OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [i386/] [i386.h] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Definitions of target machine for GCC for IA-32.
2
   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3
   2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
 
5
This file is part of GCC.
6
 
7
GCC is free software; you can redistribute it and/or modify
8
it under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 2, or (at your option)
10
any later version.
11
 
12
GCC is distributed in the hope that it will be useful,
13
but WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
GNU General Public License for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING.  If not, write to
19
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20
Boston, MA 02110-1301, USA.  */
21
 
22
/* The purpose of this file is to define the characteristics of the i386,
23
   independent of assembler syntax or operating system.
24
 
25
   Three other files build on this one to describe a specific assembler syntax:
26
   bsd386.h, att386.h, and sun386.h.
27
 
28
   The actual tm.h file for a particular system should include
29
   this file, and then the file for the appropriate assembler syntax.
30
 
31
   Many macros that specify assembler syntax are omitted entirely from
32
   this file because they really belong in the files for particular
33
   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34
   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35
   that start with ASM_ or end in ASM_OP.  */
36
 
37
/* Define the specific costs for a given cpu */
38
 
39
struct processor_costs {
40
  const int add;                /* cost of an add instruction */
41
  const int lea;                /* cost of a lea instruction */
42
  const int shift_var;          /* variable shift costs */
43
  const int shift_const;        /* constant shift costs */
44
  const int mult_init[5];       /* cost of starting a multiply
45
                                   in QImode, HImode, SImode, DImode, TImode*/
46
  const int mult_bit;           /* cost of multiply per each bit set */
47
  const int divide[5];          /* cost of a divide/mod
48
                                   in QImode, HImode, SImode, DImode, TImode*/
49
  int movsx;                    /* The cost of movsx operation.  */
50
  int movzx;                    /* The cost of movzx operation.  */
51
  const int large_insn;         /* insns larger than this cost more */
52
  const int move_ratio;         /* The threshold of number of scalar
53
                                   memory-to-memory move insns.  */
54
  const int movzbl_load;        /* cost of loading using movzbl */
55
  const int int_load[3];        /* cost of loading integer registers
56
                                   in QImode, HImode and SImode relative
57
                                   to reg-reg move (2).  */
58
  const int int_store[3];       /* cost of storing integer register
59
                                   in QImode, HImode and SImode */
60
  const int fp_move;            /* cost of reg,reg fld/fst */
61
  const int fp_load[3];         /* cost of loading FP register
62
                                   in SFmode, DFmode and XFmode */
63
  const int fp_store[3];        /* cost of storing FP register
64
                                   in SFmode, DFmode and XFmode */
65
  const int mmx_move;           /* cost of moving MMX register.  */
66
  const int mmx_load[2];        /* cost of loading MMX register
67
                                   in SImode and DImode */
68
  const int mmx_store[2];       /* cost of storing MMX register
69
                                   in SImode and DImode */
70
  const int sse_move;           /* cost of moving SSE register.  */
71
  const int sse_load[3];        /* cost of loading SSE register
72
                                   in SImode, DImode and TImode*/
73
  const int sse_store[3];       /* cost of storing SSE register
74
                                   in SImode, DImode and TImode*/
75
  const int mmxsse_to_integer;  /* cost of moving mmxsse register to
76
                                   integer and vice versa.  */
77
  const int prefetch_block;     /* bytes moved to cache for prefetch.  */
78
  const int simultaneous_prefetches; /* number of parallel prefetch
79
                                   operations.  */
80
  const int branch_cost;        /* Default value for BRANCH_COST.  */
81
  const int fadd;               /* cost of FADD and FSUB instructions.  */
82
  const int fmul;               /* cost of FMUL instruction.  */
83
  const int fdiv;               /* cost of FDIV instruction.  */
84
  const int fabs;               /* cost of FABS instruction.  */
85
  const int fchs;               /* cost of FCHS instruction.  */
86
  const int fsqrt;              /* cost of FSQRT instruction.  */
87
};
88
 
89
extern const struct processor_costs *ix86_cost;
90
 
91
/* Macros used in the machine description to test the flags.  */
92
 
93
/* configure can arrange to make this 2, to force a 486.  */
94
 
95
#ifndef TARGET_CPU_DEFAULT
96
#ifdef TARGET_64BIT_DEFAULT
97
#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
98
#else
99
#define TARGET_CPU_DEFAULT 0
100
#endif
101
#endif
102
 
103
#ifndef TARGET_FPMATH_DEFAULT
104
#define TARGET_FPMATH_DEFAULT \
105
  (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
106
#endif
107
 
108
#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
109
 
110
/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
111
   compile-time constant.  */
112
#ifdef IN_LIBGCC2
113
#undef TARGET_64BIT
114
#ifdef __x86_64__
115
#define TARGET_64BIT 1
116
#else
117
#define TARGET_64BIT 0
118
#endif
119
#else
120
#ifndef TARGET_BI_ARCH
121
#undef TARGET_64BIT
122
#if TARGET_64BIT_DEFAULT
123
#define TARGET_64BIT 1
124
#else
125
#define TARGET_64BIT 0
126
#endif
127
#endif
128
#endif
129
 
130
#define HAS_LONG_COND_BRANCH 1
131
#define HAS_LONG_UNCOND_BRANCH 1
132
 
133
#define TARGET_386 (ix86_tune == PROCESSOR_I386)
134
#define TARGET_486 (ix86_tune == PROCESSOR_I486)
135
#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
136
#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
137
#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
138
#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
139
#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
140
#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
141
#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
142
#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
143
 
144
#define TUNEMASK (1 << ix86_tune)
145
extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
146
extern const int x86_use_bit_test, x86_cmove, x86_fisttp, x86_deep_branch;
147
extern const int x86_branch_hints, x86_unroll_strlen;
148
extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
149
extern const int x86_use_himode_fiop, x86_use_simode_fiop;
150
extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
151
extern const int x86_read_modify, x86_split_long_moves;
152
extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
153
extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
154
extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
155
extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
156
extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
157
extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
158
extern const int x86_epilogue_using_move, x86_decompose_lea;
159
extern const int x86_arch_always_fancy_math_387, x86_shift1;
160
extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
161
extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
162
extern const int x86_use_ffreep;
163
extern const int x86_inter_unit_moves, x86_schedule;
164
extern const int x86_use_bt;
165
extern const int x86_cmpxchg, x86_xadd;
166
extern int x86_prefetch_sse;
167
 
168
#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
169
#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
170
#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
171
#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
172
#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
173
/* For sane SSE instruction set generation we need fcomi instruction.  It is
174
   safe to enable all CMOVE instructions.  */
175
#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
176
#define TARGET_FISTTP (((x86_fisttp & (1 << ix86_arch)) || TARGET_SSE3) \
177
                        && TARGET_80387)
178
#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
179
#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
180
#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
181
#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
182
#define TARGET_MOVX (x86_movx & TUNEMASK)
183
#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
184
#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
185
#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
186
#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
187
#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
188
#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
189
#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
190
#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
191
#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
192
#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
193
#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
194
#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
195
#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
196
#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
197
#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
198
#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
199
#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
200
#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
201
#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
202
#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
203
#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
204
#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
205
                                      (x86_sse_partial_reg_dependency & TUNEMASK)
206
#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
207
#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
208
#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
209
#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
210
#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
211
#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
212
#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
213
#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
214
#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
215
#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
216
#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
217
#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
218
#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
219
#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
220
#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
221
 
222
#define ASSEMBLER_DIALECT (ix86_asm_dialect)
223
 
224
#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
225
#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
226
                             && (ix86_fpmath & FPMATH_387))
227
 
228
#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
229
#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
230
 
231
#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
232
#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
233
 
234
#ifndef TARGET_64BIT_DEFAULT
235
#define TARGET_64BIT_DEFAULT 0
236
#endif
237
#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
238
#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
239
#endif
240
 
241
/* Once GDB has been enhanced to deal with functions without frame
242
   pointers, we can change this to allow for elimination of
243
   the frame pointer in leaf functions.  */
244
#define TARGET_DEFAULT 0
245
 
246
/* This is not really a target flag, but is done this way so that
247
   it's analogous to similar code for Mach-O on PowerPC.  darwin.h
248
   redefines this to 1.  */
249
#define TARGET_MACHO 0
250
 
251
/* Subtargets may reset this to 1 in order to enable 96-bit long double
252
   with the rounding mode forced to 53 bits.  */
253
#define TARGET_96_ROUND_53_LONG_DOUBLE 0
254
 
255
/* Sometimes certain combinations of command options do not make
256
   sense on a particular target machine.  You can define a macro
257
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
258
   defined, is executed once just after all the command options have
259
   been parsed.
260
 
261
   Don't use this macro to turn on various extra optimizations for
262
   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
263
 
264
#define OVERRIDE_OPTIONS override_options ()
265
 
266
/* Define this to change the optimizations performed by default.  */
267
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
268
  optimization_options ((LEVEL), (SIZE))
269
 
270
/* Support for configure-time defaults of some command line options.  */
271
#define OPTION_DEFAULT_SPECS \
272
  {"arch", "%{!march=*:-march=%(VALUE)}"}, \
273
  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
274
  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
275
 
276
/* Specs for the compiler proper */
277
 
278
#ifndef CC1_CPU_SPEC
279
#define CC1_CPU_SPEC "\
280
%{!mtune*: \
281
%{m386:mtune=i386 \
282
%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
283
%{m486:-mtune=i486 \
284
%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
285
%{mpentium:-mtune=pentium \
286
%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
287
%{mpentiumpro:-mtune=pentiumpro \
288
%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
289
%{mcpu=*:-mtune=%* \
290
%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
291
%<mcpu=* \
292
%{mintel-syntax:-masm=intel \
293
%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
294
%{mno-intel-syntax:-masm=att \
295
%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
296
#endif
297
 
