OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [ia64/] [ia64.h] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Definitions of target machine GNU compiler.  IA-64 version.
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3
   Free Software Foundation, Inc.
4
   Contributed by James E. Wilson <wilson@cygnus.com> and
5
                  David Mosberger <davidm@hpl.hp.com>.
6
 
7
This file is part of GCC.
8
 
9
GCC is free software; you can redistribute it and/or modify
10
it under the terms of the GNU General Public License as published by
11
the Free Software Foundation; either version 2, or (at your option)
12
any later version.
13
 
14
GCC is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
GNU General Public License for more details.
18
 
19
You should have received a copy of the GNU General Public License
20
along with GCC; see the file COPYING.  If not, write to
21
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22
Boston, MA 02110-1301, USA.  */
23
 
24
/* ??? Look at ABI group documents for list of preprocessor macros and
25
   other features required for ABI compliance.  */
26
 
27
/* ??? Functions containing a non-local goto target save many registers.  Why?
28
   See for instance execute/920428-2.c.  */
29
 
30
 
31
/* Run-time target specifications */
32
 
33
/* Target CPU builtins.  */
34
#define TARGET_CPU_CPP_BUILTINS()               \
35
do {                                            \
36
        builtin_assert("cpu=ia64");             \
37
        builtin_assert("machine=ia64");         \
38
        builtin_define("__ia64");               \
39
        builtin_define("__ia64__");             \
40
        builtin_define("__itanium__");          \
41
        if (TARGET_BIG_ENDIAN)                  \
42
          builtin_define("__BIG_ENDIAN__");     \
43
} while (0)
44
 
45
#ifndef SUBTARGET_EXTRA_SPECS
46
#define SUBTARGET_EXTRA_SPECS
47
#endif
48
 
49
#define EXTRA_SPECS \
50
  { "asm_extra", ASM_EXTRA_SPEC }, \
51
  SUBTARGET_EXTRA_SPECS
52
 
53
#define CC1_SPEC "%(cc1_cpu) "
54
 
55
#define ASM_EXTRA_SPEC ""
56
 
57
/* Variables which are this size or smaller are put in the sdata/sbss
58
   sections.  */
59
extern unsigned int ia64_section_threshold;
60
 
61
/* If the assembler supports thread-local storage, assume that the
62
   system does as well.  If a particular target system has an
63
   assembler that supports TLS -- but the rest of the system does not
64
   support TLS -- that system should explicit define TARGET_HAVE_TLS
65
   to false in its own configuration file.  */
66
#if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
67
#define TARGET_HAVE_TLS true
68
#endif
69
 
70
#define TARGET_TLS14            (ia64_tls_size == 14)
71
#define TARGET_TLS22            (ia64_tls_size == 22)
72
#define TARGET_TLS64            (ia64_tls_size == 64)
73
 
74
#define TARGET_HPUX             0
75
#define TARGET_HPUX_LD          0
76
 
77
#ifndef TARGET_ILP32
78
#define TARGET_ILP32 0
79
#endif
80
 
81
#ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
82
#define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
83
#endif
84
 
85
/* Values for TARGET_INLINE_FLOAT_DIV, TARGET_INLINE_INT_DIV, and
86
   TARGET_INLINE_SQRT.  */
87
 
88
enum ia64_inline_type
89
{
90
  INL_NO = 0,
91
  INL_MIN_LAT = 1,
92
  INL_MAX_THR = 2
93
};
94
 
95
/* Default target_flags if no switches are specified  */
96
 
97
#ifndef TARGET_DEFAULT
98
#define TARGET_DEFAULT (MASK_DWARF2_ASM)
99
#endif
100
 
101
#ifndef TARGET_CPU_DEFAULT
102
#define TARGET_CPU_DEFAULT 0
103
#endif
104
 
105
/* Which processor to schedule for. The cpu attribute defines a list
106
   that mirrors this list, so changes to ia64.md must be made at the
107
   same time.  */
108
 
109
enum processor_type
110
{
111
  PROCESSOR_ITANIUM,                    /* Original Itanium.  */
112
  PROCESSOR_ITANIUM2,
113
  PROCESSOR_max
114
};
115
 
116
extern enum processor_type ia64_tune;
117
 
118
/* Sometimes certain combinations of command options do not make sense on a
119
   particular target machine.  You can define a macro `OVERRIDE_OPTIONS' to
120
   take account of this.  This macro, if defined, is executed once just after
121
   all the command options have been parsed.  */
122
 
123
#define OVERRIDE_OPTIONS ia64_override_options ()
124
 
125
/* Some machines may desire to change what optimizations are performed for
126
   various optimization levels.  This macro, if defined, is executed once just
127
   after the optimization level is determined and before the remainder of the
128
   command options have been parsed.  Values set in this macro are used as the
129
   default values for the other command line options.  */
130
 
131
/* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
132
 
133
/* Driver configuration */
134
 
135
/* A C string constant that tells the GCC driver program options to pass to
136
   `cc1'.  It can also specify how to translate options you give to GCC into
137
   options for GCC to pass to the `cc1'.  */
138
 
139
#undef CC1_SPEC
140
#define CC1_SPEC "%{G*}"
141
 
142
/* A C string constant that tells the GCC driver program options to pass to
143
   `cc1plus'.  It can also specify how to translate options you give to GCC
144
   into options for GCC to pass to the `cc1plus'.  */
145
 
146
/* #define CC1PLUS_SPEC "" */
147
 
148
/* Storage Layout */
149
 
150
/* Define this macro to have the value 1 if the most significant bit in a byte
151
   has the lowest number; otherwise define it to have the value zero.  */
152
 
153
#define BITS_BIG_ENDIAN 0
154
 
155
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
156
 
157
/* Define this macro to have the value 1 if, in a multiword object, the most
158
   significant word has the lowest number.  */
159
 
160
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
161
 
162
#if defined(__BIG_ENDIAN__)
163
#define LIBGCC2_WORDS_BIG_ENDIAN 1
164
#else
165
#define LIBGCC2_WORDS_BIG_ENDIAN 0
166
#endif
167
 
168
#define UNITS_PER_WORD 8
169
 
170
#define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
171
 
172
/* A C expression whose value is zero if pointers that need to be extended
173
   from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
174
   they are zero-extended and negative one if there is a ptr_extend operation.
175
 
176
   You need not define this macro if the `POINTER_SIZE' is equal to the width
177
   of `Pmode'.  */
178
/* Need this for 32 bit pointers, see hpux.h for setting it.  */
179
/* #define POINTERS_EXTEND_UNSIGNED */
180
 
181
/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
182
   which has the specified mode and signedness is to be stored in a register.
183
   This macro is only called when TYPE is a scalar type.  */
184
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)                               \
185
do                                                                      \
186
  {                                                                     \
187
    if (GET_MODE_CLASS (MODE) == MODE_INT                               \
188
        && GET_MODE_SIZE (MODE) < 4)                                    \
189
      (MODE) = SImode;                                                  \
190
  }                                                                     \
191
while (0)
192
 
193
#define PARM_BOUNDARY 64
194
 
195
/* Define this macro if you wish to preserve a certain alignment for the stack
196
   pointer.  The definition is a C expression for the desired alignment
197
   (measured in bits).  */
198
 
199
#define STACK_BOUNDARY 128
200
 
201
/* Align frames on double word boundaries */
202
#ifndef IA64_STACK_ALIGN
203
#define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
204
#endif
205
 
206
#define FUNCTION_BOUNDARY 128
207
 
208
/* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
209
   128 bit integers all require 128 bit alignment.  */
210
#define BIGGEST_ALIGNMENT 128
211
 
212
/* If defined, a C expression to compute the alignment for a static variable.
213
   TYPE is the data type, and ALIGN is the alignment that the object
214
   would ordinarily have.  The value of this macro is used instead of that
215
   alignment to align the object.  */
216
 
217
#define DATA_ALIGNMENT(TYPE, ALIGN)             \
218
  (TREE_CODE (TYPE) == ARRAY_TYPE               \
219
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
220
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
221
 
222
/* If defined, a C expression to compute the alignment given to a constant that
223
   is being placed in memory.  CONSTANT is the constant and ALIGN is the
224
   alignment that the object would ordinarily have.  The value of this macro is
225
   used instead of that alignment to align the object.  */
226
 
227
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
228
  (TREE_CODE (EXP) == STRING_CST        \
229
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
230
 
231
#define STRICT_ALIGNMENT 1
232
 
233
/* Define this if you wish to imitate the way many other C compilers handle
234
   alignment of bitfields and the structures that contain them.
235
   The behavior is that the type written for a bit-field (`int', `short', or
236
   other integer type) imposes an alignment for the entire structure, as if the
237
   structure really did contain an ordinary field of that type.  In addition,
238
   the bit-field is placed within the structure so that it would fit within such
239
   a field, not crossing a boundary for it.  */
240
#define PCC_BITFIELD_TYPE_MATTERS 1
241
 
242
/* An integer expression for the size in bits of the largest integer machine
243
   mode that should actually be used.  */
244
 
245
/* Allow pairs of registers to be used, which is the intent of the default.  */
246
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
247
 
248
/* By default, the C++ compiler will use function addresses in the
249
   vtable entries.  Setting this nonzero tells the compiler to use
250
   function descriptors instead.  The value of this macro says how
251
   many words wide the descriptor is (normally 2).  It is assumed
252
   that the address of a function descriptor may be treated as a
253
   pointer to a function.
254
 
255
   For reasons known only to HP, the vtable entries (as opposed to
256
   normal function descriptors) are 16 bytes wide in 32-bit mode as
257
   well, even though the 3rd and 4th words are unused.  */
258
#define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
259
 
260
/* Due to silliness in the HPUX linker, vtable entries must be
261
   8-byte aligned even in 32-bit mode.  Rather than create multiple
262
   ABIs, force this restriction on everyone else too.  */
263
#define TARGET_VTABLE_ENTRY_ALIGN  64
264
 
265
/* Due to the above, we need extra padding for the data entries below 0
266
   to retain the alignment of the descriptors.  */
267
#define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
268
 
