OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [s390/] [s390.h] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Definitions of target machine for GNU compiler, for IBM S/390
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3
   Free Software Foundation, Inc.
4
   Contributed by Hartmut Penner (hpenner@de.ibm.com) and
5
                  Ulrich Weigand (uweigand@de.ibm.com).
6
 
7
This file is part of GCC.
8
 
9
GCC is free software; you can redistribute it and/or modify it under
10
the terms of the GNU General Public License as published by the Free
11
Software Foundation; either version 2, or (at your option) any later
12
version.
13
 
14
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15
WARRANTY; without even the implied warranty of MERCHANTABILITY or
16
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17
for more details.
18
 
19
You should have received a copy of the GNU General Public License
20
along with GCC; see the file COPYING.  If not, write to the Free
21
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22
02110-1301, USA.  */
23
 
24
#ifndef _S390_H
25
#define _S390_H
26
 
27
/* Override the __fixdfdi etc. routines when building libgcc2.
28
   ??? This should be done in a cleaner way ...  */
29
#if defined (IN_LIBGCC2) && !defined (__s390x__)
30
#include <config/s390/fixdfdi.h>
31
#endif
32
 
33
/* Which processor to generate code or schedule for. The cpu attribute
34
   defines a list that mirrors this list, so changes to s390.md must be
35
   made at the same time.  */
36
 
37
enum processor_type
38
{
39
  PROCESSOR_9672_G5,
40
  PROCESSOR_9672_G6,
41
  PROCESSOR_2064_Z900,
42
  PROCESSOR_2084_Z990,
43
  PROCESSOR_2094_Z9_109,
44
  PROCESSOR_max
45
};
46
 
47
/* Optional architectural facilities supported by the processor.  */
48
 
49
enum processor_flags
50
{
51
  PF_IEEE_FLOAT = 1,
52
  PF_ZARCH = 2,
53
  PF_LONG_DISPLACEMENT = 4,
54
  PF_EXTIMM = 8
55
};
56
 
57
extern enum processor_type s390_tune;
58
extern enum processor_flags s390_tune_flags;
59
 
60
extern enum processor_type s390_arch;
61
extern enum processor_flags s390_arch_flags;
62
 
63
#define TARGET_CPU_IEEE_FLOAT \
64
        (s390_arch_flags & PF_IEEE_FLOAT)
65
#define TARGET_CPU_ZARCH \
66
        (s390_arch_flags & PF_ZARCH)
67
#define TARGET_CPU_LONG_DISPLACEMENT \
68
        (s390_arch_flags & PF_LONG_DISPLACEMENT)
69
#define TARGET_CPU_EXTIMM \
70
        (s390_arch_flags & PF_EXTIMM)
71
 
72
#define TARGET_LONG_DISPLACEMENT \
73
       (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
74
#define TARGET_EXTIMM \
75
       (TARGET_ZARCH && TARGET_CPU_EXTIMM)
76
 
77
/* Run-time target specification.  */
78
 
79
/* Defaults for option flags defined only on some subtargets.  */
80
#ifndef TARGET_TPF_PROFILING
81
#define TARGET_TPF_PROFILING 0
82
#endif
83
 
84
/* This will be overridden by OS headers.  */
85
#define TARGET_TPF 0
86
 
87
/* Target CPU builtins.  */
88
#define TARGET_CPU_CPP_BUILTINS()                       \
89
  do                                                    \
90
    {                                                   \
91
      builtin_assert ("cpu=s390");                      \
92
      builtin_assert ("machine=s390");                  \
93
      builtin_define ("__s390__");                      \
94
      if (TARGET_64BIT)                                 \
95
        builtin_define ("__s390x__");                   \
96
      if (TARGET_LONG_DOUBLE_128)                       \
97
        builtin_define ("__LONG_DOUBLE_128__");         \
98
    }                                                   \
99
  while (0)
100
 
101
/* ??? Once this actually works, it could be made a runtime option.  */
102
#define TARGET_IBM_FLOAT           0
103
#define TARGET_IEEE_FLOAT          1
104
 
105
#ifdef DEFAULT_TARGET_64BIT
106
#define TARGET_DEFAULT             (MASK_64BIT | MASK_ZARCH | MASK_HARD_FLOAT)
107
#else
108
#define TARGET_DEFAULT             MASK_HARD_FLOAT
109
#endif
110
 
111
/* Support for configure-time defaults.  */
112
#define OPTION_DEFAULT_SPECS                                    \
113
  { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" },                 \
114
  { "arch", "%{!march=*:-march=%(VALUE)}" },                    \
115
  { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
116
 
117
/* Defaulting rules.  */
118
#ifdef DEFAULT_TARGET_64BIT
119
#define DRIVER_SELF_SPECS                                       \
120
  "%{!m31:%{!m64:-m64}}",                                       \
121
  "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}",             \
122
  "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
123
#else
124
#define DRIVER_SELF_SPECS                                       \
125
  "%{!m31:%{!m64:-m31}}",                                       \
126
  "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}",             \
127
  "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
128
#endif
129
 
130
/* Target version string.  Overridden by the OS header.  */
131
#ifdef DEFAULT_TARGET_64BIT
132
#define TARGET_VERSION fprintf (stderr, " (zSeries)");
133
#else
134
#define TARGET_VERSION fprintf (stderr, " (S/390)");
135
#endif
136
 
