        \
76
   INTVAL (X) == 2 ? 2 :        \
77
   INTVAL (X) == 4 ? 4 :        \
78
   INTVAL (X) == 8 ? 8 :        \
79
   -1) :                        \
80
  -1)
81
 
82
/* Nonzero if the rtx X is a signed const int of n bits */
83
#define RTX_SIGNED_INT_FITS_N_BITS(X,n)                 \
84
 ((GET_CODE (X) == CONST_INT                            \
85
   && SIGNED_INT_FITS_N_BITS (INTVAL (X), n)) ? 1 : 0)
86
 
87
/* Nonzero if the rtx X is an unsigned const int of n bits.  */
88
#define RTX_UNSIGNED_INT_FITS_N_BITS(X, n)              \
89
 ((GET_CODE (X) == CONST_INT                            \
90
   && UNSIGNED_INT_FITS_N_BITS (INTVAL (X), n)) ? 1 : 0)
91
 
92
/*****************************************************************************/
93
/* STATIC VARIABLES                                                          */
94
/*****************************************************************************/
95
 
96
/* Nonzero if the last param processed is passed in a register.  */
97
static int last_parm_in_reg;
98
 
99
/* Will hold the number of the last register the prologue saves, -1 if no
100
 * register is saved. */
101
static int last_reg_to_save;
102
 
103
/* Each object in the array is a register number. Mark 1 for registers that
104
 * need to be saved.  */
105
static int save_regs[FIRST_PSEUDO_REGISTER];
106
 
107
/* Number of bytes saved on the stack for non-scratch registers */
108
static int sum_regs = 0;
109
 
110
/* Number of bytes saved on the stack for local variables. */
111
static int local_vars_size;
112
 
113
/* The sum of 2 sizes: locals vars and padding byte for saving the registers.
114
 * Used in expand_prologue () and expand_epilogue ().  */
115
static int size_for_adjusting_sp;
116
 
117
/* In case of a POST_INC or POST_DEC memory reference, we must report the mode
118
 * of the memory reference from PRINT_OPERAND to PRINT_OPERAND_ADDRESS. */
119
static enum machine_mode output_memory_reference_mode;
120
 
121
/*****************************************************************************/
122
/* GLOBAL VARIABLES                                                          */
123
/*****************************************************************************/
124
 
125
/* Table of machine attributes.  */
126
const struct attribute_spec crx_attribute_table[];
127
 
128
/* Test and compare insns use these globals to generate branch insns.  */
129
rtx crx_compare_op0 = NULL_RTX;
130
rtx crx_compare_op1 = NULL_RTX;
131
 
132
/*****************************************************************************/
133
/* TARGETM FUNCTION PROTOTYPES                                               */
134
/*****************************************************************************/
135
 
136
static bool crx_fixed_condition_code_regs (unsigned int *, unsigned int *);
137
static rtx crx_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
138
                                 int incoming ATTRIBUTE_UNUSED);
139
static bool crx_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED);
140
static int crx_address_cost (rtx);
141
 
142
/*****************************************************************************/
143
/* STACK LAYOUT AND CALLING CONVENTIONS                                      */
144
/*****************************************************************************/
145
 
146
#undef  TARGET_FIXED_CONDITION_CODE_REGS
147
#define TARGET_FIXED_CONDITION_CODE_REGS crx_fixed_condition_code_regs
148
 
149
#undef  TARGET_STRUCT_VALUE_RTX
150
#define TARGET_STRUCT_VALUE_RTX         crx_struct_value_rtx
151
 
152
#undef  TARGET_RETURN_IN_MEMORY
153
#define TARGET_RETURN_IN_MEMORY         crx_return_in_memory
154
 
155
/*****************************************************************************/
156
/* RELATIVE COSTS OF OPERATIONS                                              */
157
/*****************************************************************************/
158
 
159
#undef  TARGET_ADDRESS_COST
160
#define TARGET_ADDRESS_COST             crx_address_cost
161
 
162
/*****************************************************************************/
163
/* TARGET-SPECIFIC USES OF `__attribute__'                                   */
164
/*****************************************************************************/
165
 
166
#undef  TARGET_ATTRIBUTE_TABLE
167
#define TARGET_ATTRIBUTE_TABLE          crx_attribute_table
168
 
169
const struct attribute_spec crx_attribute_table[] = {
170
  /* ISRs have special prologue and epilogue requirements. */
171
  {"interrupt", 0, 0, false, true, true, NULL},
172
  {NULL, 0, 0, false, false, false, NULL}
173
};
174
 
175
 
176
/* Initialize 'targetm' variable which contains pointers to functions and data
177
 * relating to the target machine.  */
178
 
179
struct gcc_target targetm = TARGET_INITIALIZER;
180
 
181
 
182
/*****************************************************************************/
183
/* TARGET HOOK IMPLEMENTATIONS                                               */
184
/*****************************************************************************/
185
 
186
/* Return the fixed registers used for condition codes.  */
187
 
188
static bool
189
crx_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
190
{
191
    *p1 = CC_REGNUM;
192
    *p2 = INVALID_REGNUM;
193
    return true;
194
}
195
 
196
/* Implements hook TARGET_STRUCT_VALUE_RTX.  */
197
 
198
static rtx
199
crx_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
200
                      int incoming ATTRIBUTE_UNUSED)
201
{
202
  return gen_rtx_REG (Pmode, CRX_STRUCT_VALUE_REGNUM);
203
}
204
 
205
/* Implements hook TARGET_RETURN_IN_MEMORY.  */
206
 
207
static bool
208
crx_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
209
{
210
  if (TYPE_MODE (type) == BLKmode)
211
    {
212
      HOST_WIDE_INT size = int_size_in_bytes (type);
213
      return (size == -1 || size > 8);
214
    }
215
  else
216
    return false;
217
}
218
 
219
 
220
/*****************************************************************************/
221
/* MACRO IMPLEMENTATIONS                                                     */
222
/*****************************************************************************/
223
 
224
/* STACK LAYOUT AND CALLING CONVENTIONS ROUTINES */
225
/* --------------------------------------------- */
226
 
227
/* Return nonzero if the current function being compiled is an interrupt
228
 * function as specified by the "interrupt" attribute.  */
229
 
230
int
231
crx_interrupt_function_p (void)
232
{
233
  tree attributes;
234
 
235
  attributes = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
236
  return lookup_attribute ("interrupt", attributes) != NULL_TREE;
237
}
238
 