269
/* Layout of Source Language Data Types */
270
 
271
#define INT_TYPE_SIZE 32
272
 
273
#define SHORT_TYPE_SIZE 16
274
 
275
#define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
276
 
277
#define LONG_LONG_TYPE_SIZE 64
278
 
279
#define FLOAT_TYPE_SIZE 32
280
 
281
#define DOUBLE_TYPE_SIZE 64
282
 
283
/* long double is XFmode normally, TFmode for HPUX.  */
284
#define LONG_DOUBLE_TYPE_SIZE (TARGET_HPUX ? 128 : 80)
285
 
286
/* We always want the XFmode operations from libgcc2.c.  */
287
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
288
 
289
#define DEFAULT_SIGNED_CHAR 1
290
 
291
/* A C expression for a string describing the name of the data type to use for
292
   size values.  The typedef name `size_t' is defined using the contents of the
293
   string.  */
294
/* ??? Needs to be defined for P64 code.  */
295
/* #define SIZE_TYPE */
296
 
297
/* A C expression for a string describing the name of the data type to use for
298
   the result of subtracting two pointers.  The typedef name `ptrdiff_t' is
299
   defined using the contents of the string.  See `SIZE_TYPE' above for more
300
   information.  */
301
/* ??? Needs to be defined for P64 code.  */
302
/* #define PTRDIFF_TYPE */
303
 
304
/* A C expression for a string describing the name of the data type to use for
305
   wide characters.  The typedef name `wchar_t' is defined using the contents
306
   of the string.  See `SIZE_TYPE' above for more information.  */
307
/* #define WCHAR_TYPE */
308
 
309
/* A C expression for the size in bits of the data type for wide characters.
310
   This is used in `cpp', which cannot make use of `WCHAR_TYPE'.  */
311
/* #define WCHAR_TYPE_SIZE */
312
 
313
 
314
/* Register Basics */
315
 
316
/* Number of hardware registers known to the compiler.
317
   We have 128 general registers, 128 floating point registers,
318
   64 predicate registers, 8 branch registers, one frame pointer,
319
   and several "application" registers.  */
320
 
321
#define FIRST_PSEUDO_REGISTER 334
322
 
323
/* Ranges for the various kinds of registers.  */
324
#define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
325
#define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
326
#define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
327
#define FP_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 254 && (REGNO) != 159)
328
#define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
329
#define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
330
#define GENERAL_REGNO_P(REGNO) \
331
  (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
332
 
333
#define GR_REG(REGNO) ((REGNO) + 0)
334
#define FR_REG(REGNO) ((REGNO) + 128)
335
#define PR_REG(REGNO) ((REGNO) + 256)
336
#define BR_REG(REGNO) ((REGNO) + 320)
337
#define OUT_REG(REGNO) ((REGNO) + 120)
338
#define IN_REG(REGNO) ((REGNO) + 112)
339
#define LOC_REG(REGNO) ((REGNO) + 32)
340
 
341
#define AR_CCV_REGNUM   329
342
#define AR_UNAT_REGNUM  330
343
#define AR_PFS_REGNUM   331
344
#define AR_LC_REGNUM    332
345
#define AR_EC_REGNUM    333
346
 
347
#define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
348
#define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
349
#define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
350
 
351
#define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
352
                             || (REGNO) == AR_UNAT_REGNUM)
353
#define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
354
                             && (REGNO) < FIRST_PSEUDO_REGISTER)
355
#define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
356
                           && (REGNO) < FIRST_PSEUDO_REGISTER)
357
 
358
 
359
/* ??? Don't really need two sets of macros.  I like this one better because
360
   it is less typing.  */
361
#define R_GR(REGNO) GR_REG (REGNO)
362
#define R_FR(REGNO) FR_REG (REGNO)
363
#define R_PR(REGNO) PR_REG (REGNO)
364
#define R_BR(REGNO) BR_REG (REGNO)
365
 
366
/* An initializer that says which registers are used for fixed purposes all
367
   throughout the compiled code and are therefore not available for general
368
   allocation.
369
 
370
   r0: constant 0
371
   r1: global pointer (gp)
372
   r12: stack pointer (sp)
373
   r13: thread pointer (tp)
374
   f0: constant 0.0
375
   f1: constant 1.0
376
   p0: constant true
377
   fp: eliminable frame pointer */
378
 
379
/* The last 16 stacked regs are reserved for the 8 input and 8 output
380
   registers.  */
381
 
382
#define FIXED_REGISTERS \
383
{ /* General registers.  */                             \
384
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,   \
385
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
386
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
387
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
388
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
389
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
390
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
391
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
392
  /* Floating-point registers.  */                      \
393
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,     \
394
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
395
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
396
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
397
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
398
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
399
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
400
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
401
  /* Predicate registers.  */                           \
402
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,      \
403
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
404
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
405
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
406
  /* Branch registers.  */                              \
407
  0, 0, 0, 0, 0, 0, 0, 0,                               \
408
  /*FP CCV UNAT PFS LC EC */                            \
409
     1,  1,   1,  1, 0, 1                                \
410
 }
411
 
412
/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
413
   (in general) by function calls as well as for fixed registers.  This
414
   macro therefore identifies the registers that are not available for
415
   general allocation of values that must live across function calls.  */
416
 
417
#define CALL_USED_REGISTERS \
418
{ /* General registers.  */                             \
419
  1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,   \
420
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
421
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
422
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
423
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
424
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
425
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
426
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,       \
427
  /* Floating-point registers.  */                      \
428
  1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,   \
429
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
430
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
431
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
432
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
433
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
434
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
435
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
436
  /* Predicate registers.  */                           \
437
  1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,    \
438
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
439
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
440
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
441
  /* Branch registers.  */                              \
442
  1, 0, 0, 0, 0, 0, 1, 1,                            \
443
  /*FP CCV UNAT PFS LC EC */                            \
444
     1,  1,   1,  1, 0, 1                                \
445
}
446
 
447
/* Like `CALL_USED_REGISTERS' but used to overcome a historical
448
   problem which makes CALL_USED_REGISTERS *always* include
449
   all the FIXED_REGISTERS.  Until this problem has been
450
   resolved this macro can be used to overcome this situation.
451
   In particular, block_propagate() requires this list
452
   be accurate, or we can remove registers which should be live.
453
   This macro is used in regs_invalidated_by_call.  */
454
 
455
#define CALL_REALLY_USED_REGISTERS \
456
{ /* General registers.  */                             \
457
  0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1,      \
458
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
459
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
460
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
461
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
462
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
463
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
464
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,       \
465
  /* Floating-point registers.  */                      \
466
  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     \
467
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
468
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
469
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
470
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
471
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
472
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
473
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
474
  /* Predicate registers.  */                           \
475
  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     \
476
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
477
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
478
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
479
  /* Branch registers.  */                              \
480
  1, 0, 0, 0, 0, 0, 1, 1,                            \
481
  /*FP CCV UNAT PFS LC EC */                            \
482
     0,  1,   0,  1, 0, 0                           \
483
}
484
 
485
 
486
/* Define this macro if the target machine has register windows.  This C
487
   expression returns the register number as seen by the called function
488
   corresponding to the register number OUT as seen by the calling function.
489
   Return OUT if register number OUT is not an outbound register.  */
490
 
491
#define INCOMING_REGNO(OUT) \
492
  ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
493
 
494
/* Define this macro if the target machine has register windows.  This C
495
   expression returns the register number as seen by the calling function
496
   corresponding to the register number IN as seen by the called function.
497
   Return IN if register number IN is not an inbound register.  */
498
 
499
#define OUTGOING_REGNO(IN) \
500
  ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
501
 
502
/* Define this macro if the target machine has register windows.  This
503
   C expression returns true if the register is call-saved but is in the
504
   register window.  */
505
 
506
#define LOCAL_REGNO(REGNO) \
507
  (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
508
 
509
/* We define CCImode in ia64-modes.def so we need a selector.  */
510
 
511
#define SELECT_CC_MODE(OP,X,Y)  CCmode
512
 
513
/* Order of allocation of registers */
514
 
515
/* If defined, an initializer for a vector of integers, containing the numbers
516
   of hard registers in the order in which GCC should prefer to use them
517
   (from most preferred to least).
518
 
519
   If this macro is not defined, registers are used lowest numbered first (all
520
   else being equal).
521
 
522
   One use of this macro is on machines where the highest numbered registers
523
   must always be saved and the save-multiple-registers instruction supports
524
   only sequences of consecutive registers.  On such machines, define
525
   `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
526
   allocatable register first.  */
527
 
528
/* ??? Should the GR return value registers come before or after the rest
529
   of the caller-save GRs?  */
530
 