298
/* Target CPU builtins.  */
299
#define TARGET_CPU_CPP_BUILTINS()                               \
300
  do                                                            \
301
    {                                                           \
302
      size_t arch_len = strlen (ix86_arch_string);              \
303
      size_t tune_len = strlen (ix86_tune_string);              \
304
      int last_arch_char = ix86_arch_string[arch_len - 1];      \
305
      int last_tune_char = ix86_tune_string[tune_len - 1];              \
306
                                                                \
307
      if (TARGET_64BIT)                                         \
308
        {                                                       \
309
          builtin_assert ("cpu=x86_64");                        \
310
          builtin_assert ("machine=x86_64");                    \
311
          builtin_define ("__amd64");                           \
312
          builtin_define ("__amd64__");                         \
313
          builtin_define ("__x86_64");                          \
314
          builtin_define ("__x86_64__");                        \
315
        }                                                       \
316
      else                                                      \
317
        {                                                       \
318
          builtin_assert ("cpu=i386");                          \
319
          builtin_assert ("machine=i386");                      \
320
          builtin_define_std ("i386");                          \
321
        }                                                       \
322
                                                                \
323
      /* Built-ins based on -mtune= (or -march= if no           \
324
         -mtune= given).  */                                    \
325
      if (TARGET_386)                                           \
326
        builtin_define ("__tune_i386__");                       \
327
      else if (TARGET_486)                                      \
328
        builtin_define ("__tune_i486__");                       \
329
      else if (TARGET_PENTIUM)                                  \
330
        {                                                       \
331
          builtin_define ("__tune_i586__");                     \
332
          builtin_define ("__tune_pentium__");                  \
333
          if (last_tune_char == 'x')                            \
334
            builtin_define ("__tune_pentium_mmx__");            \
335
        }                                                       \
336
      else if (TARGET_PENTIUMPRO)                               \
337
        {                                                       \
338
          builtin_define ("__tune_i686__");                     \
339
          builtin_define ("__tune_pentiumpro__");               \
340
          switch (last_tune_char)                               \
341
            {                                                   \
342
            case '3':                                           \
343
              builtin_define ("__tune_pentium3__");             \
344
              /* FALLTHRU */                                    \
345
            case '2':                                           \
346
              builtin_define ("__tune_pentium2__");             \
347
              break;                                            \
348
            }                                                   \
349
        }                                                       \
350
      else if (TARGET_K6)                                       \
351
        {                                                       \
352
          builtin_define ("__tune_k6__");                       \
353
          if (last_tune_char == '2')                            \
354
            builtin_define ("__tune_k6_2__");                   \
355
          else if (last_tune_char == '3')                       \
356
            builtin_define ("__tune_k6_3__");                   \
357
        }                                                       \
358
      else if (TARGET_ATHLON)                                   \
359
        {                                                       \
360
          builtin_define ("__tune_athlon__");                   \
361
          /* Only plain "athlon" lacks SSE.  */                 \
362
          if (last_tune_char != 'n')                            \
363
            builtin_define ("__tune_athlon_sse__");             \
364
        }                                                       \
365
      else if (TARGET_K8)                                       \
366
        builtin_define ("__tune_k8__");                         \
367
      else if (TARGET_PENTIUM4)                                 \
368
        builtin_define ("__tune_pentium4__");                   \
369
      else if (TARGET_NOCONA)                                   \
370
        builtin_define ("__tune_nocona__");                     \
371
                                                                \
372
      if (TARGET_MMX)                                           \
373
        builtin_define ("__MMX__");                             \
374
      if (TARGET_3DNOW)                                         \
375
        builtin_define ("__3dNOW__");                           \
376
      if (TARGET_3DNOW_A)                                       \
377
        builtin_define ("__3dNOW_A__");                         \
378
      if (TARGET_SSE)                                           \
379
        builtin_define ("__SSE__");                             \
380
      if (TARGET_SSE2)                                          \
381
        builtin_define ("__SSE2__");                            \
382
      if (TARGET_SSE3)                                          \
383
        builtin_define ("__SSE3__");                            \
384
      if (TARGET_SSE_MATH && TARGET_SSE)                        \
385
        builtin_define ("__SSE_MATH__");                        \
386
      if (TARGET_SSE_MATH && TARGET_SSE2)                       \
387
        builtin_define ("__SSE2_MATH__");                       \
388
                                                                \
389
      /* Built-ins based on -march=.  */                        \
390
      if (ix86_arch == PROCESSOR_I486)                          \
391
        {                                                       \
392
          builtin_define ("__i486");                            \
393
          builtin_define ("__i486__");                          \
394
        }                                                       \
395
      else if (ix86_arch == PROCESSOR_PENTIUM)                  \
396
        {                                                       \
397
          builtin_define ("__i586");                            \
398
          builtin_define ("__i586__");                          \
399
          builtin_define ("__pentium");                         \
400
          builtin_define ("__pentium__");                       \
401
          if (last_arch_char == 'x')                            \
402
            builtin_define ("__pentium_mmx__");                 \
403
        }                                                       \
404
      else if (ix86_arch == PROCESSOR_PENTIUMPRO)               \
405
        {                                                       \
406
          builtin_define ("__i686");                            \
407
          builtin_define ("__i686__");                          \
408
          builtin_define ("__pentiumpro");                      \
409
          builtin_define ("__pentiumpro__");                    \
410
        }                                                       \
411
      else if (ix86_arch == PROCESSOR_K6)                       \
412
        {                                                       \
413
                                                                \
414
          builtin_define ("__k6");                              \
415
          builtin_define ("__k6__");                            \
416
          if (last_arch_char == '2')                            \
417
            builtin_define ("__k6_2__");                        \
418
          else if (last_arch_char == '3')                       \
419
            builtin_define ("__k6_3__");                        \
420
        }                                                       \
421
      else if (ix86_arch == PROCESSOR_ATHLON)                   \
422
        {                                                       \
423
          builtin_define ("__athlon");                          \
424
          builtin_define ("__athlon__");                        \
425
          /* Only plain "athlon" lacks SSE.  */                 \
426
          if (last_arch_char != 'n')                            \
427
            builtin_define ("__athlon_sse__");                  \
428
        }                                                       \
429
      else if (ix86_arch == PROCESSOR_K8)                       \
430
        {                                                       \
431
          builtin_define ("__k8");                              \
432
          builtin_define ("__k8__");                            \
433
        }                                                       \
434
      else if (ix86_arch == PROCESSOR_PENTIUM4)                 \
435
        {                                                       \
436
          builtin_define ("__pentium4");                        \
437
          builtin_define ("__pentium4__");                      \
438
        }                                                       \
439
      else if (ix86_arch == PROCESSOR_NOCONA)                   \
440
        {                                                       \
441
          builtin_define ("__nocona");                          \
442
          builtin_define ("__nocona__");                        \
443
        }                                                       \
444
    }                                                           \
445
  while (0)
446
 
447
#define TARGET_CPU_DEFAULT_i386 0
448
#define TARGET_CPU_DEFAULT_i486 1
449
#define TARGET_CPU_DEFAULT_pentium 2
450
#define TARGET_CPU_DEFAULT_pentium_mmx 3
451
#define TARGET_CPU_DEFAULT_pentiumpro 4
452
#define TARGET_CPU_DEFAULT_pentium2 5
453
#define TARGET_CPU_DEFAULT_pentium3 6
454
#define TARGET_CPU_DEFAULT_pentium4 7
455
#define TARGET_CPU_DEFAULT_k6 8
456
#define TARGET_CPU_DEFAULT_k6_2 9
457
#define TARGET_CPU_DEFAULT_k6_3 10
458
#define TARGET_CPU_DEFAULT_athlon 11
459
#define TARGET_CPU_DEFAULT_athlon_sse 12
460
#define TARGET_CPU_DEFAULT_k8 13
461
#define TARGET_CPU_DEFAULT_pentium_m 14
462
#define TARGET_CPU_DEFAULT_prescott 15
463
#define TARGET_CPU_DEFAULT_nocona 16
464
 
465
#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
466
                                  "pentiumpro", "pentium2", "pentium3", \
467
                                  "pentium4", "k6", "k6-2", "k6-3",\
468
                                  "athlon", "athlon-4", "k8", \
469
                                  "pentium-m", "prescott", "nocona"}
470
 
471
#ifndef CC1_SPEC
472
#define CC1_SPEC "%(cc1_cpu) "
473
#endif
474
 
475
/* This macro defines names of additional specifications to put in the
476
   specs that can be used in various specifications like CC1_SPEC.  Its
477
   definition is an initializer with a subgrouping for each command option.
478
 
479
   Each subgrouping contains a string constant, that defines the
480
   specification name, and a string constant that used by the GCC driver
481
   program.
482
 
483
   Do not define this macro if it does not need to do anything.  */
484
 
485
#ifndef SUBTARGET_EXTRA_SPECS
486
#define SUBTARGET_EXTRA_SPECS
487
#endif
488
 
489
#define EXTRA_SPECS                                                     \
490
  { "cc1_cpu",  CC1_CPU_SPEC },                                         \
491
  SUBTARGET_EXTRA_SPECS
492
 
493
/* target machine storage layout */
494
 
495
#define LONG_DOUBLE_TYPE_SIZE 80
496
 
497
/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
498
   FPU, assume that the fpcw is set to extended precision; when using
499
   only SSE, rounding is correct; when using both SSE and the FPU,
500
   the rounding precision is indeterminate, since either may be chosen
501
   apparently at random.  */
502
#define TARGET_FLT_EVAL_METHOD \
503
  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
504
 
505
#define SHORT_TYPE_SIZE 16
506
#define INT_TYPE_SIZE 32
507
#define FLOAT_TYPE_SIZE 32
508
#define LONG_TYPE_SIZE BITS_PER_WORD
509
#define DOUBLE_TYPE_SIZE 64
510
#define LONG_LONG_TYPE_SIZE 64
511
 
512
#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
513
#define MAX_BITS_PER_WORD 64
514
#else
515
#define MAX_BITS_PER_WORD 32
516
#endif
517
 
518
/* Define this if most significant byte of a word is the lowest numbered.  */
519
/* That is true on the 80386.  */
520
 
521
#define BITS_BIG_ENDIAN 0
522
 
523
/* Define this if most significant byte of a word is the lowest numbered.  */
524
/* That is not true on the 80386.  */
525
#define BYTES_BIG_ENDIAN 0
526
 
527
/* Define this if most significant word of a multiword number is the lowest
528
   numbered.  */
529
/* Not true for 80386 */
530
#define WORDS_BIG_ENDIAN 0
531
 
532
/* Width of a word, in units (bytes).  */
533
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
534
#ifdef IN_LIBGCC2
535
#define MIN_UNITS_PER_WORD      (TARGET_64BIT ? 8 : 4)
536
#else
537
#define MIN_UNITS_PER_WORD      4
538
#endif
539
 
540
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
541
#define PARM_BOUNDARY BITS_PER_WORD
542
 
543
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
544
#define STACK_BOUNDARY BITS_PER_WORD
545
 
546
/* Boundary (in *bits*) on which the stack pointer prefers to be
547
   aligned; the compiler cannot rely on having this alignment.  */
548
#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
549
 
550
/* As of July 2001, many runtimes to not align the stack properly when
551
   entering main.  This causes expand_main_function to forcibly align
552
   the stack, which results in aligned frames for functions called from
553
   main, though it does nothing for the alignment of main itself.  */
554
#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
555
  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
556
 
557
/* Minimum allocation boundary for the code of a function.  */
558
#define FUNCTION_BOUNDARY 8
559
 
560
/* C++ stores the virtual bit in the lowest bit of function pointers.  */
561
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
562
 
563
/* Alignment of field after `int : 0' in a structure.  */
564
 
565
#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
566
 
567
/* Minimum size in bits of the largest boundary to which any
568
   and all fundamental data types supported by the hardware
569
   might need to be aligned. No data type wants to be aligned
570
   rounder than this.
571
 
572
   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
573
   and Pentium Pro XFmode values at 128 bit boundaries.  */
574
 
575
#define BIGGEST_ALIGNMENT 128
576
 
577
/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
578
#define ALIGN_MODE_128(MODE) \
579
 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
580
 
581
/* The published ABIs say that doubles should be aligned on word
582
   boundaries, so lower the alignment for structure fields unless
583
   -malign-double is set.  */
584
 
