OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [sh/] [sh.h] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Definitions of target machine for GNU compiler for Renesas / SuperH SH.
2
   Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3
   2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
   Contributed by Steve Chamberlain (sac@cygnus.com).
5
   Improved by Jim Wilson (wilson@cygnus.com).
6
 
7
This file is part of GCC.
8
 
9
GCC is free software; you can redistribute it and/or modify
10
it under the terms of the GNU General Public License as published by
11
the Free Software Foundation; either version 2, or (at your option)
12
any later version.
13
 
14
GCC is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
GNU General Public License for more details.
18
 
19
You should have received a copy of the GNU General Public License
20
along with GCC; see the file COPYING.  If not, write to
21
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22
Boston, MA 02110-1301, USA.  */
23
 
24
#ifndef GCC_SH_H
25
#define GCC_SH_H
26
 
27
#define TARGET_VERSION \
28
  fputs (" (Hitachi SH)", stderr);
29
 
30
/* Unfortunately, insn-attrtab.c doesn't include insn-codes.h.  We can't
31
   include it here, because bconfig.h is also included by gencodes.c .  */
32
/* ??? No longer true.  */
33
extern int code_for_indirect_jump_scratch;
34
 
35
#define TARGET_CPU_CPP_BUILTINS() \
36
do { \
37
  builtin_define ("__sh__"); \
38
  builtin_assert ("cpu=sh"); \
39
  builtin_assert ("machine=sh"); \
40
  switch ((int) sh_cpu) \
41
    { \
42
    case PROCESSOR_SH1: \
43
      builtin_define ("__sh1__"); \
44
      break; \
45
    case PROCESSOR_SH2: \
46
      builtin_define ("__sh2__"); \
47
      break; \
48
    case PROCESSOR_SH2E: \
49
      builtin_define ("__SH2E__"); \
50
      break; \
51
    case PROCESSOR_SH2A: \
52
      builtin_define ("__SH2A__"); \
53
      builtin_define (TARGET_SH2A_DOUBLE \
54
                      ? (TARGET_FPU_SINGLE ? "__SH2A_SINGLE__" : "__SH2A_DOUBLE__") \
55
                      : TARGET_FPU_ANY ? "__SH2A_SINGLE_ONLY__" \
56
                      : "__SH2A_NOFPU__"); \
57
      break; \
58
    case PROCESSOR_SH3: \
59
      builtin_define ("__sh3__"); \
60
      builtin_define ("__SH3__"); \
61
      if (TARGET_HARD_SH4) \
62
        builtin_define ("__SH4_NOFPU__"); \
63
      break; \
64
    case PROCESSOR_SH3E: \
65
      builtin_define (TARGET_HARD_SH4 ? "__SH4_SINGLE_ONLY__" : "__SH3E__"); \
66
      break; \
67
    case PROCESSOR_SH4: \
68
      builtin_define (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__"); \
69
      break; \
70
    case PROCESSOR_SH4A: \
71
      builtin_define ("__SH4A__"); \
72
      builtin_define (TARGET_SH4 \
73
                      ? (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__") \
74
                      : TARGET_FPU_ANY ? "__SH4_SINGLE_ONLY__" \
75
                      : "__SH4_NOFPU__"); \
76
      break; \
77
    case PROCESSOR_SH5: \
78
      { \
79
        builtin_define_with_value ("__SH5__", \
80
                                   TARGET_SHMEDIA64 ? "64" : "32", 0); \
81
        builtin_define_with_value ("__SHMEDIA__", \
82
                                   TARGET_SHMEDIA ? "1" : "0", 0); \
83
        if (! TARGET_FPU_DOUBLE) \
84
          builtin_define ("__SH4_NOFPU__"); \
85
      } \
86
    } \
87
  if (TARGET_FPU_ANY) \
88
    builtin_define ("__SH_FPU_ANY__"); \
89
  if (TARGET_FPU_DOUBLE) \
90
    builtin_define ("__SH_FPU_DOUBLE__"); \
91
  if (TARGET_HITACHI) \
92
    builtin_define ("__HITACHI__"); \
93
  builtin_define (TARGET_LITTLE_ENDIAN \
94
                  ? "__LITTLE_ENDIAN__" : "__BIG_ENDIAN__"); \
95
  if (flag_pic) \
96
    { \
97
      builtin_define ("__pic__"); \
98
      builtin_define ("__PIC__"); \
99
    } \
100
} while (0)
101
 