531
#define REG_ALLOC_ORDER                                                    \
532
{                                                                          \
533
  /* Caller-saved general registers.  */                                   \
534
  R_GR (14), R_GR (15), R_GR (16), R_GR (17),                              \
535
  R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23),        \
536
  R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29),        \
537
  R_GR (30), R_GR (31),                                                    \
538
  /* Output registers.  */                                                 \
539
  R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125),  \
540
  R_GR (126), R_GR (127),                                                  \
541
  /* Caller-saved general registers, also used for return values.  */      \
542
  R_GR (8), R_GR (9), R_GR (10), R_GR (11),                                \
543
  /* addl caller-saved general registers.  */                              \
544
  R_GR (2), R_GR (3),                                                      \
545
  /* Caller-saved FP registers.  */                                        \
546
  R_FR (6), R_FR (7),                                                      \
547
  /* Caller-saved FP registers, used for parameters and return values.  */ \
548
  R_FR (8), R_FR (9), R_FR (10), R_FR (11),                                \
549
  R_FR (12), R_FR (13), R_FR (14), R_FR (15),                              \
550
  /* Rotating caller-saved FP registers.  */                               \
551
  R_FR (32), R_FR (33), R_FR (34), R_FR (35),                              \
552
  R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41),        \
553
  R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47),        \
554
  R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53),        \
555
  R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59),        \
556
  R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65),        \
557
  R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71),        \
558
  R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77),        \
559
  R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83),        \
560
  R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89),        \
561
  R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95),        \
562
  R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101),      \
563
  R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107),  \
564
  R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113),  \
565
  R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119),  \
566
  R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125),  \
567
  R_FR (126), R_FR (127),                                                  \
568
  /* Caller-saved predicate registers.  */                                 \
569
  R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11),            \
570
  R_PR (12), R_PR (13), R_PR (14), R_PR (15),                              \
571
  /* Rotating caller-saved predicate registers.  */                        \
572
  R_PR (16), R_PR (17),                                                    \
573
  R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23),        \
574
  R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29),        \
575
  R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35),        \
576
  R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41),        \
577
  R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47),        \
578
  R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53),        \
579
  R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59),        \
580
  R_PR (60), R_PR (61), R_PR (62), R_PR (63),                              \
581
  /* Caller-saved branch registers.  */                                    \
582
  R_BR (6), R_BR (7),                                                      \
583
                                                                           \
584
  /* Stacked callee-saved general registers.  */                           \
585
  R_GR (32), R_GR (33), R_GR (34), R_GR (35),                              \
586
  R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41),        \
587
  R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47),        \
588
  R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53),        \
589
  R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59),        \
590
  R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65),        \
591
  R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71),        \
592
  R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77),        \
593
  R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83),        \
594
  R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89),        \
595
  R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95),        \
596
  R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101),      \
597
  R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107),  \
598
  R_GR (108),                                                              \
599
  /* Input registers.  */                                                  \
600
  R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117),  \
601
  R_GR (118), R_GR (119),                                                  \
602
  /* Callee-saved general registers.  */                                   \
603
  R_GR (4), R_GR (5), R_GR (6), R_GR (7),                                  \
604
  /* Callee-saved FP registers.  */                                        \
605
  R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17),            \
606
  R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23),        \
607
  R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29),        \
608
  R_FR (30), R_FR (31),                                                    \
609
  /* Callee-saved predicate registers.  */                                 \
610
  R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5),                        \
611
  /* Callee-saved branch registers.  */                                    \
612
  R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5),                        \
613
                                                                           \
614
  /* ??? Stacked registers reserved for fp, rp, and ar.pfs.  */            \
615
  R_GR (109), R_GR (110), R_GR (111),                                      \
616
                                                                           \
617
  /* Special general registers.  */                                        \
618
  R_GR (0), R_GR (1), R_GR (12), R_GR (13),                                 \
619
  /* Special FP registers.  */                                             \
620
  R_FR (0), R_FR (1),                                                       \
621
  /* Special predicate registers.  */                                      \
622
  R_PR (0),                                                                 \
623
  /* Special branch registers.  */                                         \
624
  R_BR (0),                                                                 \
625
  /* Other fixed registers.  */                                            \
626
  FRAME_POINTER_REGNUM,                                                    \
627
  AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM,              \
628
  AR_EC_REGNUM                                                             \
629
}
630
 
631
/* How Values Fit in Registers */
632
 
633
/* A C expression for the number of consecutive hard registers, starting at
634
   register number REGNO, required to hold a value of mode MODE.  */
635
 
636
/* ??? We say that BImode PR values require two registers.  This allows us to
637
   easily store the normal and inverted values.  We use CCImode to indicate
638
   a single predicate register.  */
639
 
640
#define HARD_REGNO_NREGS(REGNO, MODE)                                   \
641
  ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64                        \
642
   : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2                         \
643
   : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1                        \
644
   : FR_REGNO_P (REGNO) && (MODE) == XFmode ? 1                         \
645
   : FR_REGNO_P (REGNO) && (MODE) == XCmode ? 2                         \
646
   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
647
 
648
/* A C expression that is nonzero if it is permissible to store a value of mode
649
   MODE in hard register number REGNO (or in several registers starting with
650
   that one).  */
651
 
652
#define HARD_REGNO_MODE_OK(REGNO, MODE)                         \
653
  (FR_REGNO_P (REGNO) ?                                         \
654
     GET_MODE_CLASS (MODE) != MODE_CC &&                        \
655
     (MODE) != BImode &&                                        \
656
     (MODE) != TFmode                                           \
657
   : PR_REGNO_P (REGNO) ?                                       \
658
     (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC       \
659
   : GR_REGNO_P (REGNO) ?                                       \
660
     (MODE) != CCImode && (MODE) != XFmode && (MODE) != XCmode  \
661
   : AR_REGNO_P (REGNO) ? (MODE) == DImode                      \
662
   : BR_REGNO_P (REGNO) ? (MODE) == DImode                      \
663
   : 0)
664
 
665
/* A C expression that is nonzero if it is desirable to choose register
666
   allocation so as to avoid move instructions between a value of mode MODE1
667
   and a value of mode MODE2.
668
 
669
   If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
670
   ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
671
   zero.  */
672
/* Don't tie integer and FP modes, as that causes us to get integer registers
673
   allocated for FP instructions.  XFmode only supported in FP registers so
674
   we can't tie it with any other modes.  */
675
#define MODES_TIEABLE_P(MODE1, MODE2)                   \
676
  (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)     \
677
   && ((((MODE1) == XFmode) || ((MODE1) == XCmode))     \
678
       == (((MODE2) == XFmode) || ((MODE2) == XCmode))) \
679
   && (((MODE1) == BImode) == ((MODE2) == BImode)))
680
 
681
/* Specify the modes required to caller save a given hard regno.
682
   We need to ensure floating pt regs are not saved as DImode.  */
683
 
684
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
685
  ((FR_REGNO_P (REGNO) && (NREGS) == 1) ? XFmode        \
686
   : choose_hard_reg_mode ((REGNO), (NREGS), false))
687
 
688
/* Handling Leaf Functions */
689
 
690
/* A C initializer for a vector, indexed by hard register number, which
691
   contains 1 for a register that is allowable in a candidate for leaf function
692
   treatment.  */
693
/* ??? This might be useful.  */
694
/* #define LEAF_REGISTERS */
695
 
696
/* A C expression whose value is the register number to which REGNO should be
697
   renumbered, when a function is treated as a leaf function.  */
698
/* ??? This might be useful.  */
699
/* #define LEAF_REG_REMAP(REGNO) */
700
 
701
 
702
/* Register Classes */
703
 
704
/* An enumeral type that must be defined with all the register class names as
705
   enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
706
   register class, followed by one more enumeral value, `LIM_REG_CLASSES',
707
   which is not a register class but rather tells how many classes there
708
   are.  */
709
/* ??? When compiling without optimization, it is possible for the only use of
710
   a pseudo to be a parameter load from the stack with a REG_EQUIV note.
711
   Regclass handles this case specially and does not assign any costs to the
712
   pseudo.  The pseudo then ends up using the last class before ALL_REGS.
713
   Thus we must not let either PR_REGS or BR_REGS be the last class.  The
714
   testcase for this is gcc.c-torture/execute/va-arg-7.c.  */
715
enum reg_class
716
{
717
  NO_REGS,
718
  PR_REGS,
719
  BR_REGS,
720
  AR_M_REGS,
721
  AR_I_REGS,
722
  ADDL_REGS,
723
  GR_REGS,
724
  FP_REGS,
725
  FR_REGS,
726
  GR_AND_BR_REGS,
727
  GR_AND_FR_REGS,
728
  ALL_REGS,
729
  LIM_REG_CLASSES
730
};
731
 
732
#define GENERAL_REGS GR_REGS
733
 
734
/* The number of distinct register classes.  */
735
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
736
 
737
/* An initializer containing the names of the register classes as C string
738
   constants.  These names are used in writing some of the debugging dumps.  */
739
#define REG_CLASS_NAMES \
740
{ "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
741
  "ADDL_REGS", "GR_REGS", "FP_REGS", "FR_REGS", \
742
  "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
743
 
744
/* An initializer containing the contents of the register classes, as integers
745
   which are bit masks.  The Nth integer specifies the contents of class N.
746
   The way the integer MASK is interpreted is that register R is in the class
747
   if `MASK & (1 << R)' is 1.  */
748
#define REG_CLASS_CONTENTS \
749
{                                                       \
750
  /* NO_REGS.  */                                       \
751
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
752
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
753
    0x00000000, 0x00000000, 0x0000 },                   \
754
  /* PR_REGS.  */                                       \
755
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
756
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
757
    0xFFFFFFFF, 0xFFFFFFFF, 0x0000 },                   \
758
  /* BR_REGS.  */                                       \
759
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
760
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
761
    0x00000000, 0x00000000, 0x00FF },                   \
762
  /* AR_M_REGS.  */                                     \
763
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
764
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
765
    0x00000000, 0x00000000, 0x0600 },                   \
766
  /* AR_I_REGS.  */                                     \
767
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
768
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
769
    0x00000000, 0x00000000, 0x3800 },                   \
770
  /* ADDL_REGS.  */                                     \
771
  { 0x0000000F, 0x00000000, 0x00000000, 0x00000000,     \
772
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
773
    0x00000000, 0x00000000, 0x0000 },                   \
774
  /* GR_REGS.  */                                       \
775
  { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
776
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
777
    0x00000000, 0x00000000, 0x0100 },                   \
778
  /* FP_REGS.  */                                       \
779
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
780
    0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF,     \
781
    0x00000000, 0x00000000, 0x0000 },                   \
782
  /* FR_REGS.  */                                       \
783
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
784
    0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
785
    0x00000000, 0x00000000, 0x0000 },                   \
786
  /* GR_AND_BR_REGS.  */                                \
787
  { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
788
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
789
    0x00000000, 0x00000000, 0x01FF },                   \
790
  /* GR_AND_FR_REGS.  */                                \
791
  { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
792
    0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
793
    0x00000000, 0x00000000, 0x0100 },                   \
794
  /* ALL_REGS.  */                                      \
795
  { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
796
    0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
797
    0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF },                   \
798
}
799
 
800
/* A C expression whose value is a register class containing hard register
801
   REGNO.  In general there is more than one such class; choose a class which
802
   is "minimal", meaning that no smaller class also contains the register.  */
803
/* The NO_REGS case is primarily for the benefit of rws_access_reg, which
804
   may call here with private (invalid) register numbers, such as
805
   REG_VOLATILE.  */
806
#define REGNO_REG_CLASS(REGNO) \
807
(ADDL_REGNO_P (REGNO) ? ADDL_REGS       \
808
 : GENERAL_REGNO_P (REGNO) ? GR_REGS    \
809
 : FR_REGNO_P (REGNO) ? (REGNO) != R_FR (31) \
810
                        && (REGNO) != R_FR(127) ? FP_REGS : FR_REGS \
811
 : PR_REGNO_P (REGNO) ? PR_REGS         \
812
 : BR_REGNO_P (REGNO) ? BR_REGS         \
813
 : AR_M_REGNO_P (REGNO) ? AR_M_REGS     \
814
 : AR_I_REGNO_P (REGNO) ? AR_I_REGS     \
815
 : NO_REGS)
816
 