585
/* ??? Blah -- this macro is used directly by libobjc.  Since it
586
   supports no vector modes, cut out the complexity and fall back
587
   on BIGGEST_FIELD_ALIGNMENT.  */
588
#ifdef IN_TARGET_LIBS
589
#ifdef __x86_64__
590
#define BIGGEST_FIELD_ALIGNMENT 128
591
#else
592
#define BIGGEST_FIELD_ALIGNMENT 32
593
#endif
594
#else
595
#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
596
   x86_field_alignment (FIELD, COMPUTED)
597
#endif
598
 
599
/* If defined, a C expression to compute the alignment given to a
600
   constant that is being placed in memory.  EXP is the constant
601
   and ALIGN is the alignment that the object would ordinarily have.
602
   The value of this macro is used instead of that alignment to align
603
   the object.
604
 
605
   If this macro is not defined, then ALIGN is used.
606
 
607
   The typical use of this macro is to increase alignment for string
608
   constants to be word aligned so that `strcpy' calls that copy
609
   constants can be done inline.  */
610
 
611
#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
612
 
613
/* If defined, a C expression to compute the alignment for a static
614
   variable.  TYPE is the data type, and ALIGN is the alignment that
615
   the object would ordinarily have.  The value of this macro is used
616
   instead of that alignment to align the object.
617
 
618
   If this macro is not defined, then ALIGN is used.
619
 
620
   One use of this macro is to increase alignment of medium-size
621
   data to make it all fit in fewer cache lines.  Another is to
622
   cause character arrays to be word-aligned so that `strcpy' calls
623
   that copy constants to character arrays can be done inline.  */
624
 
625
#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
626
 
627
/* If defined, a C expression to compute the alignment for a local
628
   variable.  TYPE is the data type, and ALIGN is the alignment that
629
   the object would ordinarily have.  The value of this macro is used
630
   instead of that alignment to align the object.
631
 
632
   If this macro is not defined, then ALIGN is used.
633
 
634
   One use of this macro is to increase alignment of medium-size
635
   data to make it all fit in fewer cache lines.  */
636
 
637
#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
638
 
639
/* If defined, a C expression that gives the alignment boundary, in
640
   bits, of an argument with the specified mode and type.  If it is
641
   not defined, `PARM_BOUNDARY' is used for all arguments.  */
642
 
643
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
644
  ix86_function_arg_boundary ((MODE), (TYPE))
645
 
646
/* Set this nonzero if move instructions will actually fail to work
647
   when given unaligned data.  */
648
#define STRICT_ALIGNMENT 0
649
 
650
/* If bit field type is int, don't let it cross an int,
651
   and give entire struct the alignment of an int.  */
652
/* Required on the 386 since it doesn't have bit-field insns.  */
653
#define PCC_BITFIELD_TYPE_MATTERS 1
654
 
655
/* Standard register usage.  */
656
 
657
/* This processor has special stack-like registers.  See reg-stack.c
658
   for details.  */
659
 
660
#define STACK_REGS
661
#define IS_STACK_MODE(MODE)                                     \
662
  ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode)    \
663
 
664
/* Number of actual hardware registers.
665
   The hardware registers are assigned numbers for the compiler
666
   from 0 to just below FIRST_PSEUDO_REGISTER.
667
   All registers that the compiler knows about must be given numbers,
668
   even those that are not normally considered general registers.
669
 
670
   In the 80386 we give the 8 general purpose registers the numbers 0-7.
671
   We number the floating point registers 8-15.
672
   Note that registers 0-7 can be accessed as a  short or int,
673
   while only 0-3 may be used with byte `mov' instructions.
674
 
675
   Reg 16 does not correspond to any hardware register, but instead
676
   appears in the RTL as an argument pointer prior to reload, and is
677
   eliminated during reloading in favor of either the stack or frame
678
   pointer.  */
679
 
680
#define FIRST_PSEUDO_REGISTER 53
681
 
682
/* Number of hardware registers that go into the DWARF-2 unwind info.
683
   If not defined, equals FIRST_PSEUDO_REGISTER.  */
684
 
685
#define DWARF_FRAME_REGISTERS 17
686
 
687
/* 1 for registers that have pervasive standard uses
688
   and are not available for the register allocator.
689
   On the 80386, the stack pointer is such, as is the arg pointer.
690
 
691
   The value is zero if the register is not fixed on either 32 or
692
   64 bit targets, one if the register if fixed on both 32 and 64
693
   bit targets, two if it is only fixed on 32bit targets and three
694
   if its only fixed on 64bit targets.
695
   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
696
 */
697
#define FIXED_REGISTERS                                         \
698
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/      \
699
{  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,       \
700
/*arg,flags,fpsr,dir,frame*/                                    \
701
    1,    1,   1,  1,    1,                                     \
702
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/                     \
703
     0,   0,   0,   0,   0,   0,   0,   0,                      \
704
/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/                     \
705
     0,   0,   0,   0,   0,   0,   0,   0,                      \
706
/*  r8,  r9, r10, r11, r12, r13, r14, r15*/                     \
707
     2,   2,   2,   2,   2,   2,   2,   2,                      \
708
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/               \
709
     2,   2,    2,    2,    2,    2,    2,    2}
710
 
711
 
712
/* 1 for registers not available across function calls.
713
   These must include the FIXED_REGISTERS and also any
714
   registers that can be used without being saved.
715
   The latter must include the registers where values are returned
716
   and the register where structure-value addresses are passed.
717
   Aside from that, you can include as many other registers as you like.
718
 
719
   The value is zero if the register is not call used on either 32 or
720
   64 bit targets, one if the register if call used on both 32 and 64
721
   bit targets, two if it is only call used on 32bit targets and three
722
   if its only call used on 64bit targets.
723
   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
724
*/
725
#define CALL_USED_REGISTERS                                     \
726
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/      \
727
{  1, 1, 1, 0, 3, 3, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,       \
728
/*arg,flags,fpsr,dir,frame*/                                    \
729
     1,   1,   1,  1,    1,                                     \
730
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/                     \
731
     1,   1,   1,   1,   1,  1,    1,   1,                      \
732
/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/                     \
733
     1,   1,   1,   1,   1,   1,   1,   1,                      \
734
/*  r8,  r9, r10, r11, r12, r13, r14, r15*/                     \
735
     1,   1,   1,   1,   2,   2,   2,   2,                      \
736
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/               \
737
     1,   1,    1,    1,    1,    1,    1,    1}                \
738
 
739
/* Order in which to allocate registers.  Each register must be
740
   listed once, even those in FIXED_REGISTERS.  List frame pointer
741
   late and fixed registers last.  Note that, in general, we prefer
742
   registers listed in CALL_USED_REGISTERS, keeping the others
743
   available for storage of persistent values.
744
 
745
   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
746
   so this is just empty initializer for array.  */
747
 
748
#define REG_ALLOC_ORDER                                         \
749
{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
750
   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,  \
751
   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
752
   48, 49, 50, 51, 52 }
753
 
754
/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
755
   to be rearranged based on a particular function.  When using sse math,
756
   we want to allocate SSE before x87 registers and vice vera.  */
757
 
758
#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
759
 
760
 
761
/* Macro to conditionally modify fixed_regs/call_used_regs.  */
762
#define CONDITIONAL_REGISTER_USAGE                                      \
763
do {                                                                    \
764
    int i;                                                              \
765
    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)                         \
766
      {                                                                 \
767
        if (fixed_regs[i] > 1)                                          \
768
          fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2));    \
769
        if (call_used_regs[i] > 1)                                      \
770
          call_used_regs[i] = (call_used_regs[i]                        \
771
                               == (TARGET_64BIT ? 3 : 2));              \
772
      }                                                                 \
773
    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)                      \
774
      {                                                                 \
775
        fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;                        \
776
        call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;                    \
777
      }                                                                 \
778
    if (! TARGET_MMX)                                                   \
779
      {                                                                 \
780
        int i;                                                          \
781
        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)                     \
782
          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
783
            fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";   \
784
      }                                                                 \
785
    if (! TARGET_SSE)                                                   \
786
      {                                                                 \
787
        int i;                                                          \
788
        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)                     \
789
          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
790
            fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";   \
791
      }                                                                 \
792
    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)              \
793
      {                                                                 \
794
        int i;                                                          \
795
        HARD_REG_SET x;                                                 \
796
        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);     \
797
        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)                     \
798
          if (TEST_HARD_REG_BIT (x, i))                                 \
799
            fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";   \
800
      }                                                                 \
801
    if (! TARGET_64BIT)                                                 \
802
      {                                                                 \
803
        int i;                                                          \
804
        for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++)         \
805
          reg_names[i] = "";                                            \
806
        for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)         \
807
          reg_names[i] = "";                                            \
808
      }                                                                 \
809
  } while (0)
810
 
811
/* Return number of consecutive hard regs needed starting at reg REGNO
812
   to hold something of mode MODE.
813
   This is ordinarily the length in words of a value of mode MODE
814
   but can be less for certain modes in special long registers.
815
 
816
   Actually there are no two word move instructions for consecutive
817
   registers.  And only registers 0-3 may have mov byte instructions
818
   applied to them.
819
   */
820
 
821
#define HARD_REGNO_NREGS(REGNO, MODE)   \
822
  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)     \
823
   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)                                    \
824
   : ((MODE) == XFmode                                                  \
825
      ? (TARGET_64BIT ? 2 : 3)                                          \
826
      : (MODE) == XCmode                                                \
827
      ? (TARGET_64BIT ? 4 : 6)                                          \
828
      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
829
 
830
#define VALID_SSE2_REG_MODE(MODE) \
831
    ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
832
     || (MODE) == V2DImode || (MODE) == DFmode)
833
 
834
#define VALID_SSE_REG_MODE(MODE)                                        \
835
    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode       \
836
     || (MODE) == SFmode || (MODE) == TFmode)
837
 
838
#define VALID_MMX_REG_MODE_3DNOW(MODE) \
839
    ((MODE) == V2SFmode || (MODE) == SFmode)
840
 
841
#define VALID_MMX_REG_MODE(MODE)                                        \
842
    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode       \
843
     || (MODE) == V2SImode || (MODE) == SImode)
844
 
845
/* ??? No autovectorization into MMX or 3DNOW until we can reliably
846
   place emms and femms instructions.  */
847
#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
848
 
849
#define VALID_FP_MODE_P(MODE)                                           \
850
    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode           \
851
     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)       \
852
 
853
#define VALID_INT_MODE_P(MODE)                                          \
854
    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode           \
855
     || (MODE) == DImode                                                \
856
     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode     \
857
     || (MODE) == CDImode                                               \
858
     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode         \
859
         || (MODE) == TFmode || (MODE) == TCmode)))
860
 
861
/* Return true for modes passed in SSE registers.  */
862
#define SSE_REG_MODE_P(MODE) \
863
 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode           \
864
   || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode    \
865
   || (MODE) == V4SFmode || (MODE) == V4SImode)
866
 
867
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
868
 
869
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
870
   ix86_hard_regno_mode_ok ((REGNO), (MODE))
871
 
872
/* Value is 1 if it is a good idea to tie two pseudo registers
873
   when one has mode MODE1 and one has mode MODE2.
874
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
875
   for any hard reg, then this must be 0 for correct output.  */
876
 
877
#define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
878
 
879
/* It is possible to write patterns to move flags; but until someone
880
   does it,  */
881
#define AVOID_CCMODE_COPIES
882
 
