OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [mips/] [mips.h] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Definitions of target machine for GNU compiler.  MIPS version.
2
   Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
   Contributed by A. Lichnewsky (lich@inria.inria.fr).
5
   Changed by Michael Meissner  (meissner@osf.org).
6
   64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7
   Brendan Eich (brendan@microunity.com).
8
 
9
This file is part of GCC.
10
 
11
GCC is free software; you can redistribute it and/or modify
12
it under the terms of the GNU General Public License as published by
13
the Free Software Foundation; either version 2, or (at your option)
14
any later version.
15
 
16
GCC is distributed in the hope that it will be useful,
17
but WITHOUT ANY WARRANTY; without even the implied warranty of
18
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19
GNU General Public License for more details.
20
 
21
You should have received a copy of the GNU General Public License
22
along with GCC; see the file COPYING.  If not, write to
23
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
24
Boston, MA 02110-1301, USA.  */
25
 
26
 
27
/* MIPS external variables defined in mips.c.  */
28
 
29
/* Which processor to schedule for.  Since there is no difference between
30
   a R2000 and R3000 in terms of the scheduler, we collapse them into
31
   just an R3000.  The elements of the enumeration must match exactly
32
   the cpu attribute in the mips.md machine description.  */
33
 
34
enum processor_type {
35
  PROCESSOR_R3000,
36
  PROCESSOR_4KC,
37
  PROCESSOR_4KP,
38
  PROCESSOR_5KC,
39
  PROCESSOR_5KF,
40
  PROCESSOR_20KC,
41
  PROCESSOR_24K,
42
  PROCESSOR_24KX,
43
  PROCESSOR_M4K,
44
  PROCESSOR_R3900,
45
  PROCESSOR_R6000,
46
  PROCESSOR_R4000,
47
  PROCESSOR_R4100,
48
  PROCESSOR_R4111,
49
  PROCESSOR_R4120,
50
  PROCESSOR_R4130,
51
  PROCESSOR_R4300,
52
  PROCESSOR_R4600,
53
  PROCESSOR_R4650,
54
  PROCESSOR_R5000,
55
  PROCESSOR_R5400,
56
  PROCESSOR_R5500,
57
  PROCESSOR_R7000,
58
  PROCESSOR_R8000,
59
  PROCESSOR_R9000,
60
  PROCESSOR_SB1,
61
  PROCESSOR_SR71000,
62
  PROCESSOR_MAX
63
};
64
 
65
/* Costs of various operations on the different architectures.  */
66
 
67
struct mips_rtx_cost_data
68
{
69
  unsigned short fp_add;
70
  unsigned short fp_mult_sf;
71
  unsigned short fp_mult_df;
72
  unsigned short fp_div_sf;
73
  unsigned short fp_div_df;
74
  unsigned short int_mult_si;
75
  unsigned short int_mult_di;
76
  unsigned short int_div_si;
77
  unsigned short int_div_di;
78
  unsigned short branch_cost;
79
  unsigned short memory_latency;
80
};
81
 
82
/* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
83
   ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
84
   to work on a 64 bit machine.  */
85
 
86
#define ABI_32  0
87
#define ABI_N32 1
88
#define ABI_64  2
89
#define ABI_EABI 3
90
#define ABI_O64  4
91
 
92
/* Information about one recognized processor.  Defined here for the
93
   benefit of TARGET_CPU_CPP_BUILTINS.  */
94
struct mips_cpu_info {
95
  /* The 'canonical' name of the processor as far as GCC is concerned.
96
     It's typically a manufacturer's prefix followed by a numerical
97
     designation.  It should be lower case.  */
98
  const char *name;
99
 
100
  /* The internal processor number that most closely matches this
101
     entry.  Several processors can have the same value, if there's no
102
     difference between them from GCC's point of view.  */
103
  enum processor_type cpu;
104
 
105
  /* The ISA level that the processor implements.  */
106
  int isa;
107
};
108
 
109
extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
110
extern const char *current_function_file; /* filename current function is in */
111
extern int num_source_filenames;        /* current .file # */
112
extern int mips_section_threshold;      /* # bytes of data/sdata cutoff */
113
extern int sym_lineno;                  /* sgi next label # for each stmt */
114
extern int set_noreorder;               /* # of nested .set noreorder's  */
115
extern int set_nomacro;                 /* # of nested .set nomacro's  */
116
extern int set_noat;                    /* # of nested .set noat's  */
117
extern int set_volatile;                /* # of nested .set volatile's  */
118
extern int mips_branch_likely;          /* emit 'l' after br (branch likely) */
119
extern int mips_dbx_regno[];            /* Map register # to debug register # */
120
extern GTY(()) rtx cmp_operands[2];
121
extern enum processor_type mips_arch;   /* which cpu to codegen for */
122
extern enum processor_type mips_tune;   /* which cpu to schedule for */
123
extern int mips_isa;                    /* architectural level */
124
extern int mips_abi;                    /* which ABI to use */
125
extern int mips16_hard_float;           /* mips16 without -msoft-float */
126
extern const struct mips_cpu_info mips_cpu_info_table[];
127
extern const struct mips_cpu_info *mips_arch_info;
128
extern const struct mips_cpu_info *mips_tune_info;
129
extern const struct mips_rtx_cost_data *mips_cost;
130
 
131
/* Macros to silence warnings about numbers being signed in traditional
132
   C and unsigned in ISO C when compiled on 32-bit hosts.  */
133
 
134
#define BITMASK_HIGH    (((unsigned long)1) << 31)      /* 0x80000000 */
135
#define BITMASK_UPPER16 ((unsigned long)0xffff << 16)   /* 0xffff0000 */
136
#define BITMASK_LOWER16 ((unsigned long)0xffff)         /* 0x0000ffff */
137
 
138
 
139
/* Run-time compilation parameters selecting different hardware subsets.  */
140
 
141
/* True if the call patterns should be split into a jalr followed by
142
   an instruction to restore $gp.  This is only ever true for SVR4 PIC,
143
   in which $gp is call-clobbered.  It is only safe to split the load
144
   from the call when every use of $gp is explicit.  */
145
 
146
#define TARGET_SPLIT_CALLS \
147
  (TARGET_EXPLICIT_RELOCS && TARGET_ABICALLS && !TARGET_NEWABI)
148
 
149
/* True if we can optimize sibling calls.  For simplicity, we only
150
   handle cases in which call_insn_operand will reject invalid
151
   sibcall addresses.  There are two cases in which this isn't true:
152
 
153
      - TARGET_MIPS16.  call_insn_operand accepts constant addresses
154
        but there is no direct jump instruction.  It isn't worth
155
        using sibling calls in this case anyway; they would usually
156
        be longer than normal calls.
157
 
158
      - TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
159
        accepts global constants, but "jr $25" is the only allowed
160
        sibcall.  */
161
 
162
#define TARGET_SIBCALLS \
163
  (!TARGET_MIPS16 && (!TARGET_ABICALLS || TARGET_EXPLICIT_RELOCS))
164
 
165
/* True if .gpword or .gpdword should be used for switch tables.
166
 
167
   Although GAS does understand .gpdword, the SGI linker mishandles
168
   the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
169
   We therefore disable GP-relative switch tables for n64 on IRIX targets.  */
170
#define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
171
 
172
/* Generate mips16 code */
173
#define TARGET_MIPS16           ((target_flags & MASK_MIPS16) != 0)
174
/* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64 */
175
#define GENERATE_MIPS16E        (TARGET_MIPS16 && mips_isa >= 32)
176
 
177
/* Generic ISA defines.  */
178
#define ISA_MIPS1                   (mips_isa == 1)
179
#define ISA_MIPS2                   (mips_isa == 2)
180
#define ISA_MIPS3                   (mips_isa == 3)
181
#define ISA_MIPS4                   (mips_isa == 4)
182
#define ISA_MIPS32                  (mips_isa == 32)
183
#define ISA_MIPS32R2                (mips_isa == 33)
184
#define ISA_MIPS64                  (mips_isa == 64)
185
 
186
/* Architecture target defines.  */
187
#define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
188
#define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
189
#define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
190
#define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
191
#define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
192
#define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
193
#define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
194
#define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
195
#define TARGET_SB1                  (mips_arch == PROCESSOR_SB1)
196
#define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
197
 
198
/* Scheduling target defines.  */
199
#define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
200
#define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
201
#define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
202
#define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
203
#define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
204
#define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
205
#define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
206
#define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
207
#define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
208
#define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
209
#define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
210
#define TUNE_SB1                    (mips_tune == PROCESSOR_SB1)
211
 
212
/* True if the pre-reload scheduler should try to create chains of
213
   multiply-add or multiply-subtract instructions.  For example,
214
   suppose we have:
215
 
216
        t1 = a * b
217
        t2 = t1 + c * d
218
        t3 = e * f
219
        t4 = t3 - g * h
220
 
221
   t1 will have a higher priority than t2 and t3 will have a higher
222
   priority than t4.  However, before reload, there is no dependence
223
   between t1 and t3, and they can often have similar priorities.
224
   The scheduler will then tend to prefer:
225
 
226
        t1 = a * b
227
        t3 = e * f
228
        t2 = t1 + c * d
229
        t4 = t3 - g * h
230
 
231
   which stops us from making full use of macc/madd-style instructions.
232
   This sort of situation occurs frequently in Fourier transforms and
233
   in unrolled loops.
234
 
235
   To counter this, the TUNE_MACC_CHAINS code will reorder the ready
236
   queue so that chained multiply-add and multiply-subtract instructions
237
   appear ahead of any other instruction that is likely to clobber lo.
238
   In the example above, if t2 and t3 become ready at the same time,
239
   the code ensures that t2 is scheduled first.
240
 
241
   Multiply-accumulate instructions are a bigger win for some targets
242
   than others, so this macro is defined on an opt-in basis.  */
243
#define TUNE_MACC_CHAINS            (TUNE_MIPS5500              \
244
                                     || TUNE_MIPS4120           \
245
                                     || TUNE_MIPS4130)
246
 
247
#define TARGET_OLDABI               (mips_abi == ABI_32 || mips_abi == ABI_O64)
248
#define TARGET_NEWABI               (mips_abi == ABI_N32 || mips_abi == ABI_64)
249
 
250
/* IRIX specific stuff.  */
251
#define TARGET_IRIX        0
252
#define TARGET_IRIX6       0
253
 
254
/* Define preprocessor macros for the -march and -mtune options.
255
   PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
256
   processor.  If INFO's canonical name is "foo", define PREFIX to
257
   be "foo", and define an additional macro PREFIX_FOO.  */
258
#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)                    \
259
  do                                                            \
260
    {                                                           \
261
      char *macro, *p;                                          \
262
                                                                \
263
      macro = concat ((PREFIX), "_", (INFO)->name, NULL);       \
264
      for (p = macro; *p != 0; p++)                              \
265
        *p = TOUPPER (*p);                                      \
266
                                                                \
267
      builtin_define (macro);                                   \
268
      builtin_define_with_value ((PREFIX), (INFO)->name, 1);    \
269
      free (macro);                                             \
270
    }                                                           \
271
  while (0)
272
 
273
/* Target CPU builtins.  */
274
#define TARGET_CPU_CPP_BUILTINS()                               \
275
  do                                                            \
276
    {                                                           \
277
      /* Everyone but IRIX defines this to mips.  */            \
278
      if (!TARGET_IRIX)                                         \
279
        builtin_assert ("machine=mips");                        \
280
                                                                \
281
      builtin_assert ("cpu=mips");                              \
282
      builtin_define ("__mips__");                              \
283
      builtin_define ("_mips");                                 \
284
                                                                \
285
      /* We do this here because __mips is defined below        \
286
         and so we can't use builtin_define_std.  */            \
287
      if (!flag_iso)                                            \
288
        builtin_define ("mips");                                \
289
                                                                \
290
      if (TARGET_64BIT)                                         \
291
        builtin_define ("__mips64");                            \
292
                                                                \
293
      if (!TARGET_IRIX)                                         \
294
        {                                                       \
295
          /* Treat _R3000 and _R4000 like register-size         \
296
             defines, which is how they've historically         \
297
             been used.  */                                     \
298
          if (TARGET_64BIT)                                     \
299
            {                                                   \
300
              builtin_define_std ("R4000");                     \
301
              builtin_define ("_R4000");                        \
302
            }                                                   \
303
          else                                                  \
304
            {                                                   \
305
              builtin_define_std ("R3000");                     \
306
              builtin_define ("_R3000");                        \
307
            }                                                   \
308
        }                                                       \
309
      if (TARGET_FLOAT64)                                       \
310
        builtin_define ("__mips_fpr=64");                       \
311
      else                                                      \
312
        builtin_define ("__mips_fpr=32");                       \
313
                                                                \
314
      if (TARGET_MIPS16)                                        \
315
        builtin_define ("__mips16");                            \
316
                                                                \
317
      if (TARGET_MIPS3D)                                        \
318
        builtin_define ("__mips3d");                            \
319
                                                                \
320
      if (TARGET_DSP)                                           \
321
        builtin_define ("__mips_dsp");                          \
322
                                                                \
323
      MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);    \
324
      MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);    \
325
                                                                \
326
      if (ISA_MIPS1)                                            \
327
        {                                                       \
328
          builtin_define ("__mips=1");                          \
329
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");         \
330
        }                                                       \
331
      else if (ISA_MIPS2)                                       \
332
        {                                                       \
333
          builtin_define ("__mips=2");                          \
334
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");         \
335
        }                                                       \
336
      else if (ISA_MIPS3)                                       \
337
        {                                                       \
338
          builtin_define ("__mips=3");                          \
339
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");         \
340
        }                                                       \
341
      else if (ISA_MIPS4)                                       \
342
        {                                                       \
343
          builtin_define ("__mips=4");                          \
344
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");         \
345
        }                                                       \
346
      else if (ISA_MIPS32)                                      \
347
        {                                                       \
348
          builtin_define ("__mips=32");                         \
349
          builtin_define ("__mips_isa_rev=1");                  \
350
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");        \
351
        }                                                       \
352
      else if (ISA_MIPS32R2)                                    \
353
        {                                                       \
354
          builtin_define ("__mips=32");                         \
355
          builtin_define ("__mips_isa_rev=2");                  \
356
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");        \
357
        }                                                       \
358
      else if (ISA_MIPS64)                                      \
359
        {                                                       \
360
          builtin_define ("__mips=64");                         \
361
          builtin_define ("__mips_isa_rev=1");                  \
362
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");        \
363
        }                                                       \
364
                                                                \
365
      if (TARGET_HARD_FLOAT)                                    \
366
        builtin_define ("__mips_hard_float");                   \
367
      else if (TARGET_SOFT_FLOAT)                               \
368
        builtin_define ("__mips_soft_float");                   \
369
                                                                \
370
      if (TARGET_SINGLE_FLOAT)                                  \
371
        builtin_define ("__mips_single_float");                 \
372
                                                                \
373
      if (TARGET_PAIRED_SINGLE_FLOAT)                           \
374
        builtin_define ("__mips_paired_single_float");          \
375
                                                                \
376
      if (TARGET_BIG_ENDIAN)                                    \
377
        {                                                       \
378
          builtin_define_std ("MIPSEB");                        \
379
          builtin_define ("_MIPSEB");                           \
380
        }                                                       \
381
      else                                                      \
382
        {                                                       \
383
          builtin_define_std ("MIPSEL");                        \
384
          builtin_define ("_MIPSEL");                           \
385
        }                                                       \
386
                                                                \
387
        /* Macros dependent on the C dialect.  */               \
388
      if (preprocessing_asm_p ())                               \
389
        {                                                       \
390
          builtin_define_std ("LANGUAGE_ASSEMBLY");             \
391
          builtin_define ("_LANGUAGE_ASSEMBLY");                \
392
        }                                                       \
393
      else if (c_dialect_cxx ())                                \
394
        {                                                       \
395
          builtin_define ("_LANGUAGE_C_PLUS_PLUS");             \
396
          builtin_define ("__LANGUAGE_C_PLUS_PLUS");            \
397
          builtin_define ("__LANGUAGE_C_PLUS_PLUS__");          \
398
        }                                                       \
399
      else                                                      \
400
        {                                                       \
401
          builtin_define_std ("LANGUAGE_C");                    \
402
          builtin_define ("_LANGUAGE_C");                       \
403
        }                                                       \
404
      if (c_dialect_objc ())                                    \
405
        {                                                       \
406
          builtin_define ("_LANGUAGE_OBJECTIVE_C");             \
407
          builtin_define ("__LANGUAGE_OBJECTIVE_C");            \
408
          /* Bizarre, but needed at least for Irix.  */         \
409
          builtin_define_std ("LANGUAGE_C");                    \
410
          builtin_define ("_LANGUAGE_C");                       \
411
        }                                                       \
412
                                                                \
413
      if (mips_abi == ABI_EABI)                                 \
414
        builtin_define ("__mips_eabi");                         \
415
                                                                \
416
} while (0)
417
 