239
/* Compute values for the array save_regs and the variable sum_regs.  The index
240
 * of save_regs is numbers of register, each will get 1 if we need to save it
241
 * in the current function, 0 if not. sum_regs is the total sum of the
242
 * registers being saved. */
243
 
244
static void
245
crx_compute_save_regs (void)
246
{
247
  unsigned int regno;
248
 
249
  /* initialize here so in case the function is no-return it will be -1. */
250
  last_reg_to_save = -1;
251
 
252
  /* No need to save any registers if the function never returns.  */
253
  if (FUNC_IS_NORETURN_P (current_function_decl))
254
    return;
255
 
256
  /* Initialize the number of bytes to be saved. */
257
  sum_regs = 0;
258
 
259
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
260
    {
261
      if (fixed_regs[regno])
262
        {
263
          save_regs[regno] = 0;
264
          continue;
265
        }
266
 
267
      /* If this reg is used and not call-used (except RA), save it. */
268
      if (crx_interrupt_function_p ())
269
        {
270
          if (!current_function_is_leaf && call_used_regs[regno])
271
            /* this is a volatile reg in a non-leaf interrupt routine - save it
272
             * for the sake of its sons.  */
273
            save_regs[regno] = 1;
274
 
275
          else if (regs_ever_live[regno])
276
            /* This reg is used - save it.  */
277
            save_regs[regno] = 1;
278
          else
279
            /* This reg is not used, and is not a volatile - don't save. */
280
            save_regs[regno] = 0;
281
        }
282
      else
283
        {
284
          /* If this reg is used and not call-used (except RA), save it. */
285
          if (regs_ever_live[regno]
286
              && (!call_used_regs[regno] || regno == RETURN_ADDRESS_REGNUM))
287
            save_regs[regno] = 1;
288
          else
289
            save_regs[regno] = 0;
290
        }
291
    }
292
 
293
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
294
    if (save_regs[regno] == 1)
295
      {
296
        last_reg_to_save = regno;
297
        sum_regs += UNITS_PER_WORD;
298
      }
299
}
300
 
301
/* Compute the size of the local area and the size to be adjusted by the
302
 * prologue and epilogue. */
303
 
304
static void
305
crx_compute_frame (void)
306
{
307
  /* For aligning the local variables. */
308
  int stack_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
309
  int padding_locals;
310
 
311
  /* Padding needed for each element of the frame.  */
312
  local_vars_size = get_frame_size ();
313
 
314
  /* Align to the stack alignment. */
315
  padding_locals = local_vars_size % stack_alignment;
316
  if (padding_locals)
317
    padding_locals = stack_alignment - padding_locals;
318
 
319
  local_vars_size += padding_locals;
320
 
321
  size_for_adjusting_sp = local_vars_size + (ACCUMULATE_OUTGOING_ARGS ?
322
                                     current_function_outgoing_args_size : 0);
323
}
324
 
325
/* Implements the macro INITIAL_ELIMINATION_OFFSET, return the OFFSET. */
326
 
327
int
328
crx_initial_elimination_offset (int from, int to)
329
{
330
  /* Compute this since we need to use sum_regs.  */
331
  crx_compute_save_regs ();
332
 
333
  /* Compute this since we need to use local_vars_size.  */
334
  crx_compute_frame ();
335
 
336
  if ((from) == FRAME_POINTER_REGNUM && (to) == STACK_POINTER_REGNUM)
337
    return (ACCUMULATE_OUTGOING_ARGS ?
338
            current_function_outgoing_args_size : 0);
339
  else if ((from) == ARG_POINTER_REGNUM && (to) == FRAME_POINTER_REGNUM)
340
    return (sum_regs + local_vars_size);
341
  else if ((from) == ARG_POINTER_REGNUM && (to) == STACK_POINTER_REGNUM)
342
    return (sum_regs + local_vars_size +
343
            (ACCUMULATE_OUTGOING_ARGS ?
344
             current_function_outgoing_args_size : 0));
345
  else
346
    abort ();
347
}
348
 
349
/* REGISTER USAGE */
350
/* -------------- */
351
 
352
/* Return the class number of the smallest class containing reg number REGNO.
353
 * This could be a conditional expression or could index an array. */
354
 
355
enum reg_class
356
crx_regno_reg_class (int regno)
357
{
358
  if (regno >= 0 && regno < SP_REGNUM)
359
    return NOSP_REGS;
360
 
361
  if (regno == SP_REGNUM)
362
    return GENERAL_REGS;
363
 
364
  if (regno == LO_REGNUM)
365
    return LO_REGS;
366
  if (regno == HI_REGNUM)
367
    return HI_REGS;
368
 
369
  return NO_REGS;
370
}
371
 
372
/* Transfer between HILO_REGS and memory via secondary reloading. */
373
 
374
enum reg_class
375
crx_secondary_reload_class (enum reg_class class,
376
                            enum machine_mode mode ATTRIBUTE_UNUSED,
377
                            rtx x ATTRIBUTE_UNUSED)
378
{
379
  if (reg_classes_intersect_p (class, HILO_REGS)
380
      && true_regnum (x) == -1)
381
    return GENERAL_REGS;
382
 
383
  return NO_REGS;
384
}
385
 
386
/* Return 1 if hard register REGNO can hold a value of machine-mode MODE. */
387
 
388
int
389
crx_hard_regno_mode_ok (int regno, enum machine_mode mode)
390
{
391
  /* CC can only hold CCmode values.  */
392
  if (regno == CC_REGNUM)
393
    return GET_MODE_CLASS (mode) == MODE_CC;
394
  if (GET_MODE_CLASS (mode) == MODE_CC)
395
    return 0;
396
  /* HILO registers can only hold SImode and DImode */
397
  if (HILO_REGNO_P (regno))
398
    return mode == SImode || mode == DImode;
399
  return 1;
400
}
401
 
402
/* PASSING FUNCTION ARGUMENTS */
403
/* -------------------------- */
404
 
405
/* If enough param regs are available for passing the param of type TYPE return
406
 * the number of registers needed else 0.  */
407
 
408
static int
409
enough_regs_for_param (CUMULATIVE_ARGS * cum, tree type,
410
                       enum machine_mode mode)
411
{
412
  int type_size;
413
  int remaining_size;
414
 
415
  if (mode != BLKmode)
416
    type_size = GET_MODE_BITSIZE (mode);
417
  else
418
    type_size = int_size_in_bytes (type) * BITS_PER_UNIT;
419
 