883
/* Specify the modes required to caller save a given hard regno.
884
   We do this on i386 to prevent flags from being saved at all.
885
 
886
   Kill any attempts to combine saving of modes.  */
887
 
888
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)                 \
889
  (CC_REGNO_P (REGNO) ? VOIDmode                                        \
890
   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode                      \
891
   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
892
   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode             \
893
   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode         \
894
   : (MODE))
895
/* Specify the registers used for certain standard purposes.
896
   The values of these macros are register numbers.  */
897
 
898
/* on the 386 the pc register is %eip, and is not usable as a general
899
   register.  The ordinary mov instructions won't work */
900
/* #define PC_REGNUM  */
901
 
902
/* Register to use for pushing function arguments.  */
903
#define STACK_POINTER_REGNUM 7
904
 
905
/* Base register for access to local variables of the function.  */
906
#define HARD_FRAME_POINTER_REGNUM 6
907
 
908
/* Base register for access to local variables of the function.  */
909
#define FRAME_POINTER_REGNUM 20
910
 
911
/* First floating point reg */
912
#define FIRST_FLOAT_REG 8
913
 
914
/* First & last stack-like regs */
915
#define FIRST_STACK_REG FIRST_FLOAT_REG
916
#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
917
 
918
#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
919
#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
920
 
921
#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
922
#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
923
 
924
#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
925
#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
926
 
927
#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
928
#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
929
 
930
/* Value should be nonzero if functions must have frame pointers.
931
   Zero means the frame pointer need not be set up (and parms
932
   may be accessed via the stack pointer) in functions that seem suitable.
933
   This is computed in `reload', in reload1.c.  */
934
#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
935
 
936
/* Override this in other tm.h files to cope with various OS lossage
937
   requiring a frame pointer.  */
938
#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
939
#define SUBTARGET_FRAME_POINTER_REQUIRED 0
940
#endif
941
 
942
/* Make sure we can access arbitrary call frames.  */
943
#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
944
 
945
/* Base register for access to arguments of the function.  */
946
#define ARG_POINTER_REGNUM 16
947
 
948
/* Register in which static-chain is passed to a function.
949
   We do use ECX as static chain register for 32 bit ABI.  On the
950
   64bit ABI, ECX is an argument register, so we use R10 instead.  */
951
#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
952
 
953
/* Register to hold the addressing base for position independent
954
   code access to data items.  We don't use PIC pointer for 64bit
955
   mode.  Define the regnum to dummy value to prevent gcc from
956
   pessimizing code dealing with EBX.
957
 
958
   To avoid clobbering a call-saved register unnecessarily, we renumber
959
   the pic register when possible.  The change is visible after the
960
   prologue has been emitted.  */
961
 
962
#define REAL_PIC_OFFSET_TABLE_REGNUM  3
963
 
964
#define PIC_OFFSET_TABLE_REGNUM                         \
965
  ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC)        \
966
   || !flag_pic ? INVALID_REGNUM                        \
967
   : reload_completed ? REGNO (pic_offset_table_rtx)    \
968
   : REAL_PIC_OFFSET_TABLE_REGNUM)
969
 
970
#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
971
 
972
/* A C expression which can inhibit the returning of certain function
973
   values in registers, based on the type of value.  A nonzero value
974
   says to return the function value in memory, just as large
975
   structures are always returned.  Here TYPE will be a C expression
976
   of type `tree', representing the data type of the value.
977
 
978
   Note that values of mode `BLKmode' must be explicitly handled by
979
   this macro.  Also, the option `-fpcc-struct-return' takes effect
980
   regardless of this macro.  On most systems, it is possible to
981
   leave the macro undefined; this causes a default definition to be
982
   used, whose value is the constant 1 for `BLKmode' values, and 0
983
   otherwise.
984
 
985
   Do not use this macro to indicate that structures and unions
986
   should always be returned in memory.  You should instead use
987
   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
988
 
989
#define RETURN_IN_MEMORY(TYPE) \
990
  ix86_return_in_memory (TYPE)
991
 
992
/* This is overridden by <cygwin.h>.  */
993
#define MS_AGGREGATE_RETURN 0
994
 
995
/* This is overridden by <netware.h>.  */
996
#define KEEP_AGGREGATE_RETURN_POINTER 0
997
 
998
/* Define the classes of registers for register constraints in the
999
   machine description.  Also define ranges of constants.
1000
 
1001
   One of the classes must always be named ALL_REGS and include all hard regs.
1002
   If there is more than one class, another class must be named NO_REGS
1003
   and contain no registers.
1004
 
1005
   The name GENERAL_REGS must be the name of a class (or an alias for
1006
   another name such as ALL_REGS).  This is the class of registers
1007
   that is allowed by "g" or "r" in a register constraint.
1008
   Also, registers outside this class are allocated only when
1009
   instructions express preferences for them.
1010
 
1011
   The classes must be numbered in nondecreasing order; that is,
1012
   a larger-numbered class must never be contained completely
1013
   in a smaller-numbered class.
1014
 
1015
   For any two classes, it is very desirable that there be another
1016
   class that represents their union.
1017
 
1018
   It might seem that class BREG is unnecessary, since no useful 386
1019
   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1020
   and the "b" register constraint is useful in asms for syscalls.
1021
 
1022
   The flags and fpsr registers are in no class.  */
1023
 
1024
enum reg_class
1025
{
1026
  NO_REGS,
1027
  AREG, DREG, CREG, BREG, SIREG, DIREG,
1028
  AD_REGS,                      /* %eax/%edx for DImode */
1029
  Q_REGS,                       /* %eax %ebx %ecx %edx */
1030
  NON_Q_REGS,                   /* %esi %edi %ebp %esp */
1031
  INDEX_REGS,                   /* %eax %ebx %ecx %edx %esi %edi %ebp */
1032
  LEGACY_REGS,                  /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1033
  GENERAL_REGS,                 /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1034
  FP_TOP_REG, FP_SECOND_REG,    /* %st(0) %st(1) */
1035
  FLOAT_REGS,
1036
  SSE_REGS,
1037
  MMX_REGS,
1038
  FP_TOP_SSE_REGS,
1039
  FP_SECOND_SSE_REGS,
1040
  FLOAT_SSE_REGS,
1041
  FLOAT_INT_REGS,
1042
  INT_SSE_REGS,
1043
  FLOAT_INT_SSE_REGS,
1044
  ALL_REGS, LIM_REG_CLASSES
1045
};
1046
 
1047
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1048
 
1049
#define INTEGER_CLASS_P(CLASS) \
1050
  reg_class_subset_p ((CLASS), GENERAL_REGS)
1051
#define FLOAT_CLASS_P(CLASS) \
1052
  reg_class_subset_p ((CLASS), FLOAT_REGS)
1053
#define SSE_CLASS_P(CLASS) \
1054
  ((CLASS) == SSE_REGS)
1055
#define MMX_CLASS_P(CLASS) \
1056
  ((CLASS) == MMX_REGS)
1057
#define MAYBE_INTEGER_CLASS_P(CLASS) \
1058
  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1059
#define MAYBE_FLOAT_CLASS_P(CLASS) \
1060
  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1061
#define MAYBE_SSE_CLASS_P(CLASS) \
1062
  reg_classes_intersect_p (SSE_REGS, (CLASS))
1063
#define MAYBE_MMX_CLASS_P(CLASS) \
1064
  reg_classes_intersect_p (MMX_REGS, (CLASS))
1065
 
1066
#define Q_CLASS_P(CLASS) \
1067
  reg_class_subset_p ((CLASS), Q_REGS)
1068
 
1069
/* Give names of register classes as strings for dump file.  */
1070
 
1071
#define REG_CLASS_NAMES \
1072
{  "NO_REGS",                           \
1073
   "AREG", "DREG", "CREG", "BREG",      \
1074
   "SIREG", "DIREG",                    \
1075
   "AD_REGS",                           \
1076
   "Q_REGS", "NON_Q_REGS",              \
1077
   "INDEX_REGS",                        \
1078
   "LEGACY_REGS",                       \
1079
   "GENERAL_REGS",                      \
1080
   "FP_TOP_REG", "FP_SECOND_REG",       \
1081
   "FLOAT_REGS",                        \
1082
   "SSE_REGS",                          \
1083
   "MMX_REGS",                          \
1084
   "FP_TOP_SSE_REGS",                   \
1085
   "FP_SECOND_SSE_REGS",                \
1086
   "FLOAT_SSE_REGS",                    \
1087
   "FLOAT_INT_REGS",                    \
1088
   "INT_SSE_REGS",                      \
1089
   "FLOAT_INT_SSE_REGS",                \
1090
   "ALL_REGS" }
1091
 
1092
/* Define which registers fit in which classes.
1093
   This is an initializer for a vector of HARD_REG_SET
1094
   of length N_REG_CLASSES.  */
1095
 
1096
#define REG_CLASS_CONTENTS                                              \
1097
{     { 0x00,     0x0 },                                                \
1098
      { 0x01,     0x0 }, { 0x02, 0x0 }, /* AREG, DREG */                \
1099
      { 0x04,     0x0 }, { 0x08, 0x0 }, /* CREG, BREG */                \
1100
      { 0x10,     0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */              \
1101
      { 0x03,     0x0 },                /* AD_REGS */                   \
1102
      { 0x0f,     0x0 },                /* Q_REGS */                    \
1103
  { 0x1100f0,  0x1fe0 },                /* NON_Q_REGS */                \
1104
      { 0x7f,  0x1fe0 },                /* INDEX_REGS */                \
1105
  { 0x1100ff,  0x0 },                   /* LEGACY_REGS */               \
1106
  { 0x1100ff,  0x1fe0 },                /* GENERAL_REGS */              \
1107
     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1108
    { 0xff00,     0x0 },                /* FLOAT_REGS */                \
1109
{ 0x1fe00000,0x1fe000 },                /* SSE_REGS */                  \
1110
{ 0xe0000000,    0x1f },                /* MMX_REGS */                  \
1111
{ 0x1fe00100,0x1fe000 },                /* FP_TOP_SSE_REG */            \
1112
{ 0x1fe00200,0x1fe000 },                /* FP_SECOND_SSE_REG */         \
1113
{ 0x1fe0ff00,0x1fe000 },                /* FLOAT_SSE_REGS */            \
1114
   { 0x1ffff,  0x1fe0 },                /* FLOAT_INT_REGS */            \
1115
{ 0x1fe100ff,0x1fffe0 },                /* INT_SSE_REGS */              \
1116
{ 0x1fe1ffff,0x1fffe0 },                /* FLOAT_INT_SSE_REGS */        \
1117
{ 0xffffffff,0x1fffff }                                                 \
1118
}
1119
 
1120
/* The same information, inverted:
1121
   Return the class number of the smallest class containing
1122
   reg number REGNO.  This could be a conditional expression
1123
   or could index an array.  */
1124
 
1125
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1126
 
1127
/* When defined, the compiler allows registers explicitly used in the
1128
   rtl to be used as spill registers but prevents the compiler from
1129
   extending the lifetime of these registers.  */
1130
 