137
/* Hooks to override options.  */
138
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
139
#define OVERRIDE_OPTIONS override_options ()
140
 
141
/* Frame pointer is not used for debugging.  */
142
#define CAN_DEBUG_WITHOUT_FP
143
 
144
 
145
/* In libgcc2, determine target settings as compile-time constants.  */
146
#ifdef IN_LIBGCC2
147
#undef TARGET_64BIT
148
#ifdef __s390x__
149
#define TARGET_64BIT 1
150
#else
151
#define TARGET_64BIT 0
152
#endif
153
#endif
154
 
155
 
156
/* Target machine storage layout.  */
157
 
158
/* Everything is big-endian.  */
159
#define BITS_BIG_ENDIAN 1
160
#define BYTES_BIG_ENDIAN 1
161
#define WORDS_BIG_ENDIAN 1
162
 
163
/* Width of a word, in units (bytes).  */
164
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
165
#ifndef IN_LIBGCC2
166
#define MIN_UNITS_PER_WORD 4
167
#endif
168
#define MAX_BITS_PER_WORD 64
169
 
170
/* Function arguments and return values are promoted to word size.  */
171
#define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE)            \
172
if (INTEGRAL_MODE_P (MODE) &&                           \
173
    GET_MODE_SIZE (MODE) < UNITS_PER_WORD) {            \
174
  (MODE) = Pmode;                                       \
175
          }
176
 
177
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
178
#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
179
 
180
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
181
#define STACK_BOUNDARY 64
182
 
183
/* Allocation boundary (in *bits*) for the code of a function.  */
184
#define FUNCTION_BOUNDARY 32
185
 
186
/* There is no point aligning anything to a rounder boundary than this.  */
187
#define BIGGEST_ALIGNMENT 64
188
 
189
/* Alignment of field after `int : 0' in a structure.  */
190
#define EMPTY_FIELD_BOUNDARY 32
191
 
192
/* Alignment on even addresses for LARL instruction.  */
193
#define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
194
#define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
195
 
196
/* Alignment is not required by the hardware.  */
197
#define STRICT_ALIGNMENT 0
198
 
199
/* Mode of stack savearea.
200
   FUNCTION is VOIDmode because calling convention maintains SP.
201
   BLOCK needs Pmode for SP.
202
   NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
203
#define STACK_SAVEAREA_MODE(LEVEL)      \
204
  (LEVEL == SAVE_FUNCTION ? VOIDmode    \
205
  : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
206
 
207
/* Define target floating point format.  */
208
#define TARGET_FLOAT_FORMAT \
209
  (TARGET_IEEE_FLOAT? IEEE_FLOAT_FORMAT : IBM_FLOAT_FORMAT)
210
 
211
 
212
/* Type layout.  */
213
 
214
/* Sizes in bits of the source language data types.  */
215
#define SHORT_TYPE_SIZE 16
216
#define INT_TYPE_SIZE 32
217
#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
218
#define LONG_LONG_TYPE_SIZE 64
219
#define FLOAT_TYPE_SIZE 32
220
#define DOUBLE_TYPE_SIZE 64
221
#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
222
 
223
/* Define this to set long double type size to use in libgcc2.c, which can
224
   not depend on target_flags.  */
225
#ifdef __LONG_DOUBLE_128__
226
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
227
#else
228
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
229
#endif
230
 
231
/* Work around target_flags dependency in ada/targtyps.c.  */
232
#define WIDEST_HARDWARE_FP_SIZE 64
233
 
234
/* We use "unsigned char" as default.  */
235
#define DEFAULT_SIGNED_CHAR 0
236
 
237
 
238
/* Register usage.  */
239
 
240
/* We have 16 general purpose registers (registers 0-15),
241
   and 16 floating point registers (registers 16-31).
242
   (On non-IEEE machines, we have only 4 fp registers.)
243
 
244
   Amongst the general purpose registers, some are used
245
   for specific purposes:
246
   GPR 11: Hard frame pointer (if needed)
247
   GPR 12: Global offset table pointer (if needed)
248
   GPR 13: Literal pool base register
249
   GPR 14: Return address register
250
   GPR 15: Stack pointer
251
 
252
   Registers 32-35 are 'fake' hard registers that do not
253
   correspond to actual hardware:
254
   Reg 32: Argument pointer
255
   Reg 33: Condition code
256
   Reg 34: Frame pointer
257
   Reg 35: Return address pointer
258
 
259
   Registers 36 and 37 are mapped to access registers
260
 
261
 
262
#define FIRST_PSEUDO_REGISTER 38
263
 
264
/* Standard register usage.  */
265
#define GENERAL_REGNO_P(N)      ((int)(N) >= 0 && (N) < 16)
266
#define ADDR_REGNO_P(N)         ((N) >= 1 && (N) < 16)
267
#define FP_REGNO_P(N)           ((N) >= 16 && (N) < (TARGET_IEEE_FLOAT? 32 : 20))
268
#define CC_REGNO_P(N)           ((N) == 33)
269
#define FRAME_REGNO_P(N)        ((N) == 32 || (N) == 34 || (N) == 35)
270
#define ACCESS_REGNO_P(N)       ((N) == 36 || (N) == 37)
271
 