817
/* A macro whose definition is the name of the class to which a valid base
818
   register must belong.  A base register is one used in an address which is
819
   the register value plus a displacement.  */
820
#define BASE_REG_CLASS GENERAL_REGS
821
 
822
/* A macro whose definition is the name of the class to which a valid index
823
   register must belong.  An index register is one used in an address where its
824
   value is either multiplied by a scale factor or added to another register
825
   (as well as added to a displacement).  This is needed for POST_MODIFY.  */
826
#define INDEX_REG_CLASS GENERAL_REGS
827
 
828
/* A C expression which defines the machine-dependent operand constraint
829
   letters for register classes.  If CHAR is such a letter, the value should be
830
   the register class corresponding to it.  Otherwise, the value should be
831
   `NO_REGS'.  The register letter `r', corresponding to class `GENERAL_REGS',
832
   will not be passed to this macro; you do not need to handle it.  */
833
 
834
#define REG_CLASS_FROM_LETTER(CHAR) \
835
((CHAR) == 'f' ? FR_REGS                \
836
 : (CHAR) == 'a' ? ADDL_REGS            \
837
 : (CHAR) == 'b' ? BR_REGS              \
838
 : (CHAR) == 'c' ? PR_REGS              \
839
 : (CHAR) == 'd' ? AR_M_REGS            \
840
 : (CHAR) == 'e' ? AR_I_REGS            \
841
 : (CHAR) == 'x' ? FP_REGS              \
842
 : NO_REGS)
843
 
844
/* A C expression which is nonzero if register number NUM is suitable for use
845
   as a base register in operand addresses.  It may be either a suitable hard
846
   register or a pseudo register that has been allocated such a hard reg.  */
847
#define REGNO_OK_FOR_BASE_P(REGNO) \
848
  (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
849
 
850
/* A C expression which is nonzero if register number NUM is suitable for use
851
   as an index register in operand addresses.  It may be either a suitable hard
852
   register or a pseudo register that has been allocated such a hard reg.
853
   This is needed for POST_MODIFY.  */
854
#define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
855
 
856
/* A C expression that places additional restrictions on the register class to
857
   use when it is necessary to copy value X into a register in class CLASS.
858
   The value is a register class; perhaps CLASS, or perhaps another, smaller
859
   class.  */
860
 
861
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
862
  ia64_preferred_reload_class (X, CLASS)
863
 
864
/* You should define this macro to indicate to the reload phase that it may
865
   need to allocate at least one register for a reload in addition to the
866
   register to contain the data.  Specifically, if copying X to a register
867
   CLASS in MODE requires an intermediate register, you should define this
868
   to return the largest register class all of whose registers can be used
869
   as intermediate registers or scratch registers.  */
870
 
871
#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
872
 ia64_secondary_reload_class (CLASS, MODE, X)
873
 
874
/* Certain machines have the property that some registers cannot be copied to
875
   some other registers without using memory.  Define this macro on those
876
   machines to be a C expression that is nonzero if objects of mode M in
877
   registers of CLASS1 can only be copied to registers of class CLASS2 by
878
   storing a register of CLASS1 into memory and loading that memory location
879
   into a register of CLASS2.  */
880
 
881
#if 0
882
/* ??? May need this, but since we've disallowed XFmode in GR_REGS,
883
   I'm not quite sure how it could be invoked.  The normal problems
884
   with unions should be solved with the addressof fiddling done by
885
   movxf and friends.  */
886
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)                   \
887
  (((MODE) == XFmode || (MODE) == XCmode)                               \
888
   && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS)                     \
889
       || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
890
#endif
891
 
892
/* A C expression for the maximum number of consecutive registers of
893
   class CLASS needed to hold a value of mode MODE.
894
   This is closely related to the macro `HARD_REGNO_NREGS'.  */
895
 
896
#define CLASS_MAX_NREGS(CLASS, MODE) \
897
  ((MODE) == BImode && (CLASS) == PR_REGS ? 2                   \
898
   : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XFmode) ? 1 \
899
   : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XCmode) ? 2 \
900
   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
901
 
902
/* In FP regs, we can't change FP values to integer values and vice versa,
903
   but we can change e.g. DImode to SImode, and V2SFmode into DImode.  */
904
 
905
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
906
  (SCALAR_FLOAT_MODE_P (FROM) != SCALAR_FLOAT_MODE_P (TO)       \
907
   ? reg_classes_intersect_p (CLASS, FR_REGS) : 0)
908
 
909
/* A C expression that defines the machine-dependent operand constraint
910
   letters (`I', `J', `K', .. 'P') that specify particular ranges of
911
   integer values.  */
912
 
913
/* 14 bit signed immediate for arithmetic instructions.  */
914
#define CONST_OK_FOR_I(VALUE) \
915
  ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
916
/* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source.  */
917
#define CONST_OK_FOR_J(VALUE) \
918
  ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
919
/* 8 bit signed immediate for logical instructions.  */
920
#define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
921
/* 8 bit adjusted signed immediate for compare pseudo-ops.  */
922
#define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
923
/* 6 bit unsigned immediate for shift counts.  */
924
#define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
925
/* 9 bit signed immediate for load/store post-increments.  */
926
#define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
927
/* 0 for r0.  Used by Linux kernel, do not change.  */
928
#define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
929
/* 0 or -1 for dep instruction.  */
930
#define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
931
 
932
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
933
  ia64_const_ok_for_letter_p (VALUE, C)
934
 
935
/* A C expression that defines the machine-dependent operand constraint letters
936
   (`G', `H') that specify particular ranges of `const_double' values.  */
937
 
938
/* 0.0 and 1.0 for fr0 and fr1.  */
939
#define CONST_DOUBLE_OK_FOR_G(VALUE) \
940
  ((VALUE) == CONST0_RTX (GET_MODE (VALUE))     \
941
   || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
942
 
943
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
944
  ia64_const_double_ok_for_letter_p (VALUE, C)
945
 
946
/* A C expression that defines the optional machine-dependent constraint
947
   letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
948
   types of operands, usually memory references, for the target machine.  */
949
 
950
#define EXTRA_CONSTRAINT(VALUE, C) \
951
  ia64_extra_constraint (VALUE, C)
952
 
953
/* Document the constraints that can accept reloaded memory operands.  This is
954
   needed by the extended asm support, and by reload.  'Q' accepts mem, but
955
   only non-volatile mem.  Since we can't reload a volatile mem into a
956
   non-volatile mem, it can not be listed here.  */
957
 
958
#define EXTRA_MEMORY_CONSTRAINT(C, STR)  ((C) == 'S')
959
 
960
/* Basic Stack Layout */
961
 
962
/* Define this macro if pushing a word onto the stack moves the stack pointer
963
   to a smaller address.  */
964
#define STACK_GROWS_DOWNWARD 1
965
 
966
/* Define this macro to nonzero if the addresses of local variable slots
967
   are at negative offsets from the frame pointer.  */
968
#define FRAME_GROWS_DOWNWARD 0
969
 
970
/* Offset from the frame pointer to the first local variable slot to
971
   be allocated.  */
972
#define STARTING_FRAME_OFFSET 0
973
 
974
/* Offset from the stack pointer register to the first location at which
975
   outgoing arguments are placed.  If not specified, the default value of zero
976
   is used.  This is the proper value for most machines.  */
977
/* IA64 has a 16 byte scratch area that is at the bottom of the stack.  */
978
#define STACK_POINTER_OFFSET 16
979
 
980
/* Offset from the argument pointer register to the first argument's address.
981
   On some machines it may depend on the data type of the function.  */
982
#define FIRST_PARM_OFFSET(FUNDECL) 0
983
 
984
/* A C expression whose value is RTL representing the value of the return
985
   address for the frame COUNT steps up from the current frame, after the
986
   prologue.  */
987
 
988
/* ??? Frames other than zero would likely require interpreting the frame
989
   unwind info, so we don't try to support them.  We would also need to define
990
   DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush).  */
991
 
992
#define RETURN_ADDR_RTX(COUNT, FRAME) \
993
  ia64_return_addr_rtx (COUNT, FRAME)
994
 
995
/* A C expression whose value is RTL representing the location of the incoming
996
   return address at the beginning of any function, before the prologue.  This
997
   RTL is either a `REG', indicating that the return value is saved in `REG',
998
   or a `MEM' representing a location in the stack.  This enables DWARF2
999
   unwind info for C++ EH.  */
1000
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
1001
 
1002
/* ??? This is not defined because of three problems.
1003
   1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1004
   The default value is FIRST_PSEUDO_REGISTER which doesn't.  This can be
1005
   worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1006
   unused register number.
1007
   2) dwarf2out_frame_debug core dumps while processing prologue insns.  We
1008
   need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1009
   3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1010
   to zero, despite what the documentation implies, because it is tested in
1011
   a few places with #ifdef instead of #if.  */
1012
#undef INCOMING_RETURN_ADDR_RTX
1013
 
1014
/* A C expression whose value is an integer giving the offset, in bytes, from
1015
   the value of the stack pointer register to the top of the stack frame at the
1016
   beginning of any function, before the prologue.  The top of the frame is
1017
   defined to be the value of the stack pointer in the previous frame, just
1018
   before the call instruction.  */
1019
/* The CFA is past the red zone, not at the entry-point stack
1020
   pointer.  */
1021
#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
1022
 
1023
 
1024
/* Register That Address the Stack Frame.  */
1025
 
1026
/* The register number of the stack pointer register, which must also be a
1027
   fixed register according to `FIXED_REGISTERS'.  On most machines, the
1028
   hardware determines which register this is.  */
1029
 