1131
#define SMALL_REGISTER_CLASSES 1
1132
 
1133
#define QI_REG_P(X) \
1134
  (REG_P (X) && REGNO (X) < 4)
1135
 
1136
#define GENERAL_REGNO_P(N) \
1137
  ((N) < 8 || REX_INT_REGNO_P (N))
1138
 
1139
#define GENERAL_REG_P(X) \
1140
  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1141
 
1142
#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1143
 
1144
#define NON_QI_REG_P(X) \
1145
  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1146
 
1147
#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1148
#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1149
 
1150
#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1151
#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1152
#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1153
#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1154
 
1155
#define SSE_REGNO_P(N) \
1156
  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1157
   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1158
 
1159
#define REX_SSE_REGNO_P(N) \
1160
   ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1161
 
1162
#define SSE_REGNO(N) \
1163
  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1164
#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1165
 
1166
#define SSE_FLOAT_MODE_P(MODE) \
1167
  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1168
 
1169
#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1170
#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1171
 
1172
#define STACK_REG_P(XOP)                \
1173
  (REG_P (XOP) &&                       \
1174
   REGNO (XOP) >= FIRST_STACK_REG &&    \
1175
   REGNO (XOP) <= LAST_STACK_REG)
1176
 
1177
#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1178
 
1179
#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1180
 
1181
#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1182
#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1183
 
1184
/* The class value for index registers, and the one for base regs.  */
1185
 
1186
#define INDEX_REG_CLASS INDEX_REGS
1187
#define BASE_REG_CLASS GENERAL_REGS
1188
 
1189
/* Unused letters:
1190
    B                 TU W
1191
          h jk          vw  z
1192
*/
1193
 
1194
/* Get reg_class from a letter such as appears in the machine description.  */
1195
 
1196
#define REG_CLASS_FROM_LETTER(C)        \
1197
  ((C) == 'r' ? GENERAL_REGS :                                  \
1198
   (C) == 'R' ? LEGACY_REGS :                                   \
1199
   (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS :          \
1200
   (C) == 'Q' ? Q_REGS :                                        \
1201
   (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387  \
1202
                 ? FLOAT_REGS                                   \
1203
                 : NO_REGS) :                                   \
1204
   (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387  \
1205
                 ? FP_TOP_REG                                   \
1206
                 : NO_REGS) :                                   \
1207
   (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387  \
1208
                 ? FP_SECOND_REG                                \
1209
                 : NO_REGS) :                                   \
1210
   (C) == 'a' ? AREG :                                          \
1211
   (C) == 'b' ? BREG :                                          \
1212
   (C) == 'c' ? CREG :                                          \
1213
   (C) == 'd' ? DREG :                                          \
1214
   (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS :               \
1215
   (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS :               \
1216
   (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS :               \
1217
   (C) == 'A' ? AD_REGS :                                       \
1218
   (C) == 'D' ? DIREG :                                         \
1219
   (C) == 'S' ? SIREG :                                         \
1220
   (C) == 'l' ? INDEX_REGS :                                    \
1221
   NO_REGS)
1222
 
1223
/* The letters I, J, K, L, M, N, and O in a register constraint string
1224
   can be used to stand for particular ranges of immediate operands.
1225
   This macro defines what the ranges are.
1226
   C is the letter, and VALUE is a constant value.
1227
   Return 1 if VALUE is in the range specified by C.
1228
 
1229
   I is for non-DImode shifts.
1230
   J is for DImode shifts.
1231
   K is for signed imm8 operands.
1232
   L is for andsi as zero-extending move.
1233
   M is for shifts that can be executed by the "lea" opcode.
1234
   N is for immediate operands for out/in instructions (0-255)
1235
   O is for TImode shifts.
1236
   */
1237
 
1238
#define CONST_OK_FOR_LETTER_P(VALUE, C)                         \
1239
  ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31                   \
1240
   : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63                 \
1241
   : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127             \
1242
   : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff          \
1243
   : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3                  \
1244
   : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255                \
1245
   : (C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 127                \
1246
   : 0)
1247
 
1248
/* Similar, but for floating constants, and defining letters G and H.
1249
   Here VALUE is the CONST_DOUBLE rtx itself.  We allow constants even if
1250
   TARGET_387 isn't set, because the stack register converter may need to
1251
   load 0.0 into the function value register.  */
1252
 
1253
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1254
  ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1255
   : 0)
1256
 
1257
/* A C expression that defines the optional machine-dependent
1258
   constraint letters that can be used to segregate specific types of
1259
   operands, usually memory references, for the target machine.  Any
1260
   letter that is not elsewhere defined and not matched by
1261
   `REG_CLASS_FROM_LETTER' may be used.  Normally this macro will not
1262
   be defined.
1263
 
1264
   If it is required for a particular target machine, it should
1265
   return 1 if VALUE corresponds to the operand type represented by
1266
   the constraint letter C.  If C is not defined as an extra
1267
   constraint, the value returned should be 0 regardless of VALUE.  */
1268
 
1269
#define EXTRA_CONSTRAINT(VALUE, D)                                      \
1270
  ((D) == 'e' ? x86_64_immediate_operand (VALUE, VOIDmode)              \
1271
   : (D) == 'Z' ? x86_64_zext_immediate_operand (VALUE, VOIDmode)       \
1272
   : (D) == 'C' ? standard_sse_constant_p (VALUE)                       \
1273
   : 0)
1274
 
1275
/* Place additional restrictions on the register class to use when it
1276
   is necessary to be able to hold a value of mode MODE in a reload
1277
   register for which class CLASS would ordinarily be used.  */
1278
 
1279
#define LIMIT_RELOAD_CLASS(MODE, CLASS)                         \
1280
  ((MODE) == QImode && !TARGET_64BIT                            \
1281
   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS           \
1282
       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)      \
1283
   ? Q_REGS : (CLASS))
1284
 
1285
/* Given an rtx X being reloaded into a reg required to be
1286
   in class CLASS, return the class of reg to actually use.
1287
   In general this is just CLASS; but on some machines
1288
   in some cases it is preferable to use a more restrictive class.
1289
   On the 80386 series, we prevent floating constants from being
1290
   reloaded into floating registers (since no move-insn can do that)
1291
   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1292
 
1293
/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1294
   QImode must go into class Q_REGS.
1295
   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1296
   movdf to do mem-to-mem moves through integer regs.  */
1297
 
1298
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1299
   ix86_preferred_reload_class ((X), (CLASS))
1300
 
1301
/* If we are copying between general and FP registers, we need a memory
1302
   location. The same is true for SSE and MMX registers.  */
1303
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1304
  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1305
 
1306
/* QImode spills from non-QI registers need a scratch.  This does not
1307
   happen often -- the only example so far requires an uninitialized
1308
   pseudo.  */
1309
 
1310
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)                 \
1311
  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS                   \
1312
    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode      \
1313
   ? Q_REGS : NO_REGS)
1314
 
1315
/* Return the maximum number of consecutive registers
1316
   needed to represent mode MODE in a register of class CLASS.  */
1317
/* On the 80386, this is the size of MODE in words,
1318
   except in the FP regs, where a single reg is always enough.  */
1319
#define CLASS_MAX_NREGS(CLASS, MODE)                                    \
1320
 (!MAYBE_INTEGER_CLASS_P (CLASS)                                        \
1321
  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)                                     \
1322
  : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE)))                  \
1323
      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1324
 
1325
/* A C expression whose value is nonzero if pseudos that have been
1326
   assigned to registers of class CLASS would likely be spilled
1327
   because registers of CLASS are needed for spill registers.
1328
 
1329
   The default value of this macro returns 1 if CLASS has exactly one
1330
   register and zero otherwise.  On most machines, this default
1331
   should be used.  Only define this macro to some other expression
1332
   if pseudo allocated by `local-alloc.c' end up in memory because
1333
   their hard registers were needed for spill registers.  If this
1334
   macro returns nonzero for those classes, those pseudos will only
1335
   be allocated by `global.c', which knows how to reallocate the
1336
   pseudo to another register.  If there would not be another
1337
   register available for reallocation, you should not change the
1338
   definition of this macro since the only effect of such a
1339
   definition would be to slow down register allocation.  */
1340
 
1341
#define CLASS_LIKELY_SPILLED_P(CLASS)                                   \
1342
  (((CLASS) == AREG)                                                    \
1343
   || ((CLASS) == DREG)                                                 \
1344
   || ((CLASS) == CREG)                                                 \
1345
   || ((CLASS) == BREG)                                                 \
1346
   || ((CLASS) == AD_REGS)                                              \
1347
   || ((CLASS) == SIREG)                                                \
1348
   || ((CLASS) == DIREG)                                                \
1349
   || ((CLASS) == FP_TOP_REG)                                           \
1350
   || ((CLASS) == FP_SECOND_REG))
1351
 
1352
/* Return a class of registers that cannot change FROM mode to TO mode.  */
1353
 
1354
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1355
  ix86_cannot_change_mode_class (FROM, TO, CLASS)
1356
 
1357
/* Stack layout; function entry, exit and calling.  */
1358
 
1359
/* Define this if pushing a word on the stack
1360
   makes the stack pointer a smaller address.  */
1361
#define STACK_GROWS_DOWNWARD
1362
 
1363
/* Define this to nonzero if the nominal address of the stack frame
1364
   is at the high-address end of the local variables;
1365
   that is, each additional local variable allocated
1366
   goes at a more negative offset in the frame.  */
1367
#define FRAME_GROWS_DOWNWARD 1
1368
 
1369
/* Offset within stack frame to start allocating local variables at.
1370
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1371
   first local allocated.  Otherwise, it is the offset to the BEGINNING
1372
   of the first local allocated.  */
1373
#define STARTING_FRAME_OFFSET 0
1374
 
1375
/* If we generate an insn to push BYTES bytes,
1376
   this says how many the stack pointer really advances by.
1377
   On 386, we have pushw instruction that decrements by exactly 2 no
1378
   matter what the position was, there is no pushb.
1379
   But as CIE data alignment factor on this arch is -4, we need to make
1380
   sure all stack pointer adjustments are in multiple of 4.
1381
 
1382
   For 64bit ABI we round up to 8 bytes.
1383
 */
1384
 
1385
#define PUSH_ROUNDING(BYTES) \
1386
  (TARGET_64BIT              \
1387
   ? (((BYTES) + 7) & (-8))  \
1388
   : (((BYTES) + 3) & (-4)))
1389
 
1390
/* If defined, the maximum amount of space required for outgoing arguments will
1391
   be computed and placed into the variable
1392
   `current_function_outgoing_args_size'.  No space will be pushed onto the
1393
   stack for each call; instead, the function prologue should increase the stack
1394
   frame size by this amount.  */
1395
 
1396
#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1397
 
1398
/* If defined, a C expression whose value is nonzero when we want to use PUSH
1399
   instructions to pass outgoing arguments.  */
1400
 
1401
#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1402
 
1403
/* We want the stack and args grow in opposite directions, even if
1404
   PUSH_ARGS is 0.  */
1405
#define PUSH_ARGS_REVERSED 1
1406
 
1407
/* Offset of first parameter from the argument pointer register value.  */
1408
#define FIRST_PARM_OFFSET(FNDECL) 0
1409
 
1410
/* Define this macro if functions should assume that stack space has been
1411
   allocated for arguments even when their values are passed in registers.
1412
 