272
#define GENERAL_REG_P(X)        (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
273
#define ADDR_REG_P(X)           (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
274
#define FP_REG_P(X)             (REG_P (X) && FP_REGNO_P (REGNO (X)))
275
#define CC_REG_P(X)             (REG_P (X) && CC_REGNO_P (REGNO (X)))
276
#define FRAME_REG_P(X)          (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
277
#define ACCESS_REG_P(X)         (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
278
 
279
/* Set up fixed registers and calling convention:
280
 
281
   GPRs 0-5 are always call-clobbered,
282
   GPRs 6-15 are always call-saved.
283
   GPR 12 is fixed if used as GOT pointer.
284
   GPR 13 is always fixed (as literal pool pointer).
285
   GPR 14 is always fixed on S/390 machines (as return address).
286
   GPR 15 is always fixed (as stack pointer).
287
   The 'fake' hard registers are call-clobbered and fixed.
288
   The access registers are call-saved and fixed.
289
 
290
   On 31-bit, FPRs 18-19 are call-clobbered;
291
   on 64-bit, FPRs 24-31 are call-clobbered.
292
   The remaining FPRs are call-saved.  */
293
 
294
#define FIXED_REGISTERS                         \
295
{ 0, 0, 0, 0,                                       \
296
  0, 0, 0, 0,                                       \
297
  0, 0, 0, 0,                                       \
298
  0, 1, 1, 1,                                    \
299
  0, 0, 0, 0,                                       \
300
  0, 0, 0, 0,                                       \
301
  0, 0, 0, 0,                                       \
302
  0, 0, 0, 0,                                       \
303
  1, 1, 1, 1,                                   \
304
  1, 1 }
305
 
306
#define CALL_USED_REGISTERS                     \
307
{ 1, 1, 1, 1,                                   \
308
  1, 1, 0, 0,                                     \
309
  0, 0, 0, 0,                                       \
310
  0, 1, 1, 1,                                    \
311
  1, 1, 1, 1,                                   \
312
  1, 1, 1, 1,                                   \
313
  1, 1, 1, 1,                                   \
314
  1, 1, 1, 1,                                   \
315
  1, 1, 1, 1,                                   \
316
  1, 1 }
317
 
318
#define CALL_REALLY_USED_REGISTERS              \
319
{ 1, 1, 1, 1,                                   \
320
  1, 1, 0, 0,                                     \
321
  0, 0, 0, 0,                                       \
322
  0, 0, 0, 0,                                       \
323
  1, 1, 1, 1,                                   \
324
  1, 1, 1, 1,                                   \
325
  1, 1, 1, 1,                                   \
326
  1, 1, 1, 1,                                   \
327
  1, 1, 1, 1,                                   \
328
  0, 0 }
329
 
330
#define CONDITIONAL_REGISTER_USAGE s390_conditional_register_usage ()
331
 
332
/* Preferred register allocation order.  */
333
#define REG_ALLOC_ORDER                                         \
334
{  1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13,            \
335
   16, 17, 18, 19, 20, 21, 22, 23,                              \
336
   24, 25, 26, 27, 28, 29, 30, 31,                              \
337
   15, 32, 33, 34, 35, 36, 37 }
338
 
339
 
340
/* Fitting values into registers.  */
341
 
342
/* Integer modes <= word size fit into any GPR.
343
   Integer modes > word size fit into successive GPRs, starting with
344
   an even-numbered register.
345
   SImode and DImode fit into FPRs as well.
346
 
347
   Floating point modes <= word size fit into any FPR or GPR.
348
   Floating point modes > word size (i.e. DFmode on 32-bit) fit
349
   into any FPR, or an even-odd GPR pair.
350
   TFmode fits only into an even-odd FPR pair.
351
 
352
   Complex floating point modes fit either into two FPRs, or into
353
   successive GPRs (again starting with an even number).
354
   TCmode fits only into two successive even-odd FPR pairs.
355
 
356
   Condition code modes fit only into the CC register.  */
357
 
358
#define HARD_REGNO_NREGS(REGNO, MODE)                           \
359
  (FP_REGNO_P(REGNO)?                                           \
360
   (GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ?                \
361
    2 * ((GET_MODE_SIZE(MODE) / 2 + 8 - 1) / 8) :               \
362
    ((GET_MODE_SIZE(MODE) + 8 - 1) / 8)) :                      \
363
   GENERAL_REGNO_P(REGNO)?                                      \
364
    ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) : \
365
   ACCESS_REGNO_P(REGNO)?                                       \
366
    ((GET_MODE_SIZE(MODE) + 4 - 1) / 4) :                       \
367
   1)
368
 
369
#define HARD_REGNO_MODE_OK(REGNO, MODE)                             \
370
  (FP_REGNO_P(REGNO)?                                               \
371
   (((MODE) == SImode || (MODE) == DImode                           \
372
     || GET_MODE_CLASS(MODE) == MODE_FLOAT                          \
373
     || GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT)                 \
374
    && (HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1))) :    \
375
   GENERAL_REGNO_P(REGNO)?                                          \
376
   ((HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1))          \
377
    && (((MODE) != TFmode && (MODE) != TCmode) || TARGET_64BIT)) :  \
378
   CC_REGNO_P(REGNO)?                                               \
379
     GET_MODE_CLASS (MODE) == MODE_CC :                             \
380
   FRAME_REGNO_P(REGNO)?                                            \
381
     (enum machine_mode) (MODE) == Pmode :                          \
382
   ACCESS_REGNO_P(REGNO)?                                           \
383
     (((MODE) == SImode || ((enum machine_mode) (MODE) == Pmode))   \
384
      && (HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1))) :  \
385
   0)
386
 