1030
#define STACK_POINTER_REGNUM 12
1031
 
1032
/* The register number of the frame pointer register, which is used to access
1033
   automatic variables in the stack frame.  On some machines, the hardware
1034
   determines which register this is.  On other machines, you can choose any
1035
   register you wish for this purpose.  */
1036
 
1037
#define FRAME_POINTER_REGNUM 328
1038
 
1039
/* Base register for access to local variables of the function.  */
1040
#define HARD_FRAME_POINTER_REGNUM  LOC_REG (79)
1041
 
1042
/* The register number of the arg pointer register, which is used to access the
1043
   function's argument list.  */
1044
/* r0 won't otherwise be used, so put the always eliminated argument pointer
1045
   in it.  */
1046
#define ARG_POINTER_REGNUM R_GR(0)
1047
 
1048
/* Due to the way varargs and argument spilling happens, the argument
1049
   pointer is not 16-byte aligned like the stack pointer.  */
1050
#define INIT_EXPANDERS                                  \
1051
  do {                                                  \
1052
    if (cfun && cfun->emit->regno_pointer_align)        \
1053
      REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64;    \
1054
  } while (0)
1055
 
1056
/* Register numbers used for passing a function's static chain pointer.  */
1057
/* ??? The ABI sez the static chain should be passed as a normal parameter.  */
1058
#define STATIC_CHAIN_REGNUM 15
1059
 
1060
/* Eliminating the Frame Pointer and the Arg Pointer */
1061
 
1062
/* A C expression which is nonzero if a function must have and use a frame
1063
   pointer.  This expression is evaluated in the reload pass.  If its value is
1064
   nonzero the function will have a frame pointer.  */
1065
#define FRAME_POINTER_REQUIRED 0
1066
 
1067
/* Show we can debug even without a frame pointer.  */
1068
#define CAN_DEBUG_WITHOUT_FP
1069
 
1070
/* If defined, this macro specifies a table of register pairs used to eliminate
1071
   unneeded registers that point into the stack frame.  */
1072
 
1073
#define ELIMINABLE_REGS                                                 \
1074
{                                                                       \
1075
  {ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},                         \
1076
  {ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM},                    \
1077
  {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},                         \
1078
  {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},                    \
1079
}
1080
 
1081
/* A C expression that returns nonzero if the compiler is allowed to try to
1082
   replace register number FROM with register number TO.  The frame pointer
1083
   is automatically handled.  */
1084
 
1085
#define CAN_ELIMINATE(FROM, TO) \
1086
  (TO == BR_REG (0) ? current_function_is_leaf : 1)
1087
 
1088
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It
1089
   specifies the initial difference between the specified pair of
1090
   registers.  This macro must be defined if `ELIMINABLE_REGS' is
1091
   defined.  */
1092
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1093
  ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1094
 
1095
/* Passing Function Arguments on the Stack */
1096
 
1097
/* If defined, the maximum amount of space required for outgoing arguments will
1098
   be computed and placed into the variable
1099
   `current_function_outgoing_args_size'.  */
1100
 
1101
#define ACCUMULATE_OUTGOING_ARGS 1
1102
 
1103
/* A C expression that should indicate the number of bytes of its own arguments
1104
   that a function pops on returning, or 0 if the function pops no arguments
1105
   and the caller must therefore pop them all after the function returns.  */
1106
 
1107
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1108
 
1109
 
1110
/* Function Arguments in Registers */
1111
 
1112
#define MAX_ARGUMENT_SLOTS 8
1113
#define MAX_INT_RETURN_SLOTS 4
1114
#define GR_ARG_FIRST IN_REG (0)
1115
#define GR_RET_FIRST GR_REG (8)
1116
#define GR_RET_LAST  GR_REG (11)
1117
#define FR_ARG_FIRST FR_REG (8)
1118
#define FR_RET_FIRST FR_REG (8)
1119
#define FR_RET_LAST  FR_REG (15)
1120
#define AR_ARG_FIRST OUT_REG (0)
1121
 
1122
/* A C expression that controls whether a function argument is passed in a
1123
   register, and which register.  */
1124
 
1125
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1126
  ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1127
 
1128
/* Define this macro if the target machine has "register windows", so that the
1129
   register in which a function sees an arguments is not necessarily the same
1130
   as the one in which the caller passed the argument.  */
1131
 
1132
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1133
  ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1134
 
1135
/* A C type for declaring a variable that is used as the first argument of
1136
   `FUNCTION_ARG' and other related values.  For some target machines, the type
1137
   `int' suffices and can hold the number of bytes of argument so far.  */
1138
 
1139
typedef struct ia64_args
1140
{
1141
  int words;                    /* # words of arguments so far  */
1142
  int int_regs;                 /* # GR registers used so far  */
1143
  int fp_regs;                  /* # FR registers used so far  */
1144
  int prototype;                /* whether function prototyped  */
1145
} CUMULATIVE_ARGS;
1146
 
1147
/* A C statement (sans semicolon) for initializing the variable CUM for the
1148
   state at the beginning of the argument list.  */
1149
 
1150
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1151
do {                                                                    \
1152
  (CUM).words = 0;                                                       \
1153
  (CUM).int_regs = 0;                                                    \
1154
  (CUM).fp_regs = 0;                                                     \
1155
  (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1156
} while (0)
1157
 
1158
/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1159
   arguments for the function being compiled.  If this macro is undefined,
1160
   `INIT_CUMULATIVE_ARGS' is used instead.  */
1161
 
1162
/* We set prototype to true so that we never try to return a PARALLEL from
1163
   function_arg.  */
1164
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1165
do {                                                                    \
1166
  (CUM).words = 0;                                                       \
1167
  (CUM).int_regs = 0;                                                    \
1168
  (CUM).fp_regs = 0;                                                     \
1169
  (CUM).prototype = 1;                                                  \
1170
} while (0)
1171
 
1172
/* A C statement (sans semicolon) to update the summarizer variable CUM to
1173
   advance past an argument in the argument list.  The values MODE, TYPE and
1174
   NAMED describe that argument.  Once this is done, the variable CUM is
1175
   suitable for analyzing the *following* argument with `FUNCTION_ARG'.  */
1176
 
1177
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1178
 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1179
 
1180
/* If defined, a C expression that gives the alignment boundary, in bits, of an
1181
   argument with the specified mode and type.  */
1182
 
1183
/* Return the alignment boundary in bits for an argument with a specified
1184
   mode and type.  */
1185
 
1186
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1187
  ia64_function_arg_boundary (MODE, TYPE)
1188
 
1189
/* A C expression that is nonzero if REGNO is the number of a hard register in
1190
   which function arguments are sometimes passed.  This does *not* include
1191
   implicit arguments such as the static chain and the structure-value address.
1192
   On many machines, no registers can be used for this purpose since all
1193
   function arguments are pushed on the stack.  */
1194
#define FUNCTION_ARG_REGNO_P(REGNO) \
1195
(((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1196
 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1197
 
1198
/* How Scalar Function Values are Returned */
1199
 
1200
/* A C expression to create an RTX representing the place where a function
1201
   returns a value of data type VALTYPE.  */
1202
 
1203
#define FUNCTION_VALUE(VALTYPE, FUNC) \
1204
  ia64_function_value (VALTYPE, FUNC)
1205
 
1206
/* A C expression to create an RTX representing the place where a library
1207
   function returns a value of mode MODE.  */
1208
 
1209
#define LIBCALL_VALUE(MODE) \
1210
  gen_rtx_REG (MODE,                                                    \
1211
               (((GET_MODE_CLASS (MODE) == MODE_FLOAT                   \
1212
                 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) &&     \
1213
                      (MODE) != TFmode) \
1214
                ? FR_RET_FIRST : GR_RET_FIRST))
1215
 
1216
/* A C expression that is nonzero if REGNO is the number of a hard register in
1217
   which the values of called function may come back.  */
1218
 
1219
#define FUNCTION_VALUE_REGNO_P(REGNO)                           \
1220
  (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST)          \
1221
   || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1222
 
1223
 
1224
/* How Large Values are Returned */
1225
 
1226
#define DEFAULT_PCC_STRUCT_RETURN 0
1227
 
1228
 
1229
/* Caller-Saves Register Allocation */
1230
 
1231
/* A C expression to determine whether it is worthwhile to consider placing a
1232
   pseudo-register in a call-clobbered hard register and saving and restoring
1233
   it around each function call.  The expression should be 1 when this is worth
1234
   doing, and 0 otherwise.
1235
 
1236
   If you don't define this macro, a default is used which is good on most
1237
   machines: `4 * CALLS < REFS'.  */
1238
/* ??? Investigate.  */
1239
/* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1240
 
1241
 
1242
/* Function Entry and Exit */
1243
 
1244
/* Define this macro as a C expression that is nonzero if the return
1245
   instruction or the function epilogue ignores the value of the stack pointer;
1246
   in other words, if it is safe to delete an instruction to adjust the stack
1247
   pointer before a return from the function.  */
1248
 
1249
#define EXIT_IGNORE_STACK 1
1250
 
1251
/* Define this macro as a C expression that is nonzero for registers
1252
   used by the epilogue or the `return' pattern.  */
1253
 
1254
#define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1255
 
1256
/* Nonzero for registers used by the exception handling mechanism.  */
1257
 
1258
#define EH_USES(REGNO) ia64_eh_uses (REGNO)
1259
 
1260
/* Output part N of a function descriptor for DECL.  For ia64, both
1261
   words are emitted with a single relocation, so ignore N > 0.  */
1262
#define ASM_OUTPUT_FDESC(FILE, DECL, PART)                              \
1263
do {                                                                    \
1264
  if ((PART) == 0)                                                       \
1265
    {                                                                   \
1266
      if (TARGET_ILP32)                                                 \
1267
        fputs ("\tdata8.ua @iplt(", FILE);                              \
1268
      else                                                              \
1269
        fputs ("\tdata16.ua @iplt(", FILE);                             \
1270
      mark_decl_referenced (DECL);                                      \
1271
      assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0));  \
1272
      fputs (")\n", FILE);                                              \
1273
      if (TARGET_ILP32)                                                 \
1274
        fputs ("\tdata8.ua 0\n", FILE);                                 \
1275
    }                                                                   \
1276
} while (0)
1277
 