418
/* Default target_flags if no switches are specified  */
419
 
420
#ifndef TARGET_DEFAULT
421
#define TARGET_DEFAULT 0
422
#endif
423
 
424
#ifndef TARGET_CPU_DEFAULT
425
#define TARGET_CPU_DEFAULT 0
426
#endif
427
 
428
#ifndef TARGET_ENDIAN_DEFAULT
429
#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
430
#endif
431
 
432
#ifndef TARGET_FP_EXCEPTIONS_DEFAULT
433
#define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
434
#endif
435
 
436
/* 'from-abi' makes a good default: you get whatever the ABI requires.  */
437
#ifndef MIPS_ISA_DEFAULT
438
#ifndef MIPS_CPU_STRING_DEFAULT
439
#define MIPS_CPU_STRING_DEFAULT "from-abi"
440
#endif
441
#endif
442
 
443
#ifdef IN_LIBGCC2
444
#undef TARGET_64BIT
445
/* Make this compile time constant for libgcc2 */
446
#ifdef __mips64
447
#define TARGET_64BIT            1
448
#else
449
#define TARGET_64BIT            0
450
#endif
451
#endif /* IN_LIBGCC2 */
452
 
453
#ifndef MULTILIB_ENDIAN_DEFAULT
454
#if TARGET_ENDIAN_DEFAULT == 0
455
#define MULTILIB_ENDIAN_DEFAULT "EL"
456
#else
457
#define MULTILIB_ENDIAN_DEFAULT "EB"
458
#endif
459
#endif
460
 
461
#ifndef MULTILIB_ISA_DEFAULT
462
#  if MIPS_ISA_DEFAULT == 1
463
#    define MULTILIB_ISA_DEFAULT "mips1"
464
#  else
465
#    if MIPS_ISA_DEFAULT == 2
466
#      define MULTILIB_ISA_DEFAULT "mips2"
467
#    else
468
#      if MIPS_ISA_DEFAULT == 3
469
#        define MULTILIB_ISA_DEFAULT "mips3"
470
#      else
471
#        if MIPS_ISA_DEFAULT == 4
472
#          define MULTILIB_ISA_DEFAULT "mips4"
473
#        else
474
#          if MIPS_ISA_DEFAULT == 32
475
#            define MULTILIB_ISA_DEFAULT "mips32"
476
#          else
477
#            if MIPS_ISA_DEFAULT == 33
478
#              define MULTILIB_ISA_DEFAULT "mips32r2"
479
#            else
480
#              if MIPS_ISA_DEFAULT == 64
481
#                define MULTILIB_ISA_DEFAULT "mips64"
482
#              else
483
#                define MULTILIB_ISA_DEFAULT "mips1"
484
#              endif
485
#            endif
486
#          endif
487
#        endif
488
#      endif
489
#    endif
490
#  endif
491
#endif
492
 
493
#ifndef MULTILIB_DEFAULTS
494
#define MULTILIB_DEFAULTS \
495
    { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
496
#endif
497
 
498
/* We must pass -EL to the linker by default for little endian embedded
499
   targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
500
   linker will default to using big-endian output files.  The OUTPUT_FORMAT
501
   line must be in the linker script, otherwise -EB/-EL will not work.  */
502
 
503
#ifndef ENDIAN_SPEC
504
#if TARGET_ENDIAN_DEFAULT == 0
505
#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
506
#else
507
#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
508
#endif
509
#endif
510
 
511
/* Support for a compile-time default CPU, et cetera.  The rules are:
512
   --with-arch is ignored if -march is specified or a -mips is specified
513
     (other than -mips16).
514
   --with-tune is ignored if -mtune is specified.
515
   --with-abi is ignored if -mabi is specified.
516
   --with-float is ignored if -mhard-float or -msoft-float are
517
     specified.
518
   --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
519
     specified. */
520
#define OPTION_DEFAULT_SPECS \
521
  {"arch", "%{!march=*:%{mips16:-march=%(VALUE)}%{!mips*:-march=%(VALUE)}}" }, \
522
  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
523
  {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
524
  {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
525
  {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }
526
 
527
 
528
#define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
529
                               && ISA_HAS_COND_TRAP)
530
 
531
#define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY                    \
532
                                 && !TARGET_SR71K                       \
533
                                 && !TARGET_MIPS16)
534
 
535
/* Generate three-operand multiply instructions for SImode.  */
536
#define GENERATE_MULT3_SI       ((TARGET_MIPS3900                       \
537
                                  || TARGET_MIPS5400                    \
538
                                  || TARGET_MIPS5500                    \
539
                                  || TARGET_MIPS7000                    \
540
                                  || TARGET_MIPS9000                    \
541
                                  || TARGET_MAD                         \
542
                                  || ISA_MIPS32                         \
543
                                  || ISA_MIPS32R2                       \
544
                                  || ISA_MIPS64)                        \
545
                                 && !TARGET_MIPS16)
546
 
547
/* Generate three-operand multiply instructions for DImode.  */
548
#define GENERATE_MULT3_DI       ((TARGET_MIPS3900)                      \
549
                                 && !TARGET_MIPS16)
550
 
551
/* True if the ABI can only work with 64-bit integer registers.  We
552
   generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
553
   otherwise floating-point registers must also be 64-bit.  */
554
#define ABI_NEEDS_64BIT_REGS    (TARGET_NEWABI || mips_abi == ABI_O64)
555
 
556
/* Likewise for 32-bit regs.  */
557
#define ABI_NEEDS_32BIT_REGS    (mips_abi == ABI_32)
558
 
559
/* True if symbols are 64 bits wide.  At present, n64 is the only
560
   ABI for which this is true.  */
561
#define ABI_HAS_64BIT_SYMBOLS   (mips_abi == ABI_64 && !TARGET_SYM32)
562
 
563
/* ISA has instructions for managing 64 bit fp and gp regs (e.g. mips3).  */
564
#define ISA_HAS_64BIT_REGS      (ISA_MIPS3                              \
565
                                 || ISA_MIPS4                           \
566
                                 || ISA_MIPS64)
567
 
568
/* ISA has branch likely instructions (e.g. mips2).  */
569
/* Disable branchlikely for tx39 until compare rewrite.  They haven't
570
   been generated up to this point.  */
571
#define ISA_HAS_BRANCHLIKELY    (!ISA_MIPS1)
572
 
573
/* ISA has the conditional move instructions introduced in mips4.  */
574
#define ISA_HAS_CONDMOVE        ((ISA_MIPS4                             \
575
                                  || ISA_MIPS32                         \
576
                                  || ISA_MIPS32R2                       \
577
                                  || ISA_MIPS64)                        \
578
                                 && !TARGET_MIPS5500                    \
579
                                 && !TARGET_MIPS16)
580
 
581
/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
582
   branch on CC, and move (both FP and non-FP) on CC.  */
583
#define ISA_HAS_8CC             (ISA_MIPS4                              \
584
                                 || ISA_MIPS32                          \
585
                                 || ISA_MIPS32R2                        \
586
                                 || ISA_MIPS64)
587
 
588
/* This is a catch all for other mips4 instructions: indexed load, the
589
   FP madd and msub instructions, and the FP recip and recip sqrt
590
   instructions.  */
591
#define ISA_HAS_FP4             ((ISA_MIPS4                             \
592
                                  || ISA_MIPS64)                        \
593
                                 && !TARGET_MIPS16)
594
 
595
/* ISA has conditional trap instructions.  */
596
#define ISA_HAS_COND_TRAP       (!ISA_MIPS1                             \
597
                                 && !TARGET_MIPS16)
598
 
599
/* ISA has integer multiply-accumulate instructions, madd and msub.  */
600
#define ISA_HAS_MADD_MSUB       ((ISA_MIPS32                            \
601
                                  || ISA_MIPS32R2                       \
602
                                  || ISA_MIPS64                         \
603
                                  ) && !TARGET_MIPS16)
604
 
605
/* ISA has floating-point nmadd and nmsub instructions.  */
606
#define ISA_HAS_NMADD_NMSUB     ((ISA_MIPS4                             \
607
                                  || ISA_MIPS64)                        \
608
                                 && (!TARGET_MIPS5400 || TARGET_MAD)    \
609
                                 && ! TARGET_MIPS16)
610
 
611
/* ISA has count leading zeroes/ones instruction (not implemented).  */
612
#define ISA_HAS_CLZ_CLO         ((ISA_MIPS32                            \
613
                                  || ISA_MIPS32R2                       \
614
                                  || ISA_MIPS64                         \
615
                                 ) && !TARGET_MIPS16)
616
 
617
/* ISA has double-word count leading zeroes/ones instruction (not
618
   implemented).  */
619
#define ISA_HAS_DCLZ_DCLO       (ISA_MIPS64                             \
620
                                 && !TARGET_MIPS16)
621
 
622
/* ISA has three operand multiply instructions that put
623
   the high part in an accumulator: mulhi or mulhiu.  */
624
#define ISA_HAS_MULHI           (TARGET_MIPS5400                        \
625
                                 || TARGET_MIPS5500                     \
626
                                 || TARGET_SR71K                        \
627
                                 )
628
 
629
/* ISA has three operand multiply instructions that
630
   negates the result and puts the result in an accumulator.  */
631
#define ISA_HAS_MULS            (TARGET_MIPS5400                        \
632
                                 || TARGET_MIPS5500                     \
633
                                 || TARGET_SR71K                        \
634
                                 )
635
 
636
/* ISA has three operand multiply instructions that subtracts the
637
   result from a 4th operand and puts the result in an accumulator.  */
638
#define ISA_HAS_MSAC            (TARGET_MIPS5400                        \
639
                                 || TARGET_MIPS5500                     \
640
                                 || TARGET_SR71K                        \
641
                                 )
642
/* ISA has three operand multiply instructions that  the result
643
   from a 4th operand and puts the result in an accumulator.  */
644
#define ISA_HAS_MACC            ((TARGET_MIPS4120 && !TARGET_MIPS16)    \
645
                                 || (TARGET_MIPS4130 && !TARGET_MIPS16) \
646
                                 || TARGET_MIPS5400                     \
647
                                 || TARGET_MIPS5500                     \
648
                                 || TARGET_SR71K                        \
649
                                 )
650
 
651
/* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
652
#define ISA_HAS_MACCHI          (!TARGET_MIPS16                         \
653
                                 && (TARGET_MIPS4120                    \
654
                                     || TARGET_MIPS4130))
655
 
656
/* ISA has 32-bit rotate right instruction.  */
657
#define ISA_HAS_ROTR_SI         (!TARGET_MIPS16                         \
658
                                 && (ISA_MIPS32R2                       \
659
                                     || TARGET_MIPS5400                 \
660
                                     || TARGET_MIPS5500                 \
661
                                     || TARGET_SR71K                    \
662
                                     ))
663
 
664
/* ISA has 64-bit rotate right instruction.  */
665
#define ISA_HAS_ROTR_DI         (TARGET_64BIT                           \
666
                                 && !TARGET_MIPS16                      \
667
                                 && (TARGET_MIPS5400                    \
668
                                     || TARGET_MIPS5500                 \
669
                                     || TARGET_SR71K                    \
670
                                     ))
671
 
672
/* ISA has data prefetch instructions.  This controls use of 'pref'.  */
673
#define ISA_HAS_PREFETCH        ((ISA_MIPS4                             \
674
                                  || ISA_MIPS32                         \
675
                                  || ISA_MIPS32R2                       \
676
                                  || ISA_MIPS64)                        \
677
                                 && !TARGET_MIPS16)
678
 