387
#define HARD_REGNO_RENAME_OK(FROM, TO) \
388
  s390_hard_regno_rename_ok (FROM, TO)
389
 
390
#define MODES_TIEABLE_P(MODE1, MODE2)           \
391
   (((MODE1) == SFmode || (MODE1) == DFmode)    \
392
   == ((MODE2) == SFmode || (MODE2) == DFmode))
393
 
394
/* Maximum number of registers to represent a value of mode MODE
395
   in a register of class CLASS.  */
396
#define CLASS_MAX_NREGS(CLASS, MODE)                                    \
397
     ((CLASS) == FP_REGS ?                                              \
398
      (GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ?                     \
399
       2 * (GET_MODE_SIZE (MODE) / 2 + 8 - 1) / 8 :                     \
400
       (GET_MODE_SIZE (MODE) + 8 - 1) / 8) :                            \
401
      (CLASS) == ACCESS_REGS ?                                          \
402
      (GET_MODE_SIZE (MODE) + 4 - 1) / 4 :                              \
403
      (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
404
 
405
/* If a 4-byte value is loaded into a FPR, it is placed into the
406
   *upper* half of the register, not the lower.  Therefore, we
407
   cannot use SUBREGs to switch between modes in FP registers.
408
   Likewise for access registers, since they have only half the
409
   word size on 64-bit.  */
410
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)                       \
411
  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)                           \
412
   ? ((reg_classes_intersect_p (FP_REGS, CLASS)                         \
413
       && (GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8))         \
414
      || reg_classes_intersect_p (ACCESS_REGS, CLASS)) : 0)
415
 
416
/* Register classes.  */
417
 
418
/* We use the following register classes:
419
   GENERAL_REGS     All general purpose registers
420
   ADDR_REGS        All general purpose registers except %r0
421
                    (These registers can be used in address generation)
422
   FP_REGS          All floating point registers
423
   CC_REGS          The condition code register
424
   ACCESS_REGS      The access registers
425
 
426
   GENERAL_FP_REGS  Union of GENERAL_REGS and FP_REGS
427
   ADDR_FP_REGS     Union of ADDR_REGS and FP_REGS
428
   GENERAL_CC_REGS  Union of GENERAL_REGS and CC_REGS
429
   ADDR_CC_REGS     Union of ADDR_REGS and CC_REGS
430
 
431
   NO_REGS          No registers
432
   ALL_REGS         All registers
433
 
434
   Note that the 'fake' frame pointer and argument pointer registers
435
   are included amongst the address registers here.  */
436
 
437
enum reg_class
438
{
439
  NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
440
  ADDR_CC_REGS, GENERAL_CC_REGS,
441
  FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
442
  ALL_REGS, LIM_REG_CLASSES
443
};
444
#define N_REG_CLASSES (int) LIM_REG_CLASSES
445
 
446
#define REG_CLASS_NAMES                                                 \
447
{ "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS",     \
448
  "ADDR_CC_REGS", "GENERAL_CC_REGS",                                    \
449
  "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
450
 
451
/* Class -> register mapping.  */
452
#define REG_CLASS_CONTENTS \
453
{                                                       \
454
  { 0x00000000, 0x00000000 },   /* NO_REGS */           \
455
  { 0x00000000, 0x00000002 },   /* CC_REGS */           \
456
  { 0x0000fffe, 0x0000000d },   /* ADDR_REGS */         \
457
  { 0x0000ffff, 0x0000000d },   /* GENERAL_REGS */      \
458
  { 0x00000000, 0x00000030 },   /* ACCESS_REGS */       \
459
  { 0x0000fffe, 0x0000000f },   /* ADDR_CC_REGS */      \
460
  { 0x0000ffff, 0x0000000f },   /* GENERAL_CC_REGS */   \
461
  { 0xffff0000, 0x00000000 },   /* FP_REGS */           \
462
  { 0xfffffffe, 0x0000000d },   /* ADDR_FP_REGS */      \
463
  { 0xffffffff, 0x0000000d },   /* GENERAL_FP_REGS */   \
464
  { 0xffffffff, 0x0000003f },   /* ALL_REGS */          \
465
}
466
 
467
/* Register -> class mapping.  */
468
extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
469
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
470
 
471
/* ADDR_REGS can be used as base or index register.  */
472
#define INDEX_REG_CLASS ADDR_REGS
473
#define BASE_REG_CLASS ADDR_REGS
474
 
475
/* Check whether REGNO is a hard register of the suitable class
476
   or a pseudo register currently allocated to one such.  */
477
#define REGNO_OK_FOR_INDEX_P(REGNO)                                     \
478
    (((REGNO) < FIRST_PSEUDO_REGISTER                                   \
479
     && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS)                         \
480
    || (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
481
#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
482
 