1413
   The value of this macro is the size, in bytes, of the area reserved for
1414
   arguments passed in registers for the function represented by FNDECL.
1415
 
1416
   This space can be allocated by the caller, or be a part of the
1417
   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1418
   which.  */
1419
#define REG_PARM_STACK_SPACE(FNDECL) 0
1420
 
1421
/* Value is the number of bytes of arguments automatically
1422
   popped when returning from a subroutine call.
1423
   FUNDECL is the declaration node of the function (as a tree),
1424
   FUNTYPE is the data type of the function (as a tree),
1425
   or for a library call it is an identifier node for the subroutine name.
1426
   SIZE is the number of bytes of arguments passed on the stack.
1427
 
1428
   On the 80386, the RTD insn may be used to pop them if the number
1429
     of args is fixed, but if the number is variable then the caller
1430
     must pop them all.  RTD can't be used for library calls now
1431
     because the library is compiled with the Unix compiler.
1432
   Use of RTD is a selectable option, since it is incompatible with
1433
   standard Unix calling sequences.  If the option is not selected,
1434
   the caller must always pop the args.
1435
 
1436
   The attribute stdcall is equivalent to RTD on a per module basis.  */
1437
 
1438
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1439
  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1440
 
1441
#define FUNCTION_VALUE_REGNO_P(N) \
1442
  ix86_function_value_regno_p (N)
1443
 
1444
/* Define how to find the value returned by a library function
1445
   assuming the value has mode MODE.  */
1446
 
1447
#define LIBCALL_VALUE(MODE) \
1448
  ix86_libcall_value (MODE)
1449
 
1450
/* Define the size of the result block used for communication between
1451
   untyped_call and untyped_return.  The block contains a DImode value
1452
   followed by the block used by fnsave and frstor.  */
1453
 
1454
#define APPLY_RESULT_SIZE (8+108)
1455
 
1456
/* 1 if N is a possible register number for function argument passing.  */
1457
#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1458
 
1459
/* Define a data type for recording info about an argument list
1460
   during the scan of that argument list.  This data type should
1461
   hold all necessary information about the function itself
1462
   and about the args processed so far, enough to enable macros
1463
   such as FUNCTION_ARG to determine where the next arg should go.  */
1464
 
1465
typedef struct ix86_args {
1466
  int words;                    /* # words passed so far */
1467
  int nregs;                    /* # registers available for passing */
1468
  int regno;                    /* next available register number */
1469
  int fastcall;                 /* fastcall calling convention is used */
1470
  int sse_words;                /* # sse words passed so far */
1471
  int sse_nregs;                /* # sse registers available for passing */
1472
  int warn_sse;                 /* True when we want to warn about SSE ABI.  */
1473
  int warn_mmx;                 /* True when we want to warn about MMX ABI.  */
1474
  int sse_regno;                /* next available sse register number */
1475
  int mmx_words;                /* # mmx words passed so far */
1476
  int mmx_nregs;                /* # mmx registers available for passing */
1477
  int mmx_regno;                /* next available mmx register number */
1478
  int maybe_vaarg;              /* true for calls to possibly vardic fncts.  */
1479
  int float_in_sse;             /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1480
                                   be passed in SSE registers.  Otherwise 0.  */
1481
} CUMULATIVE_ARGS;
1482
 
1483
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1484
   for a call to a function whose data type is FNTYPE.
1485
   For a library call, FNTYPE is 0.  */
1486
 
1487
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1488
  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1489
 
1490
/* Update the data in CUM to advance over an argument
1491
   of mode MODE and data type TYPE.
1492
   (TYPE is null for libcalls where that information may not be available.)  */
1493
 
1494
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1495
  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1496
 
1497
/* Define where to put the arguments to a function.
1498
   Value is zero to push the argument on the stack,
1499
   or a hard register in which to store the argument.
1500
 
1501
   MODE is the argument's machine mode.
1502
   TYPE is the data type of the argument (as a tree).
1503
    This is null for libcalls where that information may
1504
    not be available.
1505
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1506
    the preceding args and about the function being called.
1507
   NAMED is nonzero if this argument is a named parameter
1508
    (otherwise it is an extra parameter matching an ellipsis).  */
1509
 
1510
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1511
  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1512
 
1513
/* Implement `va_start' for varargs and stdarg.  */
1514
#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1515
  ix86_va_start (VALIST, NEXTARG)
1516
 
1517
#define TARGET_ASM_FILE_END ix86_file_end
1518
#define NEED_INDICATE_EXEC_STACK 0
1519
 
1520
/* Output assembler code to FILE to increment profiler label # LABELNO
1521
   for profiling a function entry.  */
1522
 
1523
#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1524
 
1525
#define MCOUNT_NAME "_mcount"
1526
 
1527
#define PROFILE_COUNT_REGISTER "edx"
1528
 
1529
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1530
   the stack pointer does not matter.  The value is tested only in
1531
   functions that have frame pointers.
1532
   No definition is equivalent to always zero.  */
1533
/* Note on the 386 it might be more efficient not to define this since
1534
   we have to restore it ourselves from the frame pointer, in order to
1535
   use pop */
1536
 
1537
#define EXIT_IGNORE_STACK 1
1538
 
1539
/* Output assembler code for a block containing the constant parts
1540
   of a trampoline, leaving space for the variable parts.  */
1541
 
1542
/* On the 386, the trampoline contains two instructions:
1543
     mov #STATIC,ecx
1544
     jmp FUNCTION
1545
   The trampoline is generated entirely at runtime.  The operand of JMP
1546
   is the address of FUNCTION relative to the instruction following the
1547
   JMP (which is 5 bytes long).  */
1548
 
1549
/* Length in units of the trampoline for entering a nested function.  */
1550
 
1551
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1552
 
1553
/* Emit RTL insns to initialize the variable parts of a trampoline.
1554
   FNADDR is an RTX for the address of the function's pure code.
1555
   CXT is an RTX for the static chain value for the function.  */
1556
 
1557
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1558
  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1559
 
1560
/* Definitions for register eliminations.
1561
 
1562
   This is an array of structures.  Each structure initializes one pair
1563
   of eliminable registers.  The "from" register number is given first,
1564
   followed by "to".  Eliminations of the same "from" register are listed
1565
   in order of preference.
1566
 
1567
   There are two registers that can always be eliminated on the i386.
1568
   The frame pointer and the arg pointer can be replaced by either the
1569
   hard frame pointer or to the stack pointer, depending upon the
1570
   circumstances.  The hard frame pointer is not used before reload and
1571
   so it is not eligible for elimination.  */
1572
 
1573
#define ELIMINABLE_REGS                                 \
1574
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},           \
1575
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},      \
1576
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},         \
1577
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}    \
1578
 
1579
/* Given FROM and TO register numbers, say whether this elimination is
1580
   allowed.  Frame pointer elimination is automatically handled.
1581
 
1582
   All other eliminations are valid.  */
1583
 
1584
#define CAN_ELIMINATE(FROM, TO) \
1585
  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1586
 
1587
/* Define the offset between two registers, one to be eliminated, and the other
1588
   its replacement, at the start of a routine.  */
1589
 
1590
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1591
  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1592
 
1593
/* Addressing modes, and classification of registers for them.  */
1594
 
1595
/* Macros to check register numbers against specific register classes.  */
1596
 
1597
/* These assume that REGNO is a hard or pseudo reg number.
1598
   They give nonzero only if REGNO is a hard reg of the suitable class
1599
   or a pseudo reg currently allocated to a suitable hard reg.
1600
   Since they use reg_renumber, they are safe only once reg_renumber
1601
   has been allocated, which happens in local-alloc.c.  */
1602
 
1603
#define REGNO_OK_FOR_INDEX_P(REGNO)                                     \
1604
  ((REGNO) < STACK_POINTER_REGNUM                                       \
1605
   || (REGNO >= FIRST_REX_INT_REG                                       \
1606
       && (REGNO) <= LAST_REX_INT_REG)                                  \
1607
   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG            \
1608
       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)         \
1609
   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1610
 
1611
#define REGNO_OK_FOR_BASE_P(REGNO)                                      \
1612
  ((REGNO) <= STACK_POINTER_REGNUM                                      \
1613
   || (REGNO) == ARG_POINTER_REGNUM                                     \
1614
   || (REGNO) == FRAME_POINTER_REGNUM                                   \
1615
   || (REGNO >= FIRST_REX_INT_REG                                       \
1616
       && (REGNO) <= LAST_REX_INT_REG)                                  \
1617
   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG            \
1618
       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)         \
1619
   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1620
 
1621
#define REGNO_OK_FOR_SIREG_P(REGNO) \
1622
  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1623
#define REGNO_OK_FOR_DIREG_P(REGNO) \
1624
  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1625
 
1626
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1627
   and check its validity for a certain class.
1628
   We have two alternate definitions for each of them.
1629
   The usual definition accepts all pseudo regs; the other rejects
1630
   them unless they have been allocated suitable hard regs.
1631
   The symbol REG_OK_STRICT causes the latter definition to be used.
1632
 
1633
   Most source files want to accept pseudo regs in the hope that
1634
   they will get allocated to the class that the insn wants them to be in.
1635
   Source files for reload pass need to be strict.
1636
   After reload, it makes no difference, since pseudo regs have
1637
   been eliminated by then.  */
1638
 
1639
 
1640
/* Non strict versions, pseudos are ok.  */
1641
#define REG_OK_FOR_INDEX_NONSTRICT_P(X)                                 \
1642
  (REGNO (X) < STACK_POINTER_REGNUM                                     \
1643
   || (REGNO (X) >= FIRST_REX_INT_REG                                   \
1644
       && REGNO (X) <= LAST_REX_INT_REG)                                \
1645
   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1646
 
1647
#define REG_OK_FOR_BASE_NONSTRICT_P(X)                                  \
1648
  (REGNO (X) <= STACK_POINTER_REGNUM                                    \
1649
   || REGNO (X) == ARG_POINTER_REGNUM                                   \
1650
   || REGNO (X) == FRAME_POINTER_REGNUM                                 \
1651
   || (REGNO (X) >= FIRST_REX_INT_REG                                   \
1652
       && REGNO (X) <= LAST_REX_INT_REG)                                \
1653
   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1654
 
1655
/* Strict versions, hard registers only */
1656
#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1657
#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1658
 
1659
#ifndef REG_OK_STRICT
1660
#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1661
#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1662
 
1663
#else
1664
#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1665
#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1666
#endif
1667
 
1668
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1669
   that is a valid memory address for an instruction.
1670
   The MODE argument is the machine mode for the MEM expression
1671
   that wants to use this address.
1672
 
1673
   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1674
   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1675
 
1676
   See legitimize_pic_address in i386.c for details as to what
1677
   constitutes a legitimate address when -fpic is used.  */
1678
 
1679
#define MAX_REGS_PER_ADDRESS 2
1680
 
1681
#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1682
 
1683
/* Nonzero if the constant value X is a legitimate general operand.
1684
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1685
 
1686
#define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
1687
 
1688
#ifdef REG_OK_STRICT
1689
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)                         \
1690
do {                                                                    \
1691
  if (legitimate_address_p ((MODE), (X), 1))                            \
1692
    goto ADDR;                                                          \
1693
} while (0)
1694
 