679
/* ISA has data indexed prefetch instructions.  This controls use of
680
   'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
681
   (prefx is a cop1x instruction, so can only be used if FP is
682
   enabled.)  */
683
#define ISA_HAS_PREFETCHX       ((ISA_MIPS4                             \
684
                                  || ISA_MIPS64)                        \
685
                                 && !TARGET_MIPS16)
686
 
687
/* True if trunc.w.s and trunc.w.d are real (not synthetic)
688
   instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
689
   also requires TARGET_DOUBLE_FLOAT.  */
690
#define ISA_HAS_TRUNC_W         (!ISA_MIPS1)
691
 
692
/* ISA includes the MIPS32r2 seb and seh instructions.  */
693
#define ISA_HAS_SEB_SEH         (!TARGET_MIPS16                        \
694
                                 && (ISA_MIPS32R2                      \
695
                                     ))
696
 
697
/* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
698
#define ISA_HAS_EXT_INS         (!TARGET_MIPS16                        \
699
                                 && (ISA_MIPS32R2                      \
700
                                     ))
701
 
702
/* True if the result of a load is not available to the next instruction.
703
   A nop will then be needed between instructions like "lw $4,..."
704
   and "addiu $4,$4,1".  */
705
#define ISA_HAS_LOAD_DELAY      (mips_isa == 1                          \
706
                                 && !TARGET_MIPS3900                    \
707
                                 && !TARGET_MIPS16)
708
 
709
/* Likewise mtc1 and mfc1.  */
710
#define ISA_HAS_XFER_DELAY      (mips_isa <= 3)
711
 
712
/* Likewise floating-point comparisons.  */
713
#define ISA_HAS_FCMP_DELAY      (mips_isa <= 3)
714
 
715
/* True if mflo and mfhi can be immediately followed by instructions
716
   which write to the HI and LO registers.
717
 
718
   According to MIPS specifications, MIPS ISAs I, II, and III need
719
   (at least) two instructions between the reads of HI/LO and
720
   instructions which write them, and later ISAs do not.  Contradicting
721
   the MIPS specifications, some MIPS IV processor user manuals (e.g.
722
   the UM for the NEC Vr5000) document needing the instructions between
723
   HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
724
   MIPS64 and later ISAs to have the interlocks, plus any specific
725
   earlier-ISA CPUs for which CPU documentation declares that the
726
   instructions are really interlocked.  */
727
#define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32                             \
728
                                 || ISA_MIPS32R2                        \
729
                                 || ISA_MIPS64                          \
730
                                 || TARGET_MIPS5500)
731
 
732
/* Add -G xx support.  */
733
 
734
#undef  SWITCH_TAKES_ARG
735
#define SWITCH_TAKES_ARG(CHAR)                                          \
736
  (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
737
 
738
#define OVERRIDE_OPTIONS override_options ()
739
 
740
#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
741
 
742
/* Show we can debug even without a frame pointer.  */
743
#define CAN_DEBUG_WITHOUT_FP
744
 
745
/* Tell collect what flags to pass to nm.  */
746
#ifndef NM_FLAGS
747
#define NM_FLAGS "-Bn"
748
#endif
749
 
750
 
751
#ifndef MIPS_ABI_DEFAULT
752
#define MIPS_ABI_DEFAULT ABI_32
753
#endif
754
 
755
/* Use the most portable ABI flag for the ASM specs.  */
756
 
757
#if MIPS_ABI_DEFAULT == ABI_32
758
#define MULTILIB_ABI_DEFAULT "mabi=32"
759
#endif
760
 
761
#if MIPS_ABI_DEFAULT == ABI_O64
762
#define MULTILIB_ABI_DEFAULT "mabi=o64"
763
#endif
764
 
765
#if MIPS_ABI_DEFAULT == ABI_N32
766
#define MULTILIB_ABI_DEFAULT "mabi=n32"
767
#endif
768
 
769
#if MIPS_ABI_DEFAULT == ABI_64
770
#define MULTILIB_ABI_DEFAULT "mabi=64"
771
#endif
772
 
773
#if MIPS_ABI_DEFAULT == ABI_EABI
774
#define MULTILIB_ABI_DEFAULT "mabi=eabi"
775
#endif
776
 
777
/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
778
   to the assembler.  It may be overridden by subtargets.  */
779
#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
780
#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
781
%{noasmopt:-O0} \
782
%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
783
#endif
784
 
785
/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
786
   the assembler.  It may be overridden by subtargets.
787
 
788
   Beginning with gas 2.13, -mdebug must be passed to correctly handle
789
   COFF debugging info.  */
790
 
791
#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
792
#define SUBTARGET_ASM_DEBUGGING_SPEC "\
793
%{g} %{g0} %{g1} %{g2} %{g3} \
794
%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
795
%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
796
%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
797
%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
798
%{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
799
#endif
800
 
801
/* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
802
   overridden by subtargets.  */
803
 
804
#ifndef SUBTARGET_ASM_SPEC
805
#define SUBTARGET_ASM_SPEC ""
806
#endif
807
 
808
#undef ASM_SPEC
809
#define ASM_SPEC "\
810
%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
811
%{mips32} %{mips32r2} %{mips64} \
812
%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
813
%{mips3d:-mips3d} \
814
%{mdsp} \
815
%{mfix-vr4120} %{mfix-vr4130} \
816
%(subtarget_asm_optimizing_spec) \
817
%(subtarget_asm_debugging_spec) \
818
%{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
819
%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
820
%{msym32} %{mno-sym32} \
821
%{mtune=*} %{v} \
822
%(subtarget_asm_spec)"
823
 
824
/* Extra switches sometimes passed to the linker.  */
825
/* ??? The bestGnum will never be passed to the linker, because the gcc driver
826
  will interpret it as a -b option.  */
827
 
828
#ifndef LINK_SPEC
829
#define LINK_SPEC "\
830
%(endian_spec) \
831
%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips32r2} %{mips64} \
832
%{bestGnum} %{shared} %{non_shared}"
833
#endif  /* LINK_SPEC defined */
834
 
835
 
836
/* Specs for the compiler proper */
837
 
838
/* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
839
   overridden by subtargets.  */
840
#ifndef SUBTARGET_CC1_SPEC
841
#define SUBTARGET_CC1_SPEC ""
842
#endif
843
 
844
/* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
845
 
846
#ifndef CC1_SPEC
847
#define CC1_SPEC "\
848
%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
849
%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
850
%{save-temps: } \
851
%(subtarget_cc1_spec)"
852
#endif
853
 
854
/* Preprocessor specs.  */
855
 
856
/* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
857
   overridden by subtargets.  */
858
#ifndef SUBTARGET_CPP_SPEC
859
#define SUBTARGET_CPP_SPEC ""
860
#endif
861
 
862
#define CPP_SPEC "%(subtarget_cpp_spec)"
863
 
864
/* This macro defines names of additional specifications to put in the specs
865
   that can be used in various specifications like CC1_SPEC.  Its definition
866
   is an initializer with a subgrouping for each command option.
867
 
868
   Each subgrouping contains a string constant, that defines the
869
   specification name, and a string constant that used by the GCC driver
870
   program.
871
 
872
   Do not define this macro if it does not need to do anything.  */
873
 
874
#define EXTRA_SPECS                                                     \
875
  { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },                         \
876
  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },                         \
877
  { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC },   \
878
  { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },     \
879
  { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },                         \
880
  { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },                 \
881
  { "endian_spec", ENDIAN_SPEC },                                       \
882
  SUBTARGET_EXTRA_SPECS
883
 
884
#ifndef SUBTARGET_EXTRA_SPECS
885
#define SUBTARGET_EXTRA_SPECS
886
#endif
887
 
888
#define DBX_DEBUGGING_INFO 1            /* generate stabs (OSF/rose) */
889
#define MIPS_DEBUGGING_INFO 1           /* MIPS specific debugging info */
890
#define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
891
 
892
#ifndef PREFERRED_DEBUGGING_TYPE
893
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
894
#endif
895
 
896
#define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
897
 
898
/* By default, turn on GDB extensions.  */
899
#define DEFAULT_GDB_EXTENSIONS 1
900
 
901
/* Local compiler-generated symbols must have a prefix that the assembler
902
   understands.   By default, this is $, although some targets (e.g.,
903
   NetBSD-ELF) need to override this.  */
904
 
905
#ifndef LOCAL_LABEL_PREFIX
906
#define LOCAL_LABEL_PREFIX      "$"
907
#endif
908
 
909
/* By default on the mips, external symbols do not have an underscore
910
   prepended, but some targets (e.g., NetBSD) require this.  */
911
 
912
#ifndef USER_LABEL_PREFIX
913
#define USER_LABEL_PREFIX       ""
914
#endif
915
 
916
/* On Sun 4, this limit is 2048.  We use 1500 to be safe,
917
   since the length can run past this up to a continuation point.  */
918
#undef DBX_CONTIN_LENGTH
919
#define DBX_CONTIN_LENGTH 1500
920
 
921
/* How to renumber registers for dbx and gdb.  */
922
#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
923
 
924
/* The mapping from gcc register number to DWARF 2 CFA column number.  */
925
#define DWARF_FRAME_REGNUM(REG) (REG)
926
 
927
/* The DWARF 2 CFA column which tracks the return address.  */
928
#define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
929
 
930
/* The DWARF 2 CFA column which tracks the return address from a
931
   signal handler context.  */
932
#define SIGNAL_UNWIND_RETURN_COLUMN (FP_REG_LAST + 1)
933
 
934
/* Before the prologue, RA lives in r31.  */
935
#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
936
 
937
/* Describe how we implement __builtin_eh_return.  */
938
#define EH_RETURN_DATA_REGNO(N) \
939
  ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
940
 
941
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
942
 
943
/* Offsets recorded in opcodes are a multiple of this alignment factor.
944
   The default for this in 64-bit mode is 8, which causes problems with
945
   SFmode register saves.  */
946
#define DWARF_CIE_DATA_ALIGNMENT -4
947
 
948
/* Correct the offset of automatic variables and arguments.  Note that
949
   the MIPS debug format wants all automatic variables and arguments
950
   to be in terms of the virtual frame pointer (stack pointer before
951
   any adjustment in the function), while the MIPS 3.0 linker wants
952
   the frame pointer to be the stack pointer after the initial
953
   adjustment.  */
954
 
955
#define DEBUGGER_AUTO_OFFSET(X)                         \
956
  mips_debugger_offset (X, (HOST_WIDE_INT) 0)
957
#define DEBUGGER_ARG_OFFSET(OFFSET, X)                  \
958
  mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
959
 
960
/* Target machine storage layout */
961
 
962
#define BITS_BIG_ENDIAN 0
963
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
964
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
965
 
966
/* Define this to set the endianness to use in libgcc2.c, which can
967
   not depend on target_flags.  */
968
#if !defined(MIPSEL) && !defined(__MIPSEL__)
969
#define LIBGCC2_WORDS_BIG_ENDIAN 1
970
#else
971
#define LIBGCC2_WORDS_BIG_ENDIAN 0
972
#endif
973
 
974
#define MAX_BITS_PER_WORD 64
975
 
976
/* Width of a word, in units (bytes).  */
977
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
978
#ifndef IN_LIBGCC2
979
#define MIN_UNITS_PER_WORD 4
980
#endif
981
 
982
/* For MIPS, width of a floating point register.  */
983
#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
984
 
985
/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
986
   the next available register.  */
987
#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
988
 
989
/* The largest size of value that can be held in floating-point
990
   registers and moved with a single instruction.  */
991
#define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
992
 
993
/* The largest size of value that can be held in floating-point
994
   registers.  */
995
#define UNITS_PER_FPVALUE                       \
996
  (TARGET_SOFT_FLOAT ? 0                        \
997
   : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG      \
998
   : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
999
 
1000
/* The number of bytes in a double.  */
1001
#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1002
 
1003
#define UNITS_PER_SIMD_WORD (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1004
 
1005
/* Set the sizes of the core types.  */
1006
#define SHORT_TYPE_SIZE 16
1007
#define INT_TYPE_SIZE 32
1008
#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1009
#define LONG_LONG_TYPE_SIZE 64
1010
 
1011
#define FLOAT_TYPE_SIZE 32
1012
#define DOUBLE_TYPE_SIZE 64
1013
#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1014
 
1015
/* long double is not a fixed mode, but the idea is that, if we
1016
   support long double, we also want a 128-bit integer type.  */
1017
#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1018
 
1019
#ifdef IN_LIBGCC2
1020
#if  (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1021
  || (defined _ABI64 && _MIPS_SIM == _ABI64)
1022
#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1023
# else
1024
#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1025
# endif
1026
#endif
1027
 
1028
/* Width in bits of a pointer.  */
1029
#ifndef POINTER_SIZE
1030
#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1031
#endif
1032
 
1033
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1034
#define PARM_BOUNDARY BITS_PER_WORD
1035
 
1036
/* Allocation boundary (in *bits*) for the code of a function.  */
1037
#define FUNCTION_BOUNDARY 32
1038
 
1039
/* Alignment of field after `int : 0' in a structure.  */
1040
#define EMPTY_FIELD_BOUNDARY 32
1041
 
1042
/* Every structure's size must be a multiple of this.  */
1043
/* 8 is observed right on a DECstation and on riscos 4.02.  */
1044
#define STRUCTURE_SIZE_BOUNDARY 8
1045
 
1046
/* There is no point aligning anything to a rounder boundary than this.  */
1047
#define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1048
 
1049
/* All accesses must be aligned.  */
1050
#define STRICT_ALIGNMENT 1
1051
 
1052
/* Define this if you wish to imitate the way many other C compilers
1053
   handle alignment of bitfields and the structures that contain
1054
   them.
1055
 
1056
   The behavior is that the type written for a bit-field (`int',
1057
   `short', or other integer type) imposes an alignment for the
1058
   entire structure, as if the structure really did contain an
1059
   ordinary field of that type.  In addition, the bit-field is placed
1060
   within the structure so that it would fit within such a field,
1061
   not crossing a boundary for it.
1062
 
1063
   Thus, on most machines, a bit-field whose type is written as `int'
1064
   would not cross a four-byte boundary, and would force four-byte
1065
   alignment for the whole structure.  (The alignment used may not
1066
   be four bytes; it is controlled by the other alignment
1067
   parameters.)
1068
 