483
 
484
/* Given an rtx X being reloaded into a reg required to be in class CLASS,
485
   return the class of reg to actually use.  */
486
#define PREFERRED_RELOAD_CLASS(X, CLASS)        \
487
  s390_preferred_reload_class ((X), (CLASS))
488
 
489
/* We need a secondary reload when loading a PLUS which is
490
   not a valid operand for LOAD ADDRESS.  */
491
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN)   \
492
  s390_secondary_input_reload_class ((CLASS), (MODE), (IN))
493
 
494
/* We need a secondary reload when storing a double-word
495
   to a non-offsettable memory address.  */
496
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
497
  s390_secondary_output_reload_class ((CLASS), (MODE), (OUT))
498
 
499
/* We need secondary memory to move data between GPRs and FPRs.  */
500
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
501
 ((CLASS1) != (CLASS2) && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS))
502
 
503
/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
504
   because the movsi and movsf patterns don't handle r/f moves.  */
505
#define SECONDARY_MEMORY_NEEDED_MODE(MODE)              \
506
 (GET_MODE_BITSIZE (MODE) < 32                          \
507
  ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
508
  : MODE)
509
 
510
 
511
/* Define various machine-dependent constraint letters.  */
512
 
513
#define REG_CLASS_FROM_LETTER(C)                                        \
514
  ((C) == 'a' ? ADDR_REGS :                                             \
515
   (C) == 'd' ? GENERAL_REGS :                                          \
516
   (C) == 'f' ? FP_REGS :                                               \
517
   (C) == 'c' ? CC_REGS :                                               \
518
   (C) == 't' ? ACCESS_REGS : NO_REGS)
519
 
520
#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR)                          \
521
  s390_const_ok_for_constraint_p ((VALUE), (C), (STR))
522
 
523
#define CONST_DOUBLE_OK_FOR_CONSTRAINT_P(VALUE, C, STR)                 \
524
  s390_const_double_ok_for_constraint_p ((VALUE), (C), (STR))
525
 
526
#define EXTRA_CONSTRAINT_STR(OP, C, STR)                                \
527
  s390_extra_constraint_str ((OP), (C), (STR))
528
#define EXTRA_MEMORY_CONSTRAINT(C, STR)                                 \
529
  ((C) == 'Q' || (C) == 'R' || (C) == 'S' || (C) == 'T' || (C) == 'A')
530
#define EXTRA_ADDRESS_CONSTRAINT(C, STR)                                \
531
  ((C) == 'U' || (C) == 'W' || (C) == 'Y')
532
 
533
#define CONSTRAINT_LEN(C, STR)                                          \
534
  ((C) == 'N' ? 5 :                                                     \
535
   (C) == 'O' ? 2 :                                                     \
536
   (C) == 'A' ? 2 :                                                     \
537
   (C) == 'B' ? 2 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
538
 
539
/* Stack layout and calling conventions.  */
540
 
541
/* Our stack grows from higher to lower addresses.  However, local variables
542
   are accessed by positive offsets, and function arguments are stored at
543
   increasing addresses.  */
544
#define STACK_GROWS_DOWNWARD
545
#define FRAME_GROWS_DOWNWARD 1
546
/* #undef ARGS_GROW_DOWNWARD */
547
 
548
/* The basic stack layout looks like this: the stack pointer points
549
   to the register save area for called functions.  Above that area
550
   is the location to place outgoing arguments.  Above those follow
551
   dynamic allocations (alloca), and finally the local variables.  */
552
 
553
/* Offset from stack-pointer to first location of outgoing args.  */
554
#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
555
 
556
/* Offset within stack frame to start allocating local variables at.  */
557
#define STARTING_FRAME_OFFSET 0
558
 
559
/* Offset from the stack pointer register to an item dynamically
560
   allocated on the stack, e.g., by `alloca'.  */
561
extern int current_function_outgoing_args_size;
562
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
563
  (STACK_POINTER_OFFSET + current_function_outgoing_args_size)
564
 
565
/* Offset of first parameter from the argument pointer register value.
566
   We have a fake argument pointer register that points directly to
567
   the argument area.  */
568
#define FIRST_PARM_OFFSET(FNDECL) 0
569
 
570
/* Defining this macro makes __builtin_frame_address(0) and
571
   __builtin_return_address(0) work with -fomit-frame-pointer.  */
572
#define INITIAL_FRAME_ADDRESS_RTX                                             \
573
  (TARGET_PACKED_STACK ?                                                      \
574
   plus_constant (arg_pointer_rtx, -UNITS_PER_WORD) :                         \
575
   plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
576
 
577
/* The return address of the current frame is retrieved
578
   from the initial value of register RETURN_REGNUM.
579
   For frames farther back, we use the stack slot where
580
   the corresponding RETURN_REGNUM register was saved.  */
581
#define DYNAMIC_CHAIN_ADDRESS(FRAME)                                          \
582
  (TARGET_PACKED_STACK ?                                                      \
583
   plus_constant ((FRAME), STACK_POINTER_OFFSET - UNITS_PER_WORD) : (FRAME))
584
 
585
#define RETURN_ADDR_RTX(COUNT, FRAME)                                         \
586
  s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
587
 
588
/* In 31-bit mode, we need to mask off the high bit of return addresses.  */
589
#define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
590
 