102
/* We can not debug without a frame pointer.  */
103
/* #define CAN_DEBUG_WITHOUT_FP */
104
 
105
#define CONDITIONAL_REGISTER_USAGE do                                   \
106
{                                                                       \
107
  int regno;                                                            \
108
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++)               \
109
    if (! VALID_REGISTER_P (regno))                                     \
110
      fixed_regs[regno] = call_used_regs[regno] = 1;                    \
111
  /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs.  */ \
112
  if (TARGET_SH5)                                                       \
113
    {                                                                   \
114
      call_used_regs[FIRST_GENERAL_REG + 8]                             \
115
        = call_used_regs[FIRST_GENERAL_REG + 9] = 1;                    \
116
      call_really_used_regs[FIRST_GENERAL_REG + 8]                      \
117
        = call_really_used_regs[FIRST_GENERAL_REG + 9] = 1;             \
118
    }                                                                   \
119
  if (TARGET_SHMEDIA)                                                   \
120
    {                                                                   \
121
      regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS;                \
122
      CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]);                \
123
      regno_reg_class[FIRST_FP_REG] = FP_REGS;                          \
124
    }                                                                   \
125
  if (flag_pic)                                                         \
126
    {                                                                   \
127
      fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;                          \
128
      call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;                      \
129
    }                                                                   \
130
  /* Renesas saves and restores mac registers on call.  */              \
131
  if (TARGET_HITACHI && ! TARGET_NOMACSAVE)                             \
132
    {                                                                   \
133
      call_really_used_regs[MACH_REG] = 0;                               \
134
      call_really_used_regs[MACL_REG] = 0;                               \
135
    }                                                                   \
136
  for (regno = FIRST_FP_REG + (TARGET_LITTLE_ENDIAN != 0);               \
137
       regno <= LAST_FP_REG; regno += 2)                                \
138
    SET_HARD_REG_BIT (reg_class_contents[DF_HI_REGS], regno);           \
139
  if (TARGET_SHMEDIA)                                                   \
140
    {                                                                   \
141
      for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++)\
142
        if (! fixed_regs[regno] && call_really_used_regs[regno])        \
143
          SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno);   \
144
    }                                                                   \
145
  else                                                                  \
146
    for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++) \
147
      if (! fixed_regs[regno] && call_really_used_regs[regno])          \
148
        SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno);     \
149
} while (0)
150
 
151
/* Nonzero if this is an ELF target - compile time only */
152
#define TARGET_ELF 0
153
 
154
/* Nonzero if we should generate code using type 2E insns.  */
155
#define TARGET_SH2E (TARGET_SH2 && TARGET_SH_E)
156
 
157
/* Nonzero if we should generate code using type 2A insns.  */
158
#define TARGET_SH2A TARGET_HARD_SH2A
159
/* Nonzero if we should generate code using type 2A SF insns.  */
160
#define TARGET_SH2A_SINGLE (TARGET_SH2A && TARGET_SH2E)
161
/* Nonzero if we should generate code using type 2A DF insns.  */
162
#define TARGET_SH2A_DOUBLE (TARGET_HARD_SH2A_DOUBLE && TARGET_SH2A)
163
 
164
/* Nonzero if we should generate code using type 3E insns.  */
165
#define TARGET_SH3E (TARGET_SH3 && TARGET_SH_E)
166
 
167
/* Nonzero if the cache line size is 32.  */
168
#define TARGET_CACHE32 (TARGET_HARD_SH4 || TARGET_SH5)
169
 