1069
   If the macro is defined, its definition should be a C expression;
1070
   a nonzero value for the expression enables this behavior.  */
1071
 
1072
#define PCC_BITFIELD_TYPE_MATTERS 1
1073
 
1074
/* If defined, a C expression to compute the alignment given to a
1075
   constant that is being placed in memory.  CONSTANT is the constant
1076
   and ALIGN is the alignment that the object would ordinarily have.
1077
   The value of this macro is used instead of that alignment to align
1078
   the object.
1079
 
1080
   If this macro is not defined, then ALIGN is used.
1081
 
1082
   The typical use of this macro is to increase alignment for string
1083
   constants to be word aligned so that `strcpy' calls that copy
1084
   constants can be done inline.  */
1085
 
1086
#define CONSTANT_ALIGNMENT(EXP, ALIGN)                                  \
1087
  ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)   \
1088
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1089
 
1090
/* If defined, a C expression to compute the alignment for a static
1091
   variable.  TYPE is the data type, and ALIGN is the alignment that
1092
   the object would ordinarily have.  The value of this macro is used
1093
   instead of that alignment to align the object.
1094
 
1095
   If this macro is not defined, then ALIGN is used.
1096
 
1097
   One use of this macro is to increase alignment of medium-size
1098
   data to make it all fit in fewer cache lines.  Another is to
1099
   cause character arrays to be word-aligned so that `strcpy' calls
1100
   that copy constants to character arrays can be done inline.  */
1101
 
1102
#undef DATA_ALIGNMENT
1103
#define DATA_ALIGNMENT(TYPE, ALIGN)                                     \
1104
  ((((ALIGN) < BITS_PER_WORD)                                           \
1105
    && (TREE_CODE (TYPE) == ARRAY_TYPE                                  \
1106
        || TREE_CODE (TYPE) == UNION_TYPE                               \
1107
        || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1108
 
1109
 
1110
#define PAD_VARARGS_DOWN \
1111
  (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1112
 
1113
/* Define if operations between registers always perform the operation
1114
   on the full register even if a narrower mode is specified.  */
1115
#define WORD_REGISTER_OPERATIONS
1116
 
1117
/* When in 64 bit mode, move insns will sign extend SImode and CCmode
1118
   moves.  All other references are zero extended.  */
1119
#define LOAD_EXTEND_OP(MODE) \
1120
  (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1121
   ? SIGN_EXTEND : ZERO_EXTEND)
1122
 
1123
/* Define this macro if it is advisable to hold scalars in registers
1124
   in a wider mode than that declared by the program.  In such cases,
1125
   the value is constrained to be within the bounds of the declared
1126
   type, but kept valid in the wider mode.  The signedness of the
1127
   extension may differ from that of the type.  */
1128
 
1129
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)     \
1130
  if (GET_MODE_CLASS (MODE) == MODE_INT         \
1131
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1132
    {                                           \
1133
      if ((MODE) == SImode)                     \
1134
        (UNSIGNEDP) = 0;                        \
1135
      (MODE) = Pmode;                           \
1136
    }
1137
 
1138
/* Define if loading short immediate values into registers sign extends.  */
1139
#define SHORT_IMMEDIATES_SIGN_EXTEND
1140
 
1141
/* The [d]clz instructions have the natural values at 0.  */
1142
 
1143
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1144
  ((VALUE) = GET_MODE_BITSIZE (MODE), true)
1145
 
1146
/* Standard register usage.  */
1147
 
1148
/* Number of hardware registers.  We have:
1149
 
1150
   - 32 integer registers
1151
   - 32 floating point registers
1152
   - 8 condition code registers
1153
   - 2 accumulator registers (hi and lo)
1154
   - 32 registers each for coprocessors 0, 2 and 3
1155
   - 3 fake registers:
1156
        - ARG_POINTER_REGNUM
1157
        - FRAME_POINTER_REGNUM
1158
        - FAKE_CALL_REGNO (see the comment above load_callsi for details)
1159
   - 3 dummy entries that were used at various times in the past.
1160
   - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1161
   - 6 DSP control registers  */
1162
 
1163
#define FIRST_PSEUDO_REGISTER 188
1164
 
1165
/* By default, fix the kernel registers ($26 and $27), the global
1166
   pointer ($28) and the stack pointer ($29).  This can change
1167
   depending on the command-line options.
1168
 
1169
   Regarding coprocessor registers: without evidence to the contrary,
1170
   it's best to assume that each coprocessor register has a unique
1171
   use.  This can be overridden, in, e.g., override_options() or
1172
   CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1173
   for a particular target.  */
1174
 
1175
#define FIXED_REGISTERS                                                 \
1176
{                                                                       \
1177
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1178
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,                       \
1179
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1180
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1181
  0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,                       \
1182
  /* COP0 registers */                                                  \
1183
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1184
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1185
  /* COP2 registers */                                                  \
1186
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1187
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1188
  /* COP3 registers */                                                  \
1189
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1190
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1191
  /* 6 DSP accumulator registers & 6 control registers */               \
1192
  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1                                    \
1193
}
1194
 
1195
 
1196
/* Set up this array for o32 by default.
1197
 
1198
   Note that we don't mark $31 as a call-clobbered register.  The idea is
1199
   that it's really the call instructions themselves which clobber $31.
1200
   We don't care what the called function does with it afterwards.
1201
 
1202
   This approach makes it easier to implement sibcalls.  Unlike normal
1203
   calls, sibcalls don't clobber $31, so the register reaches the
1204
   called function in tact.  EPILOGUE_USES says that $31 is useful
1205
   to the called function.  */
1206
 
1207
#define CALL_USED_REGISTERS                                             \
1208
{                                                                       \
1209
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1210
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,                       \
1211
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1212
  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1213
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1214
  /* COP0 registers */                                                  \
1215
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1216
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1217
  /* COP2 registers */                                                  \
1218
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1219
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1220
  /* COP3 registers */                                                  \
1221
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1222
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1223
  /* 6 DSP accumulator registers & 6 control registers */               \
1224
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1                                    \
1225
}
1226
 
1227
 
1228
/* Define this since $28, though fixed, is call-saved in many ABIs.  */
1229
 
1230
#define CALL_REALLY_USED_REGISTERS                                      \
1231
{ /* General registers.  */                                             \
1232
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1233
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
1234
  /* Floating-point registers.  */                                      \
1235
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1236
  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1237
  /* Others.  */                                                        \
1238
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1239
  /* COP0 registers */                                                  \
1240
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1241
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1242
  /* COP2 registers */                                                  \
1243
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1244
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1245
  /* COP3 registers */                                                  \
1246
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1247
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1248
  /* 6 DSP accumulator registers & 6 control registers */               \
1249
  1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0                                    \
1250
}
1251
 
1252
/* Internal macros to classify a register number as to whether it's a
1253
   general purpose register, a floating point register, a
1254
   multiply/divide register, or a status register.  */
1255
 
1256
#define GP_REG_FIRST 0
1257
#define GP_REG_LAST  31
1258
#define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
1259
#define GP_DBX_FIRST 0
1260
 
1261
#define FP_REG_FIRST 32
1262
#define FP_REG_LAST  63
1263
#define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
1264
#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1265
 
1266
#define MD_REG_FIRST 64
1267
#define MD_REG_LAST  65
1268
#define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
1269
#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1270
 
1271
#define ST_REG_FIRST 67
1272
#define ST_REG_LAST  74
1273
#define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
1274
 
1275
 
1276
/* FIXME: renumber.  */
1277
#define COP0_REG_FIRST 80
1278
#define COP0_REG_LAST 111
1279
#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1280
 
1281
#define COP2_REG_FIRST 112
1282
#define COP2_REG_LAST 143
1283
#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1284
 
1285
#define COP3_REG_FIRST 144
1286
#define COP3_REG_LAST 175
1287
#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1288
/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively.  */
1289
#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1290
 
1291
#define DSP_ACC_REG_FIRST 176
1292
#define DSP_ACC_REG_LAST 181
1293
#define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1294
 
1295
#define AT_REGNUM       (GP_REG_FIRST + 1)
1296
#define HI_REGNUM       (MD_REG_FIRST + 0)
1297
#define LO_REGNUM       (MD_REG_FIRST + 1)
1298
#define AC1HI_REGNUM    (DSP_ACC_REG_FIRST + 0)
1299
#define AC1LO_REGNUM    (DSP_ACC_REG_FIRST + 1)
1300
#define AC2HI_REGNUM    (DSP_ACC_REG_FIRST + 2)
1301
#define AC2LO_REGNUM    (DSP_ACC_REG_FIRST + 3)
1302
#define AC3HI_REGNUM    (DSP_ACC_REG_FIRST + 4)
1303
#define AC3LO_REGNUM    (DSP_ACC_REG_FIRST + 5)
1304
 
1305
/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1306
   If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1307
   should be used instead.  */
1308
#define FPSW_REGNUM     ST_REG_FIRST
1309
 
1310
#define GP_REG_P(REGNO) \
1311
  ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1312
#define M16_REG_P(REGNO) \
1313
  (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1314
#define FP_REG_P(REGNO)  \
1315
  ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1316
#define MD_REG_P(REGNO) \
1317
  ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1318
#define ST_REG_P(REGNO) \
1319
  ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1320
#define COP0_REG_P(REGNO) \
1321
  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1322
#define COP2_REG_P(REGNO) \
1323
  ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1324
#define COP3_REG_P(REGNO) \
1325
  ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1326
#define ALL_COP_REG_P(REGNO) \
1327
  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1328
/* Test if REGNO is one of the 6 new DSP accumulators.  */
1329
#define DSP_ACC_REG_P(REGNO) \
1330
  ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1331
/* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
1332
#define ACC_REG_P(REGNO) \
1333
  (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1334
/* Test if REGNO is HI or the first register of 3 new DSP accumulator pairs.  */
1335
#define ACC_HI_REG_P(REGNO) \
1336
  ((REGNO) == HI_REGNUM || (REGNO) == AC1HI_REGNUM || (REGNO) == AC2HI_REGNUM \
1337
   || (REGNO) == AC3HI_REGNUM)
1338
 
1339
#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1340
 
1341
/* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
1342
   to initialize the mips16 gp pseudo register.  */
1343
#define CONST_GP_P(X)                           \
1344
  (GET_CODE (X) == CONST                        \
1345
   && GET_CODE (XEXP (X, 0)) == UNSPEC          \
1346
   && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1347
 
1348
/* Return coprocessor number from register number.  */
1349
 
1350
#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO)                               \
1351
  (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'                  \
1352
   : COP3_REG_P (REGNO) ? '3' : '?')
1353
 
1354
 
1355
#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1356
 
1357
/* To make the code simpler, HARD_REGNO_MODE_OK just references an
1358
   array built in override_options.  Because machmodes.h is not yet
1359
   included before this file is processed, the MODE bound can't be
1360
   expressed here.  */
1361
 
1362
extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1363
 
1364
#define HARD_REGNO_MODE_OK(REGNO, MODE)                                 \
1365
  mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1366
 
1367
/* Value is 1 if it is a good idea to tie two pseudo registers
1368
   when one has mode MODE1 and one has mode MODE2.
1369
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1370
   for any hard reg, then this must be 0 for correct output.  */
1371
#define MODES_TIEABLE_P(MODE1, MODE2)                                   \
1372
  ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||                             \
1373
    GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)                       \
1374
   == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||                          \
1375
       GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1376
 
1377
/* Register to use for pushing function arguments.  */
1378
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1379
 
1380
/* These two registers don't really exist: they get eliminated to either
1381
   the stack or hard frame pointer.  */
1382
#define ARG_POINTER_REGNUM 77
1383
#define FRAME_POINTER_REGNUM 78
1384
 
1385
/* $30 is not available on the mips16, so we use $17 as the frame
1386
   pointer.  */
1387
#define HARD_FRAME_POINTER_REGNUM \
1388
  (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1389
 
1390
/* Value should be nonzero if functions must have frame pointers.
1391
   Zero means the frame pointer need not be set up (and parms
1392
   may be accessed via the stack pointer) in functions that seem suitable.
1393
   This is computed in `reload', in reload1.c.  */
1394
#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1395
 
1396
/* Register in which static-chain is passed to a function.  */
1397
#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1398
 
1399
/* Registers used as temporaries in prologue/epilogue code.  If we're
1400
   generating mips16 code, these registers must come from the core set
1401
   of 8.  The prologue register mustn't conflict with any incoming
1402
   arguments, the static chain pointer, or the frame pointer.  The
1403
   epilogue temporary mustn't conflict with the return registers, the
1404
   frame pointer, the EH stack adjustment, or the EH data registers.  */
1405
 
1406
#define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
1407
#define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1408
 
1409
#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1410
#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1411
 
1412
/* Define this macro if it is as good or better to call a constant
1413
   function address than to call an address kept in a register.  */
1414
#define NO_FUNCTION_CSE 1
1415
 
1416
/* The ABI-defined global pointer.  Sometimes we use a different
1417
   register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
1418
#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1419
 
1420
/* We normally use $28 as the global pointer.  However, when generating
1421
   n32/64 PIC, it is better for leaf functions to use a call-clobbered
1422
   register instead.  They can then avoid saving and restoring $28
1423
   and perhaps avoid using a frame at all.
1424
 
1425
   When a leaf function uses something other than $28, mips_expand_prologue
1426
   will modify pic_offset_table_rtx in place.  Take the register number
1427
   from there after reload.  */
1428
#define PIC_OFFSET_TABLE_REGNUM \
1429
  (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1430
 
1431
#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1432
 
1433
/* Define the classes of registers for register constraints in the
1434
   machine description.  Also define ranges of constants.
1435
 
1436
   One of the classes must always be named ALL_REGS and include all hard regs.
1437
   If there is more than one class, another class must be named NO_REGS
1438
   and contain no registers.
1439
 
1440
   The name GENERAL_REGS must be the name of a class (or an alias for
1441
   another name such as ALL_REGS).  This is the class of registers
1442
   that is allowed by "g" or "r" in a register constraint.
1443
   Also, registers outside this class are allocated only when
1444
   instructions express preferences for them.
1445
 
1446
   The classes must be numbered in nondecreasing order; that is,
1447
   a larger-numbered class must never be contained completely
1448
   in a smaller-numbered class.
1449
 