591
 
592
/* Exception handling.  */
593
 
594
/* Describe calling conventions for DWARF-2 exception handling.  */
595
#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, RETURN_REGNUM)
596
#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
597
#define DWARF_FRAME_RETURN_COLUMN  14
598
 
599
/* Describe how we implement __builtin_eh_return.  */
600
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
601
#define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
602
 
603
/* Select a format to encode pointers in exception handling data.  */
604
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)                          \
605
  (flag_pic                                                                 \
606
    ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
607
   : DW_EH_PE_absptr)
608
 
609
 
610
/* Frame registers.  */
611
 
612
#define STACK_POINTER_REGNUM 15
613
#define FRAME_POINTER_REGNUM 34
614
#define HARD_FRAME_POINTER_REGNUM 11
615
#define ARG_POINTER_REGNUM 32
616
#define RETURN_ADDRESS_POINTER_REGNUM 35
617
 
618
/* The static chain must be call-clobbered, but not used for
619
   function argument passing.  As register 1 is clobbered by
620
   the trampoline code, we only have one option.  */
621
#define STATIC_CHAIN_REGNUM 0
622
 
623
/* Number of hardware registers that go into the DWARF-2 unwind info.
624
   To avoid ABI incompatibility, this number must not change even as
625
   'fake' hard registers are added or removed.  */
626
#define DWARF_FRAME_REGISTERS 34
627
 
628
 
629
/* Frame pointer and argument pointer elimination.  */
630
 
631
#define FRAME_POINTER_REQUIRED 0
632
 
633
#define ELIMINABLE_REGS                                         \
634
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },                \
635
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },           \
636
 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },                  \
637
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },             \
638
 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM },       \
639
 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },  \
640
 { BASE_REGNUM, BASE_REGNUM }}
641
 
642
#define CAN_ELIMINATE(FROM, TO) \
643
  s390_can_eliminate ((FROM), (TO))
644
 
645
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
646
  (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
647
 
648
 
649
/* Stack arguments.  */
650
 
651
/* We need current_function_outgoing_args to be valid.  */
652
#define ACCUMULATE_OUTGOING_ARGS 1
653
 
654
/* Return doesn't modify the stack.  */
655
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
656
 
657
 
658
/* Register arguments.  */
659
 
660
typedef struct s390_arg_structure
661
{
662
  int gprs;                     /* gpr so far */
663
  int fprs;                     /* fpr so far */
664
}
665
CUMULATIVE_ARGS;
666
 
667
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
668
  ((CUM).gprs=0, (CUM).fprs=0)
669
 
670
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)                    \
671
  s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
672
 
673
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)   \
674
  s390_function_arg (&CUM, MODE, TYPE, NAMED)
675
 
676
/* Arguments can be placed in general registers 2 to 6,
677
   or in floating point registers 0 and 2.  */
678
#define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
679
                                 (N) == 16 || (N) == 17)
680
 
681
 
682
/* Scalar return values.  */
683
 
684
#define FUNCTION_VALUE(VALTYPE, FUNC) \
685
  s390_function_value ((VALTYPE), VOIDmode)
686
 
687
#define LIBCALL_VALUE(MODE) \
688
  s390_function_value (NULL, (MODE))
689
 
690
/* Only gpr 2 and fpr 0 are ever used as return registers.  */
691
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
692
 
693
 
694
/* Function entry and exit.  */
695
 
696
/* When returning from a function, the stack pointer does not matter.  */
697
#define EXIT_IGNORE_STACK       1
698
 
699
 
700
/* Profiling.  */
701
 
702
#define FUNCTION_PROFILER(FILE, LABELNO)                        \
703
  s390_function_profiler ((FILE), ((LABELNO)))
704
 
705
#define PROFILE_BEFORE_PROLOGUE 1
706
 
707
 
708
/* Implementing the varargs macros.  */
709
 
710
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
711
  s390_va_start (valist, nextarg)
712
 
713
/* Trampolines for nested functions.  */
714
 
715
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
716
 
717
#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT)                       \
718
   s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
719
 
720
#define TRAMPOLINE_TEMPLATE(FILE)                                       \
721
   s390_trampoline_template (FILE)
722
 
723
 
724
/* Addressing modes, and classification of registers for them.  */
725
 
726
/* Recognize any constant value that is a valid address.  */
727
#define CONSTANT_ADDRESS_P(X) 0
728
 
729
/* Maximum number of registers that can appear in a valid memory address.  */
730
#define MAX_REGS_PER_ADDRESS 2
731
 
732
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
733
   its validity for a certain class.  We have two alternate definitions
734
   for each of them.  The usual definition accepts all pseudo regs; the
735
   other rejects them all.  The symbol REG_OK_STRICT causes the latter
736
   definition to be used.
737
 
738
   Most source files want to accept pseudo regs in the hope that they will
739
   get allocated to the class that the insn wants them to be in.
740
   Some source files that are used after register allocation
741
   need to be strict.  */
742
 
743
#define REG_OK_FOR_INDEX_NONSTRICT_P(X)         \
744
((GET_MODE (X) == Pmode) &&                     \
745
 ((REGNO (X) >= FIRST_PSEUDO_REGISTER)          \
746
  || REGNO_REG_CLASS (REGNO (X)) == ADDR_REGS))
747
 