420
  remaining_size =
421
    BITS_PER_WORD * (MAX_REG_FOR_PASSING_ARGS -
422
    (MIN_REG_FOR_PASSING_ARGS + cum->ints) + 1);
423
 
424
  /* Any variable which is too big to pass in two registers, will pass on
425
   * stack. */
426
  if ((remaining_size >= type_size) && (type_size <= 2 * BITS_PER_WORD))
427
    return (type_size + BITS_PER_WORD - 1) / BITS_PER_WORD;
428
 
429
  return 0;
430
}
431
 
432
/* Implements the macro FUNCTION_ARG defined in crx.h.  */
433
 
434
rtx
435
crx_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, tree type,
436
              int named ATTRIBUTE_UNUSED)
437
{
438
  last_parm_in_reg = 0;
439
 
440
  /* Function_arg () is called with this type just after all the args have had
441
   * their registers assigned. The rtx that function_arg returns from this type
442
   * is supposed to pass to 'gen_call' but currently it is not implemented (see
443
   * macro GEN_CALL).  */
444
  if (type == void_type_node)
445
    return NULL_RTX;
446
 
447
  if (targetm.calls.must_pass_in_stack (mode, type) || (cum->ints < 0))
448
    return NULL_RTX;
449
 
450
  if (mode == BLKmode)
451
    {
452
      /* Enable structures that need padding bytes at the end to pass to a
453
       * function in registers. */
454
      if (enough_regs_for_param (cum, type, mode) != 0)
455
        {
456
          last_parm_in_reg = 1;
457
          return gen_rtx_REG (mode, MIN_REG_FOR_PASSING_ARGS + cum->ints);
458
        }
459
    }
460
 
461
  if (MIN_REG_FOR_PASSING_ARGS + cum->ints > MAX_REG_FOR_PASSING_ARGS)
462
    return NULL_RTX;
463
  else
464
    {
465
      if (enough_regs_for_param (cum, type, mode) != 0)
466
        {
467
          last_parm_in_reg = 1;
468
          return gen_rtx_REG (mode, MIN_REG_FOR_PASSING_ARGS + cum->ints);
469
        }
470
    }
471
 
472
  return NULL_RTX;
473
}
474
 
475
/* Implements the macro INIT_CUMULATIVE_ARGS defined in crx.h.  */
476
 
477
void
478
crx_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype,
479
                      rtx libfunc ATTRIBUTE_UNUSED)
480
{
481
  tree param, next_param;
482
 
483
  cum->ints = 0;
484
 
485
  /* Determine if this function has variable arguments.  This is indicated by
486
   * the last argument being 'void_type_mode' if there are no variable
487
   * arguments.  Change here for a different vararg.  */
488
  for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
489
       param != (tree) 0; param = next_param)
490
    {
491
      next_param = TREE_CHAIN (param);
492
      if (next_param == (tree) 0 && TREE_VALUE (param) != void_type_node)
493
        {
494
          cum->ints = -1;
495
          return;
496
        }
497
    }
498
}
499
 
500
/* Implements the macro FUNCTION_ARG_ADVANCE defined in crx.h.  */
501
 
502
void
503
crx_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode,
504
                      tree type, int named ATTRIBUTE_UNUSED)
505
{
506
  /* l holds the number of registers required */
507
  int l = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
508
 
509
  /* If the parameter isn't passed on a register don't advance cum.  */
510
  if (!last_parm_in_reg)
511
    return;
512
 
513
  if (targetm.calls.must_pass_in_stack (mode, type) || (cum->ints < 0))
514
    return;
515
 
516
  if (mode == SImode || mode == HImode || mode == QImode || mode == DImode)
517
    {
518
      if (l <= 1)
519
        cum->ints += 1;
520
      else
521
        cum->ints += l;
522
    }
523
  else if (mode == SFmode || mode == DFmode)
524
    cum->ints += l;
525
  else if ((mode) == BLKmode)
526
    {
527
      if ((l = enough_regs_for_param (cum, type, mode)) != 0)
528
        cum->ints += l;
529
    }
530
 
531
}
532
 
533
/* Implements the macro FUNCTION_ARG_REGNO_P defined in crx.h.  Return nonzero
534
 * if N is a register used for passing parameters.  */
535
 
536
int
537
crx_function_arg_regno_p (int n)
538
{
539
  return (n <= MAX_REG_FOR_PASSING_ARGS && n >= MIN_REG_FOR_PASSING_ARGS);
540
}
541
 
542
/* ADDRESSING MODES */
543
/* ---------------- */
544
 
545
/* Implements the macro GO_IF_LEGITIMATE_ADDRESS defined in crx.h.
546
 * The following addressing modes are supported on CRX:
547
 *
548
 * Relocations          --> const | symbol_ref | label_ref
549
 * Absolute address     --> 32 bit absolute
550
 * Post increment       --> reg + 12 bit disp.
551
 * Post modify          --> reg + 12 bit disp.
552
 * Register relative    --> reg | 32 bit disp. + reg | 4 bit + reg
553
 * Scaled index         --> reg + reg | 22 bit disp. + reg + reg |
554
 *                          22 disp. + reg + reg + (2 | 4 | 8) */
555
 
556
static int crx_addr_reg_p (rtx addr_reg)
557
{
558
  rtx reg;
559
 
560
  if (REG_P (addr_reg))
561
    {
562
      reg = addr_reg;
563
    }
564
  else if ((GET_CODE (addr_reg) == SUBREG
565
           && REG_P (SUBREG_REG (addr_reg))
566
           && GET_MODE_SIZE (GET_MODE (SUBREG_REG (addr_reg)))
567
           <= UNITS_PER_WORD))
568
    {
569
      reg = SUBREG_REG (addr_reg);
570
    }
571
  else
572
    return FALSE;
573
 
574
  if (GET_MODE (addr_reg) != Pmode)
575
    {
576
      return FALSE;
577
    }
578
 
579
  return TRUE;
580
}
581
 
582
enum crx_addrtype
583
crx_decompose_address (rtx addr, struct crx_address *out)
584
{
585
  rtx base = NULL_RTX, index = NULL_RTX, disp = NULL_RTX;
586
  rtx scale_rtx = NULL_RTX, side_effect = NULL_RTX;
587
  int scale = -1;
588
 