170
/* Nonzero if we schedule for a superscalar implementation.  */
171
#define TARGET_SUPERSCALAR TARGET_HARD_SH4
172
 
173
/* Nonzero if the target has separate instruction and data caches.  */
174
#define TARGET_HARVARD (TARGET_HARD_SH4 || TARGET_SH5)
175
 
176
/* Nonzero if a double-precision FPU is available.  */
177
#define TARGET_FPU_DOUBLE \
178
  ((target_flags & MASK_SH4) != 0 || TARGET_SH2A_DOUBLE)
179
 
180
/* Nonzero if an FPU is available.  */
181
#define TARGET_FPU_ANY (TARGET_SH2E || TARGET_FPU_DOUBLE)
182
 
183
/* Nonzero if we should generate code using type 4 insns.  */
184
#undef TARGET_SH4
185
#define TARGET_SH4 ((target_flags & MASK_SH4) != 0 && TARGET_SH1)
186
 
187
/* Nonzero if we're generating code for the common subset of
188
   instructions present on both SH4a and SH4al-dsp.  */
189
#define TARGET_SH4A_ARCH TARGET_SH4A
190
 
191
/* Nonzero if we're generating code for SH4a, unless the use of the
192
   FPU is disabled (which makes it compatible with SH4al-dsp).  */
193
#define TARGET_SH4A_FP (TARGET_SH4A_ARCH && TARGET_FPU_ANY)
194
 
195
/* Nonzero if we should generate code using the SHcompact instruction
196
   set and 32-bit ABI.  */
197
#define TARGET_SHCOMPACT (TARGET_SH5 && TARGET_SH1)
198
 
199
/* Nonzero if we should generate code using the SHmedia instruction
200
   set and ABI.  */
201
#define TARGET_SHMEDIA (TARGET_SH5 && ! TARGET_SH1)
202
 
203
/* Nonzero if we should generate code using the SHmedia ISA and 32-bit
204
   ABI.  */
205
#define TARGET_SHMEDIA32 (TARGET_SH5 && ! TARGET_SH1 && TARGET_SH_E)
206
 
207
/* Nonzero if we should generate code using the SHmedia ISA and 64-bit
208
   ABI.  */
209
#define TARGET_SHMEDIA64 (TARGET_SH5 && ! TARGET_SH1 && ! TARGET_SH_E)
210
 
211
/* Nonzero if we should generate code using SHmedia FPU instructions.  */
212
#define TARGET_SHMEDIA_FPU (TARGET_SHMEDIA && TARGET_FPU_DOUBLE)
213
 
214
/* This is not used by the SH2E calling convention  */
215
#define TARGET_VARARGS_PRETEND_ARGS(FUN_DECL) \
216
  (TARGET_SH1 && ! TARGET_SH2E && ! TARGET_SH5 \
217
   && ! (TARGET_HITACHI || sh_attr_renesas_p (FUN_DECL)))
218
 
219
#ifndef TARGET_CPU_DEFAULT
220
#define TARGET_CPU_DEFAULT SELECT_SH1
221
#define SUPPORT_SH1 1
222
#define SUPPORT_SH2E 1
223
#define SUPPORT_SH4 1
224
#define SUPPORT_SH4_SINGLE 1
225
#define SUPPORT_SH2A 1
226
#define SUPPORT_SH2A_SINGLE 1
227
#endif
228
 