1450
   For any two classes, it is very desirable that there be another
1451
   class that represents their union.  */
1452
 
1453
enum reg_class
1454
{
1455
  NO_REGS,                      /* no registers in set */
1456
  M16_NA_REGS,                  /* mips16 regs not used to pass args */
1457
  M16_REGS,                     /* mips16 directly accessible registers */
1458
  T_REG,                        /* mips16 T register ($24) */
1459
  M16_T_REGS,                   /* mips16 registers plus T register */
1460
  PIC_FN_ADDR_REG,              /* SVR4 PIC function address register */
1461
  V1_REG,                       /* Register $v1 ($3) used for TLS access.  */
1462
  LEA_REGS,                     /* Every GPR except $25 */
1463
  GR_REGS,                      /* integer registers */
1464
  FP_REGS,                      /* floating point registers */
1465
  HI_REG,                       /* hi register */
1466
  LO_REG,                       /* lo register */
1467
  MD_REGS,                      /* multiply/divide registers (hi/lo) */
1468
  COP0_REGS,                    /* generic coprocessor classes */
1469
  COP2_REGS,
1470
  COP3_REGS,
1471
  HI_AND_GR_REGS,               /* union classes */
1472
  LO_AND_GR_REGS,
1473
  HI_AND_FP_REGS,
1474
  COP0_AND_GR_REGS,
1475
  COP2_AND_GR_REGS,
1476
  COP3_AND_GR_REGS,
1477
  ALL_COP_REGS,
1478
  ALL_COP_AND_GR_REGS,
1479
  ST_REGS,                      /* status registers (fp status) */
1480
  DSP_ACC_REGS,                 /* DSP accumulator registers */
1481
  ACC_REGS,                     /* Hi/Lo and DSP accumulator registers */
1482
  ALL_REGS,                     /* all registers */
1483
  LIM_REG_CLASSES               /* max value + 1 */
1484
};
1485
 
1486
#define N_REG_CLASSES (int) LIM_REG_CLASSES
1487
 
1488
#define GENERAL_REGS GR_REGS
1489
 
1490
/* An initializer containing the names of the register classes as C
1491
   string constants.  These names are used in writing some of the
1492
   debugging dumps.  */
1493
 
1494
#define REG_CLASS_NAMES                                                 \
1495
{                                                                       \
1496
  "NO_REGS",                                                            \
1497
  "M16_NA_REGS",                                                        \
1498
  "M16_REGS",                                                           \
1499
  "T_REG",                                                              \
1500
  "M16_T_REGS",                                                         \
1501
  "PIC_FN_ADDR_REG",                                                    \
1502
  "V1_REG",                                                             \
1503
  "LEA_REGS",                                                           \
1504
  "GR_REGS",                                                            \
1505
  "FP_REGS",                                                            \
1506
  "HI_REG",                                                             \
1507
  "LO_REG",                                                             \
1508
  "MD_REGS",                                                            \
1509
  /* coprocessor registers */                                           \
1510
  "COP0_REGS",                                                          \
1511
  "COP2_REGS",                                                          \
1512
  "COP3_REGS",                                                          \
1513
  "HI_AND_GR_REGS",                                                     \
1514
  "LO_AND_GR_REGS",                                                     \
1515
  "HI_AND_FP_REGS",                                                     \
1516
  "COP0_AND_GR_REGS",                                                   \
1517
  "COP2_AND_GR_REGS",                                                   \
1518
  "COP3_AND_GR_REGS",                                                   \
1519
  "ALL_COP_REGS",                                                       \
1520
  "ALL_COP_AND_GR_REGS",                                                \
1521
  "ST_REGS",                                                            \
1522
  "DSP_ACC_REGS",                                                       \
1523
  "ACC_REGS",                                                           \
1524
  "ALL_REGS"                                                            \
1525
}
1526
 
1527
/* An initializer containing the contents of the register classes,
1528
   as integers which are bit masks.  The Nth integer specifies the
1529
   contents of class N.  The way the integer MASK is interpreted is
1530
   that register R is in the class if `MASK & (1 << R)' is 1.
1531
 
1532
   When the machine has more than 32 registers, an integer does not
1533
   suffice.  Then the integers are replaced by sub-initializers,
1534
   braced groupings containing several integers.  Each
1535
   sub-initializer must be suitable as an initializer for the type
1536
   `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
1537
 
1538
#define REG_CLASS_CONTENTS                                                                              \
1539
{                                                                                                       \
1540
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* no registers */      \
1541
  { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* mips16 nonarg regs */\
1542
  { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* mips16 registers */  \
1543
  { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* mips16 T register */ \
1544
  { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* mips16 and T regs */ \
1545
  { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* SVR4 PIC function address register */ \
1546
  { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* only $v1 */ \
1547
  { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* Every other GPR except $25 */   \
1548
  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* integer registers */ \
1549
  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* floating registers*/ \
1550
  { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },   /* hi register */       \
1551
  { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },   /* lo register */       \
1552
  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },   /* mul/div registers */ \
1553
  { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* cop0 registers */    \
1554
  { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* cop2 registers */    \
1555
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* cop3 registers */    \
1556
  { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },   /* union classes */     \
1557
  { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },                           \
1558
  { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },                           \
1559
  { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },                           \
1560
  { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },                           \
1561
  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },                           \
1562
  { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1563
  { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1564
  { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },   /* status registers */  \
1565
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },   /* dsp accumulator registers */ \
1566
  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },   /* hi/lo and dsp accumulator registers */       \
1567
  { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff }    /* all registers */     \
1568
}
1569
 
1570
 
1571
/* A C expression whose value is a register class containing hard
1572
   register REGNO.  In general there is more that one such class;
1573
   choose a class which is "minimal", meaning that no smaller class
1574
   also contains the register.  */
1575
 
1576
extern const enum reg_class mips_regno_to_class[];
1577
 
1578
#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1579
 
1580
/* A macro whose definition is the name of the class to which a
1581
   valid base register must belong.  A base register is one used in
1582
   an address which is the register value plus a displacement.  */
1583
 
1584
#define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1585
 
1586
/* A macro whose definition is the name of the class to which a
1587
   valid index register must belong.  An index register is one used
1588
   in an address where its value is either multiplied by a scale
1589
   factor or added to another register (as well as added to a
1590
   displacement).  */
1591
 
1592
#define INDEX_REG_CLASS NO_REGS
1593
 
1594
/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1595
   registers explicitly used in the rtl to be used as spill registers
1596
   but prevents the compiler from extending the lifetime of these
1597
   registers.  */
1598
 
1599
#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1600
 
1601
/* This macro is used later on in the file.  */
1602
#define GR_REG_CLASS_P(CLASS)                                           \
1603
  ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG        \
1604
   || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS                   \
1605
   || (CLASS) == V1_REG                                                 \
1606
   || (CLASS) == PIC_FN_ADDR_REG || (CLASS) == LEA_REGS)
1607
 
1608
/* This macro is also used later on in the file.  */
1609
#define COP_REG_CLASS_P(CLASS)                                          \
1610
  ((CLASS)  == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
1611
 
1612
/* REG_ALLOC_ORDER is to order in which to allocate registers.  This
1613
   is the default value (allocate the registers in numeric order).  We
1614
   define it just so that we can override it for the mips16 target in
1615
   ORDER_REGS_FOR_LOCAL_ALLOC.  */
1616
 
1617
#define REG_ALLOC_ORDER                                                 \
1618
{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,       \
1619
  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,       \
1620
  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,       \
1621
  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,       \
1622
  64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,       \
1623
  80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,       \
1624
  96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,      \
1625
  112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,      \
1626
  128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,      \
1627
  144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,      \
1628
  160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,      \
1629
  176,177,178,179,180,181,182,183,184,185,186,187                       \
1630
}
1631
 
1632
/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1633
   to be rearranged based on a particular function.  On the mips16, we
1634
   want to allocate $24 (T_REG) before other registers for
1635
   instructions for which it is possible.  */
1636
 
1637
#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
1638
 
1639
/* REGISTER AND CONSTANT CLASSES */
1640
 
1641
/* Get reg_class from a letter such as appears in the machine
1642
   description.
1643
 
1644
   DEFINED REGISTER CLASSES:
1645
 
1646
   'd'  General (aka integer) registers
1647
        Normally this is GR_REGS, but in mips16 mode this is M16_REGS
1648
   'y'  General registers (in both mips16 and non mips16 mode)
1649
   'e'  Effective address registers (general registers except $25)
1650
   't'  mips16 temporary register ($24)
1651
   'f'  Floating point registers
1652
   'h'  Hi register
1653
   'l'  Lo register
1654
   'v'  $v1 only
1655
   'x'  Multiply/divide registers
1656
   'z'  FP Status register
1657
   'B'  Cop0 register
1658
   'C'  Cop2 register
1659
   'D'  Cop3 register
1660
   'A'  DSP accumulator registers
1661
   'a'  MD registers and DSP accumulator registers
1662
   'b'  All registers */
1663
 
1664
extern enum reg_class mips_char_to_class[256];
1665
 
1666
#define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]
1667
 
1668
/* True if VALUE is an unsigned 6-bit number.  */
1669
 
1670
#define UIMM6_OPERAND(VALUE) \
1671
  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1672
 
1673
/* True if VALUE is a signed 10-bit number.  */
1674
 
1675
#define IMM10_OPERAND(VALUE) \
1676
  ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
1677
 
1678
/* True if VALUE is a signed 16-bit number.  */
1679
 
1680
#define SMALL_OPERAND(VALUE) \
1681
  ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
1682
 
1683
/* True if VALUE is an unsigned 16-bit number.  */
1684
 
1685
#define SMALL_OPERAND_UNSIGNED(VALUE) \
1686
  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
1687
 
1688
/* True if VALUE can be loaded into a register using LUI.  */
1689
 
1690
#define LUI_OPERAND(VALUE)                                      \
1691
  (((VALUE) | 0x7fff0000) == 0x7fff0000                         \
1692
   || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
1693
 
1694
/* Return a value X with the low 16 bits clear, and such that
1695
   VALUE - X is a signed 16-bit value.  */
1696
 
1697
#define CONST_HIGH_PART(VALUE) \
1698
  (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
1699
 
1700
#define CONST_LOW_PART(VALUE) \
1701
  ((VALUE) - CONST_HIGH_PART (VALUE))
1702
 
1703
#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
1704
#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
1705
#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
1706
 
1707
/* The letters I, J, K, L, M, N, O, and P in a register constraint
1708
   string can be used to stand for particular ranges of immediate
1709
   operands.  This macro defines what the ranges are.  C is the
1710
   letter, and VALUE is a constant value.  Return 1 if VALUE is
1711
   in the range specified by C.  */
1712
 
1713
/* For MIPS:
1714
 
1715
   `I'  is used for the range of constants an arithmetic insn can
1716
        actually contain (16 bits signed integers).
1717
 
1718
   `J'  is used for the range which is just zero (i.e., $r0).
1719
 
1720
   `K'  is used for the range of constants a logical insn can actually
1721
        contain (16 bit zero-extended integers).
1722
 
1723
   `L'  is used for the range of constants that be loaded with lui
1724
        (i.e., the bottom 16 bits are zero).
1725
 
1726
   `M'  is used for the range of constants that take two words to load
1727
        (i.e., not matched by `I', `K', and `L').
1728
 
1729
   `N'  is used for negative 16 bit constants other than -65536.
1730
 
1731
   `O'  is a 15 bit signed integer.
1732
 
1733
   `P'  is used for positive 16 bit constants.  */
1734
 
1735
#define CONST_OK_FOR_LETTER_P(VALUE, C)                                 \
1736
  ((C) == 'I' ? SMALL_OPERAND (VALUE)                                   \
1737
   : (C) == 'J' ? ((VALUE) == 0)                                        \
1738
   : (C) == 'K' ? SMALL_OPERAND_UNSIGNED (VALUE)                        \
1739
   : (C) == 'L' ? LUI_OPERAND (VALUE)                                   \
1740
   : (C) == 'M' ? (!SMALL_OPERAND (VALUE)                               \
1741
                   && !SMALL_OPERAND_UNSIGNED (VALUE)                   \
1742
                   && !LUI_OPERAND (VALUE))                             \
1743
   : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
1744
   : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
1745
   : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0))      \
1746
   : 0)
1747
 
1748
/* Similar, but for floating constants, and defining letters G and H.
1749
   Here VALUE is the CONST_DOUBLE rtx itself.  */
1750
 
1751
/* For MIPS
1752
 
1753
  'G'   : Floating point 0 */
1754
 
1755
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)                          \
1756
  ((C) == 'G'                                                           \
1757
   && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
1758
 
1759
/* Letters in the range `Q' through `U' may be defined in a
1760
   machine-dependent fashion to stand for arbitrary operand types.
1761
   The machine description macro `EXTRA_CONSTRAINT' is passed the
1762
   operand as its first argument and the constraint letter as its
1763
   second operand.
1764
 
1765
   `Q' is for signed 16-bit constants.
1766
   `R' is for single-instruction memory references.  Note that this
1767
         constraint has often been used in linux and glibc code.
1768
   `S' is for legitimate constant call addresses.
1769
   `T' is for constant move_operands that cannot be safely loaded into $25.
1770
   `U' is for constant move_operands that can be safely loaded into $25.
1771
   `W' is for memory references that are based on a member of BASE_REG_CLASS.
1772
         This is true for all non-mips16 references (although it can sometimes
1773
         be indirect if !TARGET_EXPLICIT_RELOCS).  For mips16, it excludes
1774
         stack and constant-pool references.
1775
   `YG' is for 0 valued vector constants.
1776
   `YA' is for unsigned 6-bit constants.
1777
   `YB' is for signed 10-bit constants.  */
1778
 
1779
#define EXTRA_CONSTRAINT_Y(OP,STR)                                      \
1780
  (((STR)[1] == 'G')      ? (GET_CODE (OP) == CONST_VECTOR              \
1781
                             && (OP) == CONST0_RTX (GET_MODE (OP)))     \
1782
   : ((STR)[1] == 'A')    ? (GET_CODE (OP) == CONST_INT                 \
1783
                             && UIMM6_OPERAND (INTVAL (OP)))            \
1784
   : ((STR)[1] == 'B')    ? (GET_CODE (OP) == CONST_INT                 \
1785
                             && IMM10_OPERAND (INTVAL (OP)))            \
1786
   : FALSE)
1787
 