589
  enum crx_addrtype retval = CRX_INVALID;
590
 
591
  switch (GET_CODE (addr))
592
    {
593
    case CONST_INT:
594
      /* Absolute address (known at compile time) */
595
      retval = CRX_ABSOLUTE;
596
      disp = addr;
597
      if (!UNSIGNED_INT_FITS_N_BITS (INTVAL (disp), GET_MODE_BITSIZE (Pmode)))
598
        return CRX_INVALID;
599
      break;
600
 
601
    case CONST:
602
    case SYMBOL_REF:
603
    case LABEL_REF:
604
      /* Absolute address (known at link time) */
605
      retval = CRX_ABSOLUTE;
606
      disp = addr;
607
      break;
608
 
609
    case REG:
610
    case SUBREG:
611
      /* Register relative address */
612
      retval = CRX_REG_REL;
613
      base = addr;
614
      break;
615
 
616
    case PLUS:
617
      switch (GET_CODE (XEXP (addr, 0)))
618
        {
619
        case REG:
620
        case SUBREG:
621
          if (REG_P (XEXP (addr, 1)))
622
            {
623
              /* Scaled index with scale = 1 and disp. = 0 */
624
              retval = CRX_SCALED_INDX;
625
              base = XEXP (addr, 1);
626
              index = XEXP (addr, 0);
627
              scale = 1;
628
            }
629
          else if (RTX_SIGNED_INT_FITS_N_BITS (XEXP (addr, 1), 28))
630
            {
631
              /* Register relative address and <= 28-bit disp. */
632
              retval = CRX_REG_REL;
633
              base = XEXP (addr, 0);
634
              disp = XEXP (addr, 1);
635
            }
636
          else
637
            return CRX_INVALID;
638
          break;
639
 
640
        case PLUS:
641
          /* Scaled index and <= 22-bit disp. */
642
          retval = CRX_SCALED_INDX;
643
          base = XEXP (XEXP (addr, 0), 1);
644
          disp = XEXP (addr, 1);
645
          if (!RTX_SIGNED_INT_FITS_N_BITS (disp, 22))
646
            return CRX_INVALID;
647
          switch (GET_CODE (XEXP (XEXP (addr, 0), 0)))
648
            {
649
            case REG:
650
              /* Scaled index with scale = 0 and <= 22-bit disp. */
651
              index = XEXP (XEXP (addr, 0), 0);
652
              scale = 1;
653
              break;
654
 
655
            case MULT:
656
              /* Scaled index with scale >= 0 and <= 22-bit disp. */
657
              index = XEXP (XEXP (XEXP (addr, 0), 0), 0);
658
              scale_rtx = XEXP (XEXP (XEXP (addr, 0), 0), 1);
659
              if ((scale = SCALE_FOR_INDEX_P (scale_rtx)) == -1)
660
                return CRX_INVALID;
661
              break;
662
 
663
            default:
664
              return CRX_INVALID;
665
            }
666
          break;
667
 
668
        case MULT:
669
          /* Scaled index with scale >= 0 */
670
          retval = CRX_SCALED_INDX;
671
          base = XEXP (addr, 1);
672
          index = XEXP (XEXP (addr, 0), 0);
673
          scale_rtx = XEXP (XEXP (addr, 0), 1);
674
          /* Scaled index with scale >= 0 and <= 22-bit disp. */
675
          if ((scale = SCALE_FOR_INDEX_P (scale_rtx)) == -1)
676
            return CRX_INVALID;
677
          break;
678
 
679
        default:
680
          return CRX_INVALID;
681
        }
682
      break;
683
 
684
    case POST_INC:
685
    case POST_DEC:
686
      /* Simple post-increment */
687
      retval = CRX_POST_INC;
688
      base = XEXP (addr, 0);
689
      side_effect = addr;
690
      break;
691
 
692
    case POST_MODIFY:
693
      /* Generic post-increment with <= 12-bit disp. */
694
      retval = CRX_POST_INC;
695
      base = XEXP (addr, 0);
696
      side_effect = XEXP (addr, 1);
697
      if (base != XEXP (side_effect, 0))
698
        return CRX_INVALID;
699
      switch (GET_CODE (side_effect))
700
        {
701
        case PLUS:
702
        case MINUS:
703
          disp = XEXP (side_effect, 1);
704
          if (!RTX_SIGNED_INT_FITS_N_BITS (disp, 12))
705
            return CRX_INVALID;
706
          break;
707
 
708
        default:
709
          /* CRX only supports PLUS and MINUS */
710
          return CRX_INVALID;
711
        }
712
      break;
713
 
714
    default:
715
      return CRX_INVALID;
716
    }
717
 
718
  if (base && !crx_addr_reg_p (base)) return CRX_INVALID;
719
  if (index && !crx_addr_reg_p (index)) return CRX_INVALID;
720
 
721
  out->base = base;
722
  out->index = index;
723
  out->disp = disp;
724
  out->scale = scale;
725
  out->side_effect = side_effect;
726
 
727
  return retval;
728
}
729
 
730
int
731
crx_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
732
                          rtx addr, int strict)
733
{
734
  enum crx_addrtype addrtype;
735
  struct crx_address address;
736
 
737
  if (TARGET_DEBUG_ADDR)
738
    {
739
      fprintf (stderr,
740
               "\n======\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n",
741
               GET_MODE_NAME (mode), strict);
742
      debug_rtx (addr);
743
    }
744
 
745
  addrtype = crx_decompose_address (addr, &address);
746
 
747
  if (addrtype == CRX_POST_INC && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
748
    return FALSE;
749
 
750
  if (TARGET_DEBUG_ADDR)
751
    {
752
      const char *typestr;
753
      switch (addrtype)
754
        {
755
        case CRX_INVALID:
756
          typestr = "Invalid";
757
          break;
758
        case CRX_REG_REL:
759
          typestr = "Register relative";
760
          break;
761
        case CRX_POST_INC:
762
          typestr = "Post-increment";
763
          break;
764
        case CRX_SCALED_INDX:
765
          typestr = "Scaled index";
766
          break;
767
        case CRX_ABSOLUTE:
768
          typestr = "Absolute";
769
          break;
770
        default:
771
          abort ();
772
        }
773
      fprintf (stderr, "CRX Address type: %s\n", typestr);
774
    }
775
 