229
#define TARGET_DIVIDE_INV \
230
  (sh_div_strategy == SH_DIV_INV || sh_div_strategy == SH_DIV_INV_MINLAT \
231
   || sh_div_strategy == SH_DIV_INV20U || sh_div_strategy == SH_DIV_INV20L \
232
   || sh_div_strategy == SH_DIV_INV_CALL \
233
   || sh_div_strategy == SH_DIV_INV_CALL2 || sh_div_strategy == SH_DIV_INV_FP)
234
#define TARGET_DIVIDE_FP (sh_div_strategy == SH_DIV_FP)
235
#define TARGET_DIVIDE_INV_FP (sh_div_strategy == SH_DIV_INV_FP)
236
#define TARGET_DIVIDE_CALL2 (sh_div_strategy == SH_DIV_CALL2)
237
#define TARGET_DIVIDE_INV_MINLAT (sh_div_strategy == SH_DIV_INV_MINLAT)
238
#define TARGET_DIVIDE_INV20U (sh_div_strategy == SH_DIV_INV20U)
239
#define TARGET_DIVIDE_INV20L (sh_div_strategy == SH_DIV_INV20L)
240
#define TARGET_DIVIDE_INV_CALL (sh_div_strategy == SH_DIV_INV_CALL)
241
#define TARGET_DIVIDE_INV_CALL2 (sh_div_strategy == SH_DIV_INV_CALL2)
242
 
243
#define SELECT_SH1               (MASK_SH1)
244
#define SELECT_SH2               (MASK_SH2 | SELECT_SH1)
245
#define SELECT_SH2E              (MASK_SH_E | MASK_SH2 | MASK_SH1 \
246
                                  | MASK_FPU_SINGLE)
247
#define SELECT_SH2A              (MASK_SH_E | MASK_HARD_SH2A \
248
                                  | MASK_HARD_SH2A_DOUBLE \
249
                                  | MASK_SH2 | MASK_SH1)
250
#define SELECT_SH2A_NOFPU        (MASK_HARD_SH2A | MASK_SH2 | MASK_SH1)
251
#define SELECT_SH2A_SINGLE_ONLY  (MASK_SH_E | MASK_HARD_SH2A | MASK_SH2 \
252
                                  | MASK_SH1 | MASK_FPU_SINGLE)
253
#define SELECT_SH2A_SINGLE       (MASK_SH_E | MASK_HARD_SH2A \
254
                                  | MASK_FPU_SINGLE | MASK_HARD_SH2A_DOUBLE \
255
                                  | MASK_SH2 | MASK_SH1)
256
#define SELECT_SH3               (MASK_SH3 | SELECT_SH2)
257
#define SELECT_SH3E              (MASK_SH_E | MASK_FPU_SINGLE | SELECT_SH3)
258
#define SELECT_SH4_NOFPU         (MASK_HARD_SH4 | SELECT_SH3)
259
#define SELECT_SH4_SINGLE_ONLY   (MASK_HARD_SH4 | SELECT_SH3E)
260
#define SELECT_SH4               (MASK_SH4 | MASK_SH_E | MASK_HARD_SH4 \
261
                                  | SELECT_SH3)
262
#define SELECT_SH4_SINGLE        (MASK_FPU_SINGLE | SELECT_SH4)
263
#define SELECT_SH4A_NOFPU        (MASK_SH4A | SELECT_SH4_NOFPU)
264
#define SELECT_SH4A_SINGLE_ONLY  (MASK_SH4A | SELECT_SH4_SINGLE_ONLY)
265
#define SELECT_SH4A              (MASK_SH4A | SELECT_SH4)
266
#define SELECT_SH4A_SINGLE       (MASK_SH4A | SELECT_SH4_SINGLE)
267
#define SELECT_SH5_64MEDIA       (MASK_SH5 | MASK_SH4)
268
#define SELECT_SH5_64MEDIA_NOFPU (MASK_SH5)
269
#define SELECT_SH5_32MEDIA       (MASK_SH5 | MASK_SH4 | MASK_SH_E)
270
#define SELECT_SH5_32MEDIA_NOFPU (MASK_SH5 | MASK_SH_E)
271
#define SELECT_SH5_COMPACT       (MASK_SH5 | MASK_SH4 | SELECT_SH3E)
272
#define SELECT_SH5_COMPACT_NOFPU (MASK_SH5 | SELECT_SH3)
273
 
274
#if SUPPORT_SH1
275
#define SUPPORT_SH2 1
276
#endif
277
#if SUPPORT_SH2
278
#define SUPPORT_SH3 1
279
#endif
280
#if SUPPORT_SH3
281
#define SUPPORT_SH4_NOFPU 1
282
#endif
283
#if SUPPORT_SH4_NOFPU
284
#define SUPPORT_SH4A_NOFPU 1
285
#define SUPPORT_SH4AL 1
286
#define SUPPORT_SH2A_NOFPU 1
287
#endif
288
 