1695
#else
1696
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)                         \
1697
do {                                                                    \
1698
  if (legitimate_address_p ((MODE), (X), 0))                            \
1699
    goto ADDR;                                                          \
1700
} while (0)
1701
 
1702
#endif
1703
 
1704
/* If defined, a C expression to determine the base term of address X.
1705
   This macro is used in only one place: `find_base_term' in alias.c.
1706
 
1707
   It is always safe for this macro to not be defined.  It exists so
1708
   that alias analysis can understand machine-dependent addresses.
1709
 
1710
   The typical use of this macro is to handle addresses containing
1711
   a label_ref or symbol_ref within an UNSPEC.  */
1712
 
1713
#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1714
 
1715
/* Try machine-dependent ways of modifying an illegitimate address
1716
   to be legitimate.  If we find one, return the new, valid address.
1717
   This macro is used in only one place: `memory_address' in explow.c.
1718
 
1719
   OLDX is the address as it was before break_out_memory_refs was called.
1720
   In some cases it is useful to look at this to decide what needs to be done.
1721
 
1722
   MODE and WIN are passed so that this macro can use
1723
   GO_IF_LEGITIMATE_ADDRESS.
1724
 
1725
   It is always safe for this macro to do nothing.  It exists to recognize
1726
   opportunities to optimize the output.
1727
 
1728
   For the 80386, we handle X+REG by loading X into a register R and
1729
   using R+REG.  R will go in a general reg and indexing will be used.
1730
   However, if REG is a broken-out memory address or multiplication,
1731
   nothing needs to be done because REG can certainly go in a general reg.
1732
 
1733
   When -fpic is used, special handling is needed for symbolic references.
1734
   See comments by legitimize_pic_address in i386.c for details.  */
1735
 
1736
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)                          \
1737
do {                                                                    \
1738
  (X) = legitimize_address ((X), (OLDX), (MODE));                       \
1739
  if (memory_address_p ((MODE), (X)))                                   \
1740
    goto WIN;                                                           \
1741
} while (0)
1742
 
1743
#define REWRITE_ADDRESS(X) rewrite_address (X)
1744
 
1745
/* Nonzero if the constant value X is a legitimate general operand
1746
   when generating PIC code.  It is given that flag_pic is on and
1747
   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1748
 
1749
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1750
 
1751
#define SYMBOLIC_CONST(X)       \
1752
  (GET_CODE (X) == SYMBOL_REF                                           \
1753
   || GET_CODE (X) == LABEL_REF                                         \
1754
   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1755
 
1756
/* Go to LABEL if ADDR (a legitimate address expression)
1757
   has an effect that depends on the machine mode it is used for.
1758
   On the 80386, only postdecrement and postincrement address depend thus
1759
   (the amount of decrement or increment being the length of the operand).  */
1760
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)       \
1761
do {                                                    \
1762
 if (GET_CODE (ADDR) == POST_INC                        \
1763
     || GET_CODE (ADDR) == POST_DEC)                    \
1764
   goto LABEL;                                          \
1765
} while (0)
1766
 
1767
/* Max number of args passed in registers.  If this is more than 3, we will
1768
   have problems with ebx (register #4), since it is a caller save register and
1769
   is also used as the pic register in ELF.  So for now, don't allow more than
1770
   3 registers to be passed in registers.  */
1771
 
1772
#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1773
 
1774
#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1775
 
1776
#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1777
 
1778
 
1779
/* Specify the machine mode that this machine uses
1780
   for the index in the tablejump instruction.  */
1781
#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1782
 
1783
/* Define this as 1 if `char' should by default be signed; else as 0.  */
1784
#define DEFAULT_SIGNED_CHAR 1
1785
 
1786
/* Number of bytes moved into a data cache for a single prefetch operation.  */
1787
#define PREFETCH_BLOCK ix86_cost->prefetch_block
1788
 
1789
/* Number of prefetch operations that can be done in parallel.  */
1790
#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1791
 
1792
/* Max number of bytes we can move from memory to memory
1793
   in one reasonably fast instruction.  */
1794
#define MOVE_MAX 16
1795
 
1796
/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1797
   move efficiently, as opposed to  MOVE_MAX which is the maximum
1798
   number of bytes we can move with a single instruction.  */
1799
#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1800
 
1801
/* If a memory-to-memory move would take MOVE_RATIO or more simple
1802
   move-instruction pairs, we will do a movmem or libcall instead.
1803
   Increasing the value will always make code faster, but eventually
1804
   incurs high cost in increased code size.
1805
 
1806
   If you don't define this, a reasonable default is used.  */
1807
 
1808
#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1809
 
1810
/* If a clear memory operation would take CLEAR_RATIO or more simple
1811
   move-instruction sequences, we will do a clrmem or libcall instead.  */
1812
 
1813
#define CLEAR_RATIO (optimize_size ? 2 \
1814
                     : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1815
 
1816
/* Define if shifts truncate the shift count
1817
   which implies one can omit a sign-extension or zero-extension
1818
   of a shift count.  */
1819
/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
1820
 
1821
/* #define SHIFT_COUNT_TRUNCATED */
1822
 
1823
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1824
   is done just by pretending it is already truncated.  */
1825
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1826
 
1827
/* A macro to update M and UNSIGNEDP when an object whose type is
1828
   TYPE and which has the specified mode and signedness is to be
1829
   stored in a register.  This macro is only called when TYPE is a
1830
   scalar type.
1831
 
1832
   On i386 it is sometimes useful to promote HImode and QImode
1833
   quantities to SImode.  The choice depends on target type.  */
1834
 
1835
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)             \
1836
do {                                                    \
1837
  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)      \
1838
      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))  \
1839
    (MODE) = SImode;                                    \
1840
} while (0)
1841
 
1842
/* Specify the machine mode that pointers have.
1843
   After generation of rtl, the compiler makes no further distinction
1844
   between pointers and any other objects of this machine mode.  */
1845
#define Pmode (TARGET_64BIT ? DImode : SImode)
1846
 
1847
/* A function address in a call instruction
1848
   is a byte address (for indexing purposes)
1849
   so give the MEM rtx a byte's mode.  */
1850
#define FUNCTION_MODE QImode
1851
 
1852
/* A C expression for the cost of moving data from a register in class FROM to
1853
   one in class TO.  The classes are expressed using the enumeration values
1854
   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
1855
   interpreted relative to that.
1856
 
1857
   It is not required that the cost always equal 2 when FROM is the same as TO;
1858
   on some machines it is expensive to move between registers if they are not
1859
   general registers.  */
1860
 
1861
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1862
   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1863
 
1864
/* A C expression for the cost of moving data of mode M between a
1865
   register and memory.  A value of 2 is the default; this cost is
1866
   relative to those in `REGISTER_MOVE_COST'.
1867
 
1868
   If moving between registers and memory is more expensive than
1869
   between two registers, you should define this macro to express the
1870
   relative cost.  */
1871
 
1872
#define MEMORY_MOVE_COST(MODE, CLASS, IN)       \
1873
  ix86_memory_move_cost ((MODE), (CLASS), (IN))
1874
 
1875
/* A C expression for the cost of a branch instruction.  A value of 1
1876
   is the default; other values are interpreted relative to that.  */
1877
 
1878
#define BRANCH_COST ix86_branch_cost
1879
 
1880
/* Define this macro as a C expression which is nonzero if accessing
1881
   less than a word of memory (i.e. a `char' or a `short') is no
1882
   faster than accessing a word of memory, i.e., if such access
1883
   require more than one instruction or if there is no difference in
1884
   cost between byte and (aligned) word loads.
1885
 
1886
   When this macro is not defined, the compiler will access a field by
1887
   finding the smallest containing object; when it is defined, a
1888
   fullword load will be used if alignment permits.  Unless bytes
1889
   accesses are faster than word accesses, using word accesses is
1890
   preferable since it may eliminate subsequent memory access if
1891
   subsequent accesses occur to other fields in the same word of the
1892
   structure, but to different bytes.  */
1893
 
1894
#define SLOW_BYTE_ACCESS 0
1895
 
1896
/* Nonzero if access to memory by shorts is slow and undesirable.  */
1897
#define SLOW_SHORT_ACCESS 0
1898
 
1899
/* Define this macro to be the value 1 if unaligned accesses have a
1900
   cost many times greater than aligned accesses, for example if they
1901
   are emulated in a trap handler.
1902
 
1903
   When this macro is nonzero, the compiler will act as if
1904
   `STRICT_ALIGNMENT' were nonzero when generating code for block
1905
   moves.  This can cause significantly more instructions to be
1906
   produced.  Therefore, do not set this macro nonzero if unaligned
1907
   accesses only add a cycle or two to the time for a memory access.
1908
 
1909
   If the value of this macro is always zero, it need not be defined.  */
1910
 
1911
/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1912
 
1913
/* Define this macro if it is as good or better to call a constant
1914
   function address than to call an address kept in a register.
1915
 
1916
   Desirable on the 386 because a CALL with a constant address is
1917
   faster than one with a register address.  */
1918
 
1919
#define NO_FUNCTION_CSE
1920
 
1921
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1922
   return the mode to be used for the comparison.
1923
 
1924
   For floating-point equality comparisons, CCFPEQmode should be used.
1925
   VOIDmode should be used in all other cases.
1926
 
1927
   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1928
   possible, to allow for more combinations.  */
1929
 
1930
#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1931
 
1932
/* Return nonzero if MODE implies a floating point inequality can be
1933
   reversed.  */
1934
 
1935
#define REVERSIBLE_CC_MODE(MODE) 1
1936
 
1937
/* A C expression whose value is reversed condition code of the CODE for
1938
   comparison done in CC_MODE mode.  */
1939
#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1940
 
1941
 
1942
/* Control the assembler format that we output, to the extent
1943
   this does not vary between assemblers.  */
1944
 
1945
/* How to refer to registers in assembler output.
1946
   This sequence is indexed by compiler's hard-register-number (see above).  */
1947
 
1948
/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1949
   For non floating point regs, the following are the HImode names.
1950
 
1951
   For float regs, the stack top is sometimes referred to as "%st(0)"
1952
   instead of just "%st".  PRINT_OPERAND handles this with the "y" code.  */
1953
 
1954
#define HI_REGISTER_NAMES                                               \
1955
{"ax","dx","cx","bx","si","di","bp","sp",                               \
1956
 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",          \
1957
 "argp", "flags", "fpsr", "dirflag", "frame",                           \
1958
 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",               \
1959
 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" ,               \
1960
 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",                  \
1961
 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1962
 
1963
#define REGISTER_NAMES HI_REGISTER_NAMES
1964
 
1965
/* Table of additional register names to use in user input.  */
1966
 
1967
#define ADDITIONAL_REGISTER_NAMES \
1968
{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },       \
1969
  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },       \
1970
  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },       \
1971
  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },       \
1972
  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },           \
1973
  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1974
 
1975
/* Note we are omitting these since currently I don't know how
1976
to get gcc to use these, since they want the same but different
1977
number as al, and ax.
1978
*/
1979
 
1980
#define QI_REGISTER_NAMES \
1981
{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1982
 
1983
/* These parallel the array above, and can be used to access bits 8:15
1984
   of regs 0 through 3.  */
1985
 