776
  if (addrtype == CRX_INVALID)
777
    return FALSE;
778
 
779
  if (strict)
780
    {
781
      if (address.base && !REGNO_OK_FOR_BASE_P (REGNO (address.base)))
782
        {
783
          if (TARGET_DEBUG_ADDR)
784
            fprintf (stderr, "Base register not strict\n");
785
          return FALSE;
786
        }
787
      if (address.index && !REGNO_OK_FOR_INDEX_P (REGNO (address.index)))
788
        {
789
          if (TARGET_DEBUG_ADDR)
790
            fprintf (stderr, "Index register not strict\n");
791
          return FALSE;
792
        }
793
    }
794
 
795
  return TRUE;
796
}
797
 
798
/* ROUTINES TO COMPUTE COSTS */
799
/* ------------------------- */
800
 
801
/* Return cost of the memory address x. */
802
 
803
static int
804
crx_address_cost (rtx addr)
805
{
806
  enum crx_addrtype addrtype;
807
  struct crx_address address;
808
 
809
  int cost = 2;
810
 
811
  addrtype = crx_decompose_address (addr, &address);
812
 
813
  gcc_assert (addrtype != CRX_INVALID);
814
 
815
  /* An absolute address causes a 3-word instruction */
816
  if (addrtype == CRX_ABSOLUTE)
817
    cost+=2;
818
 
819
  /* Post-modifying addresses are more powerful.  */
820
  if (addrtype == CRX_POST_INC)
821
    cost-=2;
822
 
823
  /* Attempt to minimize number of registers in the address. */
824
  if (address.base)
825
    cost++;
826
 
827
  if (address.index && address.scale == 1)
828
    cost+=5;
829
 
830
  if (address.disp && !INT_CST4 (INTVAL (address.disp)))
831
    cost+=2;
832
 
833
  if (TARGET_DEBUG_ADDR)
834
    {
835
      fprintf (stderr, "\n======\nTARGET_ADDRESS_COST = %d\n", cost);
836
      debug_rtx (addr);
837
    }
838
 
839
  return cost;
840
}
841
 
842
/* Return the cost of moving data of mode MODE between a register of class
843
 * CLASS and memory; IN is zero if the value is to be written to memory,
844
 * nonzero if it is to be read in. This cost is relative to those in
845
 * REGISTER_MOVE_COST.  */
846
 
847
int
848
crx_memory_move_cost (enum machine_mode mode,
849
                  enum reg_class class ATTRIBUTE_UNUSED,
850
                  int in ATTRIBUTE_UNUSED)
851
{
852
  /* One LD or ST takes twice the time of a simple reg-reg move */
853
  if (reg_classes_intersect_p (class, GENERAL_REGS))
854
    {
855
      /* printf ("GENERAL_REGS LD/ST = %d\n", 4 * HARD_REGNO_NREGS (0, mode));*/
856
      return 4 * HARD_REGNO_NREGS (0, mode);
857
    }
858
  else if (reg_classes_intersect_p (class, HILO_REGS))
859
    {
860
      /* HILO to memory and vice versa */
861
      /* printf ("HILO_REGS %s = %d\n", in ? "LD" : "ST",
862
             (REGISTER_MOVE_COST (mode,
863
                                 in ? GENERAL_REGS : HILO_REGS,
864
                                 in ? HILO_REGS : GENERAL_REGS) + 4)
865
        * HARD_REGNO_NREGS (0, mode)); */
866
      return (REGISTER_MOVE_COST (mode,
867
                                 in ? GENERAL_REGS : HILO_REGS,
868
                                 in ? HILO_REGS : GENERAL_REGS) + 4)
869
        * HARD_REGNO_NREGS (0, mode);
870
    }
871
  else /* default (like in i386) */
872
    {
873
      /* printf ("ANYREGS = 100\n"); */
874
      return 100;
875
    }
876
}
877
 
878
/* INSTRUCTION OUTPUT */
879
/* ------------------ */
880
 
881
/* Check if a const_double is ok for crx store-immediate instructions */
882
 
883
int
884
crx_const_double_ok (rtx op)
885
{
886
  if (GET_MODE (op) == DFmode)
887
  {
888
    REAL_VALUE_TYPE r;
889
    long l[2];
890
    REAL_VALUE_FROM_CONST_DOUBLE (r, op);
891
    REAL_VALUE_TO_TARGET_DOUBLE (r, l);
892
    return (UNSIGNED_INT_FITS_N_BITS (l[0], 4) &&
893
            UNSIGNED_INT_FITS_N_BITS (l[1], 4)) ? 1 : 0;
894
  }
895
 
896
  if (GET_MODE (op) == SFmode)
897
  {
898
    REAL_VALUE_TYPE r;
899
    long l;
900
    REAL_VALUE_FROM_CONST_DOUBLE (r, op);
901
    REAL_VALUE_TO_TARGET_SINGLE (r, l);
902
    return UNSIGNED_INT_FITS_N_BITS (l, 4) ? 1 : 0;
903
  }
904
 
905
  return (UNSIGNED_INT_FITS_N_BITS (CONST_DOUBLE_LOW (op), 4) &&
906
          UNSIGNED_INT_FITS_N_BITS (CONST_DOUBLE_HIGH (op), 4)) ? 1 : 0;
907
}
908
 
909
/* Implements the macro PRINT_OPERAND defined in crx.h.  */
910
 
911
void
912
crx_print_operand (FILE * file, rtx x, int code)
913
{
914
  switch (code)
915
    {
916
    case 'p' :
917
      if (GET_CODE (x) == REG) {
918
        if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode)
919
          {
920
            int regno = REGNO (x);
921
            if (regno + 1 >= SP_REGNUM) abort ();
922
            fprintf (file, "{%s, %s}", reg_names[regno], reg_names[regno + 1]);
923
            return;
924
          }
925
        else
926
          {
927
            if (REGNO (x) >= SP_REGNUM) abort ();
928
            fprintf (file, "%s", reg_names[REGNO (x)]);
929
            return;
930
          }
931
      }
932
 
933
    case 'd' :
934
        {
935
          const char *crx_cmp_str;
936
          switch (GET_CODE (x))
937
            { /* MD: compare (reg, reg or imm) but CRX: cmp (reg or imm, reg)
938
               * -> swap all non symmetric ops */
939
            case EQ  : crx_cmp_str = "eq"; break;
940
            case NE  : crx_cmp_str = "ne"; break;
941
            case GT  : crx_cmp_str = "lt"; break;
942
            case GTU : crx_cmp_str = "lo"; break;
943
            case LT  : crx_cmp_str = "gt"; break;
944
            case LTU : crx_cmp_str = "hi"; break;
945
            case GE  : crx_cmp_str = "le"; break;
946
            case GEU : crx_cmp_str = "ls"; break;
947
            case LE  : crx_cmp_str = "ge"; break;
948
            case LEU : crx_cmp_str = "hs"; break;
949
            default : abort ();
950
            }
951
          fprintf (file, "%s", crx_cmp_str);
952
          return;
953
        }
954
 