1278
/* Generating Code for Profiling.  */
1279
 
1280
/* A C statement or compound statement to output to FILE some assembler code to
1281
   call the profiling subroutine `mcount'.  */
1282
 
1283
#undef FUNCTION_PROFILER
1284
#define FUNCTION_PROFILER(FILE, LABELNO) \
1285
  ia64_output_function_profiler(FILE, LABELNO)
1286
 
1287
/* Neither hpux nor linux use profile counters.  */
1288
#define NO_PROFILE_COUNTERS 1
1289
 
1290
/* Trampolines for Nested Functions.  */
1291
 
1292
/* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1293
   the function containing a non-local goto target.  */
1294
 
1295
#define STACK_SAVEAREA_MODE(LEVEL) \
1296
  ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1297
 
1298
/* Output assembler code for a block containing the constant parts of
1299
   a trampoline, leaving space for the variable parts.
1300
 
1301
   The trampoline should set the static chain pointer to value placed
1302
   into the trampoline and should branch to the specified routine.
1303
   To make the normal indirect-subroutine calling convention work,
1304
   the trampoline must look like a function descriptor; the first
1305
   word being the target address and the second being the target's
1306
   global pointer.
1307
 
1308
   We abuse the concept of a global pointer by arranging for it
1309
   to point to the data we need to load.  The complete trampoline
1310
   has the following form:
1311
 
1312
                +-------------------+ \
1313
        TRAMP:  | __ia64_trampoline | |
1314
                +-------------------+  > fake function descriptor
1315
                | TRAMP+16          | |
1316
                +-------------------+ /
1317
                | target descriptor |
1318
                +-------------------+
1319
                | static link       |
1320
                +-------------------+
1321
*/
1322
 
1323
/* A C expression for the size in bytes of the trampoline, as an integer.  */
1324
 
1325
#define TRAMPOLINE_SIZE         32
1326
 
1327
/* Alignment required for trampolines, in bits.  */
1328
 
1329
#define TRAMPOLINE_ALIGNMENT    64
1330
 
1331
/* A C statement to initialize the variable parts of a trampoline.  */
1332
 
1333
#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1334
  ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
1335
 
1336
/* Addressing Modes */
1337
 
1338
/* Define this macro if the machine supports post-increment addressing.  */
1339
 
1340
#define HAVE_POST_INCREMENT 1
1341
#define HAVE_POST_DECREMENT 1
1342
#define HAVE_POST_MODIFY_DISP 1
1343
#define HAVE_POST_MODIFY_REG 1
1344
 
1345
/* A C expression that is 1 if the RTX X is a constant which is a valid
1346
   address.  */
1347
 
1348
#define CONSTANT_ADDRESS_P(X) 0
1349
 
1350
/* The max number of registers that can appear in a valid memory address.  */
1351
 
1352
#define MAX_REGS_PER_ADDRESS 2
1353
 
1354
/* A C compound statement with a conditional `goto LABEL;' executed if X (an
1355
   RTX) is a legitimate memory address on the target machine for a memory
1356
   operand of mode MODE.  */
1357
 
1358
#define LEGITIMATE_ADDRESS_REG(X)                                       \
1359
  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))                       \
1360
   || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG           \
1361
       && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1362
 
1363
#define LEGITIMATE_ADDRESS_DISP(R, X)                                   \
1364
  (GET_CODE (X) == PLUS                                                 \
1365
   && rtx_equal_p (R, XEXP (X, 0))                                       \
1366
   && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1))                             \
1367
       || (GET_CODE (XEXP (X, 1)) == CONST_INT                          \
1368
           && INTVAL (XEXP (X, 1)) >= -256                              \
1369
           && INTVAL (XEXP (X, 1)) < 256)))
1370
 
1371
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL)                        \
1372
do {                                                                    \
1373
  if (LEGITIMATE_ADDRESS_REG (X))                                       \
1374
    goto LABEL;                                                         \
1375
  else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC)       \
1376
           && LEGITIMATE_ADDRESS_REG (XEXP (X, 0))                       \
1377
           && XEXP (X, 0) != arg_pointer_rtx)                            \
1378
    goto LABEL;                                                         \
1379
  else if (GET_CODE (X) == POST_MODIFY                                  \
1380
           && LEGITIMATE_ADDRESS_REG (XEXP (X, 0))                       \
1381
           && XEXP (X, 0) != arg_pointer_rtx                             \
1382
           && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1)))        \
1383
    goto LABEL;                                                         \
1384
} while (0)
1385
 
1386
/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1387
   use as a base register.  */
1388
 
1389
#ifdef REG_OK_STRICT
1390
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1391
#else
1392
#define REG_OK_FOR_BASE_P(X) \
1393
  (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1394
#endif
1395
 
1396
/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1397
   use as an index register.  This is needed for POST_MODIFY.  */
1398
 
1399
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1400
 
1401
/* A C statement or compound statement with a conditional `goto LABEL;'
1402
   executed if memory address X (an RTX) can have different meanings depending
1403
   on the machine mode of the memory reference it is used for or if the address
1404
   is valid for some modes but not others.  */
1405
 
1406
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)                       \
1407
  if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC)       \
1408
    goto LABEL;
1409
 
1410
/* A C expression that is nonzero if X is a legitimate constant for an
1411
   immediate operand on the target machine.  */
1412
 
1413
#define LEGITIMATE_CONSTANT_P(X) ia64_legitimate_constant_p (X)
1414
 
1415
/* Condition Code Status */
1416
 
1417
/* One some machines not all possible comparisons are defined, but you can
1418
   convert an invalid comparison into a valid one.  */
1419
/* ??? Investigate.  See the alpha definition.  */
1420
/* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1421
 
1422
 
1423
/* Describing Relative Costs of Operations */
1424
 
1425
/* A C expression for the cost of moving data from a register in class FROM to
1426
   one in class TO, using MODE.  */
1427
 
1428
#define REGISTER_MOVE_COST  ia64_register_move_cost
1429
 
1430
/* A C expression for the cost of moving data of mode M between a
1431
   register and memory.  */
1432
#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1433
  ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS || (CLASS) == FP_REGS \
1434
   || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
1435
 
1436
/* A C expression for the cost of a branch instruction.  A value of 1 is the
1437
   default; other values are interpreted relative to that.  Used by the
1438
   if-conversion code as max instruction count.  */
1439
/* ??? This requires investigation.  The primary effect might be how
1440
   many additional insn groups we run into, vs how good the dynamic
1441
   branch predictor is.  */
1442
 
1443
#define BRANCH_COST 6
1444
 
1445
/* Define this macro as a C expression which is nonzero if accessing less than
1446
   a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1447
   word of memory.  */
1448
 
1449
#define SLOW_BYTE_ACCESS 1
1450
 
1451
/* Define this macro if it is as good or better to call a constant function
1452
   address than to call an address kept in a register.
1453
 
1454
   Indirect function calls are more expensive that direct function calls, so
1455
   don't cse function addresses.  */
1456
 
1457
#define NO_FUNCTION_CSE
1458
 
1459
 
1460
/* Dividing the output into sections.  */
1461
 
1462
/* A C expression whose value is a string containing the assembler operation
1463
   that should precede instructions and read-only data.  */
1464
 
1465
#define TEXT_SECTION_ASM_OP "\t.text"
1466
 
1467
/* A C expression whose value is a string containing the assembler operation to
1468
   identify the following data as writable initialized data.  */
1469
 
1470
#define DATA_SECTION_ASM_OP "\t.data"
1471
 
1472
/* If defined, a C expression whose value is a string containing the assembler
1473
   operation to identify the following data as uninitialized global data.  */
1474
 
1475
#define BSS_SECTION_ASM_OP "\t.bss"
1476
 
1477
#define IA64_DEFAULT_GVALUE 8
1478
 
1479
/* Position Independent Code.  */
1480
 
1481
/* The register number of the register used to address a table of static data
1482
   addresses in memory.  */
1483
 
1484
/* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1485
   gen_rtx_REG (DImode, 1).  */
1486
 
1487
/* ??? Should we set flag_pic?  Probably need to define
1488
   LEGITIMIZE_PIC_OPERAND_P to make that work.  */
1489
 
1490
#define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1491
 
1492
/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1493
   clobbered by calls.  */
1494
 
1495
#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1496
 
1497
 
1498
/* The Overall Framework of an Assembler File.  */
1499
 
1500
/* A C string constant describing how to begin a comment in the target
1501
   assembler language.  The compiler assumes that the comment will end at the
1502
   end of the line.  */
1503
 
1504
#define ASM_COMMENT_START "//"
1505
 
1506
/* A C string constant for text to be output before each `asm' statement or
1507
   group of consecutive ones.  */
1508
 
1509
#define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1510
 
1511
/* A C string constant for text to be output after each `asm' statement or
1512
   group of consecutive ones.  */
1513
 
1514
#define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1515
 
1516
/* Output of Uninitialized Variables.  */
1517
 
1518
/* This is all handled by svr4.h.  */
1519
 
1520
 
1521
/* Output and Generation of Labels.  */
1522
 
1523
/* A C statement (sans semicolon) to output to the stdio stream STREAM the
1524
   assembler definition of a label named NAME.  */
1525
 
1526
/* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1527
   why ia64_asm_output_label exists.  */
1528
 
1529
extern int ia64_asm_output_label;
1530
#define ASM_OUTPUT_LABEL(STREAM, NAME)                                  \
1531
do {                                                                    \
1532
  ia64_asm_output_label = 1;                                            \
1533
  assemble_name (STREAM, NAME);                                         \
1534
  fputs (":\n", STREAM);                                                \
1535
  ia64_asm_output_label = 0;                                             \
1536
} while (0)
1537
 
1538
/* Globalizing directive for a label.  */
1539
#define GLOBAL_ASM_OP "\t.global "
1540
 
1541
/* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1542
   necessary for declaring the name of an external symbol named NAME which is
1543
   referenced in this compilation but not defined.  */
1544
 
1545
#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1546
  ia64_asm_output_external (FILE, DECL, NAME)
1547
 
1548
/* A C statement to store into the string STRING a label whose name is made
1549
   from the string PREFIX and the number NUM.  */
1550
 
1551
#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1552
do {                                                                    \
1553
  sprintf (LABEL, "*.%s%d", PREFIX, NUM);                               \
1554
} while (0)
1555
 