748
#define REG_OK_FOR_BASE_NONSTRICT_P(X)    REG_OK_FOR_INDEX_NONSTRICT_P (X)
749
 
750
#define REG_OK_FOR_INDEX_STRICT_P(X)                            \
751
((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_INDEX_P (REGNO (X))))
752
 
753
#define REG_OK_FOR_BASE_STRICT_P(X)                             \
754
((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_BASE_P (REGNO (X))))
755
 
756
#ifndef REG_OK_STRICT
757
#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P(X)
758
#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P(X)
759
#else
760
#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P(X)
761
#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P(X)
762
#endif
763
 
764
/* S/390 has no mode dependent addresses.  */
765
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
766
 
767
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
768
   valid memory address for an instruction.
769
   The MODE argument is the machine mode for the MEM expression
770
   that wants to use this address.  */
771
#ifdef REG_OK_STRICT
772
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)                         \
773
{                                                                       \
774
  if (legitimate_address_p (MODE, X, 1))                                \
775
    goto ADDR;                                                          \
776
}
777
#else
778
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)                         \
779
{                                                                       \
780
  if (legitimate_address_p (MODE, X, 0))                                \
781
    goto ADDR;                                                          \
782
}
783
#endif
784
 
785
/* Try machine-dependent ways of modifying an illegitimate address
786
   to be legitimate.  If we find one, return the new, valid address.
787
   This macro is used in only one place: `memory_address' in explow.c.  */
788
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)                          \
789
{                                                                       \
790
  (X) = legitimize_address (X, OLDX, MODE);                             \
791
  if (memory_address_p (MODE, X))                                       \
792
    goto WIN;                                                           \
793
}
794
 
795
/* Try a machine-dependent way of reloading an illegitimate address
796
   operand.  If we find one, push the reload and jump to WIN.  This
797
   macro is used in only one place: `find_reloads_address' in reload.c.  */
798
#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN)      \
799
do {                                                                    \
800
  rtx new = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE));   \
801
  if (new)                                                              \
802
    {                                                                   \
803
      (AD) = new;                                                       \
804
      goto WIN;                                                         \
805
    }                                                                   \
806
} while (0)
807
 
808
/* Nonzero if the constant value X is a legitimate general operand.
809
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
810
#define LEGITIMATE_CONSTANT_P(X) \
811
     legitimate_constant_p (X)
812
 
813
/* Helper macro for s390.c and s390.md to check for symbolic constants.  */
814
#define SYMBOLIC_CONST(X)       \
815
(GET_CODE (X) == SYMBOL_REF                                             \
816
 || GET_CODE (X) == LABEL_REF                                           \
817
 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
818
 
819
#define TLS_SYMBOLIC_CONST(X)   \
820
((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X))       \
821
 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
822
 
823
 
824
/* Condition codes.  */
825
 
826
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
827
   return the mode to be used for the comparison.  */
828
#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
829
 
830
/* Canonicalize a comparison from one we don't have to one we do have.  */
831
#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
832
  s390_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
833
 
834
/* Define the information needed to generate branch and scc insns.  This is
835
   stored from the compare operation.  Note that we can't use "rtx" here
836
   since it hasn't been defined!  */
837
extern struct rtx_def *s390_compare_op0, *s390_compare_op1, *s390_compare_emitted;
838
 
839
 
840
/* Relative costs of operations.  */
841
 
842
/* On s390, copy between fprs and gprs is expensive.  */
843
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)                        \
844
  ((   (   reg_classes_intersect_p ((CLASS1), GENERAL_REGS)             \
845
        && reg_classes_intersect_p ((CLASS2), FP_REGS))                 \
846
    || (   reg_classes_intersect_p ((CLASS1), FP_REGS)                  \
847
        && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
848
 
849
/* A C expression for the cost of moving data of mode M between a
850
   register and memory.  A value of 2 is the default; this cost is
851
   relative to those in `REGISTER_MOVE_COST'.  */
852
#define MEMORY_MOVE_COST(M, C, I) 1
853
 
854
/* A C expression for the cost of a branch instruction.  A value of 1
855
   is the default; other values are interpreted relative to that.  */
856
#define BRANCH_COST 1
857
 
858
/* Nonzero if access to memory by bytes is slow and undesirable.  */
859
#define SLOW_BYTE_ACCESS 1
860
 
861
/* An integer expression for the size in bits of the largest integer machine
862
   mode that should actually be used.  We allow pairs of registers.  */
863
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
864
 
865
/* The maximum number of bytes that a single instruction can move quickly
866
   between memory and registers or between two memory locations.  */
867
#define MOVE_MAX (TARGET_64BIT ? 16 : 8)
868
#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
869
#define MAX_MOVE_MAX 16
870
 
871
/* Determine whether to use move_by_pieces or block move insn.  */
872
#define MOVE_BY_PIECES_P(SIZE, ALIGN)           \
873
  ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4   \
874
    || (TARGET_64BIT && (SIZE) == 8) )
875
 
876
/* Determine whether to use clear_by_pieces or block clear insn.  */
877
#define CLEAR_BY_PIECES_P(SIZE, ALIGN)          \
878
  ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4   \
879
    || (TARGET_64BIT && (SIZE) == 8) )
880
 