1788
 
1789
#define EXTRA_CONSTRAINT_STR(OP,CODE,STR)                               \
1790
  (((CODE) == 'Q')        ? const_arith_operand (OP, VOIDmode)          \
1791
   : ((CODE) == 'R')      ? (MEM_P (OP)                                 \
1792
                             && mips_fetch_insns (OP) == 1)             \
1793
   : ((CODE) == 'S')      ? (CONSTANT_P (OP)                            \
1794
                             && call_insn_operand (OP, VOIDmode))       \
1795
   : ((CODE) == 'T')      ? (CONSTANT_P (OP)                            \
1796
                             && move_operand (OP, VOIDmode)             \
1797
                             && mips_dangerous_for_la25_p (OP))         \
1798
   : ((CODE) == 'U')      ? (CONSTANT_P (OP)                            \
1799
                             && move_operand (OP, VOIDmode)             \
1800
                             && !mips_dangerous_for_la25_p (OP))        \
1801
   : ((CODE) == 'W')      ? (MEM_P (OP)                                 \
1802
                             && memory_operand (OP, VOIDmode)           \
1803
                             && (!TARGET_MIPS16                         \
1804
                                 || (!stack_operand (OP, VOIDmode)      \
1805
                                     && !CONSTANT_P (XEXP (OP, 0)))))   \
1806
   : ((CODE) == 'Y')      ? EXTRA_CONSTRAINT_Y (OP, STR)                \
1807
   : FALSE)
1808
 
1809
/* Y is the only multi-letter constraint, and has length 2.  */
1810
 
1811
#define CONSTRAINT_LEN(C,STR)                                           \
1812
  (((C) == 'Y') ? 2                                                     \
1813
   : DEFAULT_CONSTRAINT_LEN (C, STR))
1814
 
1815
/* Say which of the above are memory constraints.  */
1816
#define EXTRA_MEMORY_CONSTRAINT(C, STR) ((C) == 'R' || (C) == 'W')
1817
 
1818
#define PREFERRED_RELOAD_CLASS(X,CLASS)                                 \
1819
  mips_preferred_reload_class (X, CLASS)
1820
 
1821
/* Certain machines have the property that some registers cannot be
1822
   copied to some other registers without using memory.  Define this
1823
   macro on those machines to be a C expression that is nonzero if
1824
   objects of mode MODE in registers of CLASS1 can only be copied to
1825
   registers of class CLASS2 by storing a register of CLASS1 into
1826
   memory and loading that memory location into a register of CLASS2.
1827
 
1828
   Do not define this macro if its value would always be zero.  */
1829
#if 0
1830
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)                   \
1831
  ((!TARGET_DEBUG_H_MODE                                                \
1832
    && GET_MODE_CLASS (MODE) == MODE_INT                                \
1833
    && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2))                  \
1834
        || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)))             \
1835
   || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode              \
1836
       && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)               \
1837
           || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
1838
#endif
1839
/* The HI and LO registers can only be reloaded via the general
1840
   registers.  Condition code registers can only be loaded to the
1841
   general registers, and from the floating point registers.  */
1842
 
1843
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)                    \
1844
  mips_secondary_reload_class (CLASS, MODE, X, 1)
1845
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)                   \
1846
  mips_secondary_reload_class (CLASS, MODE, X, 0)
1847
 
1848
/* Return the maximum number of consecutive registers
1849
   needed to represent mode MODE in a register of class CLASS.  */
1850
 
1851
#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
1852
 
1853
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1854
  mips_cannot_change_mode_class (FROM, TO, CLASS)
1855
 
1856
/* Stack layout; function entry, exit and calling.  */
1857
 
1858
#define STACK_GROWS_DOWNWARD
1859
 
1860
/* The offset of the first local variable from the beginning of the frame.
1861
   See compute_frame_size for details about the frame layout.
1862
 
1863
   ??? If flag_profile_values is true, and we are generating 32-bit code, then
1864
   we assume that we will need 16 bytes of argument space.  This is because
1865
   the value profiling code may emit calls to cmpdi2 in leaf functions.
1866
   Without this hack, the local variables will start at sp+8 and the gp save
1867
   area will be at sp+16, and thus they will overlap.  compute_frame_size is
1868
   OK because it uses STARTING_FRAME_OFFSET to compute cprestore_size, which
1869
   will end up as 24 instead of 8.  This won't be needed if profiling code is
1870
   inserted before virtual register instantiation.  */
1871
 
1872
#define STARTING_FRAME_OFFSET                                           \
1873
  ((flag_profile_values && ! TARGET_64BIT                               \
1874
    ? MAX (REG_PARM_STACK_SPACE(NULL), current_function_outgoing_args_size) \
1875
    : current_function_outgoing_args_size)                              \
1876
   + (TARGET_ABICALLS && !TARGET_NEWABI                                 \
1877
      ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1878
 
1879
#define RETURN_ADDR_RTX mips_return_addr
1880
 
1881
/* Since the mips16 ISA mode is encoded in the least-significant bit
1882
   of the address, mask it off return addresses for purposes of
1883
   finding exception handling regions.  */
1884
 
1885
#define MASK_RETURN_ADDR GEN_INT (-2)
1886
 
1887
 
1888
/* Similarly, don't use the least-significant bit to tell pointers to
1889
   code from vtable index.  */
1890
 
1891
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
1892
 
1893
/* The eliminations to $17 are only used for mips16 code.  See the
1894
   definition of HARD_FRAME_POINTER_REGNUM.  */
1895
 
1896
#define ELIMINABLE_REGS                                                 \
1897
{{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},                         \
1898
 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},                            \
1899
 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},                            \
1900
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},                         \
1901
 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},                            \
1902
 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
1903
 
1904
/* We can always eliminate to the hard frame pointer.  We can eliminate
1905
   to the stack pointer unless a frame pointer is needed.
1906
 
1907
   In mips16 mode, we need a frame pointer for a large frame; otherwise,
1908
   reload may be unable to compute the address of a local variable,
1909
   since there is no way to add a large constant to the stack pointer
1910
   without using a temporary register.  */
1911
#define CAN_ELIMINATE(FROM, TO)                                         \
1912
  ((TO) == HARD_FRAME_POINTER_REGNUM                                    \
1913
   || ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed            \
1914
       && (!TARGET_MIPS16                                               \
1915
           || compute_frame_size (get_frame_size ()) < 32768)))
1916
 
1917
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1918
  (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
1919
 
1920
/* Allocate stack space for arguments at the beginning of each function.  */
1921
#define ACCUMULATE_OUTGOING_ARGS 1
1922
 
1923
/* The argument pointer always points to the first argument.  */
1924
#define FIRST_PARM_OFFSET(FNDECL) 0
1925
 
1926
/* o32 and o64 reserve stack space for all argument registers.  */
1927
#define REG_PARM_STACK_SPACE(FNDECL)                    \
1928
  (TARGET_OLDABI                                        \
1929
   ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)           \
1930
   : 0)
1931
 
1932
/* Define this if it is the responsibility of the caller to
1933
   allocate the area reserved for arguments passed in registers.
1934
   If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1935
   of this macro is to determine whether the space is included in
1936
   `current_function_outgoing_args_size'.  */
1937
#define OUTGOING_REG_PARM_STACK_SPACE
1938
 
1939
#define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
1940
 
1941
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1942
 
1943
/* Symbolic macros for the registers used to return integer and floating
1944
   point values.  */
1945
 
1946
#define GP_RETURN (GP_REG_FIRST + 2)
1947
#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1948
 
1949
#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
1950
 
1951
/* Symbolic macros for the first/last argument registers.  */
1952
 
1953
#define GP_ARG_FIRST (GP_REG_FIRST + 4)
1954
#define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1955
#define FP_ARG_FIRST (FP_REG_FIRST + 12)
1956
#define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1957
 
1958
#define LIBCALL_VALUE(MODE) \
1959
  mips_function_value (NULL_TREE, NULL, (MODE))
1960
 
1961
#define FUNCTION_VALUE(VALTYPE, FUNC) \
1962
  mips_function_value ((VALTYPE), (FUNC), VOIDmode)
1963
 
1964
/* 1 if N is a possible register number for a function value.
1965
   On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1966
   Currently, R2 and F0 are only implemented here (C has no complex type)  */
1967
 
1968
#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
1969
  || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
1970
      && (N) == FP_RETURN + 2))
1971
 
1972
/* 1 if N is a possible register number for function argument passing.
1973
   We have no FP argument registers when soft-float.  When FP registers
1974
   are 32 bits, we can't directly reference the odd numbered ones.  */
1975
 
1976
#define FUNCTION_ARG_REGNO_P(N)                                 \
1977
  ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)                    \
1978
    || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST)))              \
1979
   && !fixed_regs[N])
1980
 
1981
/* This structure has to cope with two different argument allocation
1982
   schemes.  Most MIPS ABIs view the arguments as a structure, of which
1983
   the first N words go in registers and the rest go on the stack.  If I
1984
   < N, the Ith word might go in Ith integer argument register or in a
1985
   floating-point register.  For these ABIs, we only need to remember
1986
   the offset of the current argument into the structure.
1987
 
1988
   The EABI instead allocates the integer and floating-point arguments
1989
   separately.  The first N words of FP arguments go in FP registers,
1990
   the rest go on the stack.  Likewise, the first N words of the other
1991
   arguments go in integer registers, and the rest go on the stack.  We
1992
   need to maintain three counts: the number of integer registers used,
1993
   the number of floating-point registers used, and the number of words
1994
   passed on the stack.
1995
 
1996
   We could keep separate information for the two ABIs (a word count for
1997
   the standard ABIs, and three separate counts for the EABI).  But it
1998
   seems simpler to view the standard ABIs as forms of EABI that do not
1999
   allocate floating-point registers.
2000
 
2001
   So for the standard ABIs, the first N words are allocated to integer
2002
   registers, and function_arg decides on an argument-by-argument basis
2003
   whether that argument should really go in an integer register, or in
2004
   a floating-point one.  */
2005
 
2006
typedef struct mips_args {
2007
  /* Always true for varargs functions.  Otherwise true if at least
2008
     one argument has been passed in an integer register.  */
2009
  int gp_reg_found;
2010
 
2011
  /* The number of arguments seen so far.  */
2012
  unsigned int arg_number;
2013
 
2014
  /* The number of integer registers used so far.  For all ABIs except
2015
     EABI, this is the number of words that have been added to the
2016
     argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
2017
  unsigned int num_gprs;
2018
 
2019
  /* For EABI, the number of floating-point registers used so far.  */
2020
  unsigned int num_fprs;
2021
 
2022
  /* The number of words passed on the stack.  */
2023
  unsigned int stack_words;
2024
 
2025
  /* On the mips16, we need to keep track of which floating point
2026
     arguments were passed in general registers, but would have been
2027
     passed in the FP regs if this were a 32 bit function, so that we
2028
     can move them to the FP regs if we wind up calling a 32 bit
2029
     function.  We record this information in fp_code, encoded in base
2030
     four.  A zero digit means no floating point argument, a one digit
2031
     means an SFmode argument, and a two digit means a DFmode argument,
2032
     and a three digit is not used.  The low order digit is the first
2033
     argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2034
     an SFmode argument.  ??? A more sophisticated approach will be
2035
     needed if MIPS_ABI != ABI_32.  */
2036
  int fp_code;
2037
 
2038
  /* True if the function has a prototype.  */
2039
  int prototype;
2040
} CUMULATIVE_ARGS;
2041
 
2042
/* Initialize a variable CUM of type CUMULATIVE_ARGS
2043
   for a call to a function whose data type is FNTYPE.
2044
   For a library call, FNTYPE is 0.  */
2045
 
2046
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2047
  init_cumulative_args (&CUM, FNTYPE, LIBNAME)                          \
2048
 
2049
/* Update the data in CUM to advance over an argument
2050
   of mode MODE and data type TYPE.
2051
   (TYPE is null for libcalls where that information may not be available.)  */
2052
 
2053
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)                    \
2054
  function_arg_advance (&CUM, MODE, TYPE, NAMED)
2055
 
2056
/* Determine where to put an argument to a function.
2057
   Value is zero to push the argument on the stack,
2058
   or a hard register in which to store the argument.
2059
 
2060
   MODE is the argument's machine mode.
2061
   TYPE is the data type of the argument (as a tree).
2062
    This is null for libcalls where that information may
2063
    not be available.
2064
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
2065
    the preceding args and about the function being called.
2066
   NAMED is nonzero if this argument is a named parameter
2067
    (otherwise it is an extra parameter matching an ellipsis).  */
2068
 
2069
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2070
  function_arg( &CUM, MODE, TYPE, NAMED)
2071
 
2072
#define FUNCTION_ARG_BOUNDARY function_arg_boundary
2073
 
2074
#define FUNCTION_ARG_PADDING(MODE, TYPE)                \
2075
  (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2076
 
2077
#define BLOCK_REG_PADDING(MODE, TYPE, FIRST)            \
2078
  (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2079
 
2080
/* True if using EABI and varargs can be passed in floating-point
2081
   registers.  Under these conditions, we need a more complex form
2082
   of va_list, which tracks GPR, FPR and stack arguments separately.  */
2083
#define EABI_FLOAT_VARARGS_P \
2084
        (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2085
 
2086
 
2087
/* Say that the epilogue uses the return address register.  Note that
2088
   in the case of sibcalls, the values "used by the epilogue" are
2089
   considered live at the start of the called function.  */
2090
#define EPILOGUE_USES(REGNO) ((REGNO) == 31)
2091
 
2092
/* Treat LOC as a byte offset from the stack pointer and round it up
2093
   to the next fully-aligned offset.  */
2094
#define MIPS_STACK_ALIGN(LOC) \
2095
  (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2096
 
2097
 
2098
/* Implement `va_start' for varargs and stdarg.  */
2099
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2100
  mips_va_start (valist, nextarg)
2101
 
2102
/* Output assembler code to FILE to increment profiler label # LABELNO
2103
   for profiling a function entry.  */
2104
 