289
#if SUPPORT_SH2E
290
#define SUPPORT_SH3E 1
291
#endif
292
#if SUPPORT_SH3E
293
#define SUPPORT_SH4_SINGLE_ONLY 1
294
#define SUPPORT_SH4A_SINGLE_ONLY 1
295
#define SUPPORT_SH2A_SINGLE_ONLY 1
296
#endif
297
 
298
#if SUPPORT_SH4
299
#define SUPPORT_SH4A 1
300
#endif
301
 
302
#if SUPPORT_SH4_SINGLE
303
#define SUPPORT_SH4A_SINGLE 1
304
#endif
305
 
306
#if SUPPORT_SH5_COMPAT
307
#define SUPPORT_SH5_32MEDIA 1
308
#endif
309
 
310
#if SUPPORT_SH5_COMPACT_NOFPU
311
#define SUPPORT_SH5_32MEDIA_NOFPU 1
312
#endif
313
 
314
#define SUPPORT_ANY_SH5_32MEDIA \
315
  (SUPPORT_SH5_32MEDIA || SUPPORT_SH5_32MEDIA_NOFPU)
316
#define SUPPORT_ANY_SH5_64MEDIA \
317
  (SUPPORT_SH5_64MEDIA || SUPPORT_SH5_64MEDIA_NOFPU)
318
#define SUPPORT_ANY_SH5 \
319
  (SUPPORT_ANY_SH5_32MEDIA || SUPPORT_ANY_SH5_64MEDIA)
320
 
321
/* Reset all target-selection flags.  */
322
#define MASK_ARCH (MASK_SH1 | MASK_SH2 | MASK_SH3 | MASK_SH_E | MASK_SH4 \
323
                   | MASK_HARD_SH2A | MASK_HARD_SH2A_DOUBLE | MASK_SH4A \
324
                   | MASK_HARD_SH4 | MASK_FPU_SINGLE | MASK_SH5)
325
 
326
/* This defaults us to big-endian.  */
327
#ifndef TARGET_ENDIAN_DEFAULT
328
#define TARGET_ENDIAN_DEFAULT 0
329
#endif
330
 
331
#ifndef TARGET_OPT_DEFAULT
332
#define TARGET_OPT_DEFAULT  MASK_ADJUST_UNROLL
333
#endif
334
 
335
#define TARGET_DEFAULT \
336
  (TARGET_CPU_DEFAULT | TARGET_ENDIAN_DEFAULT | TARGET_OPT_DEFAULT)
337
 
338
#ifndef SH_MULTILIB_CPU_DEFAULT
339
#define SH_MULTILIB_CPU_DEFAULT "m1"
340
#endif
341
 
342
#if TARGET_ENDIAN_DEFAULT
343
#define MULTILIB_DEFAULTS { "ml", SH_MULTILIB_CPU_DEFAULT }
344
#else
345
#define MULTILIB_DEFAULTS { "mb", SH_MULTILIB_CPU_DEFAULT }
346
#endif
347
 
348
#define CPP_SPEC " %(subtarget_cpp_spec) "
349
 
350
#ifndef SUBTARGET_CPP_SPEC
351
#define SUBTARGET_CPP_SPEC ""
352
#endif
353
 
354
#ifndef SUBTARGET_EXTRA_SPECS
355
#define SUBTARGET_EXTRA_SPECS
356
#endif
357
 
358
#define EXTRA_SPECS                                             \
359
  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },                 \
360
  { "link_emul_prefix", LINK_EMUL_PREFIX },                     \
361
  { "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL },           \
362
  { "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX }, \
363
  { "subtarget_link_spec", SUBTARGET_LINK_SPEC },               \
364
  { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC },   \
365
  { "subtarget_asm_relax_spec", SUBTARGET_ASM_RELAX_SPEC },     \
366
  { "subtarget_asm_isa_spec", SUBTARGET_ASM_ISA_SPEC },         \
367
  { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },                 \
368
  SUBTARGET_EXTRA_SPECS
369
 