955
    case 'H':
956
      /* Print high part of a double precision value. */
957
      switch (GET_CODE (x))
958
        {
959
        case CONST_DOUBLE:
960
          if (GET_MODE (x) == SFmode) abort ();
961
          if (GET_MODE (x) == DFmode)
962
            {
963
              /* High part of a DF const. */
964
              REAL_VALUE_TYPE r;
965
              long l[2];
966
 
967
              REAL_VALUE_FROM_CONST_DOUBLE (r, x);
968
              REAL_VALUE_TO_TARGET_DOUBLE (r, l);
969
 
970
              fprintf (file, "$0x%lx", l[1]);
971
              return;
972
            }
973
 
974
          /* -- Fallthrough to handle DI consts -- */
975
 
976
        case CONST_INT:
977
            {
978
              rtx high, low;
979
              split_double (x, &low, &high);
980
              putc ('$', file);
981
              output_addr_const (file, high);
982
              return;
983
            }
984
 
985
        case REG:
986
          if (REGNO (x) + 1 >= FIRST_PSEUDO_REGISTER) abort ();
987
          fprintf (file, "%s", reg_names[REGNO (x) + 1]);
988
          return;
989
 
990
        case MEM:
991
          /* Adjust memory address to high part.  */
992
            {
993
              rtx adj_mem = x;
994
              adj_mem = adjust_address (adj_mem, GET_MODE (adj_mem), 4);
995
 
996
              output_memory_reference_mode = GET_MODE (adj_mem);
997
              output_address (XEXP (adj_mem, 0));
998
              return;
999
            }
1000
 
1001
        default:
1002
          abort ();
1003
        }
1004
 
1005
    case 'L':
1006
      /* Print low part of a double precision value. */
1007
      switch (GET_CODE (x))
1008
        {
1009
        case CONST_DOUBLE:
1010
          if (GET_MODE (x) == SFmode) abort ();
1011
          if (GET_MODE (x) == DFmode)
1012
            {
1013
              /* High part of a DF const. */
1014
              REAL_VALUE_TYPE r;
1015
              long l[2];
1016
 
1017
              REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1018
              REAL_VALUE_TO_TARGET_DOUBLE (r, l);
1019
 
1020
              fprintf (file, "$0x%lx", l[0]);
1021
              return;
1022
            }
1023
 
1024
          /* -- Fallthrough to handle DI consts -- */
1025
 
1026
        case CONST_INT:
1027
            {
1028
              rtx high, low;
1029
              split_double (x, &low, &high);
1030
              putc ('$', file);
1031
              output_addr_const (file, low);
1032
              return;
1033
            }
1034
 
1035
        case REG:
1036
          fprintf (file, "%s", reg_names[REGNO (x)]);
1037
          return;
1038
 
1039
        case MEM:
1040
          output_memory_reference_mode = GET_MODE (x);
1041
          output_address (XEXP (x, 0));
1042
          return;
1043
 
1044
        default:
1045
          abort ();
1046
        }
1047
 
1048
    case 0 : /* default */
1049
      switch (GET_CODE (x))
1050
        {
1051
        case REG:
1052
          fprintf (file, "%s", reg_names[REGNO (x)]);
1053
          return;
1054
 
1055
        case MEM:
1056
          output_memory_reference_mode = GET_MODE (x);
1057
          output_address (XEXP (x, 0));
1058
          return;
1059
 
1060
        case CONST_DOUBLE:
1061
            {
1062
              REAL_VALUE_TYPE r;
1063
              long l;
1064
 
1065
              /* Always use H and L for double precision - see above */
1066
              gcc_assert (GET_MODE (x) == SFmode);
1067
 
1068
              REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1069
              REAL_VALUE_TO_TARGET_SINGLE (r, l);
1070
 
1071
              fprintf (file, "$0x%lx", l);
1072
              return;
1073
            }
1074
 
1075
        default:
1076
          putc ('$', file);
1077
          output_addr_const (file, x);
1078
          return;
1079
        }
1080
 
1081
    default:
1082
      output_operand_lossage ("invalid %%xn code");
1083
    }
1084
 
1085
  abort ();
1086
}
1087
 
1088
/* Implements the macro PRINT_OPERAND_ADDRESS defined in crx.h.  */
1089
 
1090
void
1091
crx_print_operand_address (FILE * file, rtx addr)
1092
{
1093
  enum crx_addrtype addrtype;
1094
  struct crx_address address;
1095
 
1096
  int offset;
1097
 
1098
  addrtype = crx_decompose_address (addr, &address);
1099
 
1100
  if (address.disp)
1101
    offset = INTVAL (address.disp);
1102
  else
1103
    offset = 0;
1104
 
1105
  switch (addrtype)
1106
    {
1107
    case CRX_REG_REL:
1108
      fprintf (file, "%d(%s)", offset, reg_names[REGNO (address.base)]);
1109
      return;
1110
 
1111
    case CRX_POST_INC:
1112
      switch (GET_CODE (address.side_effect))
1113
        {
1114
        case PLUS:
1115
          break;
1116
        case MINUS:
1117
          offset = -offset;
1118
          break;
1119
        case POST_INC:
1120
          offset = GET_MODE_SIZE (output_memory_reference_mode);
1121
          break;
1122
        case POST_DEC:
1123
          offset = -GET_MODE_SIZE (output_memory_reference_mode);
1124
          break;
1125
        default:
1126
          abort ();
1127
        }
1128
        fprintf (file, "%d(%s)+", offset, reg_names[REGNO (address.base)]);
1129
      return;
1130
 
1131
    case CRX_SCALED_INDX:
1132
      fprintf (file, "%d(%s, %s, %d)", offset, reg_names[REGNO (address.base)],
1133
               reg_names[REGNO (address.index)], address.scale);
1134
      return;
1135
 
1136
    case CRX_ABSOLUTE:
1137
      output_addr_const (file, address.disp);
1138
      return;
1139
 