1556
/* ??? Not sure if using a ? in the name for Intel as is safe.  */
1557
 
1558
#define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1559
 
1560
/* A C statement to output to the stdio stream STREAM assembler code which
1561
   defines (equates) the symbol NAME to have the value VALUE.  */
1562
 
1563
#define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1564
do {                                                                    \
1565
  assemble_name (STREAM, NAME);                                         \
1566
  fputs (" = ", STREAM);                                                \
1567
  assemble_name (STREAM, VALUE);                                        \
1568
  fputc ('\n', STREAM);                                                 \
1569
} while (0)
1570
 
1571
 
1572
/* Macros Controlling Initialization Routines.  */
1573
 
1574
/* This is handled by svr4.h and sysv4.h.  */
1575
 
1576
 
1577
/* Output of Assembler Instructions.  */
1578
 
1579
/* A C initializer containing the assembler's names for the machine registers,
1580
   each one as a C string constant.  */
1581
 
1582
#define REGISTER_NAMES \
1583
{                                                                       \
1584
  /* General registers.  */                                             \
1585
  "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9",           \
1586
  "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1587
  "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1588
  "r30", "r31",                                                         \
1589
  /* Local registers.  */                                               \
1590
  "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7",       \
1591
  "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15",      \
1592
  "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23",      \
1593
  "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31",      \
1594
  "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39",      \
1595
  "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47",      \
1596
  "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55",      \
1597
  "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63",      \
1598
  "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71",      \
1599
  "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79",      \
1600
  /* Input registers.  */                                               \
1601
  "in0",  "in1",  "in2",  "in3",  "in4",  "in5",  "in6",  "in7",        \
1602
  /* Output registers.  */                                              \
1603
  "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7",       \
1604
  /* Floating-point registers.  */                                      \
1605
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9",           \
1606
  "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
1607
  "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
1608
  "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
1609
  "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
1610
  "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
1611
  "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
1612
  "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
1613
  "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
1614
  "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
1615
  "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1616
  "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1617
  "f120","f121","f122","f123","f124","f125","f126","f127",              \
1618
  /* Predicate registers.  */                                           \
1619
  "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9",           \
1620
  "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
1621
  "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
1622
  "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
1623
  "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
1624
  "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
1625
  "p60", "p61", "p62", "p63",                                           \
1626
  /* Branch registers.  */                                              \
1627
  "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",                       \
1628
  /* Frame pointer.  Application registers.  */                         \
1629
  "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec",       \
1630
}
1631
 
1632
/* If defined, a C initializer for an array of structures containing a name and
1633
   a register number.  This macro defines additional names for hard registers,
1634
   thus allowing the `asm' option in declarations to refer to registers using
1635
   alternate names.  */
1636
 
1637
#define ADDITIONAL_REGISTER_NAMES \
1638
{                                                                       \
1639
  { "gp", R_GR (1) },                                                   \
1640
  { "sp", R_GR (12) },                                                  \
1641
  { "in0", IN_REG (0) },                                         \
1642
  { "in1", IN_REG (1) },                                                \
1643
  { "in2", IN_REG (2) },                                                \
1644
  { "in3", IN_REG (3) },                                                \
1645
  { "in4", IN_REG (4) },                                                \
1646
  { "in5", IN_REG (5) },                                                \
1647
  { "in6", IN_REG (6) },                                                \
1648
  { "in7", IN_REG (7) },                                                \
1649
  { "out0", OUT_REG (0) },                                               \
1650
  { "out1", OUT_REG (1) },                                              \
1651
  { "out2", OUT_REG (2) },                                              \
1652
  { "out3", OUT_REG (3) },                                              \
1653
  { "out4", OUT_REG (4) },                                              \
1654
  { "out5", OUT_REG (5) },                                              \
1655
  { "out6", OUT_REG (6) },                                              \
1656
  { "out7", OUT_REG (7) },                                              \
1657
  { "loc0", LOC_REG (0) },                                               \
1658
  { "loc1", LOC_REG (1) },                                              \
1659
  { "loc2", LOC_REG (2) },                                              \
1660
  { "loc3", LOC_REG (3) },                                              \
1661
  { "loc4", LOC_REG (4) },                                              \
1662
  { "loc5", LOC_REG (5) },                                              \
1663
  { "loc6", LOC_REG (6) },                                              \
1664
  { "loc7", LOC_REG (7) },                                              \
1665
  { "loc8", LOC_REG (8) },                                              \
1666
  { "loc9", LOC_REG (9) },                                              \
1667
  { "loc10", LOC_REG (10) },                                            \
1668
  { "loc11", LOC_REG (11) },                                            \
1669
  { "loc12", LOC_REG (12) },                                            \
1670
  { "loc13", LOC_REG (13) },                                            \
1671
  { "loc14", LOC_REG (14) },                                            \
1672
  { "loc15", LOC_REG (15) },                                            \
1673
  { "loc16", LOC_REG (16) },                                            \
1674
  { "loc17", LOC_REG (17) },                                            \
1675
  { "loc18", LOC_REG (18) },                                            \
1676
  { "loc19", LOC_REG (19) },                                            \
1677
  { "loc20", LOC_REG (20) },                                            \
1678
  { "loc21", LOC_REG (21) },                                            \
1679
  { "loc22", LOC_REG (22) },                                            \
1680
  { "loc23", LOC_REG (23) },                                            \
1681
  { "loc24", LOC_REG (24) },                                            \
1682
  { "loc25", LOC_REG (25) },                                            \
1683
  { "loc26", LOC_REG (26) },                                            \
1684
  { "loc27", LOC_REG (27) },                                            \
1685
  { "loc28", LOC_REG (28) },                                            \
1686
  { "loc29", LOC_REG (29) },                                            \
1687
  { "loc30", LOC_REG (30) },                                            \
1688
  { "loc31", LOC_REG (31) },                                            \
1689
  { "loc32", LOC_REG (32) },                                            \
1690
  { "loc33", LOC_REG (33) },                                            \
1691
  { "loc34", LOC_REG (34) },                                            \
1692
  { "loc35", LOC_REG (35) },                                            \
1693
  { "loc36", LOC_REG (36) },                                            \
1694
  { "loc37", LOC_REG (37) },                                            \
1695
  { "loc38", LOC_REG (38) },                                            \
1696
  { "loc39", LOC_REG (39) },                                            \
1697
  { "loc40", LOC_REG (40) },                                            \
1698
  { "loc41", LOC_REG (41) },                                            \
1699
  { "loc42", LOC_REG (42) },                                            \
1700
  { "loc43", LOC_REG (43) },                                            \
1701
  { "loc44", LOC_REG (44) },                                            \
1702
  { "loc45", LOC_REG (45) },                                            \
1703
  { "loc46", LOC_REG (46) },                                            \
1704
  { "loc47", LOC_REG (47) },                                            \
1705
  { "loc48", LOC_REG (48) },                                            \
1706
  { "loc49", LOC_REG (49) },                                            \
1707
  { "loc50", LOC_REG (50) },                                            \
1708
  { "loc51", LOC_REG (51) },                                            \
1709
  { "loc52", LOC_REG (52) },                                            \
1710
  { "loc53", LOC_REG (53) },                                            \
1711
  { "loc54", LOC_REG (54) },                                            \
1712
  { "loc55", LOC_REG (55) },                                            \
1713
  { "loc56", LOC_REG (56) },                                            \
1714
  { "loc57", LOC_REG (57) },                                            \
1715
  { "loc58", LOC_REG (58) },                                            \
1716
  { "loc59", LOC_REG (59) },                                            \
1717
  { "loc60", LOC_REG (60) },                                            \
1718
  { "loc61", LOC_REG (61) },                                            \
1719
  { "loc62", LOC_REG (62) },                                            \
1720
  { "loc63", LOC_REG (63) },                                            \
1721
  { "loc64", LOC_REG (64) },                                            \
1722
  { "loc65", LOC_REG (65) },                                            \
1723
  { "loc66", LOC_REG (66) },                                            \
1724
  { "loc67", LOC_REG (67) },                                            \
1725
  { "loc68", LOC_REG (68) },                                            \
1726
  { "loc69", LOC_REG (69) },                                            \
1727
  { "loc70", LOC_REG (70) },                                            \
1728
  { "loc71", LOC_REG (71) },                                            \
1729
  { "loc72", LOC_REG (72) },                                            \
1730
  { "loc73", LOC_REG (73) },                                            \
1731
  { "loc74", LOC_REG (74) },                                            \
1732
  { "loc75", LOC_REG (75) },                                            \
1733
  { "loc76", LOC_REG (76) },                                            \
1734
  { "loc77", LOC_REG (77) },                                            \
1735
  { "loc78", LOC_REG (78) },                                            \
1736
  { "loc79", LOC_REG (79) },                                            \
1737
}
1738
 
1739
/* A C compound statement to output to stdio stream STREAM the assembler syntax
1740
   for an instruction operand X.  X is an RTL expression.  */
1741
 
1742
#define PRINT_OPERAND(STREAM, X, CODE) \
1743
  ia64_print_operand (STREAM, X, CODE)
1744
 
1745
/* A C expression which evaluates to true if CODE is a valid punctuation
1746
   character for use in the `PRINT_OPERAND' macro.  */
1747
 
1748
/* ??? Keep this around for now, as we might need it later.  */
1749
 
1750
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1751
  ((CODE) == '+' || (CODE) == ',')
1752
 
1753
/* A C compound statement to output to stdio stream STREAM the assembler syntax
1754
   for an instruction operand that is a memory reference whose address is X.  X
1755
   is an RTL expression.  */
1756
 
1757
#define PRINT_OPERAND_ADDRESS(STREAM, X) \
1758
  ia64_print_operand_address (STREAM, X)
1759
 
1760
/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
1761
   `%I' options of `asm_fprintf' (see `final.c').  */
1762
 
1763
#define REGISTER_PREFIX ""
1764
#define LOCAL_LABEL_PREFIX "."
1765
#define USER_LABEL_PREFIX ""
1766
#define IMMEDIATE_PREFIX ""
1767
 