881
/* This macro is used to determine whether store_by_pieces should be
882
   called to "memset" storage with byte values other than zero, or
883
   to "memcpy" storage when the source is a constant string.  */
884
#define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN)
885
 
886
/* Don't perform CSE on function addresses.  */
887
#define NO_FUNCTION_CSE
888
 
889
 
890
/* Sections.  */
891
 
892
/* Output before read-only data.  */
893
#define TEXT_SECTION_ASM_OP ".text"
894
 
895
/* Output before writable (initialized) data.  */
896
#define DATA_SECTION_ASM_OP ".data"
897
 
898
/* Output before writable (uninitialized) data.  */
899
#define BSS_SECTION_ASM_OP ".bss"
900
 
901
/* S/390 constant pool breaks the devices in crtstuff.c to control section
902
   in where code resides.  We have to write it as asm code.  */
903
#ifndef __s390x__
904
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
905
    asm (SECTION_OP "\n\
906
        bras\t%r2,1f\n\
907
0:      .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
908
1:      l\t%r3,0(%r2)\n\
909
        bas\t%r14,0(%r3,%r2)\n\
910
        .previous");
911
#endif
912
 
913
 
914
/* Position independent code.  */
915
 
916
extern int flag_pic;
917
 
918
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
919
 
920
#define LEGITIMATE_PIC_OPERAND_P(X)  legitimate_pic_operand_p (X)
921
 
922
 
923
/* Assembler file format.  */
924
 
925
/* Character to start a comment.  */
926
#define ASM_COMMENT_START "#"
927
 
928
/* Declare an uninitialized external linkage data object.  */
929
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
930
  asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
931
 
932
/* Globalizing directive for a label.  */
933
#define GLOBAL_ASM_OP ".globl "
934
 
935
/* Advance the location counter to a multiple of 2**LOG bytes.  */
936
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
937
  if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
938
 
939
/* Advance the location counter by SIZE bytes.  */
940
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
941
  fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
942
 
943
/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h.  */
944
#define LOCAL_LABEL_PREFIX "."
945
 
946
/* How to refer to registers in assembler output.  This sequence is
947
   indexed by compiler's hard-register-number (see above).  */
948
#define REGISTER_NAMES                                                  \
949
{ "%r0",  "%r1",  "%r2",  "%r3",  "%r4",  "%r5",  "%r6",  "%r7",        \
950
  "%r8",  "%r9",  "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",       \
951
  "%f0",  "%f2",  "%f4",  "%f6",  "%f1",  "%f3",  "%f5",  "%f7",        \
952
  "%f8",  "%f10", "%f12", "%f14", "%f9",  "%f11", "%f13", "%f15",       \
953
  "%ap",  "%cc",  "%fp",  "%rp",  "%a0",  "%a1"                         \
954
}
955
 
956
/* Print operand X (an rtx) in assembler syntax to file FILE.  */
957
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
958
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
959
 
960
/* Output machine-dependent UNSPECs in address constants.  */
961
#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)          \
962
do {                                                    \
963
  if (!s390_output_addr_const_extra (FILE, (X)))        \
964
    goto FAIL;                                          \
965
} while (0);
966
 
967
/* Output an element of a case-vector that is absolute.  */
968
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)                            \
969
do {                                                                    \
970
  char buf[32];                                                         \
971
  fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE));                \
972
  ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE));                      \
973
  assemble_name ((FILE), buf);                                          \
974
  fputc ('\n', (FILE));                                                 \
975
} while (0)
976
 
977
/* Output an element of a case-vector that is relative.  */
978
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)                \
979
do {                                                                    \
980
  char buf[32];                                                         \
981
  fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE));                \
982
  ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE));                      \
983
  assemble_name ((FILE), buf);                                          \
984
  fputc ('-', (FILE));                                                  \
985
  ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL));                        \
986
  assemble_name ((FILE), buf);                                          \
987
  fputc ('\n', (FILE));                                                 \
988
} while (0)
989
 
990
 
991
/* Miscellaneous parameters.  */
992
 
993
/* Specify the machine mode that this machine uses for the index in the
994
   tablejump instruction.  */
995
#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
996
 
997
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
998
   is done just by pretending it is already truncated.  */
999
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)  1
1000
 
1001
/* Specify the machine mode that pointers have.
1002
   After generation of rtl, the compiler makes no further distinction
1003
   between pointers and any other objects of this machine mode.  */
1004
#define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
1005
 
1006
/* This is -1 for "pointer mode" extend.  See ptr_extend in s390.md.  */
1007
#define POINTERS_EXTEND_UNSIGNED -1
1008
 
1009
/* A function address in a call instruction is a byte address (for
1010
   indexing purposes) so give the MEM rtx a byte's mode.  */
1011
#define FUNCTION_MODE QImode
1012
 
1013
/* Specify the value which is used when clz operand is zero.  */
1014
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
1015
 
1016
/* Machine-specific symbol_ref flags.  */
1017
#define SYMBOL_FLAG_ALIGN1      (SYMBOL_FLAG_MACH_DEP << 0)
1018
 
1019
/* Check whether integer displacement is in range.  */
1020
#define DISP_IN_RANGE(d) \
1021
  (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
1022
                           : ((d) >= 0 && (d) <= 4095))
1023
 
1024
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.