2105
#define FUNCTION_PROFILER(FILE, LABELNO)                                \
2106
{                                                                       \
2107
  if (TARGET_MIPS16)                                                    \
2108
    sorry ("mips16 function profiling");                                \
2109
  fprintf (FILE, "\t.set\tnoat\n");                                     \
2110
  fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n",    \
2111
           reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]);  \
2112
  if (!TARGET_NEWABI)                                                   \
2113
    {                                                                   \
2114
      fprintf (FILE,                                                    \
2115
               "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from  stack\n", \
2116
               TARGET_64BIT ? "dsubu" : "subu",                         \
2117
               reg_names[STACK_POINTER_REGNUM],                         \
2118
               reg_names[STACK_POINTER_REGNUM],                         \
2119
               Pmode == DImode ? 16 : 8);                               \
2120
    }                                                                   \
2121
  fprintf (FILE, "\tjal\t_mcount\n");                                   \
2122
  fprintf (FILE, "\t.set\tat\n");                                       \
2123
}
2124
 
2125
/* No mips port has ever used the profiler counter word, so don't emit it
2126
   or the label for it.  */
2127
 
2128
#define NO_PROFILE_COUNTERS 1
2129
 
2130
/* Define this macro if the code for function profiling should come
2131
   before the function prologue.  Normally, the profiling code comes
2132
   after.  */
2133
 
2134
/* #define PROFILE_BEFORE_PROLOGUE */
2135
 
2136
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2137
   the stack pointer does not matter.  The value is tested only in
2138
   functions that have frame pointers.
2139
   No definition is equivalent to always zero.  */
2140
 
2141
#define EXIT_IGNORE_STACK 1
2142
 
2143
 
2144
/* A C statement to output, on the stream FILE, assembler code for a
2145
   block of data that contains the constant parts of a trampoline.
2146
   This code should not include a label--the label is taken care of
2147
   automatically.  */
2148
 
2149
#define TRAMPOLINE_TEMPLATE(STREAM)                                      \
2150
{                                                                        \
2151
  fprintf (STREAM, "\t.word\t0x03e00821\t\t# move   $1,$31\n");         \
2152
  fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");         \
2153
  fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n");                   \
2154
  if (ptr_mode == DImode)                                               \
2155
    {                                                                   \
2156
      fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld     $3,20($31)\n"); \
2157
      fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld     $2,28($31)\n"); \
2158
    }                                                                   \
2159
  else                                                                  \
2160
    {                                                                   \
2161
      fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw     $3,20($31)\n"); \
2162
      fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw     $2,24($31)\n"); \
2163
    }                                                                   \
2164
  fprintf (STREAM, "\t.word\t0x0060c821\t\t# move   $25,$3 (abicalls)\n"); \
2165
  fprintf (STREAM, "\t.word\t0x00600008\t\t# jr     $3\n");             \
2166
  fprintf (STREAM, "\t.word\t0x0020f821\t\t# move   $31,$1\n");         \
2167
  if (ptr_mode == DImode)                                               \
2168
    {                                                                   \
2169
      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2170
      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2171
    }                                                                   \
2172
  else                                                                  \
2173
    {                                                                   \
2174
      fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2175
      fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2176
    }                                                                   \
2177
}
2178
 
2179
/* A C expression for the size in bytes of the trampoline, as an
2180
   integer.  */
2181
 
2182
#define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
2183
 
2184
/* Alignment required for trampolines, in bits.  */
2185
 
2186
#define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
2187
 
2188
/* INITIALIZE_TRAMPOLINE calls this library function to flush
2189
   program and data caches.  */
2190
 
2191
#ifndef CACHE_FLUSH_FUNC
2192
#define CACHE_FLUSH_FUNC "_flush_cache"
2193
#endif
2194
 
2195
/* A C statement to initialize the variable parts of a trampoline.
2196
   ADDR is an RTX for the address of the trampoline; FNADDR is an
2197
   RTX for the address of the nested function; STATIC_CHAIN is an
2198
   RTX for the static chain value that should be passed to the
2199
   function when it is called.  */
2200
 
2201
#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN)                            \
2202
{                                                                           \
2203
  rtx func_addr, chain_addr;                                                \
2204
                                                                            \
2205
  func_addr = plus_constant (ADDR, 32);                                     \
2206
  chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode));         \
2207
  emit_move_insn (gen_rtx_MEM (ptr_mode, func_addr), FUNC);                 \
2208
  emit_move_insn (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN);               \
2209
                                                                            \
2210
  /* Flush both caches.  We need to flush the data cache in case            \
2211
     the system has a write-back cache.  */                                 \
2212
  /* ??? Should check the return value for errors.  */                      \
2213
  if (mips_cache_flush_func && mips_cache_flush_func[0])             \
2214
    emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),   \
2215
                       0, VOIDmode, 3, ADDR, Pmode,                          \
2216
                       GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2217
                       GEN_INT (3), TYPE_MODE (integer_type_node));         \
2218
}
2219
 
2220
/* Addressing modes, and classification of registers for them.  */
2221
 
2222
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
2223
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2224
  mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2225
 
2226
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2227
   and check its validity for a certain class.
2228
   We have two alternate definitions for each of them.
2229
   The usual definition accepts all pseudo regs; the other rejects them all.
2230
   The symbol REG_OK_STRICT causes the latter definition to be used.
2231
 
2232
   Most source files want to accept pseudo regs in the hope that
2233
   they will get allocated to the class that the insn wants them to be in.
2234
   Some source files that are used after register allocation
2235
   need to be strict.  */
2236
 
2237
#ifndef REG_OK_STRICT
2238
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2239
  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2240
#else
2241
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2242
  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2243
#endif
2244
 
2245
#define REG_OK_FOR_INDEX_P(X) 0
2246
 
2247
 
2248
/* Maximum number of registers that can appear in a valid memory address.  */
2249
 
2250
#define MAX_REGS_PER_ADDRESS 1
2251
 
2252
#ifdef REG_OK_STRICT
2253
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2254
{                                               \
2255
  if (mips_legitimate_address_p (MODE, X, 1))   \
2256
    goto ADDR;                                  \
2257
}
2258
#else
2259
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2260
{                                               \
2261
  if (mips_legitimate_address_p (MODE, X, 0))    \
2262
    goto ADDR;                                  \
2263
}
2264
#endif
2265
 
2266
/* Check for constness inline but use mips_legitimate_address_p
2267
   to check whether a constant really is an address.  */
2268
 
2269
#define CONSTANT_ADDRESS_P(X) \
2270
  (CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
2271
 
2272
#define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2273
 
2274
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)                     \
2275
  do {                                                          \
2276
    if (mips_legitimize_address (&(X), MODE))                   \
2277
      goto WIN;                                                 \
2278
  } while (0)
2279
 
2280
 
2281
/* A C statement or compound statement with a conditional `goto
2282
   LABEL;' executed if memory address X (an RTX) can have different
2283
   meanings depending on the machine mode of the memory reference it
2284
   is used for.
2285
 
2286
   Autoincrement and autodecrement addresses typically have
2287
   mode-dependent effects because the amount of the increment or
2288
   decrement is the size of the operand being addressed.  Some
2289
   machines have other mode-dependent addresses.  Many RISC machines
2290
   have no mode-dependent addresses.
2291
 
2292
   You may assume that ADDR is a valid address for the machine.  */
2293
 
2294
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2295
 
2296
/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2297
   'the start of the function that this code is output in'.  */
2298
 
2299
#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
2300
  if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)                          \
2301
    asm_fprintf ((FILE), "%U%s",                                        \
2302
                 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));   \
2303
  else                                                                  \
2304
    asm_fprintf ((FILE), "%U%s", (NAME))
2305
 
2306
/* Flag to mark a function decl symbol that requires a long call.  */
2307
#define SYMBOL_FLAG_LONG_CALL   (SYMBOL_FLAG_MACH_DEP << 0)
2308
#define SYMBOL_REF_LONG_CALL_P(X)                                       \
2309
  ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2310
 
2311
/* Specify the machine mode that this machine uses
2312
   for the index in the tablejump instruction.
2313
   ??? Using HImode in mips16 mode can cause overflow.  */
2314
#define CASE_VECTOR_MODE \
2315
  (TARGET_MIPS16 ? HImode : ptr_mode)
2316
 
2317
/* Define as C expression which evaluates to nonzero if the tablejump
2318
   instruction expects the table to contain offsets from the address of the
2319
   table.
2320
   Do not define this if the table should contain absolute addresses.  */
2321
#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
2322
 
2323
/* Define this as 1 if `char' should by default be signed; else as 0.  */
2324
#ifndef DEFAULT_SIGNED_CHAR
2325
#define DEFAULT_SIGNED_CHAR 1
2326
#endif
2327
 
2328
/* Max number of bytes we can move from memory to memory
2329
   in one reasonably fast instruction.  */
2330
#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2331
#define MAX_MOVE_MAX 8
2332
 
2333
/* Define this macro as a C expression which is nonzero if
2334
   accessing less than a word of memory (i.e. a `char' or a
2335
   `short') is no faster than accessing a word of memory, i.e., if
2336
   such access require more than one instruction or if there is no
2337
   difference in cost between byte and (aligned) word loads.
2338
 
2339
   On RISC machines, it tends to generate better code to define
2340
   this as 1, since it avoids making a QI or HI mode register.  */
2341
#define SLOW_BYTE_ACCESS 1
2342
 
2343
/* Define this to be nonzero if shift instructions ignore all but the low-order
2344
   few bits.  */
2345
#define SHIFT_COUNT_TRUNCATED 1
2346
 
2347
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2348
   is done just by pretending it is already truncated.  */
2349
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2350
  (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2351
 
2352
 
2353
/* Specify the machine mode that pointers have.
2354
   After generation of rtl, the compiler makes no further distinction
2355
   between pointers and any other objects of this machine mode.  */
2356
 
2357
#ifndef Pmode
2358
#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2359
#endif
2360
 
2361
/* Give call MEMs SImode since it is the "most permissive" mode
2362
   for both 32-bit and 64-bit targets.  */
2363
 
2364
#define FUNCTION_MODE SImode
2365
 
2366
 
2367
/* The cost of loading values from the constant pool.  It should be
2368
   larger than the cost of any constant we want to synthesize in-line.  */
2369
 
2370
#define CONSTANT_POOL_COST COSTS_N_INSNS (8)
2371
 
2372
/* A C expression for the cost of moving data from a register in
2373
   class FROM to one in class TO.  The classes are expressed using
2374
   the enumeration values such as `GENERAL_REGS'.  A value of 2 is
2375
   the default; other values are interpreted relative to that.
2376
 
2377
   It is not required that the cost always equal 2 when FROM is the
2378
   same as TO; on some machines it is expensive to move between
2379
   registers if they are not general registers.
2380
 
2381
   If reload sees an insn consisting of a single `set' between two
2382
   hard registers, and if `REGISTER_MOVE_COST' applied to their
2383
   classes returns a value of 2, reload does not check to ensure
2384
   that the constraints of the insn are met.  Setting a cost of
2385
   other than 2 will allow reload to verify that the constraints are
2386
   met.  You should do this if the `movM' pattern's constraints do
2387
   not allow such copying.  */
2388
 
2389
#define REGISTER_MOVE_COST(MODE, FROM, TO)                              \
2390
  mips_register_move_cost (MODE, FROM, TO)
2391
 
2392
#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2393
  (mips_cost->memory_latency                    \
2394
   + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2395
 
2396
/* Define if copies to/from condition code registers should be avoided.
2397
 
2398
   This is needed for the MIPS because reload_outcc is not complete;
2399
   it needs to handle cases where the source is a general or another
2400
   condition code register.  */
2401
#define AVOID_CCMODE_COPIES
2402
 
2403
/* A C expression for the cost of a branch instruction.  A value of
2404
   1 is the default; other values are interpreted relative to that.  */
2405
 
2406
#define BRANCH_COST mips_cost->branch_cost
2407
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2408
 
2409
/* If defined, modifies the length assigned to instruction INSN as a
2410
   function of the context in which it is used.  LENGTH is an lvalue
2411
   that contains the initially computed length of the insn and should
2412
   be updated with the correct length of the insn.  */
2413
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2414
  ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2415
 
2416
/* Control the assembler format that we output.  */
2417
 
2418
/* Output to assembler file text saying following lines
2419
   may contain character constants, extra white space, comments, etc.  */
2420
 
2421
#ifndef ASM_APP_ON
2422
#define ASM_APP_ON " #APP\n"
2423
#endif
2424
 
2425
/* Output to assembler file text saying following lines
2426
   no longer contain unusual constructs.  */
2427
 
2428
#ifndef ASM_APP_OFF
2429
#define ASM_APP_OFF " #NO_APP\n"
2430
#endif
2431
 
2432
#define REGISTER_NAMES                                                     \
2433
{ "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",            \
2434
  "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",           \
2435
  "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",           \
2436
  "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",           \
2437
  "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",           \
2438
  "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",          \
2439
  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",          \
2440
  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",          \
2441
  "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",         \
2442
  "$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec",              \
2443
  "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
2444
  "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2445
  "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2446
  "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2447
  "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
2448
  "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2449
  "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2450
  "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2451
  "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
2452
  "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2453
  "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2454
  "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2455
  "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2456
  "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2457
 
2458
/* List the "software" names for each register.  Also list the numerical
2459
   names for $fp and $sp.  */
2460
 