1140
    default:
1141
      abort ();
1142
    }
1143
}
1144
 
1145
 
1146
/*****************************************************************************/
1147
/* MACHINE DESCRIPTION HELPER-FUNCTIONS                                      */
1148
/*****************************************************************************/
1149
 
1150
void crx_expand_movmem_single (rtx src, rtx srcbase, rtx dst, rtx dstbase,
1151
                               rtx tmp_reg, unsigned HOST_WIDE_INT *offset_p)
1152
{
1153
  rtx addr, mem;
1154
  unsigned HOST_WIDE_INT offset = *offset_p;
1155
 
1156
  /* Load */
1157
  addr = plus_constant (src, offset);
1158
  mem = adjust_automodify_address (srcbase, SImode, addr, offset);
1159
  emit_move_insn (tmp_reg, mem);
1160
 
1161
  /* Store */
1162
  addr = plus_constant (dst, offset);
1163
  mem = adjust_automodify_address (dstbase, SImode, addr, offset);
1164
  emit_move_insn (mem, tmp_reg);
1165
 
1166
  *offset_p = offset + 4;
1167
}
1168
 
1169
int
1170
crx_expand_movmem (rtx dstbase, rtx srcbase, rtx count_exp, rtx align_exp)
1171
{
1172
  unsigned HOST_WIDE_INT count = 0, offset, si_moves, i;
1173
  HOST_WIDE_INT align = 0;
1174
 
1175
  rtx src, dst;
1176
  rtx tmp_reg;
1177
 
1178
  if (GET_CODE (align_exp) == CONST_INT)
1179
    { /* Only if aligned */
1180
      align = INTVAL (align_exp);
1181
      if (align & 3)
1182
        return 0;
1183
    }
1184
 
1185
  if (GET_CODE (count_exp) == CONST_INT)
1186
    { /* No more than 16 SImode moves */
1187
      count = INTVAL (count_exp);
1188
      if (count > 64)
1189
        return 0;
1190
    }
1191
 
1192
  tmp_reg = gen_reg_rtx (SImode);
1193
 
1194
  /* Create psrs for the src and dest pointers */
1195
  dst = copy_to_mode_reg (Pmode, XEXP (dstbase, 0));
1196
  if (dst != XEXP (dstbase, 0))
1197
    dstbase = replace_equiv_address_nv (dstbase, dst);
1198
  src = copy_to_mode_reg (Pmode, XEXP (srcbase, 0));
1199
  if (src != XEXP (srcbase, 0))
1200
    srcbase = replace_equiv_address_nv (srcbase, src);
1201
 
1202
  offset = 0;
1203
 
1204
  /* Emit SImode moves */
1205
  si_moves = count >> 2;
1206
  for (i = 0; i < si_moves; i++)
1207
    crx_expand_movmem_single (src, srcbase, dst, dstbase, tmp_reg, &offset);
1208
 
1209
  /* Special cases */
1210
  if (count & 3)
1211
    {
1212
      offset = count - 4;
1213
      crx_expand_movmem_single (src, srcbase, dst, dstbase, tmp_reg, &offset);
1214
    }
1215
 
1216
  gcc_assert (offset == count);
1217
 
1218
  return 1;
1219
}
1220
 
1221
rtx
1222
crx_expand_compare (enum rtx_code code, enum machine_mode mode)
1223
{
1224
  rtx op0, op1, cc_reg, ret;
1225
 
1226
  op0 = crx_compare_op0;
1227
  op1 = crx_compare_op1;
1228
 
1229
  /* Emit the compare that writes into CC_REGNUM) */
1230
  cc_reg = gen_rtx_REG (CCmode, CC_REGNUM);
1231
  ret = gen_rtx_COMPARE (CCmode, op0, op1);
1232
  emit_insn (gen_rtx_SET (VOIDmode, cc_reg, ret));
1233
  /* debug_rtx (get_last_insn ()); */
1234
 
1235
  /* Return the rtx for using the result in CC_REGNUM */
1236
  return gen_rtx_fmt_ee (code, mode, cc_reg, const0_rtx);
1237
}
1238
 
1239
void
1240
crx_expand_branch (enum rtx_code code, rtx label)
1241
{
1242
  rtx tmp = crx_expand_compare (code, VOIDmode);
1243
  tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
1244
                              gen_rtx_LABEL_REF (VOIDmode, label),
1245
                              pc_rtx);
1246
  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
1247
  /* debug_rtx (get_last_insn ()); */
1248
}
1249
 
1250
void
1251
crx_expand_scond (enum rtx_code code, rtx dest)
1252
{
1253
  rtx tmp = crx_expand_compare (code, GET_MODE (dest));
1254
  emit_move_insn (dest, tmp);
1255
  /* debug_rtx (get_last_insn ()); */
1256
}
1257
 
1258
static void
1259
mpushpop_str (char *stringbuffer, const char *mnemonic, char *mask)
1260
{
1261
  if (strlen (mask) > 2 || crx_interrupt_function_p ()) /* needs 2-word instr. */
1262
    sprintf (stringbuffer, "\n\t%s\tsp, {%s}", mnemonic, mask);
1263
  else /* single word instruction */
1264
    sprintf (stringbuffer, "\n\t%s\t%s", mnemonic, mask);
1265
}
1266
 
1267
/* Called from crx.md. The return value depends on the parameter push_or_pop:
1268
 * When push_or_pop is zero -> string for push instructions of prologue.
1269
 * When push_or_pop is nonzero -> string for pop/popret/retx in epilogue.
1270
 * Relies on the assumptions:
1271
 * 1. RA is the last register to be saved.
1272
 * 2. The maximal value of the counter is MAX_COUNT. */
1273
 
1274
char *
1275
crx_prepare_push_pop_string (int push_or_pop)
1276
{
1277
  /* j is the number of registers being saved, takes care that there won't be
1278
   * more than 8 in one push/pop instruction */
1279
 
1280
  /* For the register mask string */
1281
  static char mask_str[50];
1282
 
1283
  /* i is the index of save_regs[], going from 0 until last_reg_to_save */
1284
  int i = 0;
1285
 
1286
  int ra_in_bitmask = 0;
1287
 
1288
  char *return_str;
1289
 
1290
  /* For reversing on the push instructions if there are more than one. */
1291
  char *temp_str;
1292
 
1293
  return_str = (char *) xmalloc (120);
1294
  temp_str = (char *) xmalloc (120);
1295
 