1986
#define QI_HIGH_REGISTER_NAMES \
1987
{"ah", "dh", "ch", "bh", }
1988
 
1989
/* How to renumber registers for dbx and gdb.  */
1990
 
1991
#define DBX_REGISTER_NUMBER(N) \
1992
  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1993
 
1994
extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1995
extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1996
extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1997
 
1998
/* Before the prologue, RA is at 0(%esp).  */
1999
#define INCOMING_RETURN_ADDR_RTX \
2000
  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2001
 
2002
/* After the prologue, RA is at -4(AP) in the current frame.  */
2003
#define RETURN_ADDR_RTX(COUNT, FRAME)                                      \
2004
  ((COUNT) == 0                                                            \
2005
   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2006
   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2007
 
2008
/* PC is dbx register 8; let's use that column for RA.  */
2009
#define DWARF_FRAME_RETURN_COLUMN       (TARGET_64BIT ? 16 : 8)
2010
 
2011
/* Before the prologue, the top of the frame is at 4(%esp).  */
2012
#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2013
 
2014
/* Describe how we implement __builtin_eh_return.  */
2015
#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2016
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 2)
2017
 
2018
 
2019
/* Select a format to encode pointers in exception handling data.  CODE
2020
   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2021
   true if the symbol may be affected by dynamic relocations.
2022
 
2023
   ??? All x86 object file formats are capable of representing this.
2024
   After all, the relocation needed is the same as for the call insn.
2025
   Whether or not a particular assembler allows us to enter such, I
2026
   guess we'll have to see.  */
2027
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)                      \
2028
  asm_preferred_eh_data_format ((CODE), (GLOBAL))
2029
 
2030
/* This is how to output an insn to push a register on the stack.
2031
   It need not be very fast code.  */
2032
 
2033
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2034
do {                                                                    \
2035
  if (TARGET_64BIT)                                                     \
2036
    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",                          \
2037
                 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));  \
2038
  else                                                                  \
2039
    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);     \
2040
} while (0)
2041
 
2042
/* This is how to output an insn to pop a register from the stack.
2043
   It need not be very fast code.  */
2044
 
2045
#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2046
do {                                                                    \
2047
  if (TARGET_64BIT)                                                     \
2048
    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",                           \
2049
                 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));  \
2050
  else                                                                  \
2051
    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);      \
2052
} while (0)
2053
 
2054
/* This is how to output an element of a case-vector that is absolute.  */
2055
 
2056
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2057
  ix86_output_addr_vec_elt ((FILE), (VALUE))
2058
 
2059
/* This is how to output an element of a case-vector that is relative.  */
2060
 
2061
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2062
  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2063
 
2064
/* Under some conditions we need jump tables in the text section, because
2065
   the assembler cannot handle label differences between sections.  */
2066
 
2067
#define JUMP_TABLES_IN_TEXT_SECTION \
2068
  (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2069
 
2070
/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2071
   and switch back.  For x86 we do this only to save a few bytes that
2072
   would otherwise be unused in the text section.  */
2073
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)      \
2074
   asm (SECTION_OP "\n\t"                               \
2075
        "call " USER_LABEL_PREFIX #FUNC "\n"            \
2076
        TEXT_SECTION_ASM_OP);
2077
 
2078
/* Print operand X (an rtx) in assembler syntax to file FILE.
2079
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2080
   Effect of various CODE letters is described in i386.c near
2081
   print_operand function.  */
2082
 
2083
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2084
  ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2085
 
2086
#define PRINT_OPERAND(FILE, X, CODE)  \
2087
  print_operand ((FILE), (X), (CODE))
2088
 
2089
#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2090
  print_operand_address ((FILE), (ADDR))
2091
 
2092
#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)  \
2093
do {                                            \
2094
  if (! output_addr_const_extra (FILE, (X)))    \
2095
    goto FAIL;                                  \
2096
} while (0);
2097
 
2098
/* a letter which is not needed by the normal asm syntax, which
2099
   we can use for operand syntax in the extended asm */
2100
 
2101
#define ASM_OPERAND_LETTER '#'
2102
#define RET return ""
2103
#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2104
 
2105
/* Which processor to schedule for. The cpu attribute defines a list that
2106
   mirrors this list, so changes to i386.md must be made at the same time.  */
2107
 
2108
enum processor_type
2109
{
2110
  PROCESSOR_I386,                       /* 80386 */
2111
  PROCESSOR_I486,                       /* 80486DX, 80486SX, 80486DX[24] */
2112
  PROCESSOR_PENTIUM,
2113
  PROCESSOR_PENTIUMPRO,
2114
  PROCESSOR_K6,
2115
  PROCESSOR_ATHLON,
2116
  PROCESSOR_PENTIUM4,
2117
  PROCESSOR_K8,
2118
  PROCESSOR_NOCONA,
2119
  PROCESSOR_max
2120
};
2121
 
2122
extern enum processor_type ix86_tune;
2123
extern enum processor_type ix86_arch;
2124
 
2125
enum fpmath_unit
2126
{
2127
  FPMATH_387 = 1,
2128
  FPMATH_SSE = 2
2129
};
2130
 
2131
extern enum fpmath_unit ix86_fpmath;
2132
 
2133
enum tls_dialect
2134
{
2135
  TLS_DIALECT_GNU,
2136
  TLS_DIALECT_SUN
2137
};
2138
 
2139
extern enum tls_dialect ix86_tls_dialect;
2140
 
2141
enum cmodel {
2142
  CM_32,        /* The traditional 32-bit ABI.  */
2143
  CM_SMALL,     /* Assumes all code and data fits in the low 31 bits.  */
2144
  CM_KERNEL,    /* Assumes all code and data fits in the high 31 bits.  */
2145
  CM_MEDIUM,    /* Assumes code fits in the low 31 bits; data unlimited.  */
2146
  CM_LARGE,     /* No assumptions.  */
2147
  CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region.  */
2148
  CM_MEDIUM_PIC /* Assumes code+got/plt fits in a 31 bit region.  */
2149
};
2150
 
2151
extern enum cmodel ix86_cmodel;
2152
 
2153
/* Size of the RED_ZONE area.  */
2154
#define RED_ZONE_SIZE 128
2155
/* Reserved area of the red zone for temporaries.  */
2156
#define RED_ZONE_RESERVE 8
2157
 
2158
enum asm_dialect {
2159
  ASM_ATT,
2160
  ASM_INTEL
2161
};
2162
 
2163
extern enum asm_dialect ix86_asm_dialect;
2164
extern unsigned int ix86_preferred_stack_boundary;
2165
extern int ix86_branch_cost, ix86_section_threshold;
2166
 
2167
/* Smallest class containing REGNO.  */
2168
extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2169
 
2170
extern rtx ix86_compare_op0;    /* operand 0 for comparisons */
2171
extern rtx ix86_compare_op1;    /* operand 1 for comparisons */
2172
extern rtx ix86_compare_emitted;
2173
 
2174
/* To properly truncate FP values into integers, we need to set i387 control
2175
   word.  We can't emit proper mode switching code before reload, as spills
2176
   generated by reload may truncate values incorrectly, but we still can avoid
2177
   redundant computation of new control word by the mode switching pass.
2178
   The fldcw instructions are still emitted redundantly, but this is probably
2179
   not going to be noticeable problem, as most CPUs do have fast path for
2180
   the sequence.
2181
 
2182
   The machinery is to emit simple truncation instructions and split them
2183
   before reload to instructions having USEs of two memory locations that
2184
   are filled by this code to old and new control word.
2185
 
2186
   Post-reload pass may be later used to eliminate the redundant fildcw if
2187
   needed.  */
2188
 
2189
enum ix86_entity
2190
{
2191
  I387_TRUNC = 0,
2192
  I387_FLOOR,
2193
  I387_CEIL,
2194
  I387_MASK_PM,
2195
  MAX_386_ENTITIES
2196
};
2197
 
2198
enum ix86_stack_slot
2199
{
2200
  SLOT_TEMP = 0,
2201
  SLOT_CW_STORED,
2202
  SLOT_CW_TRUNC,
2203
  SLOT_CW_FLOOR,
2204
  SLOT_CW_CEIL,
2205
  SLOT_CW_MASK_PM,
2206
  MAX_386_STACK_LOCALS
2207
};
2208
 
2209
/* Define this macro if the port needs extra instructions inserted
2210
   for mode switching in an optimizing compilation.  */
2211
 
2212
#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2213
   ix86_optimize_mode_switching[(ENTITY)]
2214
 
2215
/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2216
   initializer for an array of integers.  Each initializer element N
2217
   refers to an entity that needs mode switching, and specifies the
2218
   number of different modes that might need to be set for this
2219
   entity.  The position of the initializer in the initializer -
2220
   starting counting at zero - determines the integer that is used to
2221
   refer to the mode-switched entity in question.  */
2222
 
2223
#define NUM_MODES_FOR_MODE_SWITCHING \
2224
   { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2225
 
2226
/* ENTITY is an integer specifying a mode-switched entity.  If
2227
   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2228
   return an integer value not larger than the corresponding element
2229
   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2230
   must be switched into prior to the execution of INSN. */
2231
 
2232
#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2233
 
2234
/* This macro specifies the order in which modes for ENTITY are
2235
   processed.  0 is the highest priority.  */
2236
 
2237
#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2238
 
2239
/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
2240
   is the set of hard registers live at the point where the insn(s)
2241
   are to be inserted.  */
2242
 
2243
#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE)                     \
2244
  ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED             \
2245
   ? emit_i387_cw_initialization (MODE), 0                              \
2246
   : 0)
2247
 
2248
 
2249
/* Avoid renaming of stack registers, as doing so in combination with
2250
   scheduling just increases amount of live registers at time and in
2251
   the turn amount of fxch instructions needed.
2252
 
2253
   ??? Maybe Pentium chips benefits from renaming, someone can try....  */
2254
 
2255
#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
2256
   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2257
 
2258
 
2259
#define DLL_IMPORT_EXPORT_PREFIX '#'
2260
 
2261
#define FASTCALL_PREFIX '@'
2262
 
2263
struct machine_function GTY(())
2264
{
2265
  struct stack_local_entry *stack_locals;
2266
  const char *some_ld_name;
2267
  rtx force_align_arg_pointer;
2268
  int save_varrargs_registers;
2269
  int accesses_prev_frame;
2270
  int optimize_mode_switching[MAX_386_ENTITIES];
2271
  /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2272
     determine the style used.  */
2273
  int use_fast_prologue_epilogue;
2274
  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2275
     for.  */
2276
  int use_fast_prologue_epilogue_nregs;
2277
};
2278
 
2279
#define ix86_stack_locals (cfun->machine->stack_locals)
2280
#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2281
#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2282
 
2283
/* Control behavior of x86_file_start.  */
2284
#define X86_FILE_START_VERSION_DIRECTIVE false
2285
#define X86_FILE_START_FLTUSED false
2286
 
2287
/* Flag to mark data that is in the large address area.  */
2288
#define SYMBOL_FLAG_FAR_ADDR            (SYMBOL_FLAG_MACH_DEP << 0)
2289
#define SYMBOL_REF_FAR_ADDR_P(X)        \
2290
        ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2291
/*
2292
Local variables:
2293
version-control: t
2294
End:
2295
*/

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.