2461
#define ADDITIONAL_REGISTER_NAMES                                       \
2462
{                                                                       \
2463
  { "$29",      29 + GP_REG_FIRST },                                    \
2464
  { "$30",      30 + GP_REG_FIRST },                                    \
2465
  { "at",        1 + GP_REG_FIRST },                                    \
2466
  { "v0",        2 + GP_REG_FIRST },                                    \
2467
  { "v1",        3 + GP_REG_FIRST },                                    \
2468
  { "a0",        4 + GP_REG_FIRST },                                    \
2469
  { "a1",        5 + GP_REG_FIRST },                                    \
2470
  { "a2",        6 + GP_REG_FIRST },                                    \
2471
  { "a3",        7 + GP_REG_FIRST },                                    \
2472
  { "t0",        8 + GP_REG_FIRST },                                    \
2473
  { "t1",        9 + GP_REG_FIRST },                                    \
2474
  { "t2",       10 + GP_REG_FIRST },                                    \
2475
  { "t3",       11 + GP_REG_FIRST },                                    \
2476
  { "t4",       12 + GP_REG_FIRST },                                    \
2477
  { "t5",       13 + GP_REG_FIRST },                                    \
2478
  { "t6",       14 + GP_REG_FIRST },                                    \
2479
  { "t7",       15 + GP_REG_FIRST },                                    \
2480
  { "s0",       16 + GP_REG_FIRST },                                    \
2481
  { "s1",       17 + GP_REG_FIRST },                                    \
2482
  { "s2",       18 + GP_REG_FIRST },                                    \
2483
  { "s3",       19 + GP_REG_FIRST },                                    \
2484
  { "s4",       20 + GP_REG_FIRST },                                    \
2485
  { "s5",       21 + GP_REG_FIRST },                                    \
2486
  { "s6",       22 + GP_REG_FIRST },                                    \
2487
  { "s7",       23 + GP_REG_FIRST },                                    \
2488
  { "t8",       24 + GP_REG_FIRST },                                    \
2489
  { "t9",       25 + GP_REG_FIRST },                                    \
2490
  { "k0",       26 + GP_REG_FIRST },                                    \
2491
  { "k1",       27 + GP_REG_FIRST },                                    \
2492
  { "gp",       28 + GP_REG_FIRST },                                    \
2493
  { "sp",       29 + GP_REG_FIRST },                                    \
2494
  { "fp",       30 + GP_REG_FIRST },                                    \
2495
  { "ra",       31 + GP_REG_FIRST },                                    \
2496
  ALL_COP_ADDITIONAL_REGISTER_NAMES                                     \
2497
}
2498
 
2499
/* This is meant to be redefined in the host dependent files.  It is a
2500
   set of alternative names and regnums for mips coprocessors.  */
2501
 
2502
#define ALL_COP_ADDITIONAL_REGISTER_NAMES
2503
 
2504
/* A C compound statement to output to stdio stream STREAM the
2505
   assembler syntax for an instruction operand X.  X is an RTL
2506
   expression.
2507
 
2508
   CODE is a value that can be used to specify one of several ways
2509
   of printing the operand.  It is used when identical operands
2510
   must be printed differently depending on the context.  CODE
2511
   comes from the `%' specification that was used to request
2512
   printing of the operand.  If the specification was just `%DIGIT'
2513
   then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2514
   is the ASCII code for LTR.
2515
 
2516
   If X is a register, this macro should print the register's name.
2517
   The names can be found in an array `reg_names' whose type is
2518
   `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.
2519
 
2520
   When the machine description has a specification `%PUNCT' (a `%'
2521
   followed by a punctuation character), this macro is called with
2522
   a null pointer for X and the punctuation character for CODE.
2523
 
2524
   See mips.c for the MIPS specific codes.  */
2525
 
2526
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2527
 
2528
/* A C expression which evaluates to true if CODE is a valid
2529
   punctuation character for use in the `PRINT_OPERAND' macro.  If
2530
   `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
2531
   punctuation characters (except for the standard one, `%') are
2532
   used in this way.  */
2533
 
2534
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2535
 
2536
/* A C compound statement to output to stdio stream STREAM the
2537
   assembler syntax for an instruction operand that is a memory
2538
   reference whose address is ADDR.  ADDR is an RTL expression.  */
2539
 
2540
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2541
 
2542
 
2543
/* A C statement, to be executed after all slot-filler instructions
2544
   have been output.  If necessary, call `dbr_sequence_length' to
2545
   determine the number of slots filled in a sequence (zero if not
2546
   currently outputting a sequence), to decide how many no-ops to
2547
   output, or whatever.
2548
 
2549
   Don't define this macro if it has nothing to do, but it is
2550
   helpful in reading assembly output if the extent of the delay
2551
   sequence is made explicit (e.g. with white space).
2552
 
2553
   Note that output routines for instructions with delay slots must
2554
   be prepared to deal with not being output as part of a sequence
2555
   (i.e.  when the scheduling pass is not run, or when no slot
2556
   fillers could be found.)  The variable `final_sequence' is null
2557
   when not processing a sequence, otherwise it contains the
2558
   `sequence' rtx being output.  */
2559
 
2560
#define DBR_OUTPUT_SEQEND(STREAM)                                       \
2561
do                                                                      \
2562
  {                                                                     \
2563
    if (set_nomacro > 0 && --set_nomacro == 0)                            \
2564
      fputs ("\t.set\tmacro\n", STREAM);                                \
2565
                                                                        \
2566
    if (set_noreorder > 0 && --set_noreorder == 0)                        \
2567
      fputs ("\t.set\treorder\n", STREAM);                              \
2568
                                                                        \
2569
    fputs ("\n", STREAM);                                               \
2570
  }                                                                     \
2571
while (0)
2572
 
2573
 
2574
/* How to tell the debugger about changes of source files.  */
2575
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)                        \
2576
  mips_output_filename (STREAM, NAME)
2577
 
2578
/* mips-tfile does not understand .stabd directives.  */
2579
#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do {      \
2580
  dbxout_begin_stabn_sline (LINE);                              \
2581
  dbxout_stab_value_internal_label ("LM", &COUNTER);            \
2582
} while (0)
2583
 
2584
/* Use .loc directives for SDB line numbers.  */
2585
#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE)                    \
2586
  fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2587
 
2588
/* The MIPS implementation uses some labels for its own purpose.  The
2589
   following lists what labels are created, and are all formed by the
2590
   pattern $L[a-z].*.  The machine independent portion of GCC creates
2591
   labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
2592
 
2593
        LM[0-9]+        Silicon Graphics/ECOFF stabs label before each stmt.
2594
        $Lb[0-9]+       Begin blocks for MIPS debug support
2595
        $Lc[0-9]+       Label for use in s<xx> operation.
2596
        $Le[0-9]+       End blocks for MIPS debug support  */
2597
 
2598
#undef ASM_DECLARE_OBJECT_NAME
2599
#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2600
  mips_declare_object (STREAM, NAME, "", ":\n", 0)
2601
 
2602
/* Globalizing directive for a label.  */
2603
#define GLOBAL_ASM_OP "\t.globl\t"
2604
 
2605
/* This says how to define a global common symbol.  */
2606
 
2607
#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2608
 
2609
/* This says how to define a local common symbol (i.e., not visible to
2610
   linker).  */
2611
 
2612
#ifndef ASM_OUTPUT_ALIGNED_LOCAL
2613
#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2614
  mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2615
#endif
2616
 
2617
/* This says how to output an external.  It would be possible not to
2618
   output anything and let undefined symbol become external. However
2619
   the assembler uses length information on externals to allocate in
2620
   data/sdata bss/sbss, thereby saving exec time.  */
2621
 
2622
#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2623
  mips_output_external(STREAM,DECL,NAME)
2624
 
2625
/* This is how to declare a function name.  The actual work of
2626
   emitting the label is moved to function_prologue, so that we can
2627
   get the line number correctly emitted before the .ent directive,
2628
   and after any .file directives.  Define as empty so that the function
2629
   is not declared before the .ent directive elsewhere.  */
2630
 
2631
#undef ASM_DECLARE_FUNCTION_NAME
2632
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2633
 
2634
#ifndef FUNCTION_NAME_ALREADY_DECLARED
2635
#define FUNCTION_NAME_ALREADY_DECLARED 0
2636
#endif
2637
 
2638
/* This is how to store into the string LABEL
2639
   the symbol_ref name of an internal numbered label where
2640
   PREFIX is the class of label and NUM is the number within the class.
2641
   This is suitable for output with `assemble_name'.  */
2642
 
2643
#undef ASM_GENERATE_INTERNAL_LABEL
2644
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)                   \
2645
  sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2646
 
2647
/* This is how to output an element of a case-vector that is absolute.  */
2648
 
2649
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)                          \
2650
  fprintf (STREAM, "\t%s\t%sL%d\n",                                     \
2651
           ptr_mode == DImode ? ".dword" : ".word",                     \
2652
           LOCAL_LABEL_PREFIX,                                          \
2653
           VALUE)
2654
 
2655
/* This is how to output an element of a case-vector.  We can make the
2656
   entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2657
   is supported.  */
2658
 
2659
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)              \
2660
do {                                                                    \
2661
  if (TARGET_MIPS16)                                                    \
2662
    fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",                          \
2663
             LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);       \
2664
  else if (TARGET_GPWORD)                                               \
2665
    fprintf (STREAM, "\t%s\t%sL%d\n",                                   \
2666
             ptr_mode == DImode ? ".gpdword" : ".gpword",               \
2667
             LOCAL_LABEL_PREFIX, VALUE);                                \
2668
  else                                                                  \
2669
    fprintf (STREAM, "\t%s\t%sL%d\n",                                   \
2670
             ptr_mode == DImode ? ".dword" : ".word",                   \
2671
             LOCAL_LABEL_PREFIX, VALUE);                                \
2672
} while (0)
2673
 
2674
/* When generating MIPS16 code, we want the jump table to be in the text
2675
   section so that we can load its address using a PC-relative addition.  */
2676
#define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16
2677
 
2678
/* This is how to output an assembler line
2679
   that says to advance the location counter
2680
   to a multiple of 2**LOG bytes.  */
2681
 
2682
#define ASM_OUTPUT_ALIGN(STREAM,LOG)                                    \
2683
  fprintf (STREAM, "\t.align\t%d\n", (LOG))
2684
 
2685
/* This is how to output an assembler line to advance the location
2686
   counter by SIZE bytes.  */
2687
 
2688
#undef ASM_OUTPUT_SKIP
2689
#define ASM_OUTPUT_SKIP(STREAM,SIZE)                                    \
2690
  fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2691
 
2692
/* This is how to output a string.  */
2693
#undef ASM_OUTPUT_ASCII
2694
#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN)                           \
2695
  mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
2696
 
2697
/* Output #ident as a in the read-only data section.  */
2698
#undef  ASM_OUTPUT_IDENT
2699
#define ASM_OUTPUT_IDENT(FILE, STRING)                                  \
2700
{                                                                       \
2701
  const char *p = STRING;                                               \
2702
  int size = strlen (p) + 1;                                            \
2703
  readonly_data_section ();                                             \
2704
  assemble_string (p, size);                                            \
2705
}
2706
 
2707
/* Default to -G 8 */
2708
#ifndef MIPS_DEFAULT_GVALUE
2709
#define MIPS_DEFAULT_GVALUE 8
2710
#endif
2711
 
2712
/* Define the strings to put out for each section in the object file.  */
2713
#define TEXT_SECTION_ASM_OP     "\t.text"       /* instructions */
2714
#define DATA_SECTION_ASM_OP     "\t.data"       /* large data */
2715
#define SDATA_SECTION_ASM_OP    "\t.sdata"      /* small data */
2716
 
2717
#undef READONLY_DATA_SECTION_ASM_OP
2718
#define READONLY_DATA_SECTION_ASM_OP    "\t.rdata"      /* read-only data */
2719
 
2720
#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)                               \
2721
do                                                                      \
2722
  {                                                                     \
2723
    fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n",                 \
2724
             TARGET_64BIT ? "dsubu" : "subu",                           \
2725
             reg_names[STACK_POINTER_REGNUM],                           \
2726
             reg_names[STACK_POINTER_REGNUM],                           \
2727
             TARGET_64BIT ? "sd" : "sw",                                \
2728
             reg_names[REGNO],                                          \
2729
             reg_names[STACK_POINTER_REGNUM]);                          \
2730
  }                                                                     \
2731
while (0)
2732
 
2733
#define ASM_OUTPUT_REG_POP(STREAM,REGNO)                                \
2734
do                                                                      \
2735
  {                                                                     \
2736
    if (! set_noreorder)                                                \
2737
      fprintf (STREAM, "\t.set\tnoreorder\n");                          \
2738
                                                                        \
2739
    fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",                 \
2740
             TARGET_64BIT ? "ld" : "lw",                                \
2741
             reg_names[REGNO],                                          \
2742
             reg_names[STACK_POINTER_REGNUM],                           \
2743
             TARGET_64BIT ? "daddu" : "addu",                           \
2744
             reg_names[STACK_POINTER_REGNUM],                           \
2745
             reg_names[STACK_POINTER_REGNUM]);                          \
2746
                                                                        \
2747
    if (! set_noreorder)                                                \
2748
      fprintf (STREAM, "\t.set\treorder\n");                            \
2749
  }                                                                     \
2750
while (0)
2751
 
2752
/* How to start an assembler comment.
2753
   The leading space is important (the mips native assembler requires it).  */
2754
#ifndef ASM_COMMENT_START
2755
#define ASM_COMMENT_START " #"
2756
#endif
2757
 
2758
/* Default definitions for size_t and ptrdiff_t.  We must override the
2759
   definitions from ../svr4.h on mips-*-linux-gnu.  */
2760
 
2761
#undef SIZE_TYPE
2762
#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2763
 
2764
#undef PTRDIFF_TYPE
2765
#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2766
 
2767
#ifndef __mips16
2768
/* Since the bits of the _init and _fini function is spread across
2769
   many object files, each potentially with its own GP, we must assume
2770
   we need to load our GP.  We don't preserve $gp or $ra, since each
2771
   init/fini chunk is supposed to initialize $gp, and crti/crtn
2772
   already take care of preserving $ra and, when appropriate, $gp.  */
2773
#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2774
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)      \
2775
   asm (SECTION_OP "\n\
2776
        .set noreorder\n\
2777
        bal 1f\n\
2778
        nop\n\
2779
1:      .cpload $31\n\
2780
        .set reorder\n\
2781
        jal " USER_LABEL_PREFIX #FUNC "\n\
2782
        " TEXT_SECTION_ASM_OP);
2783
#endif /* Switch to #elif when we're no longer limited by K&R C.  */
2784
#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2785
   || (defined _ABI64 && _MIPS_SIM == _ABI64)
2786
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)      \
2787
   asm (SECTION_OP "\n\
2788
        .set noreorder\n\
2789
        bal 1f\n\
2790
        nop\n\
2791
1:      .set reorder\n\
2792
        .cpsetup $31, $2, 1b\n\
2793
        jal " USER_LABEL_PREFIX #FUNC "\n\
2794
        " TEXT_SECTION_ASM_OP);
2795
#endif
2796
#endif
2797
 
2798
#ifndef HAVE_AS_TLS
2799
#define HAVE_AS_TLS 0
2800
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.