1768
 
1769
/* Output of dispatch tables.  */
1770
 
1771
/* This macro should be provided on machines where the addresses in a dispatch
1772
   table are relative to the table's own address.  */
1773
 
1774
/* ??? Depends on the pointer size.  */
1775
 
1776
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)      \
1777
  do {                                                          \
1778
  if (TARGET_ILP32)                                             \
1779
    fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE);          \
1780
  else                                                          \
1781
    fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE);          \
1782
  } while (0)
1783
 
1784
/* Jump tables only need 8 byte alignment.  */
1785
 
1786
#define ADDR_VEC_ALIGN(ADDR_VEC) 3
1787
 
1788
 
1789
/* Assembler Commands for Exception Regions.  */
1790
 
1791
/* Select a format to encode pointers in exception handling data.  CODE
1792
   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1793
   true if the symbol may be affected by dynamic relocations.  */
1794
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)       \
1795
  (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel)  \
1796
   | ((GLOBAL) ? DW_EH_PE_indirect : 0)                  \
1797
   | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
1798
 
1799
/* Handle special EH pointer encodings.  Absolute, pc-relative, and
1800
   indirect are handled automatically.  */
1801
#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1802
  do {                                                                  \
1803
    const char *reltag = NULL;                                          \
1804
    if (((ENCODING) & 0xF0) == DW_EH_PE_textrel)                        \
1805
      reltag = "@segrel(";                                              \
1806
    else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel)                   \
1807
      reltag = "@gprel(";                                               \
1808
    if (reltag)                                                         \
1809
      {                                                                 \
1810
        fputs (integer_asm_op (SIZE, FALSE), FILE);                     \
1811
        fputs (reltag, FILE);                                           \
1812
        assemble_name (FILE, XSTR (ADDR, 0));                            \
1813
        fputc (')', FILE);                                              \
1814
        goto DONE;                                                      \
1815
      }                                                                 \
1816
  } while (0)
1817
 
1818
 
1819
/* Assembler Commands for Alignment.  */
1820
 
1821
/* ??? Investigate.  */
1822
 
1823
/* The alignment (log base 2) to put in front of LABEL, which follows
1824
   a BARRIER.  */
1825
 
1826
/* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
1827
 
1828
/* The desired alignment for the location counter at the beginning
1829
   of a loop.  */
1830
 
1831
/* #define LOOP_ALIGN(LABEL) */
1832
 
1833
/* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
1834
   section because it fails put zeros in the bytes that are skipped.  */
1835
 
1836
#define ASM_NO_SKIP_IN_TEXT 1
1837
 
1838
/* A C statement to output to the stdio stream STREAM an assembler command to
1839
   advance the location counter to a multiple of 2 to the POWER bytes.  */
1840
 
1841
#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1842
  fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
1843
 
1844
 
1845
/* Macros Affecting all Debug Formats.  */
1846
 
1847
/* This is handled in svr4.h and sysv4.h.  */
1848
 
1849
 
1850
/* Specific Options for DBX Output.  */
1851
 
1852
/* This is handled by dbxelf.h which is included by svr4.h.  */
1853
 
1854
 
1855
/* Open ended Hooks for DBX Output.  */
1856
 
1857
/* Likewise.  */
1858
 
1859
 
1860
/* File names in DBX format.  */
1861
 
1862
/* Likewise.  */
1863
 
1864
 
1865
/* Macros for SDB and Dwarf Output.  */
1866
 
1867
/* Define this macro if GCC should produce dwarf version 2 format debugging
1868
   output in response to the `-g' option.  */
1869
 
1870
#define DWARF2_DEBUGGING_INFO 1
1871
 
1872
/* We do not want call-frame info to be output, since debuggers are
1873
   supposed to use the target unwind info.  Leave this undefined it
1874
   TARGET_UNWIND_INFO might ever be false.  */
1875
 
1876
#define DWARF2_FRAME_INFO 0
1877
 
1878
#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
1879
 
1880
/* Use tags for debug info labels, so that they don't break instruction
1881
   bundles.  This also avoids getting spurious DV warnings from the
1882
   assembler.  This is similar to (*targetm.asm_out.internal_label), except that we
1883
   add brackets around the label.  */
1884
 
1885
#define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
1886
  fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
1887
 
1888
/* Use section-relative relocations for debugging offsets.  Unlike other
1889
   targets that fake this by putting the section VMA at 0, IA-64 has
1890
   proper relocations for them.  */
1891
#define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL)      \
1892
  do {                                                  \
1893
    fputs (integer_asm_op (SIZE, FALSE), FILE);         \
1894
    fputs ("@secrel(", FILE);                           \
1895
    assemble_name (FILE, LABEL);                        \
1896
    fputc (')', FILE);                                  \
1897
  } while (0)
1898
 
1899
/* Emit a PC-relative relocation.  */
1900
#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)       \
1901
  do {                                                  \
1902
    fputs (integer_asm_op (SIZE, FALSE), FILE);         \
1903
    fputs ("@pcrel(", FILE);                            \
1904
    assemble_name (FILE, LABEL);                        \
1905
    fputc (')', FILE);                                  \
1906
  } while (0)
1907
 
1908
/* Register Renaming Parameters.  */
1909
 
1910
/* A C expression that is nonzero if hard register number REGNO2 can be
1911
   considered for use as a rename register for REGNO1 */
1912
 
1913
#define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
1914
  ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
1915
 
1916
 
1917
/* Miscellaneous Parameters.  */
1918
 
1919
/* Flag to mark data that is in the small address area (addressable
1920
   via "addl", that is, within a 2MByte offset of 0.  */
1921
#define SYMBOL_FLAG_SMALL_ADDR          (SYMBOL_FLAG_MACH_DEP << 0)
1922
#define SYMBOL_REF_SMALL_ADDR_P(X)      \
1923
        ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
1924
 
1925
/* An alias for a machine mode name.  This is the machine mode that elements of
1926
   a jump-table should have.  */
1927
 
1928
#define CASE_VECTOR_MODE ptr_mode
1929
 
1930
/* Define as C expression which evaluates to nonzero if the tablejump
1931
   instruction expects the table to contain offsets from the address of the
1932
   table.  */
1933
 
1934
#define CASE_VECTOR_PC_RELATIVE 1
1935
 
1936
/* Define this macro if operations between registers with integral mode smaller
1937
   than a word are always performed on the entire register.  */
1938
 
1939
#define WORD_REGISTER_OPERATIONS
1940
 
1941
/* Define this macro to be a C expression indicating when insns that read
1942
   memory in MODE, an integral mode narrower than a word, set the bits outside
1943
   of MODE to be either the sign-extension or the zero-extension of the data
1944
   read.  */
1945
 
1946
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1947
 
1948
/* The maximum number of bytes that a single instruction can move quickly from
1949
   memory to memory.  */
1950
#define MOVE_MAX 8
1951
 
1952
/* A C expression which is nonzero if on this machine it is safe to "convert"
1953
   an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1954
   than INPREC) by merely operating on it as if it had only OUTPREC bits.  */
1955
 
1956
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1957
 
1958
/* A C expression describing the value returned by a comparison operator with
1959
   an integral mode and stored by a store-flag instruction (`sCOND') when the
1960
   condition is true.  */
1961
 
1962
/* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1.  */
1963
 
1964
/* An alias for the machine mode for pointers.  */
1965
 
1966
/* ??? This would change if we had ILP32 support.  */
1967
 
1968
#define Pmode DImode
1969
 
1970
/* An alias for the machine mode used for memory references to functions being
1971
   called, in `call' RTL expressions.  */
1972
 
1973
#define FUNCTION_MODE Pmode
1974
 
1975
/* Define this macro to handle System V style pragmas: #pragma pack and
1976
   #pragma weak.  Note, #pragma weak will only be supported if SUPPORT_WEAK is
1977
   defined.  */
1978
 
1979
/* If this architecture supports prefetch, define this to be the number of
1980
   prefetch commands that can be executed in parallel.
1981
 
1982
   ??? This number is bogus and needs to be replaced before the value is
1983
   actually used in optimizations.  */
1984
 
1985
#define SIMULTANEOUS_PREFETCHES 6
1986
 
1987
/* If this architecture supports prefetch, define this to be the size of
1988
   the cache line that is prefetched.  */
1989
 
1990
#define PREFETCH_BLOCK 32
1991
 
1992
#define HANDLE_SYSV_PRAGMA 1
1993
 
1994
/* A C expression for the maximum number of instructions to execute via
1995
   conditional execution instructions instead of a branch.  A value of
1996
   BRANCH_COST+1 is the default if the machine does not use
1997
   cc0, and 1 if it does use cc0.  */
1998
/* ??? Investigate.  */
1999
#define MAX_CONDITIONAL_EXECUTE 12
2000
 
2001
extern int ia64_final_schedule;
2002
 
2003
#define TARGET_UNWIND_INFO      1
2004
 
2005
#define TARGET_UNWIND_TABLES_DEFAULT true
2006
 
2007
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
2008
 
2009
/* This function contains machine specific function data.  */
2010
struct machine_function GTY(())
2011
{
2012
  /* The new stack pointer when unwinding from EH.  */
2013
  rtx ia64_eh_epilogue_sp;
2014
 
2015
  /* The new bsp value when unwinding from EH.  */
2016
  rtx ia64_eh_epilogue_bsp;
2017
 
2018
  /* The GP value save register.  */
2019
  rtx ia64_gp_save;
2020
 
2021
  /* The number of varargs registers to save.  */
2022
  int n_varargs;
2023
 
2024
  /* The number of the next unwind state to copy.  */
2025
  int state_num;
2026
};
2027
 
2028
#define DONT_USE_BUILTIN_SETJMP
2029
 
2030
/* Output any profiling code before the prologue.  */
2031
 
2032
#undef  PROFILE_BEFORE_PROLOGUE
2033
#define PROFILE_BEFORE_PROLOGUE 1
2034
 
2035
/* Initialize library function table. */
2036
#undef TARGET_INIT_LIBFUNCS
2037
#define TARGET_INIT_LIBFUNCS ia64_init_libfuncs
2038
 
2039
 
2040
/* Switch on code for querying unit reservations.  */
2041
#define CPU_UNITS_QUERY 1
2042
 
2043
/* End of ia64.h */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.