370
#if TARGET_CPU_DEFAULT & MASK_HARD_SH4
371
#define SUBTARGET_ASM_RELAX_SPEC "%{!m1:%{!m2:%{!m3*:%{!m5*:-isa=sh4}}}}"
372
#else
373
#define SUBTARGET_ASM_RELAX_SPEC "%{m4*:-isa=sh4}"
374
#endif
375
 
376
#define SH_ASM_SPEC \
377
 "%(subtarget_asm_endian_spec) %{mrelax:-relax %(subtarget_asm_relax_spec)}\
378
%(subtarget_asm_isa_spec) %(subtarget_asm_spec)\
379
%{m2a:--isa=sh2a} \
380
%{m2a-single:--isa=sh2a} \
381
%{m2a-single-only:--isa=sh2a} \
382
%{m2a-nofpu:--isa=sh2a-nofpu} \
383
%{m5-compact*:--isa=SHcompact} \
384
%{m5-32media*:--isa=SHmedia --abi=32} \
385
%{m5-64media*:--isa=SHmedia --abi=64} \
386
%{m4al:-dsp} %{mcut2-workaround:-cut2-workaround}"
387
 
388
#define ASM_SPEC SH_ASM_SPEC
389
 
390
#ifndef SUBTARGET_ASM_ENDIAN_SPEC
391
#if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
392
#define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
393
#else
394
#define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
395
#endif
396
#endif
397
 
398
#if STRICT_NOFPU == 1
399
/* Strict nofpu means that the compiler should tell the assembler
400
   to reject FPU instructions. E.g. from ASM inserts.  */
401
#if TARGET_CPU_DEFAULT & MASK_HARD_SH4 && !(TARGET_CPU_DEFAULT & MASK_SH_E)
402
#define SUBTARGET_ASM_ISA_SPEC "%{!m1:%{!m2:%{!m3*:%{m4-nofpu|!m4*:%{!m5:-isa=sh4-nofpu}}}}}"
403
#else
404
/* If there were an -isa option for sh5-nofpu then it would also go here. */
405
#define SUBTARGET_ASM_ISA_SPEC \
406
 "%{m4-nofpu:-isa=sh4-nofpu} " ASM_ISA_DEFAULT_SPEC
407
#endif
408
#else /* ! STRICT_NOFPU */
409
#define SUBTARGET_ASM_ISA_SPEC ASM_ISA_DEFAULT_SPEC
410
#endif
411
 
412
#ifndef SUBTARGET_ASM_SPEC
413
#define SUBTARGET_ASM_SPEC ""
414
#endif
415
 
416
#if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
417
#define LINK_EMUL_PREFIX "sh%{!mb:l}"
418
#else
419
#define LINK_EMUL_PREFIX "sh%{ml:l}"
420
#endif
421
 
422
#if TARGET_CPU_DEFAULT & MASK_SH5
423
#if TARGET_CPU_DEFAULT & MASK_SH_E
424
#define LINK_DEFAULT_CPU_EMUL "32"
425
#if TARGET_CPU_DEFAULT & MASK_SH1
426
#define ASM_ISA_SPEC_DEFAULT "--isa=SHcompact"
427
#else
428
#define ASM_ISA_SPEC_DEFAULT "--isa=SHmedia --abi=32"
429
#endif /* MASK_SH1 */
430
#else /* !MASK_SH_E */
431
#define LINK_DEFAULT_CPU_EMUL "64"
432
#define ASM_ISA_SPEC_DEFAULT "--isa=SHmedia --abi=64"
433
#endif /* MASK_SH_E */
434
#define ASM_ISA_DEFAULT_SPEC \
435
" %{!m1:%{!m2*:%{!m3*:%{!m4*:%{!m5*:" ASM_ISