OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [mips/] [mips.md] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
;;  Mips.md          Machine Description for MIPS based processors
2
;;  Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3
;;  1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
;;  Contributed by   A. Lichnewsky, lich@inria.inria.fr
5
;;  Changes by       Michael Meissner, meissner@osf.org
6
;;  64 bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
7
;;  Brendan Eich, brendan@microunity.com.
8
 
9
;; This file is part of GCC.
10
 
11
;; GCC is free software; you can redistribute it and/or modify
12
;; it under the terms of the GNU General Public License as published by
13
;; the Free Software Foundation; either version 2, or (at your option)
14
;; any later version.
15
 
16
;; GCC is distributed in the hope that it will be useful,
17
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19
;; GNU General Public License for more details.
20
 
21
;; You should have received a copy of the GNU General Public License
22
;; along with GCC; see the file COPYING.  If not, write to
23
;; the Free Software Foundation, 51 Franklin Street, Fifth Floor,
24
;; Boston, MA 02110-1301, USA.
25
 
26
(define_constants
27
  [(UNSPEC_LOAD_DF_LOW           0)
28
   (UNSPEC_LOAD_DF_HIGH          1)
29
   (UNSPEC_STORE_DF_HIGH         2)
30
   (UNSPEC_GET_FNADDR            3)
31
   (UNSPEC_BLOCKAGE              4)
32
   (UNSPEC_CPRESTORE             5)
33
   (UNSPEC_EH_RECEIVER           6)
34
   (UNSPEC_EH_RETURN             7)
35
   (UNSPEC_CONSTTABLE_INT        8)
36
   (UNSPEC_CONSTTABLE_FLOAT      9)
37
   (UNSPEC_ALIGN                14)
38
   (UNSPEC_HIGH                 17)
39
   (UNSPEC_LOAD_LEFT            18)
40
   (UNSPEC_LOAD_RIGHT           19)
41
   (UNSPEC_STORE_LEFT           20)
42
   (UNSPEC_STORE_RIGHT          21)
43
   (UNSPEC_LOADGP               22)
44
   (UNSPEC_LOAD_CALL            23)
45
   (UNSPEC_LOAD_GOT             24)
46
   (UNSPEC_GP                   25)
47
   (UNSPEC_MFHILO               26)
48
   (UNSPEC_TLS_LDM              27)
49
   (UNSPEC_TLS_GET_TP           28)
50
 
51
   (UNSPEC_ADDRESS_FIRST        100)
52
 
53
   (FAKE_CALL_REGNO             79)
54
 
55
   ;; For MIPS Paired-Singled Floating Point Instructions.
56
 
57
   (UNSPEC_MOVE_TF_PS           200)
58
   (UNSPEC_C                    201)
59
 
60
   ;; MIPS64/MIPS32R2 alnv.ps
61
   (UNSPEC_ALNV_PS              202)
62
 
63
   ;; MIPS-3D instructions
64
   (UNSPEC_CABS                 203)
65
 
66
   (UNSPEC_ADDR_PS              204)
67
   (UNSPEC_CVT_PW_PS            205)
68
   (UNSPEC_CVT_PS_PW            206)
69
   (UNSPEC_MULR_PS              207)
70
 
71
   (UNSPEC_RSQRT1               208)
72
   (UNSPEC_RSQRT2               209)
73
   (UNSPEC_RECIP1               210)
74
   (UNSPEC_RECIP2               211)
75
 
76
   ;; MIPS DSP ASE Revision 0.98 3/24/2005
77
   (UNSPEC_ADDQ                 300)
78
   (UNSPEC_ADDQ_S               301)
79
   (UNSPEC_SUBQ                 302)
80
   (UNSPEC_SUBQ_S               303)
81
   (UNSPEC_ADDSC                304)
82
   (UNSPEC_ADDWC                305)
83
   (UNSPEC_MODSUB               306)
84
   (UNSPEC_RADDU_W_QB           307)
85
   (UNSPEC_ABSQ_S               308)
86
   (UNSPEC_PRECRQ_QB_PH         309)
87
   (UNSPEC_PRECRQ_PH_W          310)
88
   (UNSPEC_PRECRQ_RS_PH_W       311)
89
   (UNSPEC_PRECRQU_S_QB_PH      312)
90
   (UNSPEC_PRECEQ_W_PHL         313)
91
   (UNSPEC_PRECEQ_W_PHR         314)
92
   (UNSPEC_PRECEQU_PH_QBL       315)
93
   (UNSPEC_PRECEQU_PH_QBR       316)
94
   (UNSPEC_PRECEQU_PH_QBLA      317)
95
   (UNSPEC_PRECEQU_PH_QBRA      318)
96
   (UNSPEC_PRECEU_PH_QBL        319)
97
   (UNSPEC_PRECEU_PH_QBR        320)
98
   (UNSPEC_PRECEU_PH_QBLA       321)
99
   (UNSPEC_PRECEU_PH_QBRA       322)
100
   (UNSPEC_SHLL                 323)
101
   (UNSPEC_SHLL_S               324)
102
   (UNSPEC_SHRL_QB              325)
103
   (UNSPEC_SHRA_PH              326)
104
   (UNSPEC_SHRA_R               327)
105
   (UNSPEC_MULEU_S_PH_QBL       328)
106
   (UNSPEC_MULEU_S_PH_QBR       329)
107
   (UNSPEC_MULQ_RS_PH           330)
108
   (UNSPEC_MULEQ_S_W_PHL        331)
109
   (UNSPEC_MULEQ_S_W_PHR        332)
110
   (UNSPEC_DPAU_H_QBL           333)
111
   (UNSPEC_DPAU_H_QBR           334)
112
   (UNSPEC_DPSU_H_QBL           335)
113
   (UNSPEC_DPSU_H_QBR           336)
114
   (UNSPEC_DPAQ_S_W_PH          337)
115
   (UNSPEC_DPSQ_S_W_PH          338)
116
   (UNSPEC_MULSAQ_S_W_PH        339)
117
   (UNSPEC_DPAQ_SA_L_W          340)
118
   (UNSPEC_DPSQ_SA_L_W          341)
119
   (UNSPEC_MAQ_S_W_PHL          342)
120
   (UNSPEC_MAQ_S_W_PHR          343)
121
   (UNSPEC_MAQ_SA_W_PHL         344)
122
   (UNSPEC_MAQ_SA_W_PHR         345)
123
   (UNSPEC_BITREV               346)
124
   (UNSPEC_INSV                 347)
125
   (UNSPEC_REPL_QB              348)
126
   (UNSPEC_REPL_PH              349)
127
   (UNSPEC_CMP_EQ               350)
128
   (UNSPEC_CMP_LT               351)
129
   (UNSPEC_CMP_LE               352)
130
   (UNSPEC_CMPGU_EQ_QB          353)
131
   (UNSPEC_CMPGU_LT_QB          354)
132
   (UNSPEC_CMPGU_LE_QB          355)
133
   (UNSPEC_PICK                 356)
134
   (UNSPEC_PACKRL_PH            357)
135
   (UNSPEC_EXTR_W               358)
136
   (UNSPEC_EXTR_R_W             359)
137
   (UNSPEC_EXTR_RS_W            360)
138
   (UNSPEC_EXTR_S_H             361)
139
   (UNSPEC_EXTP                 362)
140
   (UNSPEC_EXTPDP               363)
141
   (UNSPEC_SHILO                364)
142
   (UNSPEC_MTHLIP               365)
143
   (UNSPEC_WRDSP                366)
144
   (UNSPEC_RDDSP                367)
145
  ]
146
)
147
 
148
(include "predicates.md")
149
 
150
;; ....................
151
;;
152
;;      Attributes
153
;;
154
;; ....................
155
 
156
(define_attr "got" "unset,xgot_high,load"
157
  (const_string "unset"))
158
 
159
;; For jal instructions, this attribute is DIRECT when the target address
160
;; is symbolic and INDIRECT when it is a register.
161
(define_attr "jal" "unset,direct,indirect"
162
  (const_string "unset"))
163
 
164
;; This attribute is YES if the instruction is a jal macro (not a
165
;; real jal instruction).
166
;;
167
;; jal is always a macro in SVR4 PIC since it includes an instruction to
168
;; restore $gp.  Direct jals are also macros in NewABI PIC since they
169
;; load the target address into $25.
170
(define_attr "jal_macro" "no,yes"
171
  (cond [(eq_attr "jal" "direct")
172
         (symbol_ref "TARGET_ABICALLS != 0")
173
         (eq_attr "jal" "indirect")
174
         (symbol_ref "(TARGET_ABICALLS && !TARGET_NEWABI) != 0")]
175
        (const_string "no")))
176
 
177
;; Classification of each insn.
178
;; branch       conditional branch
179
;; jump         unconditional jump
180
;; call         unconditional call
181
;; load         load instruction(s)
182
;; fpload       floating point load
183
;; fpidxload    floating point indexed load
184
;; store        store instruction(s)
185
;; fpstore      floating point store
186
;; fpidxstore   floating point indexed store
187
;; prefetch     memory prefetch (register + offset)
188
;; prefetchx    memory indexed prefetch (register + register)
189
;; condmove     conditional moves
190
;; xfer         transfer to/from coprocessor
191
;; mthilo       transfer to hi/lo registers
192
;; mfhilo       transfer from hi/lo registers
193
;; const        load constant
194
;; arith        integer arithmetic and logical instructions
195
;; shift        integer shift instructions
196
;; slt          set less than instructions
197
;; clz          the clz and clo instructions
198
;; trap         trap if instructions
199
;; imul         integer multiply 2 operands
200
;; imul3        integer multiply 3 operands
201
;; imadd        integer multiply-add
202
;; idiv         integer divide
203
;; fmove        floating point register move
204
;; fadd         floating point add/subtract
205
;; fmul         floating point multiply
206
;; fmadd        floating point multiply-add
207
;; fdiv         floating point divide
208
;; frdiv        floating point reciprocal divide
209
;; frdiv1       floating point reciprocal divide step 1
210
;; frdiv2       floating point reciprocal divide step 2
211
;; fabs         floating point absolute value
212
;; fneg         floating point negation
213
;; fcmp         floating point compare
214
;; fcvt         floating point convert
215
;; fsqrt        floating point square root
216
;; frsqrt       floating point reciprocal square root
217
;; frsqrt1      floating point reciprocal square root step1
218
;; frsqrt2      floating point reciprocal square root step2
219
;; multi        multiword sequence (or user asm statements)
220
;; nop          no operation
221
(define_attr "type"
222
  "unknown,branch,jump,call,load,fpload,fpidxload,store,fpstore,fpidxstore,prefetch,prefetchx,condmove,xfer,mthilo,mfhilo,const,arith,shift,slt,clz,trap,imul,imul3,imadd,idiv,fmove,fadd,fmul,fmadd,fdiv,frdiv,frdiv1,frdiv2,fabs,fneg,fcmp,fcvt,fsqrt,frsqrt,frsqrt1,frsqrt2,multi,nop"
223
  (cond [(eq_attr "jal" "!unset") (const_string "call")
224
         (eq_attr "got" "load") (const_string "load")]
225
        (const_string "unknown")))
226
 
227
;; Main data type used by the insn
228
(define_attr "mode" "unknown,none,QI,HI,SI,DI,SF,DF,FPSW"
229
  (const_string "unknown"))
230
 
231
;; Mode for conversion types (fcvt)
232
;; I2S          integer to float single (SI/DI to SF)
233
;; I2D          integer to float double (SI/DI to DF)
234
;; S2I          float to integer (SF to SI/DI)
235
;; D2I          float to integer (DF to SI/DI)
236
;; D2S          double to float single
237
;; S2D          float single to double
238
 
239
(define_attr "cnv_mode" "unknown,I2S,I2D,S2I,D2I,D2S,S2D"
240
  (const_string "unknown"))
241
 
242
;; Is this an extended instruction in mips16 mode?
243
(define_attr "extended_mips16" "no,yes"
244
  (const_string "no"))
245
 
246
;; Length of instruction in bytes.
247
(define_attr "length" ""
248
   (cond [;; Direct branch instructions have a range of [-0x40000,0x3fffc].
249
          ;; If a branch is outside this range, we have a choice of two
250
          ;; sequences.  For PIC, an out-of-range branch like:
251
          ;;
252
          ;;    bne     r1,r2,target
253
          ;;    dslot
254
          ;;
255
          ;; becomes the equivalent of:
256
          ;;
257
          ;;    beq     r1,r2,1f
258
          ;;    dslot
259
          ;;    la      $at,target
260
          ;;    jr      $at
261
          ;;    nop
262
          ;; 1:
263
          ;;
264
          ;; where the load address can be up to three instructions long
265
          ;; (lw, nop, addiu).
266
          ;;
267
          ;; The non-PIC case is similar except that we use a direct
268
          ;; jump instead of an la/jr pair.  Since the target of this
269
          ;; jump is an absolute 28-bit bit address (the other bits
270
          ;; coming from the address of the delay slot) this form cannot
271
          ;; cross a 256MB boundary.  We could provide the option of
272
          ;; using la/jr in this case too, but we do not do so at
273
          ;; present.
274
          ;;
275
          ;; Note that this value does not account for the delay slot
276
          ;; instruction, whose length is added separately.  If the RTL
277
          ;; pattern has no explicit delay slot, mips_adjust_insn_length
278
          ;; will add the length of the implicit nop.  The values for
279
          ;; forward and backward branches will be different as well.
280
          (eq_attr "type" "branch")
281
          (cond [(and (le (minus (match_dup 1) (pc)) (const_int 131064))
282
                      (le (minus (pc) (match_dup 1)) (const_int 131068)))
283
                  (const_int 4)
284
                 (ne (symbol_ref "flag_pic") (const_int 0))
285
                 (const_int 24)
286
                 ] (const_int 12))
287
 
288
          (eq_attr "got" "load")
289
          (const_int 4)
290
          (eq_attr "got" "xgot_high")
291
          (const_int 8)
292
 
293
          (eq_attr "type" "const")
294
          (symbol_ref "mips_const_insns (operands[1]) * 4")
295
          (eq_attr "type" "load,fpload")
296
          (symbol_ref "mips_fetch_insns (operands[1]) * 4")
297
          (eq_attr "type" "store,fpstore")
298
          (symbol_ref "mips_fetch_insns (operands[0]) * 4")
299
 
300
          ;; In the worst case, a call macro will take 8 instructions:
301
          ;;
302
          ;;     lui $25,%call_hi(FOO)
303
          ;;     addu $25,$25,$28
304
          ;;     lw $25,%call_lo(FOO)($25)
305
          ;;     nop
306
          ;;     jalr $25
307
          ;;     nop
308
          ;;     lw $gp,X($sp)
309
          ;;     nop
310
          (eq_attr "jal_macro" "yes")
311
          (const_int 32)
312
 
313
          (and (eq_attr "extended_mips16" "yes")
314
               (ne (symbol_ref "TARGET_MIPS16") (const_int 0)))
315
          (const_int 8)
316
 
317
          ;; Various VR4120 errata require a nop to be inserted after a macc
318
          ;; instruction.  The assembler does this for us, so account for
319
          ;; the worst-case length here.
320
          (and (eq_attr "type" "imadd")
321
               (ne (symbol_ref "TARGET_FIX_VR4120") (const_int 0)))
322
          (const_int 8)
323
 
324
          ;; VR4120 errata MD(4): if there are consecutive dmult instructions,
325
          ;; the result of the second one is missed.  The assembler should work
326
          ;; around this by inserting a nop after the first dmult.
327
          (and (eq_attr "type" "imul,imul3")
328
               (and (eq_attr "mode" "DI")
329
                    (ne (symbol_ref "TARGET_FIX_VR4120") (const_int 0))))
330
          (const_int 8)
331
 
332
          (eq_attr "type" "idiv")
333
          (symbol_ref "mips_idiv_insns () * 4")
334
          ] (const_int 4)))
335
 
336
;; Attribute describing the processor.  This attribute must match exactly
337
;; with the processor_type enumeration in mips.h.
338
(define_attr "cpu"
339
  "r3000,4kc,4kp,5kc,5kf,20kc,24k,24kx,m4k,r3900,r6000,r4000,r4100,r4111,r4120,r4130,r4300,r4600,r4650,r5000,r5400,r5500,r7000,r8000,r9000,sb1,sr71000"
340
  (const (symbol_ref "mips_tune")))
341
 
342
;; The type of hardware hazard associated with this instruction.
343
;; DELAY means that the next instruction cannot read the result
344
;; of this one.  HILO means that the next two instructions cannot
345
;; write to HI or LO.
346
(define_attr "hazard" "none,delay,hilo"
347
  (cond [(and (eq_attr "type" "load,fpload,fpidxload")
348
              (ne (symbol_ref "ISA_HAS_LOAD_DELAY") (const_int 0)))
349
         (const_string "delay")
350
 
351
         (and (eq_attr "type" "xfer")
352
              (ne (symbol_ref "ISA_HAS_XFER_DELAY") (const_int 0)))
353
         (const_string "delay")
354
 
355
         (and (eq_attr "type" "fcmp")
356
              (ne (symbol_ref "ISA_HAS_FCMP_DELAY") (const_int 0)))
357
         (const_string "delay")
358
 
359
         ;; The r4000 multiplication patterns include an mflo instruction.
360
         (and (eq_attr "type" "imul")
361
              (ne (symbol_ref "TARGET_FIX_R4000") (const_int 0)))
362
         (const_string "hilo")
363
 
364
         (and (eq_attr "type" "mfhilo")
365
              (eq (symbol_ref "ISA_HAS_HILO_INTERLOCKS") (const_int 0)))
366
         (const_string "hilo")]
367
        (const_string "none")))
368
 
369
;; Is it a single instruction?
370
(define_attr "single_insn" "no,yes"
371
  (symbol_ref "get_attr_length (insn) == (TARGET_MIPS16 ? 2 : 4)"))
372
 
373
;; Can the instruction be put into a delay slot?
374
(define_attr "can_delay" "no,yes"
375
  (if_then_else (and (eq_attr "type" "!branch,call,jump")
376
                     (and (eq_attr "hazard" "none")
377
                          (eq_attr "single_insn" "yes")))
378
                (const_string "yes")
379
                (const_string "no")))
380
 
381
;; Attribute defining whether or not we can use the branch-likely instructions
382
(define_attr "branch_likely" "no,yes"
383
  (const
384
   (if_then_else (ne (symbol_ref "GENERATE_BRANCHLIKELY") (const_int 0))
385
                 (const_string "yes")
386
                 (const_string "no"))))
387
 
388
;; True if an instruction might assign to hi or lo when reloaded.
389
;; This is used by the TUNE_MACC_CHAINS code.
390
(define_attr "may_clobber_hilo" "no,yes"
391
  (if_then_else (eq_attr "type" "imul,imul3,imadd,idiv,mthilo")
392
                (const_string "yes")
393
                (const_string "no")))
394
 
395
;; Describe a user's asm statement.
396
(define_asm_attributes
397
  [(set_attr "type" "multi")
398
   (set_attr "can_delay" "no")])
399
 
400
;; This mode macro allows 32-bit and 64-bit GPR patterns to be generated
401
;; from the same template.
402
(define_mode_macro GPR [SI (DI "TARGET_64BIT")])
403
 
404
;; This mode macro allows :P to be used for patterns that operate on
405
;; pointer-sized quantities.  Exactly one of the two alternatives will match.
406
(define_mode_macro P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
407
 
408
;; This mode macro allows :MOVECC to be used anywhere that a
409
;; conditional-move-type condition is needed.
410
(define_mode_macro MOVECC [SI (DI "TARGET_64BIT") (CC "TARGET_HARD_FLOAT")])
411
 
412
;; This mode macro allows the QI and HI extension patterns to be defined from
413
;; the same template.
414
(define_mode_macro SHORT [QI HI])
415
 
416
;; This mode macro allows :ANYF to be used wherever a scalar or vector
417
;; floating-point mode is allowed.
418
(define_mode_macro ANYF [(SF "TARGET_HARD_FLOAT")
419
                         (DF "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT")
420
                         (V2SF "TARGET_PAIRED_SINGLE_FLOAT")])
421
 
422
;; Like ANYF, but only applies to scalar modes.
423
(define_mode_macro SCALARF [(SF "TARGET_HARD_FLOAT")
424
                            (DF "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT")])
425
 
426
;; In GPR templates, a string like "subu" will expand to "subu" in the
427
;; 32-bit version and "dsubu" in the 64-bit version.
428
(define_mode_attr d [(SI "") (DI "d")])
429
 
430
;; This attribute gives the length suffix for a sign- or zero-extension
431
;; instruction.
432
(define_mode_attr size [(QI "b") (HI "h")])
433
 
434
;; This attributes gives the mode mask of a SHORT.
435
(define_mode_attr mask [(QI "0x00ff") (HI "0xffff")])
436
 
437
;; Mode attributes for GPR loads and stores.
438
(define_mode_attr load [(SI "lw") (DI "ld")])
439
(define_mode_attr store [(SI "sw") (DI "sd")])
440
 
441
;; Similarly for MIPS IV indexed FPR loads and stores.
442
(define_mode_attr loadx [(SF "lwxc1") (DF "ldxc1") (V2SF "ldxc1")])
443
(define_mode_attr storex [(SF "swxc1") (DF "sdxc1") (V2SF "sdxc1")])
444
 
445
;; The unextended ranges of the MIPS16 addiu and daddiu instructions
446
;; are different.  Some forms of unextended addiu have an 8-bit immediate
447
;; field but the equivalent daddiu has only a 5-bit field.
448
(define_mode_attr si8_di5 [(SI "8") (DI "5")])
449
 
450
;; This attribute gives the best constraint to use for registers of
451
;; a given mode.
452
(define_mode_attr reg [(SI "d") (DI "d") (CC "z")])
453
 
454
;; This attribute gives the format suffix for floating-point operations.
455
(define_mode_attr fmt [(SF "s") (DF "d") (V2SF "ps")])
456
 
457
;; This attribute gives the upper-case mode name for one unit of a
458
;; floating-point mode.
459
(define_mode_attr UNITMODE [(SF "SF") (DF "DF") (V2SF "SF")])
460
 
461
;; This attribute works around the early SB-1 rev2 core "F2" erratum:
462
;;
463
;; In certain cases, div.s and div.ps may have a rounding error
464
;; and/or wrong inexact flag.
465
;;
466
;; Therefore, we only allow div.s if not working around SB-1 rev2
467
;; errata or if a slight loss of precision is OK.
468
(define_mode_attr divide_condition
469
  [DF (SF "!TARGET_FIX_SB1 || flag_unsafe_math_optimizations")
470
   (V2SF "TARGET_SB1 && (!TARGET_FIX_SB1 || flag_unsafe_math_optimizations)")])
471
 
472
; This attribute gives the condition for which sqrt instructions exist.
473
(define_mode_attr sqrt_condition
474
  [(SF "!ISA_MIPS1") (DF "!ISA_MIPS1") (V2SF "TARGET_SB1")])
475
 
476
; This attribute gives the condition for which recip and rsqrt instructions
477
; exist.
478
(define_mode_attr recip_condition
479
  [(SF "ISA_HAS_FP4") (DF "ISA_HAS_FP4") (V2SF "TARGET_SB1")])
480
 
481
;; This code macro allows all branch instructions to be generated from
482
;; a single define_expand template.
483
(define_code_macro any_cond [unordered ordered unlt unge uneq ltgt unle ungt
484
                             eq ne gt ge lt le gtu geu ltu leu])
485
 
486
;; This code macro allows signed and unsigned widening multiplications
487
;; to use the same template.
488
(define_code_macro any_extend [sign_extend zero_extend])
489
 
490
;; This code macro allows the three shift instructions to be generated
491
;; from the same template.
492
(define_code_macro any_shift [ashift ashiftrt lshiftrt])
493
 
494
;; This code macro allows all native floating-point comparisons to be
495
;; generated from the same template.
496
(define_code_macro fcond [unordered uneq unlt unle eq lt le])
497
 
498
;; This code macro is used for comparisons that can be implemented
499
;; by swapping the operands.
500
(define_code_macro swapped_fcond [ge gt unge ungt])
501
 
502
;;  expands to an empty string when doing a signed operation and
503
;; "u" when doing an unsigned operation.
504
(define_code_attr u [(sign_extend "") (zero_extend "u")])
505
 
506
;;  is like , but the signed form expands to "s" rather than "".
507
(define_code_attr su [(sign_extend "s") (zero_extend "u")])
508
 
509
;;  expands to the name of the optab for a particular code.
510
(define_code_attr optab [(ashift "ashl")
511
                         (ashiftrt "ashr")
512
                         (lshiftrt "lshr")])
513
 
514
;;  expands to the name of the insn that implements a particular code.
515
(define_code_attr insn [(ashift "sll")
516
                        (ashiftrt "sra")
517
                        (lshiftrt "srl")])
518
 
519
;;  is the c.cond.fmt condition associated with a particular code.
520
(define_code_attr fcond [(unordered "un")
521
                         (uneq "ueq")
522
                         (unlt "ult")
523
                         (unle "ule")
524
                         (eq "eq")
525
                         (lt "lt")
526
                         (le "le")])
527
 
528
;; Similar, but for swapped conditions.
529
(define_code_attr swapped_fcond [(ge "le")
530
                                 (gt "lt")
531
                                 (unge "ule")
532
                                 (ungt "ult")])
533
 
534
;; .........................
535
;;
536
;;      Branch, call and jump delay slots
537
;;
538
;; .........................
539
 
540
(define_delay (and (eq_attr "type" "branch")
541
                   (eq (symbol_ref "TARGET_MIPS16") (const_int 0)))
542
  [(eq_attr "can_delay" "yes")
543
   (nil)
544
   (and (eq_attr "branch_likely" "yes")
545
        (eq_attr "can_delay" "yes"))])
546
 
547
(define_delay (eq_attr "type" "jump")
548
  [(eq_attr "can_delay" "yes")
549
   (nil)
550
   (nil)])
551
 
552
(define_delay (and (eq_attr "type" "call")
553
                   (eq_attr "jal_macro" "no"))
554
  [(eq_attr "can_delay" "yes")
555
   (nil)
556
   (nil)])
557
 
558
;; Pipeline descriptions.
559
;;
560
;; generic.md provides a fallback for processors without a specific
561
;; pipeline description.  It is derived from the old define_function_unit
562
;; version and uses the "alu" and "imuldiv" units declared below.
563
;;
564
;; Some of the processor-specific files are also derived from old
565
;; define_function_unit descriptions and simply override the parts of
566
;; generic.md that don't apply.  The other processor-specific files
567
;; are self-contained.
568
(define_automaton "alu,imuldiv")
569
 
570
(define_cpu_unit "alu" "alu")
571
(define_cpu_unit "imuldiv" "imuldiv")
572
 
573
(include "4k.md")
574
(include "5k.md")
575
(include "24k.md")
576
(include "3000.md")
577
(include "4000.md")
578
(include "4100.md")
579
(include "4130.md")
580
(include "4300.md")
581
(include "4600.md")
582
(include "5000.md")
583
(include "5400.md")
584
(include "5500.md")
585
(include "6000.md")
586
(include "7000.md")
587
(include "9000.md")
588
(include "sb1.md")
589
(include "sr71k.md")
590
(include "generic.md")
591
 
592
;;
593
;;  ....................
594
;;
595
;;      CONDITIONAL TRAPS
596
;;
597
;;  ....................
598
;;
599
 
600
(define_insn "trap"
601
  [(trap_if (const_int 1) (const_int 0))]
602
  ""
603
{
604
  if (ISA_HAS_COND_TRAP)
605
    return "teq\t$0,$0";
606
  else if (TARGET_MIPS16)
607
    return "break 0";
608
  else
609
    return "break";
610
}
611
  [(set_attr "type" "trap")])
612
 
613
(define_expand "conditional_trap"
614
  [(trap_if (match_operator 0 "comparison_operator"
615
                            [(match_dup 2) (match_dup 3)])
616
            (match_operand 1 "const_int_operand"))]
617
  "ISA_HAS_COND_TRAP"
618
{
619
  if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) == MODE_INT
620
      && operands[1] == const0_rtx)
621
    {
622
      mips_gen_conditional_trap (operands);
623
      DONE;
624
    }
625
  else
626
    FAIL;
627
})
628
 
629
(define_insn "*conditional_trap"
630
  [(trap_if (match_operator:GPR 0 "trap_comparison_operator"
631
                                [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
632
                                 (match_operand:GPR 2 "arith_operand" "dI")])
633
            (const_int 0))]
634
  "ISA_HAS_COND_TRAP"
635
  "t%C0\t%z1,%2"
636
  [(set_attr "type" "trap")])
637
 
638
;;
639
;;  ....................
640
;;
641
;;      ADDITION
642
;;
643
;;  ....................
644
;;
645
 
646
(define_insn "add3"
647
  [(set (match_operand:ANYF 0 "register_operand" "=f")
648
        (plus:ANYF (match_operand:ANYF 1 "register_operand" "f")
649
                   (match_operand:ANYF 2 "register_operand" "f")))]
650
  ""
651
  "add.\t%0,%1,%2"
652
  [(set_attr "type" "fadd")
653
   (set_attr "mode" "")])
654
 
655
(define_expand "add3"
656
  [(set (match_operand:GPR 0 "register_operand")
657
        (plus:GPR (match_operand:GPR 1 "register_operand")
658
                  (match_operand:GPR 2 "arith_operand")))]
659
  "")
660
 
661
(define_insn "*add3"
662
  [(set (match_operand:GPR 0 "register_operand" "=d,d")
663
        (plus:GPR (match_operand:GPR 1 "register_operand" "d,d")
664
                  (match_operand:GPR 2 "arith_operand" "d,Q")))]
665
  "!TARGET_MIPS16"
666
  "@
667
    addu\t%0,%1,%2
668
    addiu\t%0,%1,%2"
669
  [(set_attr "type" "arith")
670
   (set_attr "mode" "")])
671
 
672
;; We need to recognize MIPS16 stack pointer additions explicitly, since
673
;; we don't have a constraint for $sp.  These insns will be generated by
674
;; the save_restore_insns functions.
675
 
676
(define_insn "*add3_sp1"
677
  [(set (reg:GPR 29)
678
        (plus:GPR (reg:GPR 29)
679
                  (match_operand:GPR 0 "const_arith_operand" "")))]
680
  "TARGET_MIPS16"
681
  "addiu\t%$,%$,%0"
682
  [(set_attr "type" "arith")
683
   (set_attr "mode" "")
684
   (set (attr "length") (if_then_else (match_operand 0 "m16_simm8_8")
685
                                      (const_int 4)
686
                                      (const_int 8)))])
687
 
688
(define_insn "*add3_sp2"
689
  [(set (match_operand:GPR 0 "register_operand" "=d")
690
        (plus:GPR (reg:GPR 29)
691
                  (match_operand:GPR 1 "const_arith_operand" "")))]
692
  "TARGET_MIPS16"
693
  "addiu\t%0,%$,%1"
694
  [(set_attr "type" "arith")
695
   (set_attr "mode" "")
696
   (set (attr "length") (if_then_else (match_operand 1 "m16_uimm_4")
697
                                      (const_int 4)
698
                                      (const_int 8)))])
699
 
700
(define_insn "*add3_mips16"
701
  [(set (match_operand:GPR 0 "register_operand" "=d,d,d")
702
        (plus:GPR (match_operand:GPR 1 "register_operand" "0,d,d")
703
                  (match_operand:GPR 2 "arith_operand" "Q,O,d")))]
704
  "TARGET_MIPS16"
705
  "@
706
    addiu\t%0,%2
707
    addiu\t%0,%1,%2
708
    addu\t%0,%1,%2"
709
  [(set_attr "type" "arith")
710
   (set_attr "mode" "")
711
   (set_attr_alternative "length"
712
                [(if_then_else (match_operand 2 "m16_simm_1")
713
                               (const_int 4)
714
                               (const_int 8))
715
                 (if_then_else (match_operand 2 "m16_simm4_1")
716
                               (const_int 4)
717
                               (const_int 8))
718
                 (const_int 4)])])
719
 
720
 
721
;; On the mips16, we can sometimes split an add of a constant which is
722
;; a 4 byte instruction into two adds which are both 2 byte
723
;; instructions.  There are two cases: one where we are adding a
724
;; constant plus a register to another register, and one where we are
725
;; simply adding a constant to a register.
726
 
727
(define_split
728
  [(set (match_operand:SI 0 "register_operand")
729
        (plus:SI (match_dup 0)
730
                 (match_operand:SI 1 "const_int_operand")))]
731
  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
732
   && REG_P (operands[0])
733
   && M16_REG_P (REGNO (operands[0]))
734
   && GET_CODE (operands[1]) == CONST_INT
735
   && ((INTVAL (operands[1]) > 0x7f
736
        && INTVAL (operands[1]) <= 0x7f + 0x7f)
737
       || (INTVAL (operands[1]) < - 0x80
738
           && INTVAL (operands[1]) >= - 0x80 - 0x80))"
739
  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
740
   (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
741
{
742
  HOST_WIDE_INT val = INTVAL (operands[1]);
743
 
744
  if (val >= 0)
745
    {
746
      operands[1] = GEN_INT (0x7f);
747
      operands[2] = GEN_INT (val - 0x7f);
748
    }
749
  else
750
    {
751
      operands[1] = GEN_INT (- 0x80);
752
      operands[2] = GEN_INT (val + 0x80);
753
    }
754
})
755
 
756
(define_split
757
  [(set (match_operand:SI 0 "register_operand")
758
        (plus:SI (match_operand:SI 1 "register_operand")
759
                 (match_operand:SI 2 "const_int_operand")))]
760
  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
761
   && REG_P (operands[0])
762
   && M16_REG_P (REGNO (operands[0]))
763
   && REG_P (operands[1])
764
   && M16_REG_P (REGNO (operands[1]))
765
   && REGNO (operands[0]) != REGNO (operands[1])
766
   && GET_CODE (operands[2]) == CONST_INT
767
   && ((INTVAL (operands[2]) > 0x7
768
        && INTVAL (operands[2]) <= 0x7 + 0x7f)
769
       || (INTVAL (operands[2]) < - 0x8
770
           && INTVAL (operands[2]) >= - 0x8 - 0x80))"
771
  [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 2)))
772
   (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 3)))]
773
{
774
  HOST_WIDE_INT val = INTVAL (operands[2]);
775
 
776
  if (val >= 0)
777
    {
778
      operands[2] = GEN_INT (0x7);
779
      operands[3] = GEN_INT (val - 0x7);
780
    }
781
  else
782
    {
783
      operands[2] = GEN_INT (- 0x8);
784
      operands[3] = GEN_INT (val + 0x8);
785
    }
786
})
787
 
788
(define_split
789
  [(set (match_operand:DI 0 "register_operand")
790
        (plus:DI (match_dup 0)
791
                 (match_operand:DI 1 "const_int_operand")))]
792
  "TARGET_MIPS16 && TARGET_64BIT && reload_completed && !TARGET_DEBUG_D_MODE
793
   && REG_P (operands[0])
794
   && M16_REG_P (REGNO (operands[0]))
795
   && GET_CODE (operands[1]) == CONST_INT
796
   && ((INTVAL (operands[1]) > 0xf
797
        && INTVAL (operands[1]) <= 0xf + 0xf)
798
       || (INTVAL (operands[1]) < - 0x10
799
           && INTVAL (operands[1]) >= - 0x10 - 0x10))"
800
  [(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 1)))
801
   (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 2)))]
802
{
803
  HOST_WIDE_INT val = INTVAL (operands[1]);
804
 
805
  if (val >= 0)
806
    {
807
      operands[1] = GEN_INT (0xf);
808
      operands[2] = GEN_INT (val - 0xf);
809
    }
810
  else
811
    {
812
      operands[1] = GEN_INT (- 0x10);
813
      operands[2] = GEN_INT (val + 0x10);
814
    }
815
})
816
 
817
(define_split
818
  [(set (match_operand:DI 0 "register_operand")
819
        (plus:DI (match_operand:DI 1 "register_operand")
820
                 (match_operand:DI 2 "const_int_operand")))]
821
  "TARGET_MIPS16 && TARGET_64BIT && reload_completed && !TARGET_DEBUG_D_MODE
822
   && REG_P (operands[0])
823
   && M16_REG_P (REGNO (operands[0]))
824
   && REG_P (operands[1])
825
   && M16_REG_P (REGNO (operands[1]))
826
   && REGNO (operands[0]) != REGNO (operands[1])
827
   && GET_CODE (operands[2]) == CONST_INT
828
   && ((INTVAL (operands[2]) > 0x7
829
        && INTVAL (operands[2]) <= 0x7 + 0xf)
830
       || (INTVAL (operands[2]) < - 0x8
831
           && INTVAL (operands[2]) >= - 0x8 - 0x10))"
832
  [(set (match_dup 0) (plus:DI (match_dup 1) (match_dup 2)))
833
   (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 3)))]
834
{
835
  HOST_WIDE_INT val = INTVAL (operands[2]);
836
 
837
  if (val >= 0)
838
    {
839
      operands[2] = GEN_INT (0x7);
840
      operands[3] = GEN_INT (val - 0x7);
841
    }
842
  else
843
    {
844
      operands[2] = GEN_INT (- 0x8);
845
      operands[3] = GEN_INT (val + 0x8);
846
    }
847
})
848
 
849
(define_insn "*addsi3_extended"
850
  [(set (match_operand:DI 0 "register_operand" "=d,d")
851
        (sign_extend:DI
852
             (plus:SI (match_operand:SI 1 "register_operand" "d,d")
853
                      (match_operand:SI 2 "arith_operand" "d,Q"))))]
854
  "TARGET_64BIT && !TARGET_MIPS16"
855
  "@
856
    addu\t%0,%1,%2
857
    addiu\t%0,%1,%2"
858
  [(set_attr "type" "arith")
859
   (set_attr "mode" "SI")])
860
 
861
;; Split this insn so that the addiu splitters can have a crack at it.
862
;; Use a conservative length estimate until the split.
863
(define_insn_and_split "*addsi3_extended_mips16"
864
  [(set (match_operand:DI 0 "register_operand" "=d,d,d")
865
        (sign_extend:DI
866
             (plus:SI (match_operand:SI 1 "register_operand" "0,d,d")
867
                      (match_operand:SI 2 "arith_operand" "Q,O,d"))))]
868
  "TARGET_64BIT && TARGET_MIPS16"
869
  "#"
870
  "&& reload_completed"
871
  [(set (match_dup 3) (plus:SI (match_dup 1) (match_dup 2)))]
872
  { operands[3] = gen_lowpart (SImode, operands[0]); }
873
  [(set_attr "type" "arith")
874
   (set_attr "mode" "SI")
875
   (set_attr "extended_mips16" "yes")])
876
 
877
;;
878
;;  ....................
879
;;
880
;;      SUBTRACTION
881
;;
882
;;  ....................
883
;;
884
 
885
(define_insn "sub3"
886
  [(set (match_operand:ANYF 0 "register_operand" "=f")
887
        (minus:ANYF (match_operand:ANYF 1 "register_operand" "f")
888
                    (match_operand:ANYF 2 "register_operand" "f")))]
889
  ""
890
  "sub.\t%0,%1,%2"
891
  [(set_attr "type" "fadd")
892
   (set_attr "mode" "")])
893
 
894
(define_insn "sub3"
895
  [(set (match_operand:GPR 0 "register_operand" "=d")
896
        (minus:GPR (match_operand:GPR 1 "register_operand" "d")
897
                   (match_operand:GPR 2 "register_operand" "d")))]
898
  ""
899
  "subu\t%0,%1,%2"
900
  [(set_attr "type" "arith")
901
   (set_attr "mode" "")])
902
 
903
(define_insn "*subsi3_extended"
904
  [(set (match_operand:DI 0 "register_operand" "=d")
905
        (sign_extend:DI
906
            (minus:SI (match_operand:SI 1 "register_operand" "d")
907
                      (match_operand:SI 2 "register_operand" "d"))))]
908
  "TARGET_64BIT"
909
  "subu\t%0,%1,%2"
910
  [(set_attr "type" "arith")
911
   (set_attr "mode" "DI")])
912
 
913
;;
914
;;  ....................
915
;;
916
;;      MULTIPLICATION
917
;;
918
;;  ....................
919
;;
920
 
921
(define_expand "mul3"
922
  [(set (match_operand:SCALARF 0 "register_operand")
923
        (mult:SCALARF (match_operand:SCALARF 1 "register_operand")
924
                      (match_operand:SCALARF 2 "register_operand")))]
925
  ""
926
  "")
927
 
928
(define_insn "*mul3"
929
  [(set (match_operand:SCALARF 0 "register_operand" "=f")
930
        (mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f")
931
                      (match_operand:SCALARF 2 "register_operand" "f")))]
932
  "!TARGET_4300_MUL_FIX"
933
  "mul.\t%0,%1,%2"
934
  [(set_attr "type" "fmul")
935
   (set_attr "mode" "")])
936
 
937
;; Early VR4300 silicon has a CPU bug where multiplies with certain
938
;; operands may corrupt immediately following multiplies. This is a
939
;; simple fix to insert NOPs.
940
 
941
(define_insn "*mul3_r4300"
942
  [(set (match_operand:SCALARF 0 "register_operand" "=f")
943
        (mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f")
944
                      (match_operand:SCALARF 2 "register_operand" "f")))]
945
  "TARGET_4300_MUL_FIX"
946
  "mul.\t%0,%1,%2\;nop"
947
  [(set_attr "type" "fmul")
948
   (set_attr "mode" "")
949
   (set_attr "length" "8")])
950
 
951
(define_insn "mulv2sf3"
952
  [(set (match_operand:V2SF 0 "register_operand" "=f")
953
        (mult:V2SF (match_operand:V2SF 1 "register_operand" "f")
954
                   (match_operand:V2SF 2 "register_operand" "f")))]
955
  "TARGET_PAIRED_SINGLE_FLOAT"
956
  "mul.ps\t%0,%1,%2"
957
  [(set_attr "type" "fmul")
958
   (set_attr "mode" "SF")])
959
 
960
;; The original R4000 has a cpu bug.  If a double-word or a variable
961
;; shift executes while an integer multiplication is in progress, the
962
;; shift may give an incorrect result.  Avoid this by keeping the mflo
963
;; with the mult on the R4000.
964
;;
965
;; From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
966
;; (also valid for MIPS R4000MC processors):
967
;;
968
;; "16. R4000PC, R4000SC: Please refer to errata 28 for an update to
969
;;      this errata description.
970
;;      The following code sequence causes the R4000 to incorrectly
971
;;      execute the Double Shift Right Arithmetic 32 (dsra32)
972
;;      instruction.  If the dsra32 instruction is executed during an
973
;;      integer multiply, the dsra32 will only shift by the amount in
974
;;      specified in the instruction rather than the amount plus 32
975
;;      bits.
976
;;      instruction 1:          mult    rs,rt           integer multiply
977
;;      instruction 2-12:       dsra32  rd,rt,rs        doubleword shift
978
;;                                                      right arithmetic + 32
979
;;      Workaround: A dsra32 instruction placed after an integer
980
;;      multiply should not be one of the 11 instructions after the
981
;;      multiply instruction."
982
;;
983
;; and:
984
;;
985
;; "28. R4000PC, R4000SC: The text from errata 16 should be replaced by
986
;;      the following description.
987
;;      All extended shifts (shift by n+32) and variable shifts (32 and
988
;;      64-bit versions) may produce incorrect results under the
989
;;      following conditions:
990
;;      1) An integer multiply is currently executing
991
;;      2) These types of shift instructions are executed immediately
992
;;         following an integer divide instruction.
993
;;      Workaround:
994
;;      1) Make sure no integer multiply is running wihen these
995
;;         instruction are executed.  If this cannot be predicted at
996
;;         compile time, then insert a "mfhi" to R0 instruction
997
;;         immediately after the integer multiply instruction.  This
998
;;         will cause the integer multiply to complete before the shift
999
;;         is executed.
1000
;;      2) Separate integer divide and these two classes of shift
1001
;;         instructions by another instruction or a noop."
1002
;;
1003
;; These processors have PRId values of 0x00004220 and 0x00004300,
1004
;; respectively.
1005
 
1006
(define_expand "mul3"
1007
  [(set (match_operand:GPR 0 "register_operand")
1008
        (mult:GPR (match_operand:GPR 1 "register_operand")
1009
                  (match_operand:GPR 2 "register_operand")))]
1010
  ""
1011
{
1012
  if (GENERATE_MULT3_)
1013
    emit_insn (gen_mul3_mult3 (operands[0], operands[1], operands[2]));
1014
  else if (!TARGET_FIX_R4000)
1015
    emit_insn (gen_mul3_internal (operands[0], operands[1],
1016
                                        operands[2]));
1017
  else
1018
    emit_insn (gen_mul3_r4000 (operands[0], operands[1], operands[2]));
1019
  DONE;
1020
})
1021
 
1022
(define_insn "mulsi3_mult3"
1023
  [(set (match_operand:SI 0 "register_operand" "=d,l")
1024
        (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1025
                 (match_operand:SI 2 "register_operand" "d,d")))
1026
   (clobber (match_scratch:SI 3 "=h,h"))
1027
   (clobber (match_scratch:SI 4 "=l,X"))]
1028
  "GENERATE_MULT3_SI"
1029
{
1030
  if (which_alternative == 1)
1031
    return "mult\t%1,%2";
1032
  if (TARGET_MAD
1033
      || TARGET_MIPS5400
1034
      || TARGET_MIPS5500
1035
      || TARGET_MIPS7000
1036
      || TARGET_MIPS9000
1037
      || ISA_MIPS32
1038
      || ISA_MIPS32R2
1039
      || ISA_MIPS64)
1040
    return "mul\t%0,%1,%2";
1041
  return "mult\t%0,%1,%2";
1042
}
1043
  [(set_attr "type" "imul3,imul")
1044
   (set_attr "mode" "SI")])
1045
 
1046
(define_insn "muldi3_mult3"
1047
  [(set (match_operand:DI 0 "register_operand" "=d")
1048
        (mult:DI (match_operand:DI 1 "register_operand" "d")
1049
                 (match_operand:DI 2 "register_operand" "d")))
1050
   (clobber (match_scratch:DI 3 "=h"))
1051
   (clobber (match_scratch:DI 4 "=l"))]
1052
  "TARGET_64BIT && GENERATE_MULT3_DI"
1053
  "dmult\t%0,%1,%2"
1054
  [(set_attr "type" "imul3")
1055
   (set_attr "mode" "DI")])
1056
 
1057
;; If a register gets allocated to LO, and we spill to memory, the reload
1058
;; will include a move from LO to a GPR.  Merge it into the multiplication
1059
;; if it can set the GPR directly.
1060
;;
1061
;; Operand 0: LO
1062
;; Operand 1: GPR (1st multiplication operand)
1063
;; Operand 2: GPR (2nd multiplication operand)
1064
;; Operand 3: HI
1065
;; Operand 4: GPR (destination)
1066
(define_peephole2
1067
  [(parallel
1068
       [(set (match_operand:SI 0 "register_operand")
1069
             (mult:SI (match_operand:SI 1 "register_operand")
1070
                      (match_operand:SI 2 "register_operand")))
1071
        (clobber (match_operand:SI 3 "register_operand"))
1072
        (clobber (scratch:SI))])
1073
   (set (match_operand:SI 4 "register_operand")
1074
        (unspec [(match_dup 0) (match_dup 3)] UNSPEC_MFHILO))]
1075
  "GENERATE_MULT3_SI && peep2_reg_dead_p (2, operands[0])"
1076
  [(parallel
1077
       [(set (match_dup 4)
1078
             (mult:SI (match_dup 1)
1079
                      (match_dup 2)))
1080
        (clobber (match_dup 3))
1081
        (clobber (match_dup 0))])])
1082
 
1083
(define_insn "mul3_internal"
1084
  [(set (match_operand:GPR 0 "register_operand" "=l")
1085
        (mult:GPR (match_operand:GPR 1 "register_operand" "d")
1086
                  (match_operand:GPR 2 "register_operand" "d")))
1087
   (clobber (match_scratch:GPR 3 "=h"))]
1088
  "!TARGET_FIX_R4000"
1089
  "mult\t%1,%2"
1090
  [(set_attr "type" "imul")
1091
   (set_attr "mode" "")])
1092
 
1093
(define_insn "mul3_r4000"
1094
  [(set (match_operand:GPR 0 "register_operand" "=d")
1095
        (mult:GPR (match_operand:GPR 1 "register_operand" "d")
1096
                  (match_operand:GPR 2 "register_operand" "d")))
1097
   (clobber (match_scratch:GPR 3 "=h"))
1098
   (clobber (match_scratch:GPR 4 "=l"))]
1099
  "TARGET_FIX_R4000"
1100
  "mult\t%1,%2\;mflo\t%0"
1101
  [(set_attr "type" "imul")
1102
   (set_attr "mode" "")
1103
   (set_attr "length" "8")])
1104
 
1105
;; On the VR4120 and VR4130, it is better to use "mtlo $0; macc" instead
1106
;; of "mult; mflo".  They have the same latency, but the first form gives
1107
;; us an extra cycle to compute the operands.
1108
 
1109
;; Operand 0: LO
1110
;; Operand 1: GPR (1st multiplication operand)
1111
;; Operand 2: GPR (2nd multiplication operand)
1112
;; Operand 3: HI
1113
;; Operand 4: GPR (destination)
1114
(define_peephole2
1115
  [(parallel
1116
       [(set (match_operand:SI 0 "register_operand")
1117
             (mult:SI (match_operand:SI 1 "register_operand")
1118
                      (match_operand:SI 2 "register_operand")))
1119
        (clobber (match_operand:SI 3 "register_operand"))])
1120
   (set (match_operand:SI 4 "register_operand")
1121
        (unspec:SI [(match_dup 0) (match_dup 3)] UNSPEC_MFHILO))]
1122
  "ISA_HAS_MACC && !GENERATE_MULT3_SI"
1123
  [(set (match_dup 0)
1124
        (const_int 0))
1125
   (parallel
1126
       [(set (match_dup 0)
1127
             (plus:SI (mult:SI (match_dup 1)
1128
                               (match_dup 2))
1129
                      (match_dup 0)))
1130
        (set (match_dup 4)
1131
             (plus:SI (mult:SI (match_dup 1)
1132
                               (match_dup 2))
1133
                      (match_dup 0)))
1134
        (clobber (match_dup 3))])])
1135
 
1136
;; Multiply-accumulate patterns
1137
 
1138
;; For processors that can copy the output to a general register:
1139
;;
1140
;; The all-d alternative is needed because the combiner will find this
1141
;; pattern and then register alloc/reload will move registers around to
1142
;; make them fit, and we don't want to trigger unnecessary loads to LO.
1143
;;
1144
;; The last alternative should be made slightly less desirable, but adding
1145
;; "?" to the constraint is too strong, and causes values to be loaded into
1146
;; LO even when that's more costly.  For now, using "*d" mostly does the
1147
;; trick.
1148
(define_insn "*mul_acc_si"
1149
  [(set (match_operand:SI 0 "register_operand" "=l,*d,*d")
1150
        (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d,d")
1151
                          (match_operand:SI 2 "register_operand" "d,d,d"))
1152
                 (match_operand:SI 3 "register_operand" "0,l,*d")))
1153
   (clobber (match_scratch:SI 4 "=h,h,h"))
1154
   (clobber (match_scratch:SI 5 "=X,3,l"))
1155
   (clobber (match_scratch:SI 6 "=X,X,&d"))]
1156
  "(TARGET_MIPS3900
1157
   || ISA_HAS_MADD_MSUB)
1158
   && !TARGET_MIPS16"
1159
{
1160
  static const char *const madd[] = { "madd\t%1,%2", "madd\t%0,%1,%2" };
1161
  if (which_alternative == 2)
1162
    return "#";
1163
  if (ISA_HAS_MADD_MSUB && which_alternative != 0)
1164
    return "#";
1165
  return madd[which_alternative];
1166
}
1167
  [(set_attr "type"     "imadd,imadd,multi")
1168
   (set_attr "mode"     "SI")
1169
   (set_attr "length"   "4,4,8")])
1170
 
1171
;; Split the above insn if we failed to get LO allocated.
1172
(define_split
1173
  [(set (match_operand:SI 0 "register_operand")
1174
        (plus:SI (mult:SI (match_operand:SI 1 "register_operand")
1175
                          (match_operand:SI 2 "register_operand"))
1176
                 (match_operand:SI 3 "register_operand")))
1177
   (clobber (match_scratch:SI 4))
1178
   (clobber (match_scratch:SI 5))
1179
   (clobber (match_scratch:SI 6))]
1180
  "reload_completed && !TARGET_DEBUG_D_MODE
1181
   && GP_REG_P (true_regnum (operands[0]))
1182
   && GP_REG_P (true_regnum (operands[3]))"
1183
  [(parallel [(set (match_dup 6)
1184
                   (mult:SI (match_dup 1) (match_dup 2)))
1185
              (clobber (match_dup 4))
1186
              (clobber (match_dup 5))])
1187
   (set (match_dup 0) (plus:SI (match_dup 6) (match_dup 3)))]
1188
  "")
1189
 
1190
;; Splitter to copy result of MADD to a general register
1191
(define_split
1192
  [(set (match_operand:SI                   0 "register_operand")
1193
        (plus:SI (mult:SI (match_operand:SI 1 "register_operand")
1194
                          (match_operand:SI 2 "register_operand"))
1195
                 (match_operand:SI          3 "register_operand")))
1196
   (clobber (match_scratch:SI               4))
1197
   (clobber (match_scratch:SI               5))
1198
   (clobber (match_scratch:SI               6))]
1199
  "reload_completed && !TARGET_DEBUG_D_MODE
1200
   && GP_REG_P (true_regnum (operands[0]))
1201
   && true_regnum (operands[3]) == LO_REGNUM"
1202
  [(parallel [(set (match_dup 3)
1203
                   (plus:SI (mult:SI (match_dup 1) (match_dup 2))
1204
                            (match_dup 3)))
1205
              (clobber (match_dup 4))
1206
              (clobber (match_dup 5))
1207
              (clobber (match_dup 6))])
1208
   (set (match_dup 0) (unspec:SI [(match_dup 5) (match_dup 4)] UNSPEC_MFHILO))]
1209
  "")
1210
 
1211
(define_insn "*macc"
1212
  [(set (match_operand:SI 0 "register_operand" "=l,d")
1213
        (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1214
                          (match_operand:SI 2 "register_operand" "d,d"))
1215
                 (match_operand:SI 3 "register_operand" "0,l")))
1216
   (clobber (match_scratch:SI 4 "=h,h"))
1217
   (clobber (match_scratch:SI 5 "=X,3"))]
1218
  "ISA_HAS_MACC"
1219
{
1220
  if (which_alternative == 1)
1221
    return "macc\t%0,%1,%2";
1222
  else if (TARGET_MIPS5500)
1223
    return "madd\t%1,%2";
1224
  else
1225
    /* The VR4130 assumes that there is a two-cycle latency between a macc
1226
       that "writes" to $0 and an instruction that reads from it.  We avoid
1227
       this by assigning to $1 instead.  */
1228
    return "%[macc\t%@,%1,%2%]";
1229
}
1230
  [(set_attr "type" "imadd")
1231
   (set_attr "mode" "SI")])
1232
 
1233
(define_insn "*msac"
1234
  [(set (match_operand:SI 0 "register_operand" "=l,d")
1235
        (minus:SI (match_operand:SI 1 "register_operand" "0,l")
1236
                  (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1237
                           (match_operand:SI 3 "register_operand" "d,d"))))
1238
   (clobber (match_scratch:SI 4 "=h,h"))
1239
   (clobber (match_scratch:SI 5 "=X,1"))]
1240
  "ISA_HAS_MSAC"
1241
{
1242
  if (which_alternative == 1)
1243
    return "msac\t%0,%2,%3";
1244
  else if (TARGET_MIPS5500)
1245
    return "msub\t%2,%3";
1246
  else
1247
    return "msac\t$0,%2,%3";
1248
}
1249
  [(set_attr "type"     "imadd")
1250
   (set_attr "mode"     "SI")])
1251
 
1252
;; An msac-like instruction implemented using negation and a macc.
1253
(define_insn_and_split "*msac_using_macc"
1254
  [(set (match_operand:SI 0 "register_operand" "=l,d")
1255
        (minus:SI (match_operand:SI 1 "register_operand" "0,l")
1256
                  (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1257
                           (match_operand:SI 3 "register_operand" "d,d"))))
1258
   (clobber (match_scratch:SI 4 "=h,h"))
1259
   (clobber (match_scratch:SI 5 "=X,1"))
1260
   (clobber (match_scratch:SI 6 "=d,d"))]
1261
  "ISA_HAS_MACC && !ISA_HAS_MSAC"
1262
  "#"
1263
  "&& reload_completed"
1264
  [(set (match_dup 6)
1265
        (neg:SI (match_dup 3)))
1266
   (parallel
1267
       [(set (match_dup 0)
1268
             (plus:SI (mult:SI (match_dup 2)
1269
                               (match_dup 6))
1270
                      (match_dup 1)))
1271
        (clobber (match_dup 4))
1272
        (clobber (match_dup 5))])]
1273
  ""
1274
  [(set_attr "type"     "imadd")
1275
   (set_attr "length"   "8")])
1276
 
1277
;; Patterns generated by the define_peephole2 below.
1278
 
1279
(define_insn "*macc2"
1280
  [(set (match_operand:SI 0 "register_operand" "=l")
1281
        (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
1282
                          (match_operand:SI 2 "register_operand" "d"))
1283
                 (match_dup 0)))
1284
   (set (match_operand:SI 3 "register_operand" "=d")
1285
        (plus:SI (mult:SI (match_dup 1)
1286
                          (match_dup 2))
1287
                 (match_dup 0)))
1288
   (clobber (match_scratch:SI 4 "=h"))]
1289
  "ISA_HAS_MACC && reload_completed"
1290
  "macc\t%3,%1,%2"
1291
  [(set_attr "type"     "imadd")
1292
   (set_attr "mode"     "SI")])
1293
 
1294
(define_insn "*msac2"
1295
  [(set (match_operand:SI 0 "register_operand" "=l")
1296
        (minus:SI (match_dup 0)
1297
                  (mult:SI (match_operand:SI 1 "register_operand" "d")
1298
                           (match_operand:SI 2 "register_operand" "d"))))
1299
   (set (match_operand:SI 3 "register_operand" "=d")
1300
        (minus:SI (match_dup 0)
1301
                  (mult:SI (match_dup 1)
1302
                           (match_dup 2))))
1303
   (clobber (match_scratch:SI 4 "=h"))]
1304
  "ISA_HAS_MSAC && reload_completed"
1305
  "msac\t%3,%1,%2"
1306
  [(set_attr "type"     "imadd")
1307
   (set_attr "mode"     "SI")])
1308
 
1309
;; Convert macc $0,, & mflo  into macc ,,
1310
;; Similarly msac.
1311
;;
1312
;; Operand 0: LO
1313
;; Operand 1: macc/msac
1314
;; Operand 2: HI
1315
;; Operand 3: GPR (destination)
1316
(define_peephole2
1317
  [(parallel
1318
       [(set (match_operand:SI 0 "register_operand")
1319
             (match_operand:SI 1 "macc_msac_operand"))
1320
        (clobber (match_operand:SI 2 "register_operand"))
1321
        (clobber (scratch:SI))])
1322
   (set (match_operand:SI 3 "register_operand")
1323
        (unspec:SI [(match_dup 0) (match_dup 2)] UNSPEC_MFHILO))]
1324
  ""
1325
  [(parallel [(set (match_dup 0)
1326
                   (match_dup 1))
1327
              (set (match_dup 3)
1328
                   (match_dup 1))
1329
              (clobber (match_dup 2))])]
1330
  "")
1331
 
1332
;; When we have a three-address multiplication instruction, it should
1333
;; be faster to do a separate multiply and add, rather than moving
1334
;; something into LO in order to use a macc instruction.
1335
;;
1336
;; This peephole needs a scratch register to cater for the case when one
1337
;; of the multiplication operands is the same as the destination.
1338
;;
1339
;; Operand 0: GPR (scratch)
1340
;; Operand 1: LO
1341
;; Operand 2: GPR (addend)
1342
;; Operand 3: GPR (destination)
1343
;; Operand 4: macc/msac
1344
;; Operand 5: HI
1345
;; Operand 6: new multiplication
1346
;; Operand 7: new addition/subtraction
1347
(define_peephole2
1348
  [(match_scratch:SI 0 "d")
1349
   (set (match_operand:SI 1 "register_operand")
1350
        (match_operand:SI 2 "register_operand"))
1351
   (match_dup 0)
1352
   (parallel
1353
       [(set (match_operand:SI 3 "register_operand")
1354
             (match_operand:SI 4 "macc_msac_operand"))
1355
        (clobber (match_operand:SI 5 "register_operand"))
1356
        (clobber (match_dup 1))])]
1357
  "GENERATE_MULT3_SI
1358
   && true_regnum (operands[1]) == LO_REGNUM
1359
   && peep2_reg_dead_p (2, operands[1])
1360
   && GP_REG_P (true_regnum (operands[3]))"
1361
  [(parallel [(set (match_dup 0)
1362
                   (match_dup 6))
1363
              (clobber (match_dup 5))
1364
              (clobber (match_dup 1))])
1365
   (set (match_dup 3)
1366
        (match_dup 7))]
1367
{
1368
  operands[6] = XEXP (operands[4], GET_CODE (operands[4]) == PLUS ? 0 : 1);
1369
  operands[7] = gen_rtx_fmt_ee (GET_CODE (operands[4]), SImode,
1370
                                operands[2], operands[0]);
1371
})
1372
 
1373
;; Same as above, except LO is the initial target of the macc.
1374
;;
1375
;; Operand 0: GPR (scratch)
1376
;; Operand 1: LO
1377
;; Operand 2: GPR (addend)
1378
;; Operand 3: macc/msac
1379
;; Operand 4: HI
1380
;; Operand 5: GPR (destination)
1381
;; Operand 6: new multiplication
1382
;; Operand 7: new addition/subtraction
1383
(define_peephole2
1384
  [(match_scratch:SI 0 "d")
1385
   (set (match_operand:SI 1 "register_operand")
1386
        (match_operand:SI 2 "register_operand"))
1387
   (match_dup 0)
1388
   (parallel
1389
       [(set (match_dup 1)
1390
             (match_operand:SI 3 "macc_msac_operand"))
1391
        (clobber (match_operand:SI 4 "register_operand"))
1392
        (clobber (scratch:SI))])
1393
   (match_dup 0)
1394
   (set (match_operand:SI 5 "register_operand")
1395
        (unspec:SI [(match_dup 1) (match_dup 4)] UNSPEC_MFHILO))]
1396
  "GENERATE_MULT3_SI && peep2_reg_dead_p (3, operands[1])"
1397
  [(parallel [(set (match_dup 0)
1398
                   (match_dup 6))
1399
              (clobber (match_dup 4))
1400
              (clobber (match_dup 1))])
1401
   (set (match_dup 5)
1402
        (match_dup 7))]
1403
{
1404
  operands[6] = XEXP (operands[4], GET_CODE (operands[4]) == PLUS ? 0 : 1);
1405
  operands[7] = gen_rtx_fmt_ee (GET_CODE (operands[4]), SImode,
1406
                                operands[2], operands[0]);
1407
})
1408
 
1409
(define_insn "*mul_sub_si"
1410
  [(set (match_operand:SI 0 "register_operand" "=l,*d,*d")
1411
        (minus:SI (match_operand:SI 1 "register_operand" "0,l,*d")
1412
                  (mult:SI (match_operand:SI 2 "register_operand" "d,d,d")
1413
                           (match_operand:SI 3 "register_operand" "d,d,d"))))
1414
   (clobber (match_scratch:SI 4 "=h,h,h"))
1415
   (clobber (match_scratch:SI 5 "=X,1,l"))
1416
   (clobber (match_scratch:SI 6 "=X,X,&d"))]
1417
  "ISA_HAS_MADD_MSUB"
1418
  "@
1419
   msub\t%2,%3
1420
   #
1421
   #"
1422
  [(set_attr "type"     "imadd,multi,multi")
1423
   (set_attr "mode"     "SI")
1424
   (set_attr "length"   "4,8,8")])
1425
 
1426
;; Split the above insn if we failed to get LO allocated.
1427
(define_split
1428
  [(set (match_operand:SI 0 "register_operand")
1429
        (minus:SI (match_operand:SI 1 "register_operand")
1430
                  (mult:SI (match_operand:SI 2 "register_operand")
1431
                           (match_operand:SI 3 "register_operand"))))
1432
   (clobber (match_scratch:SI 4))
1433
   (clobber (match_scratch:SI 5))
1434
   (clobber (match_scratch:SI 6))]
1435
  "reload_completed && !TARGET_DEBUG_D_MODE
1436
   && GP_REG_P (true_regnum (operands[0]))
1437
   && GP_REG_P (true_regnum (operands[1]))"
1438
  [(parallel [(set (match_dup 6)
1439
                   (mult:SI (match_dup 2) (match_dup 3)))
1440
              (clobber (match_dup 4))
1441
              (clobber (match_dup 5))])
1442
   (set (match_dup 0) (minus:SI (match_dup 1) (match_dup 6)))]
1443
  "")
1444
 
1445
;; Splitter to copy result of MSUB to a general register
1446
(define_split
1447
  [(set (match_operand:SI 0 "register_operand")
1448
        (minus:SI (match_operand:SI 1 "register_operand")
1449
                  (mult:SI (match_operand:SI 2 "register_operand")
1450
                           (match_operand:SI 3 "register_operand"))))
1451
   (clobber (match_scratch:SI 4))
1452
   (clobber (match_scratch:SI 5))
1453
   (clobber (match_scratch:SI 6))]
1454
  "reload_completed && !TARGET_DEBUG_D_MODE
1455
   && GP_REG_P (true_regnum (operands[0]))
1456
   && true_regnum (operands[1]) == LO_REGNUM"
1457
  [(parallel [(set (match_dup 1)
1458
                   (minus:SI (match_dup 1)
1459
                             (mult:SI (match_dup 2) (match_dup 3))))
1460
              (clobber (match_dup 4))
1461
              (clobber (match_dup 5))
1462
              (clobber (match_dup 6))])
1463
   (set (match_dup 0) (unspec:SI [(match_dup 5) (match_dup 4)] UNSPEC_MFHILO))]
1464
  "")
1465
 
1466
(define_insn "*muls"
1467
  [(set (match_operand:SI                  0 "register_operand" "=l,d")
1468
        (neg:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1469
                         (match_operand:SI 2 "register_operand" "d,d"))))
1470
   (clobber (match_scratch:SI              3                    "=h,h"))
1471
   (clobber (match_scratch:SI              4                    "=X,l"))]
1472
  "ISA_HAS_MULS"
1473
  "@
1474
   muls\t$0,%1,%2
1475
   muls\t%0,%1,%2"
1476
  [(set_attr "type"     "imul,imul3")
1477
   (set_attr "mode"     "SI")])
1478
 
1479
;; ??? We could define a mulditi3 pattern when TARGET_64BIT.
1480
 
1481
(define_expand "mulsidi3"
1482
  [(parallel
1483
      [(set (match_operand:DI 0 "register_operand")
1484
            (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1485
                     (any_extend:DI (match_operand:SI 2 "register_operand"))))
1486
       (clobber (scratch:DI))
1487
       (clobber (scratch:DI))
1488
       (clobber (scratch:DI))])]
1489
  "!TARGET_64BIT || !TARGET_FIX_R4000"
1490
{
1491
  if (!TARGET_64BIT)
1492
    {
1493
      if (!TARGET_FIX_R4000)
1494
        emit_insn (gen_mulsidi3_32bit_internal (operands[0], operands[1],
1495
                                                   operands[2]));
1496
      else
1497
        emit_insn (gen_mulsidi3_32bit_r4000 (operands[0], operands[1],
1498
                                                operands[2]));
1499
      DONE;
1500
    }
1501
})
1502
 
1503
(define_insn "mulsidi3_32bit_internal"
1504
  [(set (match_operand:DI 0 "register_operand" "=x")
1505
        (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1506
                 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))]
1507
  "!TARGET_64BIT && !TARGET_FIX_R4000"
1508
  "mult\t%1,%2"
1509
  [(set_attr "type" "imul")
1510
   (set_attr "mode" "SI")])
1511
 
1512
(define_insn "mulsidi3_32bit_r4000"
1513
  [(set (match_operand:DI 0 "register_operand" "=d")
1514
        (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1515
                 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
1516
   (clobber (match_scratch:DI 3 "=x"))]
1517
  "!TARGET_64BIT && TARGET_FIX_R4000"
1518
  "mult\t%1,%2\;mflo\t%L0;mfhi\t%M0"
1519
  [(set_attr "type" "imul")
1520
   (set_attr "mode" "SI")
1521
   (set_attr "length" "12")])
1522
 
1523
(define_insn_and_split "*mulsidi3_64bit"
1524
  [(set (match_operand:DI 0 "register_operand" "=d")
1525
        (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1526
                 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
1527
   (clobber (match_scratch:DI 3 "=l"))
1528
   (clobber (match_scratch:DI 4 "=h"))
1529
   (clobber (match_scratch:DI 5 "=d"))]
1530
  "TARGET_64BIT && !TARGET_FIX_R4000"
1531
  "#"
1532
  "&& reload_completed"
1533
  [(parallel
1534
       [(set (match_dup 3)
1535
             (sign_extend:DI
1536
                (mult:SI (match_dup 1)
1537
                         (match_dup 2))))
1538
        (set (match_dup 4)
1539
             (ashiftrt:DI
1540
                (mult:DI (any_extend:DI (match_dup 1))
1541
                         (any_extend:DI (match_dup 2)))
1542
                (const_int 32)))])
1543
 
1544
   ;; OP5 <- LO, OP0 <- HI
1545
   (set (match_dup 5) (unspec:DI [(match_dup 3) (match_dup 4)] UNSPEC_MFHILO))
1546
   (set (match_dup 0) (unspec:DI [(match_dup 4) (match_dup 3)] UNSPEC_MFHILO))
1547
 
1548
   ;; Zero-extend OP5.
1549
   (set (match_dup 5)
1550
        (ashift:DI (match_dup 5)
1551
                   (const_int 32)))
1552
   (set (match_dup 5)
1553
        (lshiftrt:DI (match_dup 5)
1554
                     (const_int 32)))
1555
 
1556
   ;; Shift OP0 into place.
1557
   (set (match_dup 0)
1558
        (ashift:DI (match_dup 0)
1559
                   (const_int 32)))
1560
 
1561
   ;; OR the two halves together
1562
   (set (match_dup 0)
1563
        (ior:DI (match_dup 0)
1564
                (match_dup 5)))]
1565
  ""
1566
  [(set_attr "type" "imul")
1567
   (set_attr "mode" "SI")
1568
   (set_attr "length" "24")])
1569
 
1570
(define_insn "*mulsidi3_64bit_parts"
1571
  [(set (match_operand:DI 0 "register_operand" "=l")
1572
        (sign_extend:DI
1573
           (mult:SI (match_operand:SI 2 "register_operand" "d")
1574
                    (match_operand:SI 3 "register_operand" "d"))))
1575
   (set (match_operand:DI 1 "register_operand" "=h")
1576
        (ashiftrt:DI
1577
           (mult:DI (any_extend:DI (match_dup 2))
1578
                    (any_extend:DI (match_dup 3)))
1579
           (const_int 32)))]
1580
  "TARGET_64BIT && !TARGET_FIX_R4000"
1581
  "mult\t%2,%3"
1582
  [(set_attr "type" "imul")
1583
   (set_attr "mode" "SI")])
1584
 
1585
;; Widening multiply with negation.
1586
(define_insn "*muls_di"
1587
  [(set (match_operand:DI 0 "register_operand" "=x")
1588
        (neg:DI
1589
         (mult:DI
1590
          (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1591
          (any_extend:DI (match_operand:SI 2 "register_operand" "d")))))]
1592
  "!TARGET_64BIT && ISA_HAS_MULS"
1593
  "muls\t$0,%1,%2"
1594
  [(set_attr "type" "imul")
1595
   (set_attr "mode" "SI")])
1596
 
1597
(define_insn "*msac_di"
1598
  [(set (match_operand:DI 0 "register_operand" "=x")
1599
        (minus:DI
1600
           (match_operand:DI 3 "register_operand" "0")
1601
           (mult:DI
1602
              (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1603
              (any_extend:DI (match_operand:SI 2 "register_operand" "d")))))]
1604
  "!TARGET_64BIT && ISA_HAS_MSAC"
1605
{
1606
  if (TARGET_MIPS5500)
1607
    return "msub\t%1,%2";
1608
  else
1609
    return "msac\t$0,%1,%2";
1610
}
1611
  [(set_attr "type" "imadd")
1612
   (set_attr "mode" "SI")])
1613
 
1614
;; _highpart patterns
1615
 
1616
(define_expand "mulsi3_highpart"
1617
  [(set (match_operand:SI 0 "register_operand")
1618
        (truncate:SI
1619
         (lshiftrt:DI
1620
          (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1621
                   (any_extend:DI (match_operand:SI 2 "register_operand")))
1622
          (const_int 32))))]
1623
  "ISA_HAS_MULHI || !TARGET_FIX_R4000"
1624
{
1625
  if (ISA_HAS_MULHI)
1626
    emit_insn (gen_mulsi3_highpart_mulhi_internal (operands[0],
1627
                                                       operands[1],
1628
                                                       operands[2]));
1629
  else
1630
    emit_insn (gen_mulsi3_highpart_internal (operands[0], operands[1],
1631
                                                 operands[2]));
1632
  DONE;
1633
})
1634
 
1635
(define_insn "mulsi3_highpart_internal"
1636
  [(set (match_operand:SI 0 "register_operand" "=h")
1637
        (truncate:SI
1638
         (lshiftrt:DI
1639
          (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1640
                   (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
1641
          (const_int 32))))
1642
   (clobber (match_scratch:SI 3 "=l"))]
1643
  "!ISA_HAS_MULHI && !TARGET_FIX_R4000"
1644
  "mult\t%1,%2"
1645
  [(set_attr "type" "imul")
1646
   (set_attr "mode" "SI")])
1647
 
1648
(define_insn "mulsi3_highpart_mulhi_internal"
1649
  [(set (match_operand:SI 0 "register_operand" "=h,d")
1650
        (truncate:SI
1651
         (lshiftrt:DI
1652
          (mult:DI
1653
           (any_extend:DI (match_operand:SI 1 "register_operand" "d,d"))
1654
           (any_extend:DI (match_operand:SI 2 "register_operand" "d,d")))
1655
          (const_int 32))))
1656
   (clobber (match_scratch:SI 3 "=l,l"))
1657
   (clobber (match_scratch:SI 4 "=X,h"))]
1658
  "ISA_HAS_MULHI"
1659
  "@
1660
   mult\t%1,%2
1661
   mulhi\t%0,%1,%2"
1662
  [(set_attr "type" "imul,imul3")
1663
   (set_attr "mode" "SI")])
1664
 
1665
(define_insn "*mulsi3_highpart_neg_mulhi_internal"
1666
  [(set (match_operand:SI 0 "register_operand" "=h,d")
1667
        (truncate:SI
1668
         (lshiftrt:DI
1669
          (neg:DI
1670
           (mult:DI
1671
            (any_extend:DI (match_operand:SI 1 "register_operand" "d,d"))
1672
            (any_extend:DI (match_operand:SI 2 "register_operand" "d,d"))))
1673
          (const_int 32))))
1674
   (clobber (match_scratch:SI 3 "=l,l"))
1675
   (clobber (match_scratch:SI 4 "=X,h"))]
1676
  "ISA_HAS_MULHI"
1677
  "@
1678
   mulshi\t%.,%1,%2
1679
   mulshi\t%0,%1,%2"
1680
  [(set_attr "type" "imul,imul3")
1681
   (set_attr "mode" "SI")])
1682
 
1683
;; Disable unsigned multiplication for -mfix-vr4120.  This is for VR4120
1684
;; errata MD(0), which says that dmultu does not always produce the
1685
;; correct result.
1686
(define_insn "muldi3_highpart"
1687
  [(set (match_operand:DI 0 "register_operand" "=h")
1688
        (truncate:DI
1689
         (lshiftrt:TI
1690
          (mult:TI
1691
           (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
1692
           (any_extend:TI (match_operand:DI 2 "register_operand" "d")))
1693
          (const_int 64))))
1694
   (clobber (match_scratch:DI 3 "=l"))]
1695
  "TARGET_64BIT && !TARGET_FIX_R4000
1696
   && !( == ZERO_EXTEND && TARGET_FIX_VR4120)"
1697
  "dmult\t%1,%2"
1698
  [(set_attr "type" "imul")
1699
   (set_attr "mode" "DI")])
1700
 
1701
;; The R4650 supports a 32 bit multiply/ 64 bit accumulate
1702
;; instruction.  The HI/LO registers are used as a 64 bit accumulator.
1703
 
1704
(define_insn "madsi"
1705
  [(set (match_operand:SI 0 "register_operand" "+l")
1706
        (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
1707
                          (match_operand:SI 2 "register_operand" "d"))
1708
                 (match_dup 0)))
1709
   (clobber (match_scratch:SI 3 "=h"))]
1710
  "TARGET_MAD"
1711
  "mad\t%1,%2"
1712
  [(set_attr "type"     "imadd")
1713
   (set_attr "mode"     "SI")])
1714
 
1715
(define_insn "*mul_acc_di"
1716
  [(set (match_operand:DI 0 "register_operand" "=x")
1717
        (plus:DI
1718
         (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1719
                  (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
1720
         (match_operand:DI 3 "register_operand" "0")))]
1721
  "(TARGET_MAD || ISA_HAS_MACC)
1722
   && !TARGET_64BIT"
1723
{
1724
  if (TARGET_MAD)
1725
    return "mad\t%1,%2";
1726
  else if (TARGET_MIPS5500)
1727
    return "madd\t%1,%2";
1728
  else
1729
    /* See comment in *macc.  */
1730
    return "%[macc\t%@,%1,%2%]";
1731
}
1732
  [(set_attr "type" "imadd")
1733
   (set_attr "mode" "SI")])
1734
 
1735
;; Floating point multiply accumulate instructions.
1736
 
1737
(define_insn "*madd"
1738
  [(set (match_operand:ANYF 0 "register_operand" "=f")
1739
        (plus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
1740
                              (match_operand:ANYF 2 "register_operand" "f"))
1741
                   (match_operand:ANYF 3 "register_operand" "f")))]
1742
  "ISA_HAS_FP4 && TARGET_FUSED_MADD"
1743
  "madd.\t%0,%3,%1,%2"
1744
  [(set_attr "type" "fmadd")
1745
   (set_attr "mode" "")])
1746
 
1747
(define_insn "*msub"
1748
  [(set (match_operand:ANYF 0 "register_operand" "=f")
1749
        (minus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
1750
                               (match_operand:ANYF 2 "register_operand" "f"))
1751
                    (match_operand:ANYF 3 "register_operand" "f")))]
1752
  "ISA_HAS_FP4 && TARGET_FUSED_MADD"
1753
  "msub.\t%0,%3,%1,%2"
1754
  [(set_attr "type" "fmadd")
1755
   (set_attr "mode" "")])
1756
 
1757
(define_insn "*nmadd"
1758
  [(set (match_operand:ANYF 0 "register_operand" "=f")
1759
        (neg:ANYF (plus:ANYF
1760
                   (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
1761
                              (match_operand:ANYF 2 "register_operand" "f"))
1762
                   (match_operand:ANYF 3 "register_operand" "f"))))]
1763
  "ISA_HAS_NMADD_NMSUB && TARGET_FUSED_MADD
1764
   && HONOR_SIGNED_ZEROS (mode)"
1765
  "nmadd.\t%0,%3,%1,%2"
1766
  [(set_attr "type" "fmadd")
1767
   (set_attr "mode" "")])
1768
 
1769
(define_insn "*nmadd_fastmath"
1770
  [(set (match_operand:ANYF 0 "register_operand" "=f")
1771
        (minus:ANYF
1772
         (mult:ANYF (neg:ANYF (match_operand:ANYF 1 "register_operand" "f"))
1773
                    (match_operand:ANYF 2 "register_operand" "f"))
1774
         (match_operand:ANYF 3 "register_operand" "f")))]
1775
  "ISA_HAS_NMADD_NMSUB && TARGET_FUSED_MADD
1776
   && !HONOR_SIGNED_ZEROS (mode)"
1777
  "nmadd.\t%0,%3,%1,%2"
1778
  [(set_attr "type" "fmadd")
1779
   (set_attr "mode" "")])
1780
 
1781
(define_insn "*nmsub"
1782
  [(set (match_operand:ANYF 0 "register_operand" "=f")
1783
        (neg:ANYF (minus:ANYF
1784
                   (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
1785
                              (match_operand:ANYF 3 "register_operand" "f"))
1786
                   (match_operand:ANYF 1 "register_operand" "f"))))]
1787
  "ISA_HAS_NMADD_NMSUB && TARGET_FUSED_MADD
1788
   && HONOR_SIGNED_ZEROS (mode)"
1789
  "nmsub.\t%0,%1,%2,%3"
1790
  [(set_attr "type" "fmadd")
1791
   (set_attr "mode" "")])
1792
 
1793
(define_insn "*nmsub_fastmath"
1794
  [(set (match_operand:ANYF 0 "register_operand" "=f")
1795
        (minus:ANYF
1796
         (match_operand:ANYF 1 "register_operand" "f")
1797
         (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
1798
                    (match_operand:ANYF 3 "register_operand" "f"))))]
1799
  "ISA_HAS_NMADD_NMSUB && TARGET_FUSED_MADD
1800
   && !HONOR_SIGNED_ZEROS (mode)"
1801
  "nmsub.\t%0,%1,%2,%3"
1802
  [(set_attr "type" "fmadd")
1803
   (set_attr "mode" "")])
1804
 
1805
;;
1806
;;  ....................
1807
;;
1808
;;      DIVISION and REMAINDER
1809
;;
1810
;;  ....................
1811
;;
1812
 
1813
(define_expand "div3"
1814
  [(set (match_operand:ANYF 0 "register_operand")
1815
        (div:ANYF (match_operand:ANYF 1 "reg_or_1_operand")
1816
                  (match_operand:ANYF 2 "register_operand")))]
1817
  ""
1818
{
1819
  if (const_1_operand (operands[1], mode))
1820
    if (!(ISA_HAS_FP4 && flag_unsafe_math_optimizations))
1821
      operands[1] = force_reg (mode, operands[1]);
1822
})
1823
 
1824
;; These patterns work around the early SB-1 rev2 core "F1" erratum:
1825
;;
1826
;; If an mfc1 or dmfc1 happens to access the floating point register
1827
;; file at the same time a long latency operation (div, sqrt, recip,
1828
;; sqrt) iterates an intermediate result back through the floating
1829
;; point register file bypass, then instead returning the correct
1830
;; register value the mfc1 or dmfc1 operation returns the intermediate
1831
;; result of the long latency operation.
1832
;;
1833
;; The workaround is to insert an unconditional 'mov' from/to the
1834
;; long latency op destination register.
1835
 
1836
(define_insn "*div3"
1837
  [(set (match_operand:ANYF 0 "register_operand" "=f")
1838
        (div:ANYF (match_operand:ANYF 1 "register_operand" "f")
1839
                  (match_operand:ANYF 2 "register_operand" "f")))]
1840
  ""
1841
{
1842
  if (TARGET_FIX_SB1)
1843
    return "div.\t%0,%1,%2\;mov.\t%0,%0";
1844
  else
1845
    return "div.\t%0,%1,%2";
1846
}
1847
  [(set_attr "type" "fdiv")
1848
   (set_attr "mode" "")
1849
   (set (attr "length")
1850
        (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
1851
                      (const_int 8)
1852
                      (const_int 4)))])
1853
 
1854
(define_insn "*recip3"
1855
  [(set (match_operand:ANYF 0 "register_operand" "=f")
1856
        (div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
1857
                  (match_operand:ANYF 2 "register_operand" "f")))]
1858
  " && flag_unsafe_math_optimizations"
1859
{
1860
  if (TARGET_FIX_SB1)
1861
    return "recip.\t%0,%2\;mov.\t%0,%0";
1862
  else
1863
    return "recip.\t%0,%2";
1864
}
1865
  [(set_attr "type" "frdiv")
1866
   (set_attr "mode" "")
1867
   (set (attr "length")
1868
        (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
1869
                      (const_int 8)
1870
                      (const_int 4)))])
1871
 
1872
;; VR4120 errata MD(A1): signed division instructions do not work correctly
1873
;; with negative operands.  We use special libgcc functions instead.
1874
(define_insn "divmod4"
1875
  [(set (match_operand:GPR 0 "register_operand" "=l")
1876
        (div:GPR (match_operand:GPR 1 "register_operand" "d")
1877
                 (match_operand:GPR 2 "register_operand" "d")))
1878
   (set (match_operand:GPR 3 "register_operand" "=h")
1879
        (mod:GPR (match_dup 1)
1880
                 (match_dup 2)))]
1881
  "!TARGET_FIX_VR4120"
1882
  { return mips_output_division ("div\t$0,%1,%2", operands); }
1883
  [(set_attr "type" "idiv")
1884
   (set_attr "mode" "")])
1885
 
1886
(define_insn "udivmod4"
1887
  [(set (match_operand:GPR 0 "register_operand" "=l")
1888
        (udiv:GPR (match_operand:GPR 1 "register_operand" "d")
1889
                  (match_operand:GPR 2 "register_operand" "d")))
1890
   (set (match_operand:GPR 3 "register_operand" "=h")
1891
        (umod:GPR (match_dup 1)
1892
                  (match_dup 2)))]
1893
  ""
1894
  { return mips_output_division ("divu\t$0,%1,%2", operands); }
1895
  [(set_attr "type" "idiv")
1896
   (set_attr "mode" "")])
1897
 
1898
;;
1899
;;  ....................
1900
;;
1901
;;      SQUARE ROOT
1902
;;
1903
;;  ....................
1904
 
1905
;; These patterns work around the early SB-1 rev2 core "F1" erratum (see
1906
;; "*div[sd]f3" comment for details).
1907
 
1908
(define_insn "sqrt2"
1909
  [(set (match_operand:ANYF 0 "register_operand" "=f")
1910
        (sqrt:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
1911
  ""
1912
{
1913
  if (TARGET_FIX_SB1)
1914
    return "sqrt.\t%0,%1\;mov.\t%0,%0";
1915
  else
1916
    return "sqrt.\t%0,%1";
1917
}
1918
  [(set_attr "type" "fsqrt")
1919
   (set_attr "mode" "")
1920
   (set (attr "length")
1921
        (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
1922
                      (const_int 8)
1923
                      (const_int 4)))])
1924
 
1925
(define_insn "*rsqrta"
1926
  [(set (match_operand:ANYF 0 "register_operand" "=f")
1927
        (div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
1928
                  (sqrt:ANYF (match_operand:ANYF 2 "register_operand" "f"))))]
1929
  " && flag_unsafe_math_optimizations"
1930
{
1931
  if (TARGET_FIX_SB1)
1932
    return "rsqrt.\t%0,%2\;mov.\t%0,%0";
1933
  else
1934
    return "rsqrt.\t%0,%2";
1935
}
1936
  [(set_attr "type" "frsqrt")
1937
   (set_attr "mode" "")
1938
   (set (attr "length")
1939
        (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
1940
                      (const_int 8)
1941
                      (const_int 4)))])
1942
 
1943
(define_insn "*rsqrtb"
1944
  [(set (match_operand:ANYF 0 "register_operand" "=f")
1945
        (sqrt:ANYF (div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
1946
                             (match_operand:ANYF 2 "register_operand" "f"))))]
1947
  " && flag_unsafe_math_optimizations"
1948
{
1949
  if (TARGET_FIX_SB1)
1950
    return "rsqrt.\t%0,%2\;mov.\t%0,%0";
1951
  else
1952
    return "rsqrt.\t%0,%2";
1953
}
1954
  [(set_attr "type" "frsqrt")
1955
   (set_attr "mode" "")
1956
   (set (attr "length")
1957
        (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
1958
                      (const_int 8)
1959
                      (const_int 4)))])
1960
 
1961
;;
1962
;;  ....................
1963
;;
1964
;;      ABSOLUTE VALUE
1965
;;
1966
;;  ....................
1967
 
1968
;; Do not use the integer abs macro instruction, since that signals an
1969
;; exception on -2147483648 (sigh).
1970
 
1971
(define_insn "abs2"
1972
  [(set (match_operand:ANYF 0 "register_operand" "=f")
1973
        (abs:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
1974
  ""
1975
  "abs.\t%0,%1"
1976
  [(set_attr "type" "fabs")
1977
   (set_attr "mode" "")])
1978
 
1979
;;
1980
;;  ...................
1981
;;
1982
;;  Count leading zeroes.
1983
;;
1984
;;  ...................
1985
;;
1986
 
1987
(define_insn "clz2"
1988
  [(set (match_operand:GPR 0 "register_operand" "=d")
1989
        (clz:GPR (match_operand:GPR 1 "register_operand" "d")))]
1990
  "ISA_HAS_CLZ_CLO"
1991
  "clz\t%0,%1"
1992
  [(set_attr "type" "clz")
1993
   (set_attr "mode" "")])
1994
 
1995
;;
1996
;;  ....................
1997
;;
1998
;;      NEGATION and ONE'S COMPLEMENT
1999
;;
2000
;;  ....................
2001
 
2002
(define_insn "negsi2"
2003
  [(set (match_operand:SI 0 "register_operand" "=d")
2004
        (neg:SI (match_operand:SI 1 "register_operand" "d")))]
2005
  ""
2006
{
2007
  if (TARGET_MIPS16)
2008
    return "neg\t%0,%1";
2009
  else
2010
    return "subu\t%0,%.,%1";
2011
}
2012
  [(set_attr "type"     "arith")
2013
   (set_attr "mode"     "SI")])
2014
 
2015
(define_insn "negdi2"
2016
  [(set (match_operand:DI 0 "register_operand" "=d")
2017
        (neg:DI (match_operand:DI 1 "register_operand" "d")))]
2018
  "TARGET_64BIT && !TARGET_MIPS16"
2019
  "dsubu\t%0,%.,%1"
2020
  [(set_attr "type"     "arith")
2021
   (set_attr "mode"     "DI")])
2022
 
2023
(define_insn "neg2"
2024
  [(set (match_operand:ANYF 0 "register_operand" "=f")
2025
        (neg:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
2026
  ""
2027
  "neg.\t%0,%1"
2028
  [(set_attr "type" "fneg")
2029
   (set_attr "mode" "")])
2030
 
2031
(define_insn "one_cmpl2"
2032
  [(set (match_operand:GPR 0 "register_operand" "=d")
2033
        (not:GPR (match_operand:GPR 1 "register_operand" "d")))]
2034
  ""
2035
{
2036
  if (TARGET_MIPS16)
2037
    return "not\t%0,%1";
2038
  else
2039
    return "nor\t%0,%.,%1";
2040
}
2041
  [(set_attr "type" "arith")
2042
   (set_attr "mode" "")])
2043
 
2044
;;
2045
;;  ....................
2046
;;
2047
;;      LOGICAL
2048
;;
2049
;;  ....................
2050
;;
2051
 
2052
;; Many of these instructions use trivial define_expands, because we
2053
;; want to use a different set of constraints when TARGET_MIPS16.
2054
 
2055
(define_expand "and3"
2056
  [(set (match_operand:GPR 0 "register_operand")
2057
        (and:GPR (match_operand:GPR 1 "register_operand")
2058
                 (match_operand:GPR 2 "uns_arith_operand")))]
2059
  ""
2060
{
2061
  if (TARGET_MIPS16)
2062
    operands[2] = force_reg (mode, operands[2]);
2063
})
2064
 
2065
(define_insn "*and3"
2066
  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2067
        (and:GPR (match_operand:GPR 1 "register_operand" "%d,d")
2068
                 (match_operand:GPR 2 "uns_arith_operand" "d,K")))]
2069
  "!TARGET_MIPS16"
2070
  "@
2071
   and\t%0,%1,%2
2072
   andi\t%0,%1,%x2"
2073
  [(set_attr "type" "arith")
2074
   (set_attr "mode" "")])
2075
 
2076
(define_insn "*and3_mips16"
2077
  [(set (match_operand:GPR 0 "register_operand" "=d")
2078
        (and:GPR (match_operand:GPR 1 "register_operand" "%0")
2079
                 (match_operand:GPR 2 "register_operand" "d")))]
2080
  "TARGET_MIPS16"
2081
  "and\t%0,%2"
2082
  [(set_attr "type" "arith")
2083
   (set_attr "mode" "")])
2084
 
2085
(define_expand "ior3"
2086
  [(set (match_operand:GPR 0 "register_operand")
2087
        (ior:GPR (match_operand:GPR 1 "register_operand")
2088
                 (match_operand:GPR 2 "uns_arith_operand")))]
2089
  ""
2090
{
2091
  if (TARGET_MIPS16)
2092
    operands[2] = force_reg (mode, operands[2]);
2093
})
2094
 
2095
(define_insn "*ior3"
2096
  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2097
        (ior:GPR (match_operand:GPR 1 "register_operand" "%d,d")
2098
                 (match_operand:GPR 2 "uns_arith_operand" "d,K")))]
2099
  "!TARGET_MIPS16"
2100
  "@
2101
   or\t%0,%1,%2
2102
   ori\t%0,%1,%x2"
2103
  [(set_attr "type" "arith")
2104
   (set_attr "mode" "")])
2105
 
2106
(define_insn "*ior3_mips16"
2107
  [(set (match_operand:GPR 0 "register_operand" "=d")
2108
        (ior:GPR (match_operand:GPR 1 "register_operand" "%0")
2109
                 (match_operand:GPR 2 "register_operand" "d")))]
2110
  "TARGET_MIPS16"
2111
  "or\t%0,%2"
2112
  [(set_attr "type" "arith")
2113
   (set_attr "mode" "")])
2114
 
2115
(define_expand "xor3"
2116
  [(set (match_operand:GPR 0 "register_operand")
2117
        (xor:GPR (match_operand:GPR 1 "register_operand")
2118
                 (match_operand:GPR 2 "uns_arith_operand")))]
2119
  ""
2120
  "")
2121
 
2122
(define_insn ""
2123
  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2124
        (xor:GPR (match_operand:GPR 1 "register_operand" "%d,d")
2125
                 (match_operand:GPR 2 "uns_arith_operand" "d,K")))]
2126
  "!TARGET_MIPS16"
2127
  "@
2128
   xor\t%0,%1,%2
2129
   xori\t%0,%1,%x2"
2130
  [(set_attr "type" "arith")
2131
   (set_attr "mode" "")])
2132
 
2133
(define_insn ""
2134
  [(set (match_operand:GPR 0 "register_operand" "=d,t,t")
2135
        (xor:GPR (match_operand:GPR 1 "register_operand" "%0,d,d")
2136
                 (match_operand:GPR 2 "uns_arith_operand" "d,K,d")))]
2137
  "TARGET_MIPS16"
2138
  "@
2139
   xor\t%0,%2
2140
   cmpi\t%1,%2
2141
   cmp\t%1,%2"
2142
  [(set_attr "type" "arith")
2143
   (set_attr "mode" "")
2144
   (set_attr_alternative "length"
2145
                [(const_int 4)
2146
                 (if_then_else (match_operand:VOID 2 "m16_uimm8_1")
2147
                               (const_int 4)
2148
                               (const_int 8))
2149
                 (const_int 4)])])
2150
 
2151
(define_insn "*nor3"
2152
  [(set (match_operand:GPR 0 "register_operand" "=d")
2153
        (and:GPR (not:GPR (match_operand:GPR 1 "register_operand" "d"))
2154
                 (not:GPR (match_operand:GPR 2 "register_operand" "d"))))]
2155
  "!TARGET_MIPS16"
2156
  "nor\t%0,%1,%2"
2157
  [(set_attr "type" "arith")
2158
   (set_attr "mode" "")])
2159
 
2160
;;
2161
;;  ....................
2162
;;
2163
;;      TRUNCATION
2164
;;
2165
;;  ....................
2166
 
2167
 
2168
 
2169
(define_insn "truncdfsf2"
2170
  [(set (match_operand:SF 0 "register_operand" "=f")
2171
        (float_truncate:SF (match_operand:DF 1 "register_operand" "f")))]
2172
  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
2173
  "cvt.s.d\t%0,%1"
2174
  [(set_attr "type"     "fcvt")
2175
   (set_attr "cnv_mode" "D2S")
2176
   (set_attr "mode"     "SF")])
2177
 
2178
;; Integer truncation patterns.  Truncating SImode values to smaller
2179
;; modes is a no-op, as it is for most other GCC ports.  Truncating
2180
;; DImode values to SImode is not a no-op for TARGET_64BIT since we
2181
;; need to make sure that the lower 32 bits are properly sign-extended
2182
;; (see TRULY_NOOP_TRUNCATION).  Truncating DImode values into modes
2183
;; smaller than SImode is equivalent to two separate truncations:
2184
;;
2185
;;                        A       B
2186
;;    DI ---> HI  ==  DI ---> SI ---> HI
2187
;;    DI ---> QI  ==  DI ---> SI ---> QI
2188
;;
2189
;; Step A needs a real instruction but step B does not.
2190
 
2191
(define_insn "truncdisi2"
2192
  [(set (match_operand:SI 0 "nonimmediate_operand" "=d,m")
2193
        (truncate:SI (match_operand:DI 1 "register_operand" "d,d")))]
2194
  "TARGET_64BIT"
2195
  "@
2196
    sll\t%0,%1,0
2197
    sw\t%1,%0"
2198
  [(set_attr "type" "shift,store")
2199
   (set_attr "mode" "SI")
2200
   (set_attr "extended_mips16" "yes,*")])
2201
 
2202
(define_insn "truncdihi2"
2203
  [(set (match_operand:HI 0 "nonimmediate_operand" "=d,m")
2204
        (truncate:HI (match_operand:DI 1 "register_operand" "d,d")))]
2205
  "TARGET_64BIT"
2206
  "@
2207
    sll\t%0,%1,0
2208
    sh\t%1,%0"
2209
  [(set_attr "type" "shift,store")
2210
   (set_attr "mode" "SI")
2211
   (set_attr "extended_mips16" "yes,*")])
2212
 
2213
(define_insn "truncdiqi2"
2214
  [(set (match_operand:QI 0 "nonimmediate_operand" "=d,m")
2215
        (truncate:QI (match_operand:DI 1 "register_operand" "d,d")))]
2216
  "TARGET_64BIT"
2217
  "@
2218
    sll\t%0,%1,0
2219
    sb\t%1,%0"
2220
  [(set_attr "type" "shift,store")
2221
   (set_attr "mode" "SI")
2222
   (set_attr "extended_mips16" "yes,*")])
2223
 
2224
;; Combiner patterns to optimize shift/truncate combinations.
2225
 
2226
(define_insn ""
2227
  [(set (match_operand:SI 0 "register_operand" "=d")
2228
        (truncate:SI
2229
          (ashiftrt:DI (match_operand:DI 1 "register_operand" "d")
2230
                       (match_operand:DI 2 "const_arith_operand" ""))))]
2231
  "TARGET_64BIT && !TARGET_MIPS16 && INTVAL (operands[2]) >= 32"
2232
  "dsra\t%0,%1,%2"
2233
  [(set_attr "type" "shift")
2234
   (set_attr "mode" "SI")])
2235
 
2236
(define_insn ""
2237
  [(set (match_operand:SI 0 "register_operand" "=d")
2238
        (truncate:SI (lshiftrt:DI (match_operand:DI 1 "register_operand" "d")
2239
                                  (const_int 32))))]
2240
  "TARGET_64BIT && !TARGET_MIPS16"
2241
  "dsra\t%0,%1,32"
2242
  [(set_attr "type" "shift")
2243
   (set_attr "mode" "SI")])
2244
 
2245
 
2246
;; Combiner patterns for truncate/sign_extend combinations.  They use
2247
;; the shift/truncate patterns above.
2248
 
2249
(define_insn_and_split ""
2250
  [(set (match_operand:SI 0 "register_operand" "=d")
2251
        (sign_extend:SI
2252
            (truncate:HI (match_operand:DI 1 "register_operand" "d"))))]
2253
  "TARGET_64BIT && !TARGET_MIPS16"
2254
  "#"
2255
  "&& reload_completed"
2256
  [(set (match_dup 2)
2257
        (ashift:DI (match_dup 1)
2258
                   (const_int 48)))
2259
   (set (match_dup 0)
2260
        (truncate:SI (ashiftrt:DI (match_dup 2)
2261
                                  (const_int 48))))]
2262
  { operands[2] = gen_lowpart (DImode, operands[0]); })
2263
 
2264
(define_insn_and_split ""
2265
  [(set (match_operand:SI 0 "register_operand" "=d")
2266
        (sign_extend:SI
2267
            (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
2268
  "TARGET_64BIT && !TARGET_MIPS16"
2269
  "#"
2270
  "&& reload_completed"
2271
  [(set (match_dup 2)
2272
        (ashift:DI (match_dup 1)
2273
                   (const_int 56)))
2274
   (set (match_dup 0)
2275
        (truncate:SI (ashiftrt:DI (match_dup 2)
2276
                                  (const_int 56))))]
2277
  { operands[2] = gen_lowpart (DImode, operands[0]); })
2278
 
2279
 
2280
;; Combiner patterns to optimize truncate/zero_extend combinations.
2281
 
2282
(define_insn ""
2283
  [(set (match_operand:SI 0 "register_operand" "=d")
2284
        (zero_extend:SI (truncate:HI
2285
                         (match_operand:DI 1 "register_operand" "d"))))]
2286
  "TARGET_64BIT && !TARGET_MIPS16"
2287
  "andi\t%0,%1,0xffff"
2288
  [(set_attr "type"     "arith")
2289
   (set_attr "mode"     "SI")])
2290
 
2291
(define_insn ""
2292
  [(set (match_operand:SI 0 "register_operand" "=d")
2293
        (zero_extend:SI (truncate:QI
2294
                         (match_operand:DI 1 "register_operand" "d"))))]
2295
  "TARGET_64BIT && !TARGET_MIPS16"
2296
  "andi\t%0,%1,0xff"
2297
  [(set_attr "type"     "arith")
2298
   (set_attr "mode"     "SI")])
2299
 
2300
(define_insn ""
2301
  [(set (match_operand:HI 0 "register_operand" "=d")
2302
        (zero_extend:HI (truncate:QI
2303
                         (match_operand:DI 1 "register_operand" "d"))))]
2304
  "TARGET_64BIT && !TARGET_MIPS16"
2305
  "andi\t%0,%1,0xff"
2306
  [(set_attr "type"     "arith")
2307
   (set_attr "mode"     "HI")])
2308
 
2309
;;
2310
;;  ....................
2311
;;
2312
;;      ZERO EXTENSION
2313
;;
2314
;;  ....................
2315
 
2316
;; Extension insns.
2317
 
2318
(define_insn_and_split "zero_extendsidi2"
2319
  [(set (match_operand:DI 0 "register_operand" "=d,d")
2320
        (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "d,W")))]
2321
  "TARGET_64BIT"
2322
  "@
2323
   #
2324
   lwu\t%0,%1"
2325
  "&& reload_completed && REG_P (operands[1])"
2326
  [(set (match_dup 0)
2327
        (ashift:DI (match_dup 1) (const_int 32)))
2328
   (set (match_dup 0)
2329
        (lshiftrt:DI (match_dup 0) (const_int 32)))]
2330
  { operands[1] = gen_lowpart (DImode, operands[1]); }
2331
  [(set_attr "type" "multi,load")
2332
   (set_attr "mode" "DI")
2333
   (set_attr "length" "8,*")])
2334
 
2335
(define_expand "zero_extend2"
2336
  [(set (match_operand:GPR 0 "register_operand")
2337
        (zero_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand")))]
2338
  ""
2339
{
2340
  if (TARGET_MIPS16 && !GENERATE_MIPS16E
2341
      && !memory_operand (operands[1], mode))
2342
    {
2343
      emit_insn (gen_and3 (operands[0],
2344
                                     gen_lowpart (mode, operands[1]),
2345
                                     force_reg (mode,
2346
                                                GEN_INT ())));
2347
      DONE;
2348
    }
2349
})
2350
 
2351
(define_insn "*zero_extend2"
2352
  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2353
        (zero_extend:GPR
2354
             (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
2355
  "!TARGET_MIPS16"
2356
  "@
2357
   andi\t%0,%1,
2358
   lu\t%0,%1"
2359
  [(set_attr "type" "arith,load")
2360
   (set_attr "mode" "")])
2361
 
2362
(define_insn "*zero_extend2_mips16e"
2363
  [(set (match_operand:GPR 0 "register_operand" "=d")
2364
        (zero_extend:GPR (match_operand:SHORT 1 "register_operand" "0")))]
2365
  "GENERATE_MIPS16E"
2366
  "ze\t%0"
2367
  [(set_attr "type" "arith")
2368
   (set_attr "mode" "")])
2369
 
2370
(define_insn "*zero_extend2_mips16"
2371
  [(set (match_operand:GPR 0 "register_operand" "=d")
2372
        (zero_extend:GPR (match_operand:SHORT 1 "memory_operand" "m")))]
2373
  "TARGET_MIPS16"
2374
  "lu\t%0,%1"
2375
  [(set_attr "type" "load")
2376
   (set_attr "mode" "")])
2377
 
2378
(define_expand "zero_extendqihi2"
2379
  [(set (match_operand:HI 0 "register_operand")
2380
        (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand")))]
2381
  ""
2382
{
2383
  if (TARGET_MIPS16 && !memory_operand (operands[1], QImode))
2384
    {
2385
      emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]),
2386
                                       operands[1]));
2387
      DONE;
2388
    }
2389
})
2390
 
2391
(define_insn "*zero_extendqihi2"
2392
  [(set (match_operand:HI 0 "register_operand" "=d,d")
2393
        (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
2394
  "!TARGET_MIPS16"
2395
  "@
2396
   andi\t%0,%1,0x00ff
2397
   lbu\t%0,%1"
2398
  [(set_attr "type" "arith,load")
2399
   (set_attr "mode" "HI")])
2400
 
2401
(define_insn "*zero_extendqihi2_mips16"
2402
  [(set (match_operand:HI 0 "register_operand" "=d")
2403
        (zero_extend:HI (match_operand:QI 1 "memory_operand" "m")))]
2404
  "TARGET_MIPS16"
2405
  "lbu\t%0,%1"
2406
  [(set_attr "type" "load")
2407
   (set_attr "mode" "HI")])
2408
 
2409
;;
2410
;;  ....................
2411
;;
2412
;;      SIGN EXTENSION
2413
;;
2414
;;  ....................
2415
 
2416
;; Extension insns.
2417
;; Those for integer source operand are ordered widest source type first.
2418
 
2419
;; When TARGET_64BIT, all SImode integer registers should already be in
2420
;; sign-extended form (see TRULY_NOOP_TRUNCATION and truncdisi2).  We can
2421
;; therefore get rid of register->register instructions if we constrain
2422
;; the source to be in the same register as the destination.
2423
;;
2424
;; The register alternative has type "arith" so that the pre-reload
2425
;; scheduler will treat it as a move.  This reflects what happens if
2426
;; the register alternative needs a reload.
2427
(define_insn_and_split "extendsidi2"
2428
  [(set (match_operand:DI 0 "register_operand" "=d,d")
2429
        (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "0,m")))]
2430
  "TARGET_64BIT"
2431
  "@
2432
   #
2433
   lw\t%0,%1"
2434
  "&& reload_completed && register_operand (operands[1], VOIDmode)"
2435
  [(const_int 0)]
2436
{
2437
  emit_note (NOTE_INSN_DELETED);
2438
  DONE;
2439
}
2440
  [(set_attr "type" "arith,load")
2441
   (set_attr "mode" "DI")])
2442
 
2443
(define_expand "extend2"
2444
  [(set (match_operand:GPR 0 "register_operand")
2445
        (sign_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand")))]
2446
  "")
2447
 
2448
(define_insn "*extend2_mips16e"
2449
  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2450
        (sign_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand" "0,m")))]
2451
  "GENERATE_MIPS16E"
2452
  "@
2453
   se\t%0
2454
   l\t%0,%1"
2455
  [(set_attr "type" "arith,load")
2456
   (set_attr "mode" "")])
2457
 
2458
(define_insn_and_split "*extend2"
2459
  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2460
        (sign_extend:GPR
2461
             (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
2462
  "!ISA_HAS_SEB_SEH && !GENERATE_MIPS16E"
2463
  "@
2464
   #
2465
   l\t%0,%1"
2466
  "&& reload_completed && REG_P (operands[1])"
2467
  [(set (match_dup 0) (ashift:GPR (match_dup 1) (match_dup 2)))
2468
   (set (match_dup 0) (ashiftrt:GPR (match_dup 0) (match_dup 2)))]
2469
{
2470
  operands[1] = gen_lowpart (mode, operands[1]);
2471
  operands[2] = GEN_INT (GET_MODE_BITSIZE (mode)
2472
                         - GET_MODE_BITSIZE (mode));
2473
}
2474
  [(set_attr "type" "arith,load")
2475
   (set_attr "mode" "")
2476
   (set_attr "length" "8,*")])
2477
 
2478
(define_insn "*extend2_se"
2479
  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2480
        (sign_extend:GPR
2481
             (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
2482
  "ISA_HAS_SEB_SEH"
2483
  "@
2484
   se\t%0,%1
2485
   l\t%0,%1"
2486
  [(set_attr "type" "arith,load")
2487
   (set_attr "mode" "")])
2488
 
2489
;; This pattern generates the same code as extendqisi2; split it into
2490
;; that form after reload.
2491
(define_insn_and_split "extendqihi2"
2492
  [(set (match_operand:HI 0 "register_operand" "=d,d")
2493
        (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
2494
  ""
2495
  "#"
2496
  "reload_completed"
2497
  [(set (match_dup 0) (sign_extend:SI (match_dup 1)))]
2498
  { operands[0] = gen_lowpart (SImode, operands[0]); }
2499
  [(set_attr "type" "arith,load")
2500
   (set_attr "mode" "SI")
2501
   (set_attr "length" "8,*")])
2502
 
2503
(define_insn "extendsfdf2"
2504
  [(set (match_operand:DF 0 "register_operand" "=f")
2505
        (float_extend:DF (match_operand:SF 1 "register_operand" "f")))]
2506
  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
2507
  "cvt.d.s\t%0,%1"
2508
  [(set_attr "type"     "fcvt")
2509
   (set_attr "cnv_mode" "S2D")
2510
   (set_attr "mode"     "DF")])
2511
 
2512
;;
2513
;;  ....................
2514
;;
2515
;;      CONVERSIONS
2516
;;
2517
;;  ....................
2518
 
2519
(define_expand "fix_truncdfsi2"
2520
  [(set (match_operand:SI 0 "register_operand")
2521
        (fix:SI (match_operand:DF 1 "register_operand")))]
2522
  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
2523
{
2524
  if (!ISA_HAS_TRUNC_W)
2525
    {
2526
      emit_insn (gen_fix_truncdfsi2_macro (operands[0], operands[1]));
2527
      DONE;
2528
    }
2529
})
2530
 
2531
(define_insn "fix_truncdfsi2_insn"
2532
  [(set (match_operand:SI 0 "register_operand" "=f")
2533
        (fix:SI (match_operand:DF 1 "register_operand" "f")))]
2534
  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && ISA_HAS_TRUNC_W"
2535
  "trunc.w.d %0,%1"
2536
  [(set_attr "type"     "fcvt")
2537
   (set_attr "mode"     "DF")
2538
   (set_attr "cnv_mode" "D2I")
2539
   (set_attr "length"   "4")])
2540
 
2541
(define_insn "fix_truncdfsi2_macro"
2542
  [(set (match_operand:SI 0 "register_operand" "=f")
2543
        (fix:SI (match_operand:DF 1 "register_operand" "f")))
2544
   (clobber (match_scratch:DF 2 "=d"))]
2545
  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !ISA_HAS_TRUNC_W"
2546
{
2547
  if (set_nomacro)
2548
    return ".set\tmacro\;trunc.w.d %0,%1,%2\;.set\tnomacro";
2549
  else
2550
    return "trunc.w.d %0,%1,%2";
2551
}
2552
  [(set_attr "type"     "fcvt")
2553
   (set_attr "mode"     "DF")
2554
   (set_attr "cnv_mode" "D2I")
2555
   (set_attr "length"   "36")])
2556
 
2557
(define_expand "fix_truncsfsi2"
2558
  [(set (match_operand:SI 0 "register_operand")
2559
        (fix:SI (match_operand:SF 1 "register_operand")))]
2560
  "TARGET_HARD_FLOAT"
2561
{
2562
  if (!ISA_HAS_TRUNC_W)
2563
    {
2564
      emit_insn (gen_fix_truncsfsi2_macro (operands[0], operands[1]));
2565
      DONE;
2566
    }
2567
})
2568
 
2569
(define_insn "fix_truncsfsi2_insn"
2570
  [(set (match_operand:SI 0 "register_operand" "=f")
2571
        (fix:SI (match_operand:SF 1 "register_operand" "f")))]
2572
  "TARGET_HARD_FLOAT && ISA_HAS_TRUNC_W"
2573
  "trunc.w.s %0,%1"
2574
  [(set_attr "type"     "fcvt")
2575
   (set_attr "mode"     "SF")
2576
   (set_attr "cnv_mode" "S2I")
2577
   (set_attr "length"   "4")])
2578
 
2579
(define_insn "fix_truncsfsi2_macro"
2580
  [(set (match_operand:SI 0 "register_operand" "=f")
2581
        (fix:SI (match_operand:SF 1 "register_operand" "f")))
2582
   (clobber (match_scratch:SF 2 "=d"))]
2583
  "TARGET_HARD_FLOAT && !ISA_HAS_TRUNC_W"
2584
{
2585
  if (set_nomacro)
2586
    return ".set\tmacro\;trunc.w.s %0,%1,%2\;.set\tnomacro";
2587
  else
2588
    return "trunc.w.s %0,%1,%2";
2589
}
2590
  [(set_attr "type"     "fcvt")
2591
   (set_attr "mode"     "SF")
2592
   (set_attr "cnv_mode" "S2I")
2593
   (set_attr "length"   "36")])
2594
 
2595
 
2596
(define_insn "fix_truncdfdi2"
2597
  [(set (match_operand:DI 0 "register_operand" "=f")
2598
        (fix:DI (match_operand:DF 1 "register_operand" "f")))]
2599
  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
2600
  "trunc.l.d %0,%1"
2601
  [(set_attr "type"     "fcvt")
2602
   (set_attr "mode"     "DF")
2603
   (set_attr "cnv_mode" "D2I")
2604
   (set_attr "length"   "4")])
2605
 
2606
 
2607
(define_insn "fix_truncsfdi2"
2608
  [(set (match_operand:DI 0 "register_operand" "=f")
2609
        (fix:DI (match_operand:SF 1 "register_operand" "f")))]
2610
  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
2611
  "trunc.l.s %0,%1"
2612
  [(set_attr "type"     "fcvt")
2613
   (set_attr "mode"     "SF")
2614
   (set_attr "cnv_mode" "S2I")
2615
   (set_attr "length"   "4")])
2616
 
2617
 
2618
(define_insn "floatsidf2"
2619
  [(set (match_operand:DF 0 "register_operand" "=f")
2620
        (float:DF (match_operand:SI 1 "register_operand" "f")))]
2621
  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
2622
  "cvt.d.w\t%0,%1"
2623
  [(set_attr "type"     "fcvt")
2624
   (set_attr "mode"     "DF")
2625
   (set_attr "cnv_mode" "I2D")
2626
   (set_attr "length"   "4")])
2627
 
2628
 
2629
(define_insn "floatdidf2"
2630
  [(set (match_operand:DF 0 "register_operand" "=f")
2631
        (float:DF (match_operand:DI 1 "register_operand" "f")))]
2632
  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
2633
  "cvt.d.l\t%0,%1"
2634
  [(set_attr "type"     "fcvt")
2635
   (set_attr "mode"     "DF")
2636
   (set_attr "cnv_mode" "I2D")
2637
   (set_attr "length"   "4")])
2638
 
2639
 
2640
(define_insn "floatsisf2"
2641
  [(set (match_operand:SF 0 "register_operand" "=f")
2642
        (float:SF (match_operand:SI 1 "register_operand" "f")))]
2643
  "TARGET_HARD_FLOAT"
2644
  "cvt.s.w\t%0,%1"
2645
  [(set_attr "type"     "fcvt")
2646
   (set_attr "mode"     "SF")
2647
   (set_attr "cnv_mode" "I2S")
2648
   (set_attr "length"   "4")])
2649
 
2650
 
2651
(define_insn "floatdisf2"
2652
  [(set (match_operand:SF 0 "register_operand" "=f")
2653
        (float:SF (match_operand:DI 1 "register_operand" "f")))]
2654
  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
2655
  "cvt.s.l\t%0,%1"
2656
  [(set_attr "type"     "fcvt")
2657
   (set_attr "mode"     "SF")
2658
   (set_attr "cnv_mode" "I2S")
2659
   (set_attr "length"   "4")])
2660
 
2661
 
2662
(define_expand "fixuns_truncdfsi2"
2663
  [(set (match_operand:SI 0 "register_operand")
2664
        (unsigned_fix:SI (match_operand:DF 1 "register_operand")))]
2665
  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
2666
{
2667
  rtx reg1 = gen_reg_rtx (DFmode);
2668
  rtx reg2 = gen_reg_rtx (DFmode);
2669
  rtx reg3 = gen_reg_rtx (SImode);
2670
  rtx label1 = gen_label_rtx ();
2671
  rtx label2 = gen_label_rtx ();
2672
  REAL_VALUE_TYPE offset;
2673
 
2674
  real_2expN (&offset, 31);
2675
 
2676
  if (reg1)                     /* Turn off complaints about unreached code.  */
2677
    {
2678
      emit_move_insn (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, DFmode));
2679
      do_pending_stack_adjust ();
2680
 
2681
      emit_insn (gen_cmpdf (operands[1], reg1));
2682
      emit_jump_insn (gen_bge (label1));
2683
 
2684
      emit_insn (gen_fix_truncdfsi2 (operands[0], operands[1]));
2685
      emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
2686
                                   gen_rtx_LABEL_REF (VOIDmode, label2)));
2687
      emit_barrier ();
2688
 
2689
      emit_label (label1);
2690
      emit_move_insn (reg2, gen_rtx_MINUS (DFmode, operands[1], reg1));
2691
      emit_move_insn (reg3, GEN_INT (trunc_int_for_mode
2692
                                     (BITMASK_HIGH, SImode)));
2693
 
2694
      emit_insn (gen_fix_truncdfsi2 (operands[0], reg2));
2695
      emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
2696
 
2697
      emit_label (label2);
2698
 
2699
      /* Allow REG_NOTES to be set on last insn (labels don't have enough
2700
         fields, and can't be used for REG_NOTES anyway).  */
2701
      emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
2702
      DONE;
2703
    }
2704
})
2705
 
2706
 
2707
(define_expand "fixuns_truncdfdi2"
2708
  [(set (match_operand:DI 0 "register_operand")
2709
        (unsigned_fix:DI (match_operand:DF 1 "register_operand")))]
2710
  "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT"
2711
{
2712
  rtx reg1 = gen_reg_rtx (DFmode);
2713
  rtx reg2 = gen_reg_rtx (DFmode);
2714
  rtx reg3 = gen_reg_rtx (DImode);
2715
  rtx label1 = gen_label_rtx ();
2716
  rtx label2 = gen_label_rtx ();
2717
  REAL_VALUE_TYPE offset;
2718
 
2719
  real_2expN (&offset, 63);
2720
 
2721
  emit_move_insn (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, DFmode));
2722
  do_pending_stack_adjust ();
2723
 
2724
  emit_insn (gen_cmpdf (operands[1], reg1));
2725
  emit_jump_insn (gen_bge (label1));
2726
 
2727
  emit_insn (gen_fix_truncdfdi2 (operands[0], operands[1]));
2728
  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
2729
                               gen_rtx_LABEL_REF (VOIDmode, label2)));
2730
  emit_barrier ();
2731
 
2732
  emit_label (label1);
2733
  emit_move_insn (reg2, gen_rtx_MINUS (DFmode, operands[1], reg1));
2734
  emit_move_insn (reg3, GEN_INT (BITMASK_HIGH));
2735
  emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
2736
 
2737
  emit_insn (gen_fix_truncdfdi2 (operands[0], reg2));
2738
  emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
2739
 
2740
  emit_label (label2);
2741
 
2742
  /* Allow REG_NOTES to be set on last insn (labels don't have enough
2743
     fields, and can't be used for REG_NOTES anyway).  */
2744
  emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
2745
  DONE;
2746
})
2747
 
2748
 
2749
(define_expand "fixuns_truncsfsi2"
2750
  [(set (match_operand:SI 0 "register_operand")
2751
        (unsigned_fix:SI (match_operand:SF 1 "register_operand")))]
2752
  "TARGET_HARD_FLOAT"
2753
{
2754
  rtx reg1 = gen_reg_rtx (SFmode);
2755
  rtx reg2 = gen_reg_rtx (SFmode);
2756
  rtx reg3 = gen_reg_rtx (SImode);
2757
  rtx label1 = gen_label_rtx ();
2758
  rtx label2 = gen_label_rtx ();
2759
  REAL_VALUE_TYPE offset;
2760
 
2761
  real_2expN (&offset, 31);
2762
 
2763
  emit_move_insn (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, SFmode));
2764
  do_pending_stack_adjust ();
2765
 
2766
  emit_insn (gen_cmpsf (operands[1], reg1));
2767
  emit_jump_insn (gen_bge (label1));
2768
 
2769
  emit_insn (gen_fix_truncsfsi2 (operands[0], operands[1]));
2770
  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
2771
                               gen_rtx_LABEL_REF (VOIDmode, label2)));
2772
  emit_barrier ();
2773
 
2774
  emit_label (label1);
2775
  emit_move_insn (reg2, gen_rtx_MINUS (SFmode, operands[1], reg1));
2776
  emit_move_insn (reg3, GEN_INT (trunc_int_for_mode
2777
                                 (BITMASK_HIGH, SImode)));
2778
 
2779
  emit_insn (gen_fix_truncsfsi2 (operands[0], reg2));
2780
  emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
2781
 
2782
  emit_label (label2);
2783
 
2784
  /* Allow REG_NOTES to be set on last insn (labels don't have enough
2785
     fields, and can't be used for REG_NOTES anyway).  */
2786
  emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
2787
  DONE;
2788
})
2789
 
2790
 
2791
(define_expand "fixuns_truncsfdi2"
2792
  [(set (match_operand:DI 0 "register_operand")
2793
        (unsigned_fix:DI (match_operand:SF 1 "register_operand")))]
2794
  "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT"
2795
{
2796
  rtx reg1 = gen_reg_rtx (SFmode);
2797
  rtx reg2 = gen_reg_rtx (SFmode);
2798
  rtx reg3 = gen_reg_rtx (DImode);
2799
  rtx label1 = gen_label_rtx ();
2800
  rtx label2 = gen_label_rtx ();
2801
  REAL_VALUE_TYPE offset;
2802
 
2803
  real_2expN (&offset, 63);
2804
 
2805
  emit_move_insn (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, SFmode));
2806
  do_pending_stack_adjust ();
2807
 
2808
  emit_insn (gen_cmpsf (operands[1], reg1));
2809
  emit_jump_insn (gen_bge (label1));
2810
 
2811
  emit_insn (gen_fix_truncsfdi2 (operands[0], operands[1]));
2812
  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
2813
                               gen_rtx_LABEL_REF (VOIDmode, label2)));
2814
  emit_barrier ();
2815
 
2816
  emit_label (label1);
2817
  emit_move_insn (reg2, gen_rtx_MINUS (SFmode, operands[1], reg1));
2818
  emit_move_insn (reg3, GEN_INT (BITMASK_HIGH));
2819
  emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
2820
 
2821
  emit_insn (gen_fix_truncsfdi2 (operands[0], reg2));
2822
  emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
2823
 
2824
  emit_label (label2);
2825
 
2826
  /* Allow REG_NOTES to be set on last insn (labels don't have enough
2827
     fields, and can't be used for REG_NOTES anyway).  */
2828
  emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
2829
  DONE;
2830
})
2831
 
2832
;;
2833
;;  ....................
2834
;;
2835
;;      DATA MOVEMENT
2836
;;
2837
;;  ....................
2838
 
2839
;; Bit field extract patterns which use lwl/lwr or ldl/ldr.
2840
 
2841
(define_expand "extv"
2842
  [(set (match_operand 0 "register_operand")
2843
        (sign_extract (match_operand:QI 1 "memory_operand")
2844
                      (match_operand 2 "immediate_operand")
2845
                      (match_operand 3 "immediate_operand")))]
2846
  "!TARGET_MIPS16"
2847
{
2848
  if (mips_expand_unaligned_load (operands[0], operands[1],
2849
                                  INTVAL (operands[2]),
2850
                                  INTVAL (operands[3])))
2851
    DONE;
2852
  else
2853
    FAIL;
2854
})
2855
 
2856
(define_expand "extzv"
2857
  [(set (match_operand 0 "register_operand")
2858
        (zero_extract (match_operand 1 "nonimmediate_operand")
2859
                      (match_operand 2 "immediate_operand")
2860
                      (match_operand 3 "immediate_operand")))]
2861
  "!TARGET_MIPS16"
2862
{
2863
  if (mips_expand_unaligned_load (operands[0], operands[1],
2864
                                  INTVAL (operands[2]),
2865
                                  INTVAL (operands[3])))
2866
    DONE;
2867
  else if (mips_use_ins_ext_p (operands[1], operands[2], operands[3]))
2868
    {
2869
      if (GET_MODE (operands[0]) == DImode)
2870
        emit_insn (gen_extzvdi (operands[0], operands[1], operands[2],
2871
                                operands[3]));
2872
      else
2873
        emit_insn (gen_extzvsi (operands[0], operands[1], operands[2],
2874
                                operands[3]));
2875
      DONE;
2876
    }
2877
  else
2878
    FAIL;
2879
})
2880
 
2881
(define_insn "extzv"
2882
  [(set (match_operand:GPR 0 "register_operand" "=d")
2883
        (zero_extract:GPR (match_operand:GPR 1 "register_operand" "d")
2884
                          (match_operand:SI 2 "immediate_operand" "I")
2885
                          (match_operand:SI 3 "immediate_operand" "I")))]
2886
  "mips_use_ins_ext_p (operands[1], operands[2], operands[3])"
2887
  "ext\t%0,%1,%3,%2"
2888
  [(set_attr "type"     "arith")
2889
   (set_attr "mode"     "")])
2890
 
2891
 
2892
(define_expand "insv"
2893
  [(set (zero_extract (match_operand 0 "nonimmediate_operand")
2894
                      (match_operand 1 "immediate_operand")
2895
                      (match_operand 2 "immediate_operand"))
2896
        (match_operand 3 "reg_or_0_operand"))]
2897
  "!TARGET_MIPS16"
2898
{
2899
  if (mips_expand_unaligned_store (operands[0], operands[3],
2900
                                   INTVAL (operands[1]),
2901
                                   INTVAL (operands[2])))
2902
    DONE;
2903
  else if (mips_use_ins_ext_p (operands[0], operands[1], operands[2]))
2904
    {
2905
      if (GET_MODE (operands[0]) == DImode)
2906
        emit_insn (gen_insvdi (operands[0], operands[1], operands[2],
2907
                               operands[3]));
2908
      else
2909
        emit_insn (gen_insvsi (operands[0], operands[1], operands[2],
2910
                               operands[3]));
2911
      DONE;
2912
   }
2913
   else
2914
     FAIL;
2915
})
2916
 
2917
(define_insn "insv"
2918
  [(set (zero_extract:GPR (match_operand:GPR 0 "register_operand" "+d")
2919
                          (match_operand:SI 1 "immediate_operand" "I")
2920
                          (match_operand:SI 2 "immediate_operand" "I"))
2921
        (match_operand:GPR 3 "reg_or_0_operand" "dJ"))]
2922
  "mips_use_ins_ext_p (operands[0], operands[1], operands[2])"
2923
  "ins\t%0,%z3,%2,%1"
2924
  [(set_attr "type"     "arith")
2925
   (set_attr "mode"     "")])
2926
 
2927
;; Unaligned word moves generated by the bit field patterns.
2928
;;
2929
;; As far as the rtl is concerned, both the left-part and right-part
2930
;; instructions can access the whole field.  However, the real operand
2931
;; refers to just the first or the last byte (depending on endianness).
2932
;; We therefore use two memory operands to each instruction, one to
2933
;; describe the rtl effect and one to use in the assembly output.
2934
;;
2935
;; Operands 0 and 1 are the rtl-level target and source respectively.
2936
;; This allows us to use the standard length calculations for the "load"
2937
;; and "store" type attributes.
2938
 
2939
(define_insn "mov_l"
2940
  [(set (match_operand:GPR 0 "register_operand" "=d")
2941
        (unspec:GPR [(match_operand:BLK 1 "memory_operand" "m")
2942
                     (match_operand:QI 2 "memory_operand" "m")]
2943
                    UNSPEC_LOAD_LEFT))]
2944
  "!TARGET_MIPS16"
2945
  "l\t%0,%2"
2946
  [(set_attr "type" "load")
2947
   (set_attr "mode" "")])
2948
 
2949
(define_insn "mov_r"
2950
  [(set (match_operand:GPR 0 "register_operand" "=d")
2951
        (unspec:GPR [(match_operand:BLK 1 "memory_operand" "m")
2952
                     (match_operand:QI 2 "memory_operand" "m")
2953
                     (match_operand:GPR 3 "register_operand" "0")]
2954
                    UNSPEC_LOAD_RIGHT))]
2955
  "!TARGET_MIPS16"
2956
  "r\t%0,%2"
2957
  [(set_attr "type" "load")
2958
   (set_attr "mode" "")])
2959
 
2960
(define_insn "mov_l"
2961
  [(set (match_operand:BLK 0 "memory_operand" "=m")
2962
        (unspec:BLK [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
2963
                     (match_operand:QI 2 "memory_operand" "m")]
2964
                    UNSPEC_STORE_LEFT))]
2965
  "!TARGET_MIPS16"
2966
  "l\t%z1,%2"
2967
  [(set_attr "type" "store")
2968
   (set_attr "mode" "")])
2969
 
2970
(define_insn "mov_r"
2971
  [(set (match_operand:BLK 0 "memory_operand" "+m")
2972
        (unspec:BLK [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
2973
                     (match_operand:QI 2 "memory_operand" "m")
2974
                     (match_dup 0)]
2975
                    UNSPEC_STORE_RIGHT))]
2976
  "!TARGET_MIPS16"
2977
  "r\t%z1,%2"
2978
  [(set_attr "type" "store")
2979
   (set_attr "mode" "")])
2980
 
2981
;; An instruction to calculate the high part of a 64-bit SYMBOL_GENERAL.
2982
;; The required value is:
2983
;;
2984
;;      (%highest(op1) << 48) + (%higher(op1) << 32) + (%hi(op1) << 16)
2985
;;
2986
;; which translates to:
2987
;;
2988
;;      lui     op0,%highest(op1)
2989
;;      daddiu  op0,op0,%higher(op1)
2990
;;      dsll    op0,op0,16
2991
;;      daddiu  op0,op0,%hi(op1)
2992
;;      dsll    op0,op0,16
2993
;;
2994
;; The split is deferred until after flow2 to allow the peephole2 below
2995
;; to take effect.
2996
(define_insn_and_split "*lea_high64"
2997
  [(set (match_operand:DI 0 "register_operand" "=d")
2998
        (high:DI (match_operand:DI 1 "general_symbolic_operand" "")))]
2999
  "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS"
3000
  "#"
3001
  "&& flow2_completed"
3002
  [(set (match_dup 0) (high:DI (match_dup 2)))
3003
   (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 2)))
3004
   (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 16)))
3005
   (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 3)))
3006
   (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 16)))]
3007
{
3008
  operands[2] = mips_unspec_address (operands[1], SYMBOL_64_HIGH);
3009
  operands[3] = mips_unspec_address (operands[1], SYMBOL_64_MID);
3010
}
3011
  [(set_attr "length" "20")])
3012
 
3013
;; Use a scratch register to reduce the latency of the above pattern
3014
;; on superscalar machines.  The optimized sequence is:
3015
;;
3016
;;      lui     op1,%highest(op2)
3017
;;      lui     op0,%hi(op2)
3018
;;      daddiu  op1,op1,%higher(op2)
3019
;;      dsll32  op1,op1,0
3020
;;      daddu   op1,op1,op0
3021
(define_peephole2
3022
  [(set (match_operand:DI 1 "register_operand")
3023
        (high:DI (match_operand:DI 2 "general_symbolic_operand")))
3024
   (match_scratch:DI 0 "d")]
3025
  "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS"
3026
  [(set (match_dup 1) (high:DI (match_dup 3)))
3027
   (set (match_dup 0) (high:DI (match_dup 4)))
3028
   (set (match_dup 1) (lo_sum:DI (match_dup 1) (match_dup 3)))
3029
   (set (match_dup 1) (ashift:DI (match_dup 1) (const_int 32)))
3030
   (set (match_dup 1) (plus:DI (match_dup 1) (match_dup 0)))]
3031
{
3032
  operands[3] = mips_unspec_address (operands[2], SYMBOL_64_HIGH);
3033
  operands[4] = mips_unspec_address (operands[2], SYMBOL_64_LOW);
3034
})
3035
 
3036
;; On most targets, the expansion of (lo_sum (high X) X) for a 64-bit
3037
;; SYMBOL_GENERAL X will take 6 cycles.  This next pattern allows combine
3038
;; to merge the HIGH and LO_SUM parts of a move if the HIGH part is only
3039
;; used once.  We can then use the sequence:
3040
;;
3041
;;      lui     op0,%highest(op1)
3042
;;      lui     op2,%hi(op1)
3043
;;      daddiu  op0,op0,%higher(op1)
3044
;;      daddiu  op2,op2,%lo(op1)
3045
;;      dsll32  op0,op0,0
3046
;;      daddu   op0,op0,op2
3047
;;
3048
;; which takes 4 cycles on most superscalar targets.
3049
(define_insn_and_split "*lea64"
3050
  [(set (match_operand:DI 0 "register_operand" "=d")
3051
        (match_operand:DI 1 "general_symbolic_operand" ""))
3052
   (clobber (match_scratch:DI 2 "=&d"))]
3053
  "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS && cse_not_expected"
3054
  "#"
3055
  "&& reload_completed"
3056
  [(set (match_dup 0) (high:DI (match_dup 3)))
3057
   (set (match_dup 2) (high:DI (match_dup 4)))
3058
   (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 3)))
3059
   (set (match_dup 2) (lo_sum:DI (match_dup 2) (match_dup 4)))
3060
   (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 32)))
3061
   (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 2)))]
3062
{
3063
  operands[3] = mips_unspec_address (operands[1], SYMBOL_64_HIGH);
3064
  operands[4] = mips_unspec_address (operands[1], SYMBOL_64_LOW);
3065
}
3066
  [(set_attr "length" "24")])
3067
 
3068
;; Insns to fetch a global symbol from a big GOT.
3069
 
3070
(define_insn_and_split "*xgot_hi"
3071
  [(set (match_operand:P 0 "register_operand" "=d")
3072
        (high:P (match_operand:P 1 "global_got_operand" "")))]
3073
  "TARGET_EXPLICIT_RELOCS && TARGET_XGOT"
3074
  "#"
3075
  "&& reload_completed"
3076
  [(set (match_dup 0) (high:P (match_dup 2)))
3077
   (set (match_dup 0) (plus:P (match_dup 0) (match_dup 3)))]
3078
{
3079
  operands[2] = mips_unspec_address (operands[1], SYMBOL_GOTOFF_GLOBAL);
3080
  operands[3] = pic_offset_table_rtx;
3081
}
3082
  [(set_attr "got" "xgot_high")
3083
   (set_attr "mode" "")])
3084
 
3085
(define_insn_and_split "*xgot_lo"
3086
  [(set (match_operand:P 0 "register_operand" "=d")
3087
        (lo_sum:P (match_operand:P 1 "register_operand" "d")
3088
                  (match_operand:P 2 "global_got_operand" "")))]
3089
  "TARGET_EXPLICIT_RELOCS && TARGET_XGOT"
3090
  "#"
3091
  "&& reload_completed"
3092
  [(set (match_dup 0)
3093
        (unspec:P [(match_dup 1) (match_dup 3)] UNSPEC_LOAD_GOT))]
3094
  { operands[3] = mips_unspec_address (operands[2], SYMBOL_GOTOFF_GLOBAL); }
3095
  [(set_attr "got" "load")
3096
   (set_attr "mode" "")])
3097
 
3098
;; Insns to fetch a global symbol from a normal GOT.
3099
 
3100
(define_insn_and_split "*got_disp"
3101
  [(set (match_operand:P 0 "register_operand" "=d")
3102
        (match_operand:P 1 "global_got_operand" ""))]
3103
  "TARGET_EXPLICIT_RELOCS && !TARGET_XGOT"
3104
  "#"
3105
  "&& reload_completed"
3106
  [(set (match_dup 0)
3107
        (unspec:P [(match_dup 2) (match_dup 3)] UNSPEC_LOAD_GOT))]
3108
{
3109
  operands[2] = pic_offset_table_rtx;
3110
  operands[3] = mips_unspec_address (operands[1], SYMBOL_GOTOFF_GLOBAL);
3111
}
3112
  [(set_attr "got" "load")
3113
   (set_attr "mode" "")])
3114
 
3115
;; Insns for loading the high part of a local symbol.
3116
 
3117
(define_insn_and_split "*got_page"
3118
  [(set (match_operand:P 0 "register_operand" "=d")
3119
        (high:P (match_operand:P 1 "local_got_operand" "")))]
3120
  "TARGET_EXPLICIT_RELOCS"
3121
  "#"
3122
  "&& reload_completed"
3123
  [(set (match_dup 0)
3124
        (unspec:P [(match_dup 2) (match_dup 3)] UNSPEC_LOAD_GOT))]
3125
{
3126
  operands[2] = pic_offset_table_rtx;
3127
  operands[3] = mips_unspec_address (operands[1], SYMBOL_GOTOFF_PAGE);
3128
}
3129
  [(set_attr "got" "load")
3130
   (set_attr "mode" "")])
3131
 
3132
;; Lower-level instructions for loading an address from the GOT.
3133
;; We could use MEMs, but an unspec gives more optimization
3134
;; opportunities.
3135
 
3136
(define_insn "load_got"
3137
  [(set (match_operand:P 0 "register_operand" "=d")
3138
        (unspec:P [(match_operand:P 1 "register_operand" "d")
3139
                   (match_operand:P 2 "immediate_operand" "")]
3140
                  UNSPEC_LOAD_GOT))]
3141
  ""
3142
  "\t%0,%R2(%1)"
3143
  [(set_attr "type" "load")
3144
   (set_attr "mode" "")
3145
   (set_attr "length" "4")])
3146
 
3147
;; Instructions for adding the low 16 bits of an address to a register.
3148
;; Operand 2 is the address: print_operand works out which relocation
3149
;; should be applied.
3150
 
3151
(define_insn "*low"
3152
  [(set (match_operand:P 0 "register_operand" "=d")
3153
        (lo_sum:P (match_operand:P 1 "register_operand" "d")
3154
                  (match_operand:P 2 "immediate_operand" "")))]
3155
  "!TARGET_MIPS16"
3156
  "addiu\t%0,%1,%R2"
3157
  [(set_attr "type" "arith")
3158
   (set_attr "mode" "")])
3159
 
3160
(define_insn "*low_mips16"
3161
  [(set (match_operand:P 0 "register_operand" "=d")
3162
        (lo_sum:P (match_operand:P 1 "register_operand" "0")
3163
                  (match_operand:P 2 "immediate_operand" "")))]
3164
  "TARGET_MIPS16"
3165
  "addiu\t%0,%R2"
3166
  [(set_attr "type" "arith")
3167
   (set_attr "mode" "")
3168
   (set_attr "length" "8")])
3169
 
3170
;; 64-bit integer moves
3171
 
3172
;; Unlike most other insns, the move insns can't be split with
3173
;; different predicates, because register spilling and other parts of
3174
;; the compiler, have memoized the insn number already.
3175
 
3176
(define_expand "movdi"
3177
  [(set (match_operand:DI 0 "")
3178
        (match_operand:DI 1 ""))]
3179
  ""
3180
{
3181
  if (mips_legitimize_move (DImode, operands[0], operands[1]))
3182
    DONE;
3183
})
3184
 
3185
;; For mips16, we need a special case to handle storing $31 into
3186
;; memory, since we don't have a constraint to match $31.  This
3187
;; instruction can be generated by save_restore_insns.
3188
 
3189
(define_insn "*mov_ra"
3190
  [(set (match_operand:GPR 0 "stack_operand" "=m")
3191
        (reg:GPR 31))]
3192
  "TARGET_MIPS16"
3193
  "\t$31,%0"
3194
  [(set_attr "type" "store")
3195
   (set_attr "mode" "")])
3196
 
3197
(define_insn "*movdi_32bit"
3198
  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,d,m,*a,*d,*B*C*D,*B*C*D,*d,*m")
3199
        (match_operand:DI 1 "move_operand" "d,i,m,d,*J*d,*a,*d,*m,*B*C*D,*B*C*D"))]
3200
  "!TARGET_64BIT && !TARGET_MIPS16
3201
   && (register_operand (operands[0], DImode)
3202
       || reg_or_0_operand (operands[1], DImode))"
3203
  { return mips_output_move (operands[0], operands[1]); }
3204
  [(set_attr "type"     "arith,arith,load,store,mthilo,mfhilo,xfer,load,xfer,store")
3205
   (set_attr "mode"     "DI")
3206
   (set_attr "length"   "8,16,*,*,8,8,8,*,8,*")])
3207
 
3208
(define_insn "*movdi_32bit_mips16"
3209
  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
3210
        (match_operand:DI 1 "move_operand" "d,d,y,K,N,m,d,*x"))]
3211
  "!TARGET_64BIT && TARGET_MIPS16
3212
   && (register_operand (operands[0], DImode)
3213
       || register_operand (operands[1], DImode))"
3214
  { return mips_output_move (operands[0], operands[1]); }
3215
  [(set_attr "type"     "arith,arith,arith,arith,arith,load,store,mfhilo")
3216
   (set_attr "mode"     "DI")
3217
   (set_attr "length"   "8,8,8,8,12,*,*,8")])
3218
 
3219
(define_insn "*movdi_64bit"
3220
  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,e,d,m,*f,*f,*f,*d,*m,*x,*B*C*D,*B*C*D,*d,*m")
3221
        (match_operand:DI 1 "move_operand" "d,U,T,m,dJ,*f,*d*J,*m,*f,*f,*J*d,*d,*m,*B*C*D,*B*C*D"))]
3222
  "TARGET_64BIT && !TARGET_MIPS16
3223
   && (register_operand (operands[0], DImode)
3224
       || reg_or_0_operand (operands[1], DImode))"
3225
  { return mips_output_move (operands[0], operands[1]); }
3226
  [(set_attr "type"     "arith,const,const,load,store,fmove,xfer,fpload,xfer,fpstore,mthilo,xfer,load,xfer,store")
3227
   (set_attr "mode"     "DI")
3228
   (set_attr "length"   "4,*,*,*,*,4,4,*,4,*,4,8,*,8,*")])
3229
 
3230
(define_insn "*movdi_64bit_mips16"
3231
  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,y,d,d,d,d,d,m")
3232
        (match_operand:DI 1 "move_operand" "d,d,y,K,N,U,m,d"))]
3233
  "TARGET_64BIT && TARGET_MIPS16
3234
   && (register_operand (operands[0], DImode)
3235
       || register_operand (operands[1], DImode))"
3236
  { return mips_output_move (operands[0], operands[1]); }
3237
  [(set_attr "type"     "arith,arith,arith,arith,arith,const,load,store")
3238
   (set_attr "mode"     "DI")
3239
   (set_attr_alternative "length"
3240
                [(const_int 4)
3241
                 (const_int 4)
3242
                 (const_int 4)
3243
                 (if_then_else (match_operand:VOID 1 "m16_uimm8_1")
3244
                               (const_int 4)
3245
                               (const_int 8))
3246
                 (if_then_else (match_operand:VOID 1 "m16_nuimm8_1")
3247
                               (const_int 8)
3248
                               (const_int 12))
3249
                 (const_string "*")
3250
                 (const_string "*")
3251
                 (const_string "*")])])
3252
 
3253
 
3254
;; On the mips16, we can split ld $r,N($r) into an add and a load,
3255
;; when the original load is a 4 byte instruction but the add and the
3256
;; load are 2 2 byte instructions.
3257
 
3258
(define_split
3259
  [(set (match_operand:DI 0 "register_operand")
3260
        (mem:DI (plus:DI (match_dup 0)
3261
                         (match_operand:DI 1 "const_int_operand"))))]
3262
  "TARGET_64BIT && TARGET_MIPS16 && reload_completed
3263
   && !TARGET_DEBUG_D_MODE
3264
   && REG_P (operands[0])
3265
   && M16_REG_P (REGNO (operands[0]))
3266
   && GET_CODE (operands[1]) == CONST_INT
3267
   && ((INTVAL (operands[1]) < 0
3268
        && INTVAL (operands[1]) >= -0x10)
3269
       || (INTVAL (operands[1]) >= 32 * 8
3270
           && INTVAL (operands[1]) <= 31 * 8 + 0x8)
3271
       || (INTVAL (operands[1]) >= 0
3272
           && INTVAL (operands[1]) < 32 * 8
3273
           && (INTVAL (operands[1]) & 7) != 0))"
3274
  [(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 1)))
3275
   (set (match_dup 0) (mem:DI (plus:DI (match_dup 0) (match_dup 2))))]
3276
{
3277
  HOST_WIDE_INT val = INTVAL (operands[1]);
3278
 
3279
  if (val < 0)
3280
    operands[2] = const0_rtx;
3281
  else if (val >= 32 * 8)
3282
    {
3283
      int off = val & 7;
3284
 
3285
      operands[1] = GEN_INT (0x8 + off);
3286
      operands[2] = GEN_INT (val - off - 0x8);
3287
    }
3288
  else
3289
    {
3290
      int off = val & 7;
3291
 
3292
      operands[1] = GEN_INT (off);
3293
      operands[2] = GEN_INT (val - off);
3294
    }
3295
})
3296
 
3297
;; 32-bit Integer moves
3298
 
3299
;; Unlike most other insns, the move insns can't be split with
3300
;; different predicates, because register spilling and other parts of
3301
;; the compiler, have memoized the insn number already.
3302
 
3303
(define_expand "movsi"
3304
  [(set (match_operand:SI 0 "")
3305
        (match_operand:SI 1 ""))]
3306
  ""
3307
{
3308
  if (mips_legitimize_move (SImode, operands[0], operands[1]))
3309
    DONE;
3310
})
3311
 
3312
;; The difference between these two is whether or not ints are allowed
3313
;; in FP registers (off by default, use -mdebugh to enable).
3314
 
3315
(define_insn "*movsi_internal"
3316
  [(set (match_operand:SI 0 "nonimmediate_operand" "=d,d,e,d,m,*f,*f,*f,*d,*m,*d,*z,*a,*d,*B*C*D,*B*C*D,*d,*m")
3317
        (match_operand:SI 1 "move_operand" "d,U,T,m,dJ,*f,*d*J,*m,*f,*f,*z,*d,*J*d,*A,*d,*m,*B*C*D,*B*C*D"))]
3318
  "!TARGET_MIPS16
3319
   && (register_operand (operands[0], SImode)
3320
       || reg_or_0_operand (operands[1], SImode))"
3321
  { return mips_output_move (operands[0], operands[1]); }
3322
  [(set_attr "type"     "arith,const,const,load,store,fmove,xfer,fpload,xfer,fpstore,xfer,xfer,mthilo,mfhilo,xfer,load,xfer,store")
3323
   (set_attr "mode"     "SI")
3324
   (set_attr "length"   "4,*,*,*,*,4,4,*,4,*,4,4,4,4,4,*,4,*")])
3325
 
3326
(define_insn "*movsi_mips16"
3327
  [(set (match_operand:SI 0 "nonimmediate_operand" "=d,y,d,d,d,d,d,m")
3328
        (match_operand:SI 1 "move_operand" "d,d,y,K,N,U,m,d"))]
3329
  "TARGET_MIPS16
3330
   && (register_operand (operands[0], SImode)
3331
       || register_operand (operands[1], SImode))"
3332
  { return mips_output_move (operands[0], operands[1]); }
3333
  [(set_attr "type"     "arith,arith,arith,arith,arith,const,load,store")
3334
   (set_attr "mode"     "SI")
3335
   (set_attr_alternative "length"
3336
                [(const_int 4)
3337
                 (const_int 4)
3338
                 (const_int 4)
3339
                 (if_then_else (match_operand:VOID 1 "m16_uimm8_1")
3340
                               (const_int 4)
3341
                               (const_int 8))
3342
                 (if_then_else (match_operand:VOID 1 "m16_nuimm8_1")
3343
                               (const_int 8)
3344
                               (const_int 12))
3345
                 (const_string "*")
3346
                 (const_string "*")
3347
                 (const_string "*")])])
3348
 
3349
;; On the mips16, we can split lw $r,N($r) into an add and a load,
3350
;; when the original load is a 4 byte instruction but the add and the
3351
;; load are 2 2 byte instructions.
3352
 
3353
(define_split
3354
  [(set (match_operand:SI 0 "register_operand")
3355
        (mem:SI (plus:SI (match_dup 0)
3356
                         (match_operand:SI 1 "const_int_operand"))))]
3357
  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
3358
   && REG_P (operands[0])
3359
   && M16_REG_P (REGNO (operands[0]))
3360
   && GET_CODE (operands[1]) == CONST_INT
3361
   && ((INTVAL (operands[1]) < 0
3362
        && INTVAL (operands[1]) >= -0x80)
3363
       || (INTVAL (operands[1]) >= 32 * 4
3364
           && INTVAL (operands[1]) <= 31 * 4 + 0x7c)
3365
       || (INTVAL (operands[1]) >= 0
3366
           && INTVAL (operands[1]) < 32 * 4
3367
           && (INTVAL (operands[1]) & 3) != 0))"
3368
  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
3369
   (set (match_dup 0) (mem:SI (plus:SI (match_dup 0) (match_dup 2))))]
3370
{
3371
  HOST_WIDE_INT val = INTVAL (operands[1]);
3372
 
3373
  if (val < 0)
3374
    operands[2] = const0_rtx;
3375
  else if (val >= 32 * 4)
3376
    {
3377
      int off = val & 3;
3378
 
3379
      operands[1] = GEN_INT (0x7c + off);
3380
      operands[2] = GEN_INT (val - off - 0x7c);
3381
    }
3382
  else
3383
    {
3384
      int off = val & 3;
3385
 
3386
      operands[1] = GEN_INT (off);
3387
      operands[2] = GEN_INT (val - off);
3388
    }
3389
})
3390
 
3391
;; On the mips16, we can split a load of certain constants into a load
3392
;; and an add.  This turns a 4 byte instruction into 2 2 byte
3393
;; instructions.
3394
 
3395
(define_split
3396
  [(set (match_operand:SI 0 "register_operand")
3397
        (match_operand:SI 1 "const_int_operand"))]
3398
  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
3399
   && REG_P (operands[0])
3400
   && M16_REG_P (REGNO (operands[0]))
3401
   && GET_CODE (operands[1]) == CONST_INT
3402
   && INTVAL (operands[1]) >= 0x100
3403
   && INTVAL (operands[1]) <= 0xff + 0x7f"
3404
  [(set (match_dup 0) (match_dup 1))
3405
   (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
3406
{
3407
  int val = INTVAL (operands[1]);
3408
 
3409
  operands[1] = GEN_INT (0xff);
3410
  operands[2] = GEN_INT (val - 0xff);
3411
})
3412
 
3413
;; This insn handles moving CCmode values.  It's really just a
3414
;; slightly simplified copy of movsi_internal2, with additional cases
3415
;; to move a condition register to a general register and to move
3416
;; between the general registers and the floating point registers.
3417
 
3418
(define_insn "movcc"
3419
  [(set (match_operand:CC 0 "nonimmediate_operand" "=d,*d,*d,*m,*d,*f,*f,*f,*m")
3420
        (match_operand:CC 1 "general_operand" "z,*d,*m,*d,*f,*d,*f,*m,*f"))]
3421
  "ISA_HAS_8CC && TARGET_HARD_FLOAT"
3422
  { return mips_output_move (operands[0], operands[1]); }
3423
  [(set_attr "type"     "xfer,arith,load,store,xfer,xfer,fmove,fpload,fpstore")
3424
   (set_attr "mode"     "SI")
3425
   (set_attr "length"   "8,4,*,*,4,4,4,*,*")])
3426
 
3427
;; Reload condition code registers.  reload_incc and reload_outcc
3428
;; both handle moves from arbitrary operands into condition code
3429
;; registers.  reload_incc handles the more common case in which
3430
;; a source operand is constrained to be in a condition-code
3431
;; register, but has not been allocated to one.
3432
;;
3433
;; Sometimes, such as in movcc, we have a CCmode destination whose
3434
;; constraints do not include 'z'.  reload_outcc handles the case
3435
;; when such an operand is allocated to a condition-code register.
3436
;;
3437
;; Note that reloads from a condition code register to some
3438
;; other location can be done using ordinary moves.  Moving
3439
;; into a GPR takes a single movcc, moving elsewhere takes
3440
;; two.  We can leave these cases to the generic reload code.
3441
(define_expand "reload_incc"
3442
  [(set (match_operand:CC 0 "fcc_reload_operand" "=z")
3443
        (match_operand:CC 1 "general_operand" ""))
3444
   (clobber (match_operand:TF 2 "register_operand" "=&f"))]
3445
  "ISA_HAS_8CC && TARGET_HARD_FLOAT"
3446
{
3447
  mips_emit_fcc_reload (operands[0], operands[1], operands[2]);
3448
  DONE;
3449
})
3450
 
3451
(define_expand "reload_outcc"
3452
  [(set (match_operand:CC 0 "fcc_reload_operand" "=z")
3453
        (match_operand:CC 1 "register_operand" ""))
3454
   (clobber (match_operand:TF 2 "register_operand" "=&f"))]
3455
  "ISA_HAS_8CC && TARGET_HARD_FLOAT"
3456
{
3457
  mips_emit_fcc_reload (operands[0], operands[1], operands[2]);
3458
  DONE;
3459
})
3460
 
3461
;; MIPS4 supports loading and storing a floating point register from
3462
;; the sum of two general registers.  We use two versions for each of
3463
;; these four instructions: one where the two general registers are
3464
;; SImode, and one where they are DImode.  This is because general
3465
;; registers will be in SImode when they hold 32 bit values, but,
3466
;; since the 32 bit values are always sign extended, the [ls][wd]xc1
3467
;; instructions will still work correctly.
3468
 
3469
;; ??? Perhaps it would be better to support these instructions by
3470
;; modifying GO_IF_LEGITIMATE_ADDRESS and friends.  However, since
3471
;; these instructions can only be used to load and store floating
3472
;; point registers, that would probably cause trouble in reload.
3473
 
3474
(define_insn "*_"
3475
  [(set (match_operand:ANYF 0 "register_operand" "=f")
3476
        (mem:ANYF (plus:P (match_operand:P 1 "register_operand" "d")
3477
                          (match_operand:P 2 "register_operand" "d"))))]
3478
  "ISA_HAS_FP4"
3479
  "\t%0,%1(%2)"
3480
  [(set_attr "type" "fpidxload")
3481
   (set_attr "mode" "")])
3482
 
3483
(define_insn "*_"
3484
  [(set (mem:ANYF (plus:P (match_operand:P 1 "register_operand" "d")
3485
                          (match_operand:P 2 "register_operand" "d")))
3486
        (match_operand:ANYF 0 "register_operand" "f"))]
3487
  "ISA_HAS_FP4"
3488
  "\t%0,%1(%2)"
3489
  [(set_attr "type" "fpidxstore")
3490
   (set_attr "mode" "")])
3491
 
3492
;; 16-bit Integer moves
3493
 
3494
;; Unlike most other insns, the move insns can't be split with
3495
;; different predicates, because register spilling and other parts of
3496
;; the compiler, have memoized the insn number already.
3497
;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND.
3498
 
3499
(define_expand "movhi"
3500
  [(set (match_operand:HI 0 "")
3501
        (match_operand:HI 1 ""))]
3502
  ""
3503
{
3504
  if (mips_legitimize_move (HImode, operands[0], operands[1]))
3505
    DONE;
3506
})
3507
 
3508
(define_insn "*movhi_internal"
3509
  [(set (match_operand:HI 0 "nonimmediate_operand" "=d,d,d,m,*d,*f,*f,*x")
3510
        (match_operand:HI 1 "move_operand"         "d,I,m,dJ,*f,*d,*f,*d"))]
3511
  "!TARGET_MIPS16
3512
   && (register_operand (operands[0], HImode)
3513
       || reg_or_0_operand (operands[1], HImode))"
3514
  "@
3515
    move\t%0,%1
3516
    li\t%0,%1
3517
    lhu\t%0,%1
3518
    sh\t%z1,%0
3519
    mfc1\t%0,%1
3520
    mtc1\t%1,%0
3521
    mov.s\t%0,%1
3522
    mt%0\t%1"
3523
  [(set_attr "type"     "arith,arith,load,store,xfer,xfer,fmove,mthilo")
3524
   (set_attr "mode"     "HI")
3525
   (set_attr "length"   "4,4,*,*,4,4,4,4")])
3526
 
3527
(define_insn "*movhi_mips16"
3528
  [(set (match_operand:HI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m")
3529
        (match_operand:HI 1 "move_operand"         "d,d,y,K,N,m,d"))]
3530
  "TARGET_MIPS16
3531
   && (register_operand (operands[0], HImode)
3532
       || register_operand (operands[1], HImode))"
3533
  "@
3534
    move\t%0,%1
3535
    move\t%0,%1
3536
    move\t%0,%1
3537
    li\t%0,%1
3538
    #
3539
    lhu\t%0,%1
3540
    sh\t%1,%0"
3541
  [(set_attr "type"     "arith,arith,arith,arith,arith,load,store")
3542
   (set_attr "mode"     "HI")
3543
   (set_attr_alternative "length"
3544
                [(const_int 4)
3545
                 (const_int 4)
3546
                 (const_int 4)
3547
                 (if_then_else (match_operand:VOID 1 "m16_uimm8_1")
3548
                               (const_int 4)
3549
                               (const_int 8))
3550
                 (if_then_else (match_operand:VOID 1 "m16_nuimm8_1")
3551
                               (const_int 8)
3552
                               (const_int 12))
3553
                 (const_string "*")
3554
                 (const_string "*")])])
3555
 
3556
 
3557
;; On the mips16, we can split lh $r,N($r) into an add and a load,
3558
;; when the original load is a 4 byte instruction but the add and the
3559
;; load are 2 2 byte instructions.
3560
 
3561
(define_split
3562
  [(set (match_operand:HI 0 "register_operand")
3563
        (mem:HI (plus:SI (match_dup 0)
3564
                         (match_operand:SI 1 "const_int_operand"))))]
3565
  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
3566
   && REG_P (operands[0])
3567
   && M16_REG_P (REGNO (operands[0]))
3568
   && GET_CODE (operands[1]) == CONST_INT
3569
   && ((INTVAL (operands[1]) < 0
3570
        && INTVAL (operands[1]) >= -0x80)
3571
       || (INTVAL (operands[1]) >= 32 * 2
3572
           && INTVAL (operands[1]) <= 31 * 2 + 0x7e)
3573
       || (INTVAL (operands[1]) >= 0
3574
           && INTVAL (operands[1]) < 32 * 2
3575
           && (INTVAL (operands[1]) & 1) != 0))"
3576
  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
3577
   (set (match_dup 0) (mem:HI (plus:SI (match_dup 0) (match_dup 2))))]
3578
{
3579
  HOST_WIDE_INT val = INTVAL (operands[1]);
3580
 
3581
  if (val < 0)
3582
    operands[2] = const0_rtx;
3583
  else if (val >= 32 * 2)
3584
    {
3585
      int off = val & 1;
3586
 
3587
      operands[1] = GEN_INT (0x7e + off);
3588
      operands[2] = GEN_INT (val - off - 0x7e);
3589
    }
3590
  else
3591
    {
3592
      int off = val & 1;
3593
 
3594
      operands[1] = GEN_INT (off);
3595
      operands[2] = GEN_INT (val - off);
3596
    }
3597
})
3598
 
3599
;; 8-bit Integer moves
3600
 
3601
;; Unlike most other insns, the move insns can't be split with
3602
;; different predicates, because register spilling and other parts of
3603
;; the compiler, have memoized the insn number already.
3604
;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND.
3605
 
3606
(define_expand "movqi"
3607
  [(set (match_operand:QI 0 "")
3608
        (match_operand:QI 1 ""))]
3609
  ""
3610
{
3611
  if (mips_legitimize_move (QImode, operands[0], operands[1]))
3612
    DONE;
3613
})
3614
 
3615
(define_insn "*movqi_internal"
3616
  [(set (match_operand:QI 0 "nonimmediate_operand" "=d,d,d,m,*d,*f,*f,*x")
3617
        (match_operand:QI 1 "move_operand"         "d,I,m,dJ,*f,*d,*f,*d"))]
3618
  "!TARGET_MIPS16
3619
   && (register_operand (operands[0], QImode)
3620
       || reg_or_0_operand (operands[1], QImode))"
3621
  "@
3622
    move\t%0,%1
3623
    li\t%0,%1
3624
    lbu\t%0,%1
3625
    sb\t%z1,%0
3626
    mfc1\t%0,%1
3627
    mtc1\t%1,%0
3628
    mov.s\t%0,%1
3629
    mt%0\t%1"
3630
  [(set_attr "type"     "arith,arith,load,store,xfer,xfer,fmove,mthilo")
3631
   (set_attr "mode"     "QI")
3632
   (set_attr "length"   "4,4,*,*,4,4,4,4")])
3633
 
3634
(define_insn "*movqi_mips16"
3635
  [(set (match_operand:QI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m")
3636
        (match_operand:QI 1 "move_operand"         "d,d,y,K,N,m,d"))]
3637
  "TARGET_MIPS16
3638
   && (register_operand (operands[0], QImode)
3639
       || register_operand (operands[1], QImode))"
3640
  "@
3641
    move\t%0,%1
3642
    move\t%0,%1
3643
    move\t%0,%1
3644
    li\t%0,%1
3645
    #
3646
    lbu\t%0,%1
3647
    sb\t%1,%0"
3648
  [(set_attr "type"     "arith,arith,arith,arith,arith,load,store")
3649
   (set_attr "mode"     "QI")
3650
   (set_attr "length"   "4,4,4,4,8,*,*")])
3651
 
3652
;; On the mips16, we can split lb $r,N($r) into an add and a load,
3653
;; when the original load is a 4 byte instruction but the add and the
3654
;; load are 2 2 byte instructions.
3655
 
3656
(define_split
3657
  [(set (match_operand:QI 0 "register_operand")
3658
        (mem:QI (plus:SI (match_dup 0)
3659
                         (match_operand:SI 1 "const_int_operand"))))]
3660
  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
3661
   && REG_P (operands[0])
3662
   && M16_REG_P (REGNO (operands[0]))
3663
   && GET_CODE (operands[1]) == CONST_INT
3664
   && ((INTVAL (operands[1]) < 0
3665
        && INTVAL (operands[1]) >= -0x80)
3666
       || (INTVAL (operands[1]) >= 32
3667
           && INTVAL (operands[1]) <= 31 + 0x7f))"
3668
  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
3669
   (set (match_dup 0) (mem:QI (plus:SI (match_dup 0) (match_dup 2))))]
3670
{
3671
  HOST_WIDE_INT val = INTVAL (operands[1]);
3672
 
3673
  if (val < 0)
3674
    operands[2] = const0_rtx;
3675
  else
3676
    {
3677
      operands[1] = GEN_INT (0x7f);
3678
      operands[2] = GEN_INT (val - 0x7f);
3679
    }
3680
})
3681
 
3682
;; 32-bit floating point moves
3683
 
3684
(define_expand "movsf"
3685
  [(set (match_operand:SF 0 "")
3686
        (match_operand:SF 1 ""))]
3687
  ""
3688
{
3689
  if (mips_legitimize_move (SFmode, operands[0], operands[1]))
3690
    DONE;
3691
})
3692
 
3693
(define_insn "*movsf_hardfloat"
3694
  [(set (match_operand:SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
3695
        (match_operand:SF 1 "move_operand" "f,G,m,f,G,*d,*f,*G*d,*m,*d"))]
3696
  "TARGET_HARD_FLOAT
3697
   && (register_operand (operands[0], SFmode)
3698
       || reg_or_0_operand (operands[1], SFmode))"
3699
  { return mips_output_move (operands[0], operands[1]); }
3700
  [(set_attr "type"     "fmove,xfer,fpload,fpstore,store,xfer,xfer,arith,load,store")
3701
   (set_attr "mode"     "SF")
3702
   (set_attr "length"   "4,4,*,*,*,4,4,4,*,*")])
3703
 
3704
(define_insn "*movsf_softfloat"
3705
  [(set (match_operand:SF 0 "nonimmediate_operand" "=d,d,m")
3706
        (match_operand:SF 1 "move_operand" "Gd,m,d"))]
3707
  "TARGET_SOFT_FLOAT && !TARGET_MIPS16
3708
   && (register_operand (operands[0], SFmode)
3709
       || reg_or_0_operand (operands[1], SFmode))"
3710
  { return mips_output_move (operands[0], operands[1]); }
3711
  [(set_attr "type"     "arith,load,store")
3712
   (set_attr "mode"     "SF")
3713
   (set_attr "length"   "4,*,*")])
3714
 
3715
(define_insn "*movsf_mips16"
3716
  [(set (match_operand:SF 0 "nonimmediate_operand" "=d,y,d,d,m")
3717
        (match_operand:SF 1 "move_operand" "d,d,y,m,d"))]
3718
  "TARGET_MIPS16
3719
   && (register_operand (operands[0], SFmode)
3720
       || register_operand (operands[1], SFmode))"
3721
  { return mips_output_move (operands[0], operands[1]); }
3722
  [(set_attr "type"     "arith,arith,arith,load,store")
3723
   (set_attr "mode"     "SF")
3724
   (set_attr "length"   "4,4,4,*,*")])
3725
 
3726
 
3727
;; 64-bit floating point moves
3728
 
3729
(define_expand "movdf"
3730
  [(set (match_operand:DF 0 "")
3731
        (match_operand:DF 1 ""))]
3732
  ""
3733
{
3734
  if (mips_legitimize_move (DFmode, operands[0], operands[1]))
3735
    DONE;
3736
})
3737
 
3738
(define_insn "*movdf_hardfloat_64bit"
3739
  [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
3740
        (match_operand:DF 1 "move_operand" "f,G,m,f,G,*d,*f,*d*G,*m,*d"))]
3741
  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && TARGET_64BIT
3742
   && (register_operand (operands[0], DFmode)
3743
       || reg_or_0_operand (operands[1], DFmode))"
3744
  { return mips_output_move (operands[0], operands[1]); }
3745
  [(set_attr "type"     "fmove,xfer,fpload,fpstore,store,xfer,xfer,arith,load,store")
3746
   (set_attr "mode"     "DF")
3747
   (set_attr "length"   "4,4,*,*,*,4,4,4,*,*")])
3748
 
3749
(define_insn "*movdf_hardfloat_32bit"
3750
  [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
3751
        (match_operand:DF 1 "move_operand" "f,G,m,f,G,*d,*f,*d*G,*m,*d"))]
3752
  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !TARGET_64BIT
3753
   && (register_operand (operands[0], DFmode)
3754
       || reg_or_0_operand (operands[1], DFmode))"
3755
  { return mips_output_move (operands[0], operands[1]); }
3756
  [(set_attr "type"     "fmove,xfer,fpload,fpstore,store,xfer,xfer,arith,load,store")
3757
   (set_attr "mode"     "DF")
3758
   (set_attr "length"   "4,8,*,*,*,8,8,8,*,*")])
3759
 
3760
(define_insn "*movdf_softfloat"
3761
  [(set (match_operand:DF 0 "nonimmediate_operand" "=d,d,m,d,f,f")
3762
        (match_operand:DF 1 "move_operand" "dG,m,dG,f,d,f"))]
3763
  "(TARGET_SOFT_FLOAT || TARGET_SINGLE_FLOAT) && !TARGET_MIPS16
3764
   && (register_operand (operands[0], DFmode)
3765
       || reg_or_0_operand (operands[1], DFmode))"
3766
  { return mips_output_move (operands[0], operands[1]); }
3767
  [(set_attr "type"     "arith,load,store,xfer,xfer,fmove")
3768
   (set_attr "mode"     "DF")
3769
   (set_attr "length"   "8,*,*,4,4,4")])
3770
 
3771
(define_insn "*movdf_mips16"
3772
  [(set (match_operand:DF 0 "nonimmediate_operand" "=d,y,d,d,m")
3773
        (match_operand:DF 1 "move_operand" "d,d,y,m,d"))]
3774
  "TARGET_MIPS16
3775
   && (register_operand (operands[0], DFmode)
3776
       || register_operand (operands[1], DFmode))"
3777
  { return mips_output_move (operands[0], operands[1]); }
3778
  [(set_attr "type"     "arith,arith,arith,load,store")
3779
   (set_attr "mode"     "DF")
3780
   (set_attr "length"   "8,8,8,*,*")])
3781
 
3782
(define_split
3783
  [(set (match_operand:DI 0 "nonimmediate_operand")
3784
        (match_operand:DI 1 "move_operand"))]
3785
  "reload_completed && !TARGET_64BIT
3786
   && mips_split_64bit_move_p (operands[0], operands[1])"
3787
  [(const_int 0)]
3788
{
3789
  mips_split_64bit_move (operands[0], operands[1]);
3790
  DONE;
3791
})
3792
 
3793
(define_split
3794
  [(set (match_operand:DF 0 "nonimmediate_operand")
3795
        (match_operand:DF 1 "move_operand"))]
3796
  "reload_completed && !TARGET_64BIT
3797
   && mips_split_64bit_move_p (operands[0], operands[1])"
3798
  [(const_int 0)]
3799
{
3800
  mips_split_64bit_move (operands[0], operands[1]);
3801
  DONE;
3802
})
3803
 
3804
;; When generating mips16 code, split moves of negative constants into
3805
;; a positive "li" followed by a negation.
3806
(define_split
3807
  [(set (match_operand 0 "register_operand")
3808
        (match_operand 1 "const_int_operand"))]
3809
  "TARGET_MIPS16 && reload_completed && INTVAL (operands[1]) < 0"
3810
  [(set (match_dup 2)
3811
        (match_dup 3))
3812
   (set (match_dup 2)
3813
        (neg:SI (match_dup 2)))]
3814
{
3815
  operands[2] = gen_lowpart (SImode, operands[0]);
3816
  operands[3] = GEN_INT (-INTVAL (operands[1]));
3817
})
3818
 
3819
;; 64-bit paired-single floating point moves
3820
 
3821
(define_expand "movv2sf"
3822
  [(set (match_operand:V2SF 0)
3823
        (match_operand:V2SF 1))]
3824
  "TARGET_PAIRED_SINGLE_FLOAT"
3825
{
3826
  if (mips_legitimize_move (V2SFmode, operands[0], operands[1]))
3827
    DONE;
3828
})
3829
 
3830
(define_insn "movv2sf_hardfloat_64bit"
3831
  [(set (match_operand:V2SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
3832
        (match_operand:V2SF 1 "move_operand" "f,YG,m,f,YG,*d,*f,*d*YG,*m,*d"))]
3833
  "TARGET_PAIRED_SINGLE_FLOAT
3834
   && TARGET_64BIT
3835
   && (register_operand (operands[0], V2SFmode)
3836
       || reg_or_0_operand (operands[1], V2SFmode))"
3837
  { return mips_output_move (operands[0], operands[1]); }
3838
  [(set_attr "type" "fmove,xfer,fpload,fpstore,store,xfer,xfer,arith,load,store")
3839
   (set_attr "mode" "SF")
3840
   (set_attr "length" "4,4,*,*,*,4,4,4,*,*")])
3841
 
3842
;; The HI and LO registers are not truly independent.  If we move an mthi
3843
;; instruction before an mflo instruction, it will make the result of the
3844
;; mflo unpredictable.  The same goes for mtlo and mfhi.
3845
;;
3846
;; We cope with this by making the mflo and mfhi patterns use both HI and LO.
3847
;; Operand 1 is the register we want, operand 2 is the other one.
3848
;;
3849
;; When generating VR4120 or VR4130 code, we use macc{,hi} and
3850
;; dmacc{,hi} instead of mfhi and mflo.  This avoids both the normal
3851
;; MIPS III hi/lo hazards and the errata related to -mfix-vr4130.
3852
 
3853
(define_expand "mfhilo_"
3854
  [(set (match_operand:GPR 0 "register_operand")
3855
        (unspec:GPR [(match_operand:GPR 1 "register_operand")
3856
                     (match_operand:GPR 2 "register_operand")]
3857
                    UNSPEC_MFHILO))])
3858
 
3859
(define_insn "*mfhilo_"
3860
  [(set (match_operand:GPR 0 "register_operand" "=d,d")
3861
        (unspec:GPR [(match_operand:GPR 1 "register_operand" "h,l")
3862
                     (match_operand:GPR 2 "register_operand" "l,h")]
3863
                    UNSPEC_MFHILO))]
3864
  "!ISA_HAS_MACCHI"
3865
  "mf%1\t%0"
3866
  [(set_attr "type" "mfhilo")
3867
   (set_attr "mode" "")])
3868
 
3869
(define_insn "*mfhilo__macc"
3870
  [(set (match_operand:GPR 0 "register_operand" "=d,d")
3871
        (unspec:GPR [(match_operand:GPR 1 "register_operand" "h,l")
3872
                     (match_operand:GPR 2 "register_operand" "l,h")]
3873
                    UNSPEC_MFHILO))]
3874
  "ISA_HAS_MACCHI"
3875
{
3876
  if (REGNO (operands[1]) == HI_REGNUM)
3877
    return "macchi\t%0,%.,%.";
3878
  else
3879
    return "macc\t%0,%.,%.";
3880
}
3881
  [(set_attr "type" "mfhilo")
3882
   (set_attr "mode" "")])
3883
 
3884
;; Patterns for loading or storing part of a paired floating point
3885
;; register.  We need them because odd-numbered floating-point registers
3886
;; are not fully independent: see mips_split_64bit_move.
3887
 
3888
;; Load the low word of operand 0 with operand 1.
3889
(define_insn "load_df_low"
3890
  [(set (match_operand:DF 0 "register_operand" "=f,f")
3891
        (unspec:DF [(match_operand:SI 1 "general_operand" "dJ,m")]
3892
                   UNSPEC_LOAD_DF_LOW))]
3893
  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !TARGET_64BIT"
3894
{
3895
  operands[0] = mips_subword (operands[0], 0);
3896
  return mips_output_move (operands[0], operands[1]);
3897
}
3898
  [(set_attr "type"     "xfer,fpload")
3899
   (set_attr "mode"     "SF")])
3900
 
3901
;; Load the high word of operand 0 from operand 1, preserving the value
3902
;; in the low word.
3903
(define_insn "load_df_high"
3904
  [(set (match_operand:DF 0 "register_operand" "=f,f")
3905
        (unspec:DF [(match_operand:SI 1 "general_operand" "dJ,m")
3906
                    (match_operand:DF 2 "register_operand" "0,0")]
3907
                   UNSPEC_LOAD_DF_HIGH))]
3908
  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !TARGET_64BIT"
3909
{
3910
  operands[0] = mips_subword (operands[0], 1);
3911
  return mips_output_move (operands[0], operands[1]);
3912
}
3913
  [(set_attr "type"     "xfer,fpload")
3914
   (set_attr "mode"     "SF")])
3915
 
3916
;; Store the high word of operand 1 in operand 0.  The corresponding
3917
;; low-word move is done in the normal way.
3918
(define_insn "store_df_high"
3919
  [(set (match_operand:SI 0 "nonimmediate_operand" "=d,m")
3920
        (unspec:SI [(match_operand:DF 1 "register_operand" "f,f")]
3921
                   UNSPEC_STORE_DF_HIGH))]
3922
  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !TARGET_64BIT"
3923
{
3924
  operands[1] = mips_subword (operands[1], 1);
3925
  return mips_output_move (operands[0], operands[1]);
3926
}
3927
  [(set_attr "type"     "xfer,fpstore")
3928
   (set_attr "mode"     "SF")])
3929
 
3930
;; Insn to initialize $gp for n32/n64 abicalls.  Operand 0 is the offset
3931
;; of _gp from the start of this function.  Operand 1 is the incoming
3932
;; function address.
3933
(define_insn_and_split "loadgp"
3934
  [(unspec_volatile [(match_operand 0 "" "")
3935
                     (match_operand 1 "register_operand" "")] UNSPEC_LOADGP)]
3936
  "TARGET_ABICALLS && TARGET_NEWABI"
3937
  "#"
3938
  ""
3939
  [(set (match_dup 2) (match_dup 3))
3940
   (set (match_dup 2) (match_dup 4))
3941
   (set (match_dup 2) (match_dup 5))]
3942
{
3943
  operands[2] = pic_offset_table_rtx;
3944
  operands[3] = gen_rtx_HIGH (Pmode, operands[0]);
3945
  operands[4] = gen_rtx_PLUS (Pmode, operands[2], operands[1]);
3946
  operands[5] = gen_rtx_LO_SUM (Pmode, operands[2], operands[0]);
3947
}
3948
  [(set_attr "length" "12")])
3949
 
3950
;; The use of gp is hidden when not using explicit relocations.
3951
;; This blockage instruction prevents the gp load from being
3952
;; scheduled after an implicit use of gp.  It also prevents
3953
;; the load from being deleted as dead.
3954
(define_insn "loadgp_blockage"
3955
  [(unspec_volatile [(reg:DI 28)] UNSPEC_BLOCKAGE)]
3956
  ""
3957
  ""
3958
  [(set_attr "type"     "unknown")
3959
   (set_attr "mode"     "none")
3960
   (set_attr "length"   "0")])
3961
 
3962
;; Emit a .cprestore directive, which normally expands to a single store
3963
;; instruction.  Note that we continue to use .cprestore for explicit reloc
3964
;; code so that jals inside inline asms will work correctly.
3965
(define_insn "cprestore"
3966
  [(unspec_volatile [(match_operand 0 "const_int_operand" "I,i")]
3967
                    UNSPEC_CPRESTORE)]
3968
  ""
3969
{
3970
  if (set_nomacro && which_alternative == 1)
3971
    return ".set\tmacro\;.cprestore\t%0\;.set\tnomacro";
3972
  else
3973
    return ".cprestore\t%0";
3974
}
3975
  [(set_attr "type" "store")
3976
   (set_attr "length" "4,12")])
3977
 
3978
;; Block moves, see mips.c for more details.
3979
;; Argument 0 is the destination
3980
;; Argument 1 is the source
3981
;; Argument 2 is the length
3982
;; Argument 3 is the alignment
3983
 
3984
(define_expand "movmemsi"
3985
  [(parallel [(set (match_operand:BLK 0 "general_operand")
3986
                   (match_operand:BLK 1 "general_operand"))
3987
              (use (match_operand:SI 2 ""))
3988
              (use (match_operand:SI 3 "const_int_operand"))])]
3989
  "!TARGET_MIPS16 && !TARGET_MEMCPY"
3990
{
3991
  if (mips_expand_block_move (operands[0], operands[1], operands[2]))
3992
    DONE;
3993
  else
3994
    FAIL;
3995
})
3996
 
3997
;;
3998
;;  ....................
3999
;;
4000
;;      SHIFTS
4001
;;
4002
;;  ....................
4003
 
4004
(define_expand "3"
4005
  [(set (match_operand:GPR 0 "register_operand")
4006
        (any_shift:GPR (match_operand:GPR 1 "register_operand")
4007
                       (match_operand:SI 2 "arith_operand")))]
4008
  ""
4009
{
4010
  /* On the mips16, a shift of more than 8 is a four byte instruction,
4011
     so, for a shift between 8 and 16, it is just as fast to do two
4012
     shifts of 8 or less.  If there is a lot of shifting going on, we
4013
     may win in CSE.  Otherwise combine will put the shifts back
4014
     together again.  This can be called by function_arg, so we must
4015
     be careful not to allocate a new register if we've reached the
4016
     reload pass.  */
4017
  if (TARGET_MIPS16
4018
      && optimize
4019
      && GET_CODE (operands[2]) == CONST_INT
4020
      && INTVAL (operands[2]) > 8
4021
      && INTVAL (operands[2]) <= 16
4022
      && !reload_in_progress
4023
      && !reload_completed)
4024
    {
4025
      rtx temp = gen_reg_rtx (mode);
4026
 
4027
      emit_insn (gen_3 (temp, operands[1], GEN_INT (8)));
4028
      emit_insn (gen_3 (operands[0], temp,
4029
                                     GEN_INT (INTVAL (operands[2]) - 8)));
4030
      DONE;
4031
    }
4032
})
4033
 
4034
(define_insn "*3"
4035
  [(set (match_operand:GPR 0 "register_operand" "=d")
4036
        (any_shift:GPR (match_operand:GPR 1 "register_operand" "d")
4037
                       (match_operand:SI 2 "arith_operand" "dI")))]
4038
  "!TARGET_MIPS16"
4039
{
4040
  if (GET_CODE (operands[2]) == CONST_INT)
4041
    operands[2] = GEN_INT (INTVAL (operands[2])
4042
                           & (GET_MODE_BITSIZE (mode) - 1));
4043
 
4044
  return "\t%0,%1,%2";
4045
}
4046
  [(set_attr "type" "shift")
4047
   (set_attr "mode" "")])
4048
 
4049
(define_insn "*si3_extend"
4050
  [(set (match_operand:DI 0 "register_operand" "=d")
4051
        (sign_extend:DI
4052
           (any_shift:SI (match_operand:SI 1 "register_operand" "d")
4053
                         (match_operand:SI 2 "arith_operand" "dI"))))]
4054
  "TARGET_64BIT && !TARGET_MIPS16"
4055
{
4056
  if (GET_CODE (operands[2]) == CONST_INT)
4057
    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
4058
 
4059
  return "\t%0,%1,%2";
4060
}
4061
  [(set_attr "type" "shift")
4062
   (set_attr "mode" "SI")])
4063
 
4064
(define_insn "*si3_mips16"
4065
  [(set (match_operand:SI 0 "register_operand" "=d,d")
4066
        (any_shift:SI (match_operand:SI 1 "register_operand" "0,d")
4067
                      (match_operand:SI 2 "arith_operand" "d,I")))]
4068
  "TARGET_MIPS16"
4069
{
4070
  if (which_alternative == 0)
4071
    return "\t%0,%2";
4072
 
4073
  operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
4074
  return "\t%0,%1,%2";
4075
}
4076
  [(set_attr "type" "shift")
4077
   (set_attr "mode" "SI")
4078
   (set_attr_alternative "length"
4079
                [(const_int 4)
4080
                 (if_then_else (match_operand 2 "m16_uimm3_b")
4081
                               (const_int 4)
4082
                               (const_int 8))])])
4083
 
4084
;; We need separate DImode MIPS16 patterns because of the irregularity
4085
;; of right shifts.
4086
(define_insn "*ashldi3_mips16"
4087
  [(set (match_operand:DI 0 "register_operand" "=d,d")
4088
        (ashift:DI (match_operand:DI 1 "register_operand" "0,d")
4089
                   (match_operand:SI 2 "arith_operand" "d,I")))]
4090
  "TARGET_64BIT && TARGET_MIPS16"
4091
{
4092
  if (which_alternative == 0)
4093
    return "dsll\t%0,%2";
4094
 
4095
  operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
4096
  return "dsll\t%0,%1,%2";
4097
}
4098
  [(set_attr "type" "shift")
4099
   (set_attr "mode" "DI")
4100
   (set_attr_alternative "length"
4101
                [(const_int 4)
4102
                 (if_then_else (match_operand 2 "m16_uimm3_b")
4103
                               (const_int 4)
4104
                               (const_int 8))])])
4105
 
4106
(define_insn "*ashrdi3_mips16"
4107
  [(set (match_operand:DI 0 "register_operand" "=d,d")
4108
        (ashiftrt:DI (match_operand:DI 1 "register_operand" "0,0")
4109
                     (match_operand:SI 2 "arith_operand" "d,I")))]
4110
  "TARGET_64BIT && TARGET_MIPS16"
4111
{
4112
  if (GET_CODE (operands[2]) == CONST_INT)
4113
    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
4114
 
4115
  return "dsra\t%0,%2";
4116
}
4117
  [(set_attr "type" "shift")
4118
   (set_attr "mode" "DI")
4119
   (set_attr_alternative "length"
4120
                [(const_int 4)
4121
                 (if_then_else (match_operand 2 "m16_uimm3_b")
4122
                               (const_int 4)
4123
                               (const_int 8))])])
4124
 
4125
(define_insn "*lshrdi3_mips16"
4126
  [(set (match_operand:DI 0 "register_operand" "=d,d")
4127
        (lshiftrt:DI (match_operand:DI 1 "register_operand" "0,0")
4128
                     (match_operand:SI 2 "arith_operand" "d,I")))]
4129
  "TARGET_64BIT && TARGET_MIPS16"
4130
{
4131
  if (GET_CODE (operands[2]) == CONST_INT)
4132
    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
4133
 
4134
  return "dsrl\t%0,%2";
4135
}
4136
  [(set_attr "type" "shift")
4137
   (set_attr "mode" "DI")
4138
   (set_attr_alternative "length"
4139
                [(const_int 4)
4140
                 (if_then_else (match_operand 2 "m16_uimm3_b")
4141
                               (const_int 4)
4142
                               (const_int 8))])])
4143
 
4144
;; On the mips16, we can split a 4 byte shift into 2 2 byte shifts.
4145
 
4146
(define_split
4147
  [(set (match_operand:GPR 0 "register_operand")
4148
        (any_shift:GPR (match_operand:GPR 1 "register_operand")
4149
                       (match_operand:GPR 2 "const_int_operand")))]
4150
  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4151
   && GET_CODE (operands[2]) == CONST_INT
4152
   && INTVAL (operands[2]) > 8
4153
   && INTVAL (operands[2]) <= 16"
4154
  [(set (match_dup 0) (any_shift:GPR (match_dup 1) (const_int 8)))
4155
   (set (match_dup 0) (any_shift:GPR (match_dup 0) (match_dup 2)))]
4156
  { operands[2] = GEN_INT (INTVAL (operands[2]) - 8); })
4157
 
4158
;; If we load a byte on the mips16 as a bitfield, the resulting
4159
;; sequence of instructions is too complicated for combine, because it
4160
;; involves four instructions: a load, a shift, a constant load into a
4161
;; register, and an and (the key problem here is that the mips16 does
4162
;; not have and immediate).  We recognize a shift of a load in order
4163
;; to make it simple enough for combine to understand.
4164
;;
4165
;; The length here is the worst case: the length of the split version
4166
;; will be more accurate.
4167
(define_insn_and_split ""
4168
  [(set (match_operand:SI 0 "register_operand" "=d")
4169
        (lshiftrt:SI (match_operand:SI 1 "memory_operand" "m")
4170
                     (match_operand:SI 2 "immediate_operand" "I")))]
4171
  "TARGET_MIPS16"
4172
  "#"
4173
  ""
4174
  [(set (match_dup 0) (match_dup 1))
4175
   (set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 2)))]
4176
  ""
4177
  [(set_attr "type"     "load")
4178
   (set_attr "mode"     "SI")
4179
   (set_attr "length"   "16")])
4180
 
4181
(define_insn "rotr3"
4182
  [(set (match_operand:GPR 0 "register_operand" "=d")
4183
        (rotatert:GPR (match_operand:GPR 1 "register_operand" "d")
4184
                      (match_operand:SI 2 "arith_operand" "dI")))]
4185
  "ISA_HAS_ROTR_"
4186
{
4187
  if (GET_CODE (operands[2]) == CONST_INT)
4188
    gcc_assert (INTVAL (operands[2]) >= 0
4189
                && INTVAL (operands[2]) < GET_MODE_BITSIZE (mode));
4190
 
4191
  return "ror\t%0,%1,%2";
4192
}
4193
  [(set_attr "type" "shift")
4194
   (set_attr "mode" "")])
4195
 
4196
;;
4197
;;  ....................
4198
;;
4199
;;      COMPARISONS
4200
;;
4201
;;  ....................
4202
 
4203
;; Flow here is rather complex:
4204
;;
4205
;;  1)  The cmp{si,di,sf,df} routine is called.  It deposits the arguments
4206
;;      into cmp_operands[] but generates no RTL.
4207
;;
4208
;;  2)  The appropriate branch define_expand is called, which then
4209
;;      creates the appropriate RTL for the comparison and branch.
4210
;;      Different CC modes are used, based on what type of branch is
4211
;;      done, so that we can constrain things appropriately.  There
4212
;;      are assumptions in the rest of GCC that break if we fold the
4213
;;      operands into the branches for integer operations, and use cc0
4214
;;      for floating point, so we use the fp status register instead.
4215
;;      If needed, an appropriate temporary is created to hold the
4216
;;      of the integer compare.
4217
 
4218
(define_expand "cmp"
4219
  [(set (cc0)
4220
        (compare:CC (match_operand:GPR 0 "register_operand")
4221
                    (match_operand:GPR 1 "nonmemory_operand")))]
4222
  ""
4223
{
4224
  cmp_operands[0] = operands[0];
4225
  cmp_operands[1] = operands[1];
4226
  DONE;
4227
})
4228
 
4229
(define_expand "cmp"
4230
  [(set (cc0)
4231
        (compare:CC (match_operand:SCALARF 0 "register_operand")
4232
                    (match_operand:SCALARF 1 "register_operand")))]
4233
  ""
4234
{
4235
  cmp_operands[0] = operands[0];
4236
  cmp_operands[1] = operands[1];
4237
  DONE;
4238
})
4239
 
4240
;;
4241
;;  ....................
4242
;;
4243
;;      CONDITIONAL BRANCHES
4244
;;
4245
;;  ....................
4246
 
4247
;; Conditional branches on floating-point equality tests.
4248
 
4249
(define_insn "branch_fp"
4250
  [(set (pc)
4251
        (if_then_else
4252
         (match_operator:CC 0 "comparison_operator"
4253
                            [(match_operand:CC 2 "register_operand" "z")
4254
                             (const_int 0)])
4255
         (label_ref (match_operand 1 "" ""))
4256
         (pc)))]
4257
  "TARGET_HARD_FLOAT"
4258
{
4259
  return mips_output_conditional_branch (insn,
4260
                                         operands,
4261
                                         /*two_operands_p=*/0,
4262
                                         /*float_p=*/1,
4263
                                         /*inverted_p=*/0,
4264
                                         get_attr_length (insn));
4265
}
4266
  [(set_attr "type"     "branch")
4267
   (set_attr "mode"     "none")])
4268
 
4269
(define_insn "branch_fp_inverted"
4270
  [(set (pc)
4271
        (if_then_else
4272
         (match_operator:CC 0 "comparison_operator"
4273
                            [(match_operand:CC 2 "register_operand" "z")
4274
                             (const_int 0)])
4275
         (pc)
4276
         (label_ref (match_operand 1 "" ""))))]
4277
  "TARGET_HARD_FLOAT"
4278
{
4279
  return mips_output_conditional_branch (insn,
4280
                                         operands,
4281
                                         /*two_operands_p=*/0,
4282
                                         /*float_p=*/1,
4283
                                         /*inverted_p=*/1,
4284
                                         get_attr_length (insn));
4285
}
4286
  [(set_attr "type"     "branch")
4287
   (set_attr "mode"     "none")])
4288
 
4289
;; Conditional branches on comparisons with zero.
4290
 
4291
(define_insn "*branch_zero"
4292
  [(set (pc)
4293
        (if_then_else
4294
         (match_operator:GPR 0 "comparison_operator"
4295
                             [(match_operand:GPR 2 "register_operand" "d")
4296
                              (const_int 0)])
4297
         (label_ref (match_operand 1 "" ""))
4298
         (pc)))]
4299
  "!TARGET_MIPS16"
4300
{
4301
  return mips_output_conditional_branch (insn,
4302
                                         operands,
4303
                                         /*two_operands_p=*/0,
4304
                                         /*float_p=*/0,
4305
                                         /*inverted_p=*/0,
4306
                                         get_attr_length (insn));
4307
}
4308
  [(set_attr "type" "branch")
4309
   (set_attr "mode" "none")])
4310
 
4311
(define_insn "*branch_zero_inverted"
4312
  [(set (pc)
4313
        (if_then_else
4314
         (match_operator:GPR 0 "comparison_operator"
4315
                             [(match_operand:GPR 2 "register_operand" "d")
4316
                              (const_int 0)])
4317
         (pc)
4318
         (label_ref (match_operand 1 "" ""))))]
4319
  "!TARGET_MIPS16"
4320
{
4321
  return mips_output_conditional_branch (insn,
4322
                                         operands,
4323
                                         /*two_operands_p=*/0,
4324
                                         /*float_p=*/0,
4325
                                         /*inverted_p=*/1,
4326
                                         get_attr_length (insn));
4327
}
4328
  [(set_attr "type" "branch")
4329
   (set_attr "mode" "none")])
4330
 
4331
;; Conditional branch on equality comparison.
4332
 
4333
(define_insn "*branch_equality"
4334
  [(set (pc)
4335
        (if_then_else
4336
         (match_operator:GPR 0 "equality_operator"
4337
                             [(match_operand:GPR 2 "register_operand" "d")
4338
                              (match_operand:GPR 3 "register_operand" "d")])
4339
         (label_ref (match_operand 1 "" ""))
4340
         (pc)))]
4341
  "!TARGET_MIPS16"
4342
{
4343
  return mips_output_conditional_branch (insn,
4344
                                         operands,
4345
                                         /*two_operands_p=*/1,
4346
                                         /*float_p=*/0,
4347
                                         /*inverted_p=*/0,
4348
                                         get_attr_length (insn));
4349
}
4350
  [(set_attr "type" "branch")
4351
   (set_attr "mode" "none")])
4352
 
4353
(define_insn "*branch_equality_inverted"
4354
  [(set (pc)
4355
        (if_then_else
4356
         (match_operator:GPR 0 "equality_operator"
4357
                             [(match_operand:GPR 2 "register_operand" "d")
4358
                              (match_operand:GPR 3 "register_operand" "d")])
4359
         (pc)
4360
         (label_ref (match_operand 1 "" ""))))]
4361
  "!TARGET_MIPS16"
4362
{
4363
  return mips_output_conditional_branch (insn,
4364
                                         operands,
4365
                                         /*two_operands_p=*/1,
4366
                                         /*float_p=*/0,
4367
                                         /*inverted_p=*/1,
4368
                                         get_attr_length (insn));
4369
}
4370
  [(set_attr "type" "branch")
4371
   (set_attr "mode" "none")])
4372
 
4373
;; MIPS16 branches
4374
 
4375
(define_insn "*branch_equality_mips16"
4376
  [(set (pc)
4377
        (if_then_else
4378
         (match_operator:GPR 0 "equality_operator"
4379
                             [(match_operand:GPR 1 "register_operand" "d,t")
4380
                              (const_int 0)])
4381
         (match_operand 2 "pc_or_label_operand" "")
4382
         (match_operand 3 "pc_or_label_operand" "")))]
4383
  "TARGET_MIPS16"
4384
{
4385
  if (operands[2] != pc_rtx)
4386
    {
4387
      if (which_alternative == 0)
4388
        return "b%C0z\t%1,%2";
4389
      else
4390
        return "bt%C0z\t%2";
4391
    }
4392
  else
4393
    {
4394
      if (which_alternative == 0)
4395
        return "b%N0z\t%1,%3";
4396
      else
4397
        return "bt%N0z\t%3";
4398
    }
4399
}
4400
  [(set_attr "type" "branch")
4401
   (set_attr "mode" "none")
4402
   (set_attr "length" "8")])
4403
 
4404
(define_expand "b"
4405
  [(set (pc)
4406
        (if_then_else (any_cond:CC (cc0)
4407
                                   (const_int 0))
4408
                      (label_ref (match_operand 0 ""))
4409
                      (pc)))]
4410
  ""
4411
{
4412
  gen_conditional_branch (operands, );
4413
  DONE;
4414
})
4415
 
4416
;;
4417
;;  ....................
4418
;;
4419
;;      SETTING A REGISTER FROM A COMPARISON
4420
;;
4421
;;  ....................
4422
 
4423
(define_expand "seq"
4424
  [(set (match_operand:SI 0 "register_operand")
4425
        (eq:SI (match_dup 1)
4426
               (match_dup 2)))]
4427
  ""
4428
  { if (mips_emit_scc (EQ, operands[0])) DONE; else FAIL; })
4429
 
4430
(define_insn "*seq_"
4431
  [(set (match_operand:GPR 0 "register_operand" "=d")
4432
        (eq:GPR (match_operand:GPR 1 "register_operand" "d")
4433
                (const_int 0)))]
4434
  "!TARGET_MIPS16"
4435
  "sltu\t%0,%1,1"
4436
  [(set_attr "type" "slt")
4437
   (set_attr "mode" "")])
4438
 
4439
(define_insn "*seq__mips16"
4440
  [(set (match_operand:GPR 0 "register_operand" "=t")
4441
        (eq:GPR (match_operand:GPR 1 "register_operand" "d")
4442
                (const_int 0)))]
4443
  "TARGET_MIPS16"
4444
  "sltu\t%1,1"
4445
  [(set_attr "type" "slt")
4446
   (set_attr "mode" "")])
4447
 
4448
;; "sne" uses sltu instructions in which the first operand is $0.
4449
;; This isn't possible in mips16 code.
4450
 
4451
(define_expand "sne"
4452
  [(set (match_operand:SI 0 "register_operand")
4453
        (ne:SI (match_dup 1)
4454
               (match_dup 2)))]
4455
  "!TARGET_MIPS16"
4456
  { if (mips_emit_scc (NE, operands[0])) DONE; else FAIL; })
4457
 
4458
(define_insn "*sne_"
4459
  [(set (match_operand:GPR 0 "register_operand" "=d")
4460
        (ne:GPR (match_operand:GPR 1 "register_operand" "d")
4461
                (const_int 0)))]
4462
  "!TARGET_MIPS16"
4463
  "sltu\t%0,%.,%1"
4464
  [(set_attr "type" "slt")
4465
   (set_attr "mode" "")])
4466
 
4467
(define_expand "sgt"
4468
  [(set (match_operand:SI 0 "register_operand")
4469
        (gt:SI (match_dup 1)
4470
               (match_dup 2)))]
4471
  ""
4472
  { if (mips_emit_scc (GT, operands[0])) DONE; else FAIL; })
4473
 
4474
(define_insn "*sgt_"
4475
  [(set (match_operand:GPR 0 "register_operand" "=d")
4476
        (gt:GPR (match_operand:GPR 1 "register_operand" "d")
4477
                (match_operand:GPR 2 "reg_or_0_operand" "dJ")))]
4478
  "!TARGET_MIPS16"
4479
  "slt\t%0,%z2,%1"
4480
  [(set_attr "type" "slt")
4481
   (set_attr "mode" "")])
4482
 
4483
(define_insn "*sgt__mips16"
4484
  [(set (match_operand:GPR 0 "register_operand" "=t")
4485
        (gt:GPR (match_operand:GPR 1 "register_operand" "d")
4486
                (match_operand:GPR 2 "register_operand" "d")))]
4487
  "TARGET_MIPS16"
4488
  "slt\t%2,%1"
4489
  [(set_attr "type" "slt")
4490
   (set_attr "mode" "")])
4491
 
4492
(define_expand "sge"
4493
  [(set (match_operand:SI 0 "register_operand")
4494
        (ge:SI (match_dup 1)
4495
               (match_dup 2)))]
4496
  ""
4497
  { if (mips_emit_scc (GE, operands[0])) DONE; else FAIL; })
4498
 
4499
(define_insn "*sge_"
4500
  [(set (match_operand:GPR 0 "register_operand" "=d")
4501
        (ge:GPR (match_operand:GPR 1 "register_operand" "d")
4502
                (const_int 1)))]
4503
  "!TARGET_MIPS16"
4504
  "slt\t%0,%.,%1"
4505
  [(set_attr "type" "slt")
4506
   (set_attr "mode" "")])
4507
 
4508
(define_expand "slt"
4509
  [(set (match_operand:SI 0 "register_operand")
4510
        (lt:SI (match_dup 1)
4511
               (match_dup 2)))]
4512
  ""
4513
  { if (mips_emit_scc (LT, operands[0])) DONE; else FAIL; })
4514
 
4515
(define_insn "*slt_"
4516
  [(set (match_operand:GPR 0 "register_operand" "=d")
4517
        (lt:GPR (match_operand:GPR 1 "register_operand" "d")
4518
                (match_operand:GPR 2 "arith_operand" "dI")))]
4519
  "!TARGET_MIPS16"
4520
  "slt\t%0,%1,%2"
4521
  [(set_attr "type" "slt")
4522
   (set_attr "mode" "")])
4523
 
4524
(define_insn "*slt__mips16"
4525
  [(set (match_operand:GPR 0 "register_operand" "=t,t")
4526
        (lt:GPR (match_operand:GPR 1 "register_operand" "d,d")
4527
                (match_operand:GPR 2 "arith_operand" "d,I")))]
4528
  "TARGET_MIPS16"
4529
  "slt\t%1,%2"
4530
  [(set_attr "type" "slt")
4531
   (set_attr "mode" "")
4532
   (set_attr_alternative "length"
4533
                [(const_int 4)
4534
                 (if_then_else (match_operand 2 "m16_uimm8_1")
4535
                               (const_int 4)
4536
                               (const_int 8))])])
4537
 
4538
(define_expand "sle"
4539
  [(set (match_operand:SI 0 "register_operand")
4540
        (le:SI (match_dup 1)
4541
               (match_dup 2)))]
4542
  ""
4543
  { if (mips_emit_scc (LE, operands[0])) DONE; else FAIL; })
4544
 
4545
(define_insn "*sle_"
4546
  [(set (match_operand:GPR 0 "register_operand" "=d")
4547
        (le:GPR (match_operand:GPR 1 "register_operand" "d")
4548
                (match_operand:GPR 2 "sle_operand" "")))]
4549
  "!TARGET_MIPS16"
4550
{
4551
  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
4552
  return "slt\t%0,%1,%2";
4553
}
4554
  [(set_attr "type" "slt")
4555
   (set_attr "mode" "")])
4556
 
4557
(define_insn "*sle__mips16"
4558
  [(set (match_operand:GPR 0 "register_operand" "=t")
4559
        (le:GPR (match_operand:GPR 1 "register_operand" "d")
4560
                (match_operand:GPR 2 "sle_operand" "")))]
4561
  "TARGET_MIPS16"
4562
{
4563
  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
4564
  return "slt\t%1,%2";
4565
}
4566
  [(set_attr "type" "slt")
4567
   (set_attr "mode" "")
4568
   (set (attr "length") (if_then_else (match_operand 2 "m16_uimm8_m1_1")
4569
                                      (const_int 4)
4570
                                      (const_int 8)))])
4571
 
4572
(define_expand "sgtu"
4573
  [(set (match_operand:SI 0 "register_operand")
4574
        (gtu:SI (match_dup 1)
4575
                (match_dup 2)))]
4576
  ""
4577
  { if (mips_emit_scc (GTU, operands[0])) DONE; else FAIL; })
4578
 
4579
(define_insn "*sgtu_"
4580
  [(set (match_operand:GPR 0 "register_operand" "=d")
4581
        (gtu:GPR (match_operand:GPR 1 "register_operand" "d")
4582
                 (match_operand:GPR 2 "reg_or_0_operand" "dJ")))]
4583
  "!TARGET_MIPS16"
4584
  "sltu\t%0,%z2,%1"
4585
  [(set_attr "type" "slt")
4586
   (set_attr "mode" "")])
4587
 
4588
(define_insn "*sgtu__mips16"
4589
  [(set (match_operand:GPR 0 "register_operand" "=t")
4590
        (gtu:GPR (match_operand:GPR 1 "register_operand" "d")
4591
                 (match_operand:GPR 2 "register_operand" "d")))]
4592
  "TARGET_MIPS16"
4593
  "sltu\t%2,%1"
4594
  [(set_attr "type" "slt")
4595
   (set_attr "mode" "")])
4596
 
4597
(define_expand "sgeu"
4598
  [(set (match_operand:SI 0 "register_operand")
4599
        (geu:SI (match_dup 1)
4600
                (match_dup 2)))]
4601
  ""
4602
  { if (mips_emit_scc (GEU, operands[0])) DONE; else FAIL; })
4603
 
4604
(define_insn "*sge_"
4605
  [(set (match_operand:GPR 0 "register_operand" "=d")
4606
        (geu:GPR (match_operand:GPR 1 "register_operand" "d")
4607
                 (const_int 1)))]
4608
  "!TARGET_MIPS16"
4609
  "sltu\t%0,%.,%1"
4610
  [(set_attr "type" "slt")
4611
   (set_attr "mode" "")])
4612
 
4613
(define_expand "sltu"
4614
  [(set (match_operand:SI 0 "register_operand")
4615
        (ltu:SI (match_dup 1)
4616
                (match_dup 2)))]
4617
  ""
4618
  { if (mips_emit_scc (LTU, operands[0])) DONE; else FAIL; })
4619
 
4620
(define_insn "*sltu_"
4621
  [(set (match_operand:GPR 0 "register_operand" "=d")
4622
        (ltu:GPR (match_operand:GPR 1 "register_operand" "d")
4623
                 (match_operand:GPR 2 "arith_operand" "dI")))]
4624
  "!TARGET_MIPS16"
4625
  "sltu\t%0,%1,%2"
4626
  [(set_attr "type" "slt")
4627
   (set_attr "mode" "")])
4628
 
4629
(define_insn "*sltu__mips16"
4630
  [(set (match_operand:GPR 0 "register_operand" "=t,t")
4631
        (ltu:GPR (match_operand:GPR 1 "register_operand" "d,d")
4632
                 (match_operand:GPR 2 "arith_operand" "d,I")))]
4633
  "TARGET_MIPS16"
4634
  "sltu\t%1,%2"
4635
  [(set_attr "type" "slt")
4636
   (set_attr "mode" "")
4637
   (set_attr_alternative "length"
4638
                [(const_int 4)
4639
                 (if_then_else (match_operand 2 "m16_uimm8_1")
4640
                               (const_int 4)
4641
                               (const_int 8))])])
4642
 
4643
(define_expand "sleu"
4644
  [(set (match_operand:SI 0 "register_operand")
4645
        (leu:SI (match_dup 1)
4646
                (match_dup 2)))]
4647
  ""
4648
  { if (mips_emit_scc (LEU, operands[0])) DONE; else FAIL; })
4649
 
4650
(define_insn "*sleu_"
4651
  [(set (match_operand:GPR 0 "register_operand" "=d")
4652
        (leu:GPR (match_operand:GPR 1 "register_operand" "d")
4653
                 (match_operand:GPR 2 "sleu_operand" "")))]
4654
  "!TARGET_MIPS16"
4655
{
4656
  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
4657
  return "sltu\t%0,%1,%2";
4658
}
4659
  [(set_attr "type" "slt")
4660
   (set_attr "mode" "")])
4661
 
4662
(define_insn "*sleu__mips16"
4663
  [(set (match_operand:GPR 0 "register_operand" "=t")
4664
        (leu:GPR (match_operand:GPR 1 "register_operand" "d")
4665
                 (match_operand:GPR 2 "sleu_operand" "")))]
4666
  "TARGET_MIPS16"
4667
{
4668
  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
4669
  return "sltu\t%1,%2";
4670
}
4671
  [(set_attr "type" "slt")
4672
   (set_attr "mode" "")
4673
   (set (attr "length") (if_then_else (match_operand 2 "m16_uimm8_m1_1")
4674
                                      (const_int 4)
4675
                                      (const_int 8)))])
4676
 
4677
;;
4678
;;  ....................
4679
;;
4680
;;      FLOATING POINT COMPARISONS
4681
;;
4682
;;  ....................
4683
 
4684
(define_insn "s_"
4685
  [(set (match_operand:CC 0 "register_operand" "=z")
4686
        (fcond:CC (match_operand:SCALARF 1 "register_operand" "f")
4687
                  (match_operand:SCALARF 2 "register_operand" "f")))]
4688
  ""
4689
  "c..\t%Z0%1,%2"
4690
  [(set_attr "type" "fcmp")
4691
   (set_attr "mode" "FPSW")])
4692
 
4693
(define_insn "s_"
4694
  [(set (match_operand:CC 0 "register_operand" "=z")
4695
        (swapped_fcond:CC (match_operand:SCALARF 1 "register_operand" "f")
4696
                          (match_operand:SCALARF 2 "register_operand" "f")))]
4697
  ""
4698
  "c..\t%Z0%2,%1"
4699
  [(set_attr "type" "fcmp")
4700
   (set_attr "mode" "FPSW")])
4701
 
4702
;;
4703
;;  ....................
4704
;;
4705
;;      UNCONDITIONAL BRANCHES
4706
;;
4707
;;  ....................
4708
 
4709
;; Unconditional branches.
4710
 
4711
(define_insn "jump"
4712
  [(set (pc)
4713
        (label_ref (match_operand 0 "" "")))]
4714
  "!TARGET_MIPS16"
4715
{
4716
  if (flag_pic)
4717
    {
4718
      if (get_attr_length (insn) <= 8)
4719
        return "%*b\t%l0%/";
4720
      else
4721
        {
4722
          output_asm_insn (mips_output_load_label (), operands);
4723
          return "%*jr\t%@%/%]";
4724
        }
4725
    }
4726
  else
4727
    return "%*j\t%l0%/";
4728
}
4729
  [(set_attr "type"     "jump")
4730
   (set_attr "mode"     "none")
4731
   (set (attr "length")
4732
        ;; We can't use `j' when emitting PIC.  Emit a branch if it's
4733
        ;; in range, otherwise load the address of the branch target into
4734
        ;; $at and then jump to it.
4735
        (if_then_else
4736
         (ior (eq (symbol_ref "flag_pic") (const_int 0))
4737
              (lt (abs (minus (match_dup 0)
4738
                              (plus (pc) (const_int 4))))
4739
                  (const_int 131072)))
4740
         (const_int 4) (const_int 16)))])
4741
 
4742
;; We need a different insn for the mips16, because a mips16 branch
4743
;; does not have a delay slot.
4744
 
4745
(define_insn ""
4746
  [(set (pc)
4747
        (label_ref (match_operand 0 "" "")))]
4748
  "TARGET_MIPS16"
4749
  "b\t%l0"
4750
  [(set_attr "type"     "branch")
4751
   (set_attr "mode"     "none")
4752
   (set_attr "length"   "8")])
4753
 
4754
(define_expand "indirect_jump"
4755
  [(set (pc) (match_operand 0 "register_operand"))]
4756
  ""
4757
{
4758
  operands[0] = force_reg (Pmode, operands[0]);
4759
  if (Pmode == SImode)
4760
    emit_jump_insn (gen_indirect_jumpsi (operands[0]));
4761
  else
4762
    emit_jump_insn (gen_indirect_jumpdi (operands[0]));
4763
  DONE;
4764
})
4765
 
4766
(define_insn "indirect_jump"
4767
  [(set (pc) (match_operand:P 0 "register_operand" "d"))]
4768
  ""
4769
  "%*j\t%0%/"
4770
  [(set_attr "type" "jump")
4771
   (set_attr "mode" "none")])
4772
 
4773
(define_expand "tablejump"
4774
  [(set (pc)
4775
        (match_operand 0 "register_operand"))
4776
   (use (label_ref (match_operand 1 "")))]
4777
  ""
4778
{
4779
  if (TARGET_MIPS16)
4780
    operands[0] = expand_binop (Pmode, add_optab,
4781
                                convert_to_mode (Pmode, operands[0], false),
4782
                                gen_rtx_LABEL_REF (Pmode, operands[1]),
4783
                                0, 0, OPTAB_WIDEN);
4784
  else if (TARGET_GPWORD)
4785
    operands[0] = expand_binop (Pmode, add_optab, operands[0],
4786
                                pic_offset_table_rtx, 0, 0, OPTAB_WIDEN);
4787
 
4788
  if (Pmode == SImode)
4789
    emit_jump_insn (gen_tablejumpsi (operands[0], operands[1]));
4790
  else
4791
    emit_jump_insn (gen_tablejumpdi (operands[0], operands[1]));
4792
  DONE;
4793
})
4794
 
4795
(define_insn "tablejump"
4796
  [(set (pc)
4797
        (match_operand:P 0 "register_operand" "d"))
4798
   (use (label_ref (match_operand 1 "" "")))]
4799
  ""
4800
  "%*j\t%0%/"
4801
  [(set_attr "type" "jump")
4802
   (set_attr "mode" "none")])
4803
 
4804
;; For TARGET_ABICALLS, we save the gp in the jmp_buf as well.
4805
;; While it is possible to either pull it off the stack (in the
4806
;; o32 case) or recalculate it given t9 and our target label,
4807
;; it takes 3 or 4 insns to do so.
4808
 
4809
(define_expand "builtin_setjmp_setup"
4810
  [(use (match_operand 0 "register_operand"))]
4811
  "TARGET_ABICALLS"
4812
{
4813
  rtx addr;
4814
 
4815
  addr = plus_constant (operands[0], GET_MODE_SIZE (Pmode) * 3);
4816
  emit_move_insn (gen_rtx_MEM (Pmode, addr), pic_offset_table_rtx);
4817
  DONE;
4818
})
4819
 
4820
;; Restore the gp that we saved above.  Despite the earlier comment, it seems
4821
;; that older code did recalculate the gp from $25.  Continue to jump through
4822
;; $25 for compatibility (we lose nothing by doing so).
4823
 
4824
(define_expand "builtin_longjmp"
4825
  [(use (match_operand 0 "register_operand"))]
4826
  "TARGET_ABICALLS"
4827
{
4828
  /* The elements of the buffer are, in order:  */
4829
  int W = GET_MODE_SIZE (Pmode);
4830
  rtx fp = gen_rtx_MEM (Pmode, operands[0]);
4831
  rtx lab = gen_rtx_MEM (Pmode, plus_constant (operands[0], 1*W));
4832
  rtx stack = gen_rtx_MEM (Pmode, plus_constant (operands[0], 2*W));
4833
  rtx gpv = gen_rtx_MEM (Pmode, plus_constant (operands[0], 3*W));
4834
  rtx pv = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
4835
  /* Use gen_raw_REG to avoid being given pic_offset_table_rtx.
4836
     The target is bound to be using $28 as the global pointer
4837
     but the current function might not be.  */
4838
  rtx gp = gen_raw_REG (Pmode, GLOBAL_POINTER_REGNUM);
4839
 
4840
  /* This bit is similar to expand_builtin_longjmp except that it
4841
     restores $gp as well.  */
4842
  emit_move_insn (hard_frame_pointer_rtx, fp);
4843
  emit_move_insn (pv, lab);
4844
  emit_stack_restore (SAVE_NONLOCAL, stack, NULL_RTX);
4845
  emit_move_insn (gp, gpv);
4846
  emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
4847
  emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
4848
  emit_insn (gen_rtx_USE (VOIDmode, gp));
4849
  emit_indirect_jump (pv);
4850
  DONE;
4851
})
4852
 
4853
;;
4854
;;  ....................
4855
;;
4856
;;      Function prologue/epilogue
4857
;;
4858
;;  ....................
4859
;;
4860
 
4861
(define_expand "prologue"
4862
  [(const_int 1)]
4863
  ""
4864
{
4865
  mips_expand_prologue ();
4866
  DONE;
4867
})
4868
 
4869
;; Block any insns from being moved before this point, since the
4870
;; profiling call to mcount can use various registers that aren't
4871
;; saved or used to pass arguments.
4872
 
4873
(define_insn "blockage"
4874
  [(unspec_volatile [(const_int 0)] UNSPEC_BLOCKAGE)]
4875
  ""
4876
  ""
4877
  [(set_attr "type"     "unknown")
4878
   (set_attr "mode"     "none")
4879
   (set_attr "length"   "0")])
4880
 
4881
(define_expand "epilogue"
4882
  [(const_int 2)]
4883
  ""
4884
{
4885
  mips_expand_epilogue (false);
4886
  DONE;
4887
})
4888
 
4889
(define_expand "sibcall_epilogue"
4890
  [(const_int 2)]
4891
  ""
4892
{
4893
  mips_expand_epilogue (true);
4894
  DONE;
4895
})
4896
 
4897
;; Trivial return.  Make it look like a normal return insn as that
4898
;; allows jump optimizations to work better.
4899
 
4900
(define_insn "return"
4901
  [(return)]
4902
  "mips_can_use_return_insn ()"
4903
  "%*j\t$31%/"
4904
  [(set_attr "type"     "jump")
4905
   (set_attr "mode"     "none")])
4906
 
4907
;; Normal return.
4908
 
4909
(define_insn "return_internal"
4910
  [(return)
4911
   (use (match_operand 0 "pmode_register_operand" ""))]
4912
  ""
4913
  "%*j\t%0%/"
4914
  [(set_attr "type"     "jump")
4915
   (set_attr "mode"     "none")])
4916
 
4917
;; This is used in compiling the unwind routines.
4918
(define_expand "eh_return"
4919
  [(use (match_operand 0 "general_operand"))]
4920
  ""
4921
{
4922
  enum machine_mode gpr_mode = TARGET_64BIT ? DImode : SImode;
4923
 
4924
  if (GET_MODE (operands[0]) != gpr_mode)
4925
    operands[0] = convert_to_mode (gpr_mode, operands[0], 0);
4926
  if (TARGET_64BIT)
4927
    emit_insn (gen_eh_set_lr_di (operands[0]));
4928
  else
4929
    emit_insn (gen_eh_set_lr_si (operands[0]));
4930
 
4931
  DONE;
4932
})
4933
 
4934
;; Clobber the return address on the stack.  We can't expand this
4935
;; until we know where it will be put in the stack frame.
4936
 
4937
(define_insn "eh_set_lr_si"
4938
  [(unspec [(match_operand:SI 0 "register_operand" "d")] UNSPEC_EH_RETURN)
4939
   (clobber (match_scratch:SI 1 "=&d"))]
4940
  "! TARGET_64BIT"
4941
  "#")
4942
 
4943
(define_insn "eh_set_lr_di"
4944
  [(unspec [(match_operand:DI 0 "register_operand" "d")] UNSPEC_EH_RETURN)
4945
   (clobber (match_scratch:DI 1 "=&d"))]
4946
  "TARGET_64BIT"
4947
  "#")
4948
 
4949
(define_split
4950
  [(unspec [(match_operand 0 "register_operand")] UNSPEC_EH_RETURN)
4951
   (clobber (match_scratch 1))]
4952
  "reload_completed && !TARGET_DEBUG_D_MODE"
4953
  [(const_int 0)]
4954
{
4955
  mips_set_return_address (operands[0], operands[1]);
4956
  DONE;
4957
})
4958
 
4959
(define_insn_and_split "exception_receiver"
4960
  [(set (reg:SI 28)
4961
        (unspec_volatile:SI [(const_int 0)] UNSPEC_EH_RECEIVER))]
4962
  "TARGET_ABICALLS && TARGET_OLDABI"
4963
  "#"
4964
  "&& reload_completed"
4965
  [(const_int 0)]
4966
{
4967
  mips_restore_gp ();
4968
  DONE;
4969
}
4970
  [(set_attr "type"   "load")
4971
   (set_attr "length" "12")])
4972
 
4973
;;
4974
;;  ....................
4975
;;
4976
;;      FUNCTION CALLS
4977
;;
4978
;;  ....................
4979
 
4980
;; Instructions to load a call address from the GOT.  The address might
4981
;; point to a function or to a lazy binding stub.  In the latter case,
4982
;; the stub will use the dynamic linker to resolve the function, which
4983
;; in turn will change the GOT entry to point to the function's real
4984
;; address.
4985
;;
4986
;; This means that every call, even pure and constant ones, can
4987
;; potentially modify the GOT entry.  And once a stub has been called,
4988
;; we must not call it again.
4989
;;
4990
;; We represent this restriction using an imaginary fixed register that
4991
;; acts like a GOT version number.  By making the register call-clobbered,
4992
;; we tell the target-independent code that the address could be changed
4993
;; by any call insn.
4994
(define_insn "load_call"
4995
  [(set (match_operand:P 0 "register_operand" "=c")
4996
        (unspec:P [(match_operand:P 1 "register_operand" "r")
4997
                   (match_operand:P 2 "immediate_operand" "")
4998
                   (reg:P FAKE_CALL_REGNO)]
4999
                  UNSPEC_LOAD_CALL))]
5000
  "TARGET_ABICALLS"
5001
  "\t%0,%R2(%1)"
5002
  [(set_attr "type" "load")
5003
   (set_attr "mode" "")
5004
   (set_attr "length" "4")])
5005
 
5006
;; Sibling calls.  All these patterns use jump instructions.
5007
 
5008
;; If TARGET_SIBCALLS, call_insn_operand will only accept constant
5009
;; addresses if a direct jump is acceptable.  Since the 'S' constraint
5010
;; is defined in terms of call_insn_operand, the same is true of the
5011
;; constraints.
5012
 
5013
;; When we use an indirect jump, we need a register that will be
5014
;; preserved by the epilogue.  Since TARGET_ABICALLS forces us to
5015
;; use $25 for this purpose -- and $25 is never clobbered by the
5016
;; epilogue -- we might as well use it for !TARGET_ABICALLS as well.
5017
 
5018
(define_expand "sibcall"
5019
  [(parallel [(call (match_operand 0 "")
5020
                    (match_operand 1 ""))
5021
              (use (match_operand 2 ""))        ;; next_arg_reg
5022
              (use (match_operand 3 ""))])]     ;; struct_value_size_rtx
5023
  "TARGET_SIBCALLS"
5024
{
5025
  mips_expand_call (0, XEXP (operands[0], 0), operands[1], operands[2], true);
5026
  DONE;
5027
})
5028
 
5029
(define_insn "sibcall_internal"
5030
  [(call (mem:SI (match_operand 0 "call_insn_operand" "j,S"))
5031
         (match_operand 1 "" ""))]
5032
  "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
5033
  "@
5034
    %*jr\t%0%/
5035
    %*j\t%0%/"
5036
  [(set_attr "type" "call")])
5037
 
5038
(define_expand "sibcall_value"
5039
  [(parallel [(set (match_operand 0 "")
5040
                   (call (match_operand 1 "")
5041
                         (match_operand 2 "")))
5042
              (use (match_operand 3 ""))])]             ;; next_arg_reg
5043
  "TARGET_SIBCALLS"
5044
{
5045
  mips_expand_call (operands[0], XEXP (operands[1], 0),
5046
                    operands[2], operands[3], true);
5047
  DONE;
5048
})
5049
 
5050
(define_insn "sibcall_value_internal"
5051
  [(set (match_operand 0 "register_operand" "=df,df")
5052
        (call (mem:SI (match_operand 1 "call_insn_operand" "j,S"))
5053
              (match_operand 2 "" "")))]
5054
  "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
5055
  "@
5056
    %*jr\t%1%/
5057
    %*j\t%1%/"
5058
  [(set_attr "type" "call")])
5059
 
5060
(define_insn "sibcall_value_multiple_internal"
5061
  [(set (match_operand 0 "register_operand" "=df,df")
5062
        (call (mem:SI (match_operand 1 "call_insn_operand" "j,S"))
5063
              (match_operand 2 "" "")))
5064
   (set (match_operand 3 "register_operand" "=df,df")
5065
        (call (mem:SI (match_dup 1))
5066
              (match_dup 2)))]
5067
  "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
5068
  "@
5069
    %*jr\t%1%/
5070
    %*j\t%1%/"
5071
  [(set_attr "type" "call")])
5072
 
5073
(define_expand "call"
5074
  [(parallel [(call (match_operand 0 "")
5075
                    (match_operand 1 ""))
5076
              (use (match_operand 2 ""))        ;; next_arg_reg
5077
              (use (match_operand 3 ""))])]     ;; struct_value_size_rtx
5078
  ""
5079
{
5080
  mips_expand_call (0, XEXP (operands[0], 0), operands[1], operands[2], false);
5081
  DONE;
5082
})
5083
 
5084
;; This instruction directly corresponds to an assembly-language "jal".
5085
;; There are four cases:
5086
;;
5087
;;    - -mno-abicalls:
5088
;;        Both symbolic and register destinations are OK.  The pattern
5089
;;        always expands to a single mips instruction.
5090
;;
5091
;;    - -mabicalls/-mno-explicit-relocs:
5092
;;        Again, both symbolic and register destinations are OK.
5093
;;        The call is treated as a multi-instruction black box.
5094
;;
5095
;;    - -mabicalls/-mexplicit-relocs with n32 or n64:
5096
;;        Only "jal $25" is allowed.  This expands to a single "jalr $25"
5097
;;        instruction.
5098
;;
5099
;;    - -mabicalls/-mexplicit-relocs with o32 or o64:
5100
;;        Only "jal $25" is allowed.  The call is actually two instructions:
5101
;;        "jalr $25" followed by an insn to reload $gp.
5102
;;
5103
;; In the last case, we can generate the individual instructions with
5104
;; a define_split.  There are several things to be wary of:
5105
;;
5106
;;   - We can't expose the load of $gp before reload.  If we did,
5107
;;     it might get removed as dead, but reload can introduce new
5108
;;     uses of $gp by rematerializing constants.
5109
;;
5110
;;   - We shouldn't restore $gp after calls that never return.
5111
;;     It isn't valid to insert instructions between a noreturn
5112
;;     call and the following barrier.
5113
;;
5114
;;   - The splitter deliberately changes the liveness of $gp.  The unsplit
5115
;;     instruction preserves $gp and so have no effect on its liveness.
5116
;;     But once we generate the separate insns, it becomes obvious that
5117
;;     $gp is not live on entry to the call.
5118
;;
5119
;; ??? The operands[2] = insn check is a hack to make the original insn
5120
;; available to the splitter.
5121
(define_insn_and_split "call_internal"
5122
  [(call (mem:SI (match_operand 0 "call_insn_operand" "c,S"))
5123
         (match_operand 1 "" ""))
5124
   (clobber (reg:SI 31))]
5125
  ""
5126
  { return TARGET_SPLIT_CALLS ? "#" : "%*jal\t%0%/"; }
5127
  "reload_completed && TARGET_SPLIT_CALLS && (operands[2] = insn)"
5128
  [(const_int 0)]
5129
{
5130
  emit_call_insn (gen_call_split (operands[0], operands[1]));
5131
  if (!find_reg_note (operands[2], REG_NORETURN, 0))
5132
    mips_restore_gp ();
5133
  DONE;
5134
}
5135
  [(set_attr "jal" "indirect,direct")
5136
   (set_attr "extended_mips16" "no,yes")])
5137
 
5138
(define_insn "call_split"
5139
  [(call (mem:SI (match_operand 0 "call_insn_operand" "c"))
5140
         (match_operand 1 "" ""))
5141
   (clobber (reg:SI 31))
5142
   (clobber (reg:SI 28))]
5143
  "TARGET_SPLIT_CALLS"
5144
  "%*jalr\t%0%/"
5145
  [(set_attr "type" "call")])
5146
 
5147
(define_expand "call_value"
5148
  [(parallel [(set (match_operand 0 "")
5149
                   (call (match_operand 1 "")
5150
                         (match_operand 2 "")))
5151
              (use (match_operand 3 ""))])]             ;; next_arg_reg
5152
  ""
5153
{
5154
  mips_expand_call (operands[0], XEXP (operands[1], 0),
5155
                    operands[2], operands[3], false);
5156
  DONE;
5157
})
5158
 
5159
;; See comment for call_internal.
5160
(define_insn_and_split "call_value_internal"
5161
  [(set (match_operand 0 "register_operand" "=df,df")
5162
        (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
5163
              (match_operand 2 "" "")))
5164
   (clobber (reg:SI 31))]
5165
  ""
5166
  { return TARGET_SPLIT_CALLS ? "#" : "%*jal\t%1%/"; }
5167
  "reload_completed && TARGET_SPLIT_CALLS && (operands[3] = insn)"
5168
  [(const_int 0)]
5169
{
5170
  emit_call_insn (gen_call_value_split (operands[0], operands[1],
5171
                                        operands[2]));
5172
  if (!find_reg_note (operands[3], REG_NORETURN, 0))
5173
    mips_restore_gp ();
5174
  DONE;
5175
}
5176
  [(set_attr "jal" "indirect,direct")
5177
   (set_attr "extended_mips16" "no,yes")])
5178
 
5179
(define_insn "call_value_split"
5180
  [(set (match_operand 0 "register_operand" "=df")
5181
        (call (mem:SI (match_operand 1 "call_insn_operand" "c"))
5182
              (match_operand 2 "" "")))
5183
   (clobber (reg:SI 31))
5184
   (clobber (reg:SI 28))]
5185
  "TARGET_SPLIT_CALLS"
5186
  "%*jalr\t%1%/"
5187
  [(set_attr "type" "call")])
5188
 
5189
;; See comment for call_internal.
5190
(define_insn_and_split "call_value_multiple_internal"
5191
  [(set (match_operand 0 "register_operand" "=df,df")
5192
        (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
5193
              (match_operand 2 "" "")))
5194
   (set (match_operand 3 "register_operand" "=df,df")
5195
        (call (mem:SI (match_dup 1))
5196
              (match_dup 2)))
5197
   (clobber (reg:SI 31))]
5198
  ""
5199
  { return TARGET_SPLIT_CALLS ? "#" : "%*jal\t%1%/"; }
5200
  "reload_completed && TARGET_SPLIT_CALLS && (operands[4] = insn)"
5201
  [(const_int 0)]
5202
{
5203
  emit_call_insn (gen_call_value_multiple_split (operands[0], operands[1],
5204
                                                 operands[2], operands[3]));
5205
  if (!find_reg_note (operands[4], REG_NORETURN, 0))
5206
    mips_restore_gp ();
5207
  DONE;
5208
}
5209
  [(set_attr "jal" "indirect,direct")
5210
   (set_attr "extended_mips16" "no,yes")])
5211
 
5212
(define_insn "call_value_multiple_split"
5213
  [(set (match_operand 0 "register_operand" "=df")
5214
        (call (mem:SI (match_operand 1 "call_insn_operand" "c"))
5215
              (match_operand 2 "" "")))
5216
   (set (match_operand 3 "register_operand" "=df")
5217
        (call (mem:SI (match_dup 1))
5218
              (match_dup 2)))
5219
   (clobber (reg:SI 31))
5220
   (clobber (reg:SI 28))]
5221
  "TARGET_SPLIT_CALLS"
5222
  "%*jalr\t%1%/"
5223
  [(set_attr "type" "call")])
5224
 
5225
;; Call subroutine returning any type.
5226
 
5227
(define_expand "untyped_call"
5228
  [(parallel [(call (match_operand 0 "")
5229
                    (const_int 0))
5230
              (match_operand 1 "")
5231
              (match_operand 2 "")])]
5232
  ""
5233
{
5234
  int i;
5235
 
5236
  emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx));
5237
 
5238
  for (i = 0; i < XVECLEN (operands[2], 0); i++)
5239
    {
5240
      rtx set = XVECEXP (operands[2], 0, i);
5241
      emit_move_insn (SET_DEST (set), SET_SRC (set));
5242
    }
5243
 
5244
  emit_insn (gen_blockage ());
5245
  DONE;
5246
})
5247
 
5248
;;
5249
;;  ....................
5250
;;
5251
;;      MISC.
5252
;;
5253
;;  ....................
5254
;;
5255
 
5256
 
5257
(define_insn "prefetch"
5258
  [(prefetch (match_operand:QI 0 "address_operand" "p")
5259
             (match_operand 1 "const_int_operand" "n")
5260
             (match_operand 2 "const_int_operand" "n"))]
5261
  "ISA_HAS_PREFETCH && TARGET_EXPLICIT_RELOCS"
5262
{
5263
  operands[1] = mips_prefetch_cookie (operands[1], operands[2]);
5264
  return "pref\t%1,%a0";
5265
}
5266
  [(set_attr "type" "prefetch")])
5267
 
5268
(define_insn "*prefetch_indexed_"
5269
  [(prefetch (plus:P (match_operand:P 0 "register_operand" "d")
5270
                     (match_operand:P 1 "register_operand" "d"))
5271
             (match_operand 2 "const_int_operand" "n")
5272
             (match_operand 3 "const_int_operand" "n"))]
5273
  "ISA_HAS_PREFETCHX && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
5274
{
5275
  operands[2] = mips_prefetch_cookie (operands[2], operands[3]);
5276
  return "prefx\t%2,%1(%0)";
5277
}
5278
  [(set_attr "type" "prefetchx")])
5279
 
5280
(define_insn "nop"
5281
  [(const_int 0)]
5282
  ""
5283
  "%(nop%)"
5284
  [(set_attr "type"     "nop")
5285
   (set_attr "mode"     "none")])
5286
 
5287
;; Like nop, but commented out when outside a .set noreorder block.
5288
(define_insn "hazard_nop"
5289
  [(const_int 1)]
5290
  ""
5291
  {
5292
    if (set_noreorder)
5293
      return "nop";
5294
    else
5295
      return "#nop";
5296
  }
5297
  [(set_attr "type"     "nop")])
5298
 
5299
;; MIPS4 Conditional move instructions.
5300
 
5301
(define_insn "*mov_on_"
5302
  [(set (match_operand:GPR 0 "register_operand" "=d,d")
5303
        (if_then_else:GPR
5304
         (match_operator:MOVECC 4 "equality_operator"
5305
                [(match_operand:MOVECC 1 "register_operand" ",")
5306
                 (const_int 0)])
5307
         (match_operand:GPR 2 "reg_or_0_operand" "dJ,0")
5308
         (match_operand:GPR 3 "reg_or_0_operand" "0,dJ")))]
5309
  "ISA_HAS_CONDMOVE"
5310
  "@
5311
    mov%T4\t%0,%z2,%1
5312
    mov%t4\t%0,%z3,%1"
5313
  [(set_attr "type" "condmove")
5314
   (set_attr "mode" "")])
5315
 
5316
(define_insn "*mov_on_"
5317
  [(set (match_operand:SCALARF 0 "register_operand" "=f,f")
5318
        (if_then_else:SCALARF
5319
         (match_operator:MOVECC 4 "equality_operator"
5320
                [(match_operand:MOVECC 1 "register_operand" ",")
5321
                 (const_int 0)])
5322
         (match_operand:SCALARF 2 "register_operand" "f,0")
5323
         (match_operand:SCALARF 3 "register_operand" "0,f")))]
5324
  "ISA_HAS_CONDMOVE"
5325
  "@
5326
    mov%T4.\t%0,%2,%1
5327
    mov%t4.\t%0,%3,%1"
5328
  [(set_attr "type" "condmove")
5329
   (set_attr "mode" "")])
5330
 
5331
;; These are the main define_expand's used to make conditional moves.
5332
 
5333
(define_expand "movcc"
5334
  [(set (match_dup 4) (match_operand 1 "comparison_operator"))
5335
   (set (match_operand:GPR 0 "register_operand")
5336
        (if_then_else:GPR (match_dup 5)
5337
                          (match_operand:GPR 2 "reg_or_0_operand")
5338
                          (match_operand:GPR 3 "reg_or_0_operand")))]
5339
  "ISA_HAS_CONDMOVE"
5340
{
5341
  gen_conditional_move (operands);
5342
  DONE;
5343
})
5344
 
5345
(define_expand "movcc"
5346
  [(set (match_dup 4) (match_operand 1 "comparison_operator"))
5347
   (set (match_operand:SCALARF 0 "register_operand")
5348
        (if_then_else:SCALARF (match_dup 5)
5349
                              (match_operand:SCALARF 2 "register_operand")
5350
                              (match_operand:SCALARF 3 "register_operand")))]
5351
  "ISA_HAS_CONDMOVE"
5352
{
5353
  gen_conditional_move (operands);
5354
  DONE;
5355
})
5356
 
5357
;;
5358
;;  ....................
5359
;;
5360
;;      mips16 inline constant tables
5361
;;
5362
;;  ....................
5363
;;
5364
 
5365
(define_insn "consttable_int"
5366
  [(unspec_volatile [(match_operand 0 "consttable_operand" "")
5367
                     (match_operand 1 "const_int_operand" "")]
5368
                    UNSPEC_CONSTTABLE_INT)]
5369
  "TARGET_MIPS16"
5370
{
5371
  assemble_integer (operands[0], INTVAL (operands[1]),
5372
                    BITS_PER_UNIT * INTVAL (operands[1]), 1);
5373
  return "";
5374
}
5375
  [(set (attr "length") (symbol_ref "INTVAL (operands[1])"))])
5376
 
5377
(define_insn "consttable_float"
5378
  [(unspec_volatile [(match_operand 0 "consttable_operand" "")]
5379
                    UNSPEC_CONSTTABLE_FLOAT)]
5380
  "TARGET_MIPS16"
5381
{
5382
  REAL_VALUE_TYPE d;
5383
 
5384
  gcc_assert (GET_CODE (operands[0]) == CONST_DOUBLE);
5385
  REAL_VALUE_FROM_CONST_DOUBLE (d, operands[0]);
5386
  assemble_real (d, GET_MODE (operands[0]),
5387
                 GET_MODE_BITSIZE (GET_MODE (operands[0])));
5388
  return "";
5389
}
5390
  [(set (attr "length")
5391
        (symbol_ref "GET_MODE_SIZE (GET_MODE (operands[0]))"))])
5392
 
5393
(define_insn "align"
5394
  [(unspec_volatile [(match_operand 0 "const_int_operand" "")] UNSPEC_ALIGN)]
5395
  ""
5396
  ".align\t%0"
5397
  [(set (attr "length") (symbol_ref "(1 << INTVAL (operands[0])) - 1"))])
5398
 
5399
(define_split
5400
  [(match_operand 0 "small_data_pattern")]
5401
  "reload_completed"
5402
  [(match_dup 0)]
5403
  { operands[0] = mips_rewrite_small_data (operands[0]); })
5404
 
5405
; Thread-Local Storage
5406
 
5407
; The TLS base pointer is accessed via "rdhwr $v1, $29".  No current
5408
; MIPS architecture defines this register, and no current
5409
; implementation provides it; instead, any OS which supports TLS is
5410
; expected to trap and emulate this instruction.  rdhwr is part of the
5411
; MIPS 32r2 specification, but we use it on any architecture because
5412
; we expect it to be emulated.  Use .set to force the assembler to
5413
; accept it.
5414
 
5415
(define_insn "tls_get_tp_"
5416
  [(set (match_operand:P 0 "register_operand" "=v")
5417
        (unspec:P [(const_int 0)]
5418
                  UNSPEC_TLS_GET_TP))]
5419
  "HAVE_AS_TLS && !TARGET_MIPS16"
5420
  ".set\tpush\;.set\tmips32r2\t\;rdhwr\t%0,$29\;.set\tpop"
5421
  [(set_attr "type" "unknown")
5422
   (set_attr "mode" "")])
5423
 
5424
; The MIPS Paired-Single Floating Point and MIPS-3D Instructions.
5425
 
5426
(include "mips-ps-3d.md")
5427
 
5428
; The MIPS DSP Instructions.
5429
 
5430
(include "mips-dsp.md")

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.