1296
  /* Initialize */
1297
  memset (return_str, 0, 3);
1298
 
1299
  while (i <= last_reg_to_save)
1300
    {
1301
      /* Prepare mask for one instruction. */
1302
      mask_str[0] = 0;
1303
 
1304
      if (i <= SP_REGNUM)
1305
        { /* Add regs unit full or SP register reached */
1306
          int j = 0;
1307
          while (j < MAX_COUNT && i <= SP_REGNUM)
1308
            {
1309
              if (save_regs[i])
1310
                {
1311
                  /* TODO to use ra_in_bitmask for detecting last pop is not
1312
                   * smart it prevents things like:  popret r5 */
1313
                  if (i == RETURN_ADDRESS_REGNUM) ra_in_bitmask = 1;
1314
                  if (j > 0) strcat (mask_str, ", ");
1315
                  strcat (mask_str, reg_names[i]);
1316
                  ++j;
1317
                }
1318
              ++i;
1319
            }
1320
        }
1321
      else
1322
        {
1323
          /* Handle hi/lo savings */
1324
          while (i <= last_reg_to_save)
1325
            {
1326
              if (save_regs[i])
1327
                {
1328
                  strcat (mask_str, "lo, hi");
1329
                  i = last_reg_to_save + 1;
1330
                  break;
1331
                }
1332
              ++i;
1333
            }
1334
        }
1335
 
1336
      if (strlen (mask_str) == 0) continue;
1337
 
1338
      if (push_or_pop == 1)
1339
        {
1340
          if (crx_interrupt_function_p ())
1341
            mpushpop_str (temp_str, "popx", mask_str);
1342
          else
1343
            {
1344
              if (ra_in_bitmask)
1345
                {
1346
                  mpushpop_str (temp_str, "popret", mask_str);
1347
                  ra_in_bitmask = 0;
1348
                }
1349
              else mpushpop_str (temp_str, "pop", mask_str);
1350
            }
1351
 
1352
          strcat (return_str, temp_str);
1353
        }
1354
      else
1355
        {
1356
          /* push - We need to reverse the order of the instructions if there
1357
           * are more than one. (since the pop will not be reversed in the
1358
           * epilogue */
1359
          if (crx_interrupt_function_p ())
1360
            mpushpop_str (temp_str, "pushx", mask_str);
1361
          else
1362
            mpushpop_str (temp_str, "push", mask_str);
1363
          strcat (temp_str, return_str);
1364
          strcpy (strcat (return_str, "\t"), temp_str);
1365
        }
1366
 
1367
    }
1368
 
1369
  if (push_or_pop == 1)
1370
    {
1371
      /* pop */
1372
      if (crx_interrupt_function_p ())
1373
        strcat (return_str, "\n\tretx\n");
1374
 
1375
      else if (!FUNC_IS_NORETURN_P (current_function_decl)
1376
               && !save_regs[RETURN_ADDRESS_REGNUM])
1377
        strcat (return_str, "\n\tjump\tra\n");
1378
    }
1379
 
1380
  /* Skip the newline and the tab in the start of return_str. */
1381
  return_str += 2;
1382
  return return_str;
1383
}
1384
 
1385
/*  CompactRISC CRX Architecture stack layout:
1386
 
1387
 
1388
        |
1389
        .
1390
        .
1391
        |
1392
        +==================== Sp(x)=Ap(x+1)
1393
      A | Args for functions
1394
      | | called by X and      Dynamically
1395
      | | Dynamic allocations  allocated and
1396
      | | (alloca, variable    deallocated
1397
  Stack | length arrays).
1398
  grows +-------------------- Fp(x)
1399
  down| | Local variables of X
1400
  ward| +--------------------
1401
      | | Regs saved for X-1
1402
      | +==================== Sp(x-1)=Ap(x)
1403
        | Args for func X
1404
        | pushed by X-1
1405
        +-------------------- Fp(x-1)
1406
        |
1407
        |
1408
        V
1409
 
1410
*/
1411
 
1412
void
1413
crx_expand_prologue (void)
1414
{
1415
  crx_compute_frame ();
1416
  crx_compute_save_regs ();
1417
 
1418
  /* If there is no need in push and adjustment to sp, return. */
1419
  if (size_for_adjusting_sp + sum_regs == 0)
1420
    return;
1421
 
1422
  if (last_reg_to_save != -1)
1423
    /* If there are registers to push.  */
1424
    emit_insn (gen_push_for_prologue (GEN_INT (sum_regs)));
1425
 
1426
  if (size_for_adjusting_sp > 0)
1427
    emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1428
                           GEN_INT (-size_for_adjusting_sp)));
1429
 
1430
  if (frame_pointer_needed)
1431
    /* Initialize the frame pointer with the value of the stack pointer
1432
     * pointing now to the locals. */
1433
    emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
1434
}
1435
 
1436
/* Generate insn that updates the stack for local variables and padding for
1437
 * registers we save. - Generate the appropriate return insn. */
1438
 
1439
void
1440
crx_expand_epilogue (void)
1441
{
1442
  rtx return_reg;
1443
 
1444
  /* Nonzero if we need to return and pop only RA. This will generate a
1445
   * different insn. This differentiate is for the peepholes for call as last
1446
   * statement in function. */
1447
  int only_popret_RA = (save_regs[RETURN_ADDRESS_REGNUM]
1448
                        && (sum_regs == UNITS_PER_WORD));
1449
 
1450
  /* Return register.  */
1451
  return_reg = gen_rtx_REG (Pmode, RETURN_ADDRESS_REGNUM);
1452
 
1453
  if (frame_pointer_needed)
1454
    /* Restore the stack pointer with the frame pointers value */
1455
    emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
1456
 
1457
  if (size_for_adjusting_sp > 0)
1458
    emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1459
                           GEN_INT (size_for_adjusting_sp)));
1460
 
1461
  if (crx_interrupt_function_p ())
1462
    emit_jump_insn (gen_interrupt_return ());
1463
  else if (last_reg_to_save == -1)
1464
    /* Nothing to pop */
1465
    /* Don't output jump for interrupt routine, only retx.  */
1466
    emit_jump_insn (gen_indirect_jump_return ());
1467
  else if (only_popret_RA)
1468
    emit_jump_insn (gen_popret_RA_return ());
1469
  else
1470
    emit_jump_insn (gen_pop_and_popret_return (GEN_INT (sum_regs)));
1471
}
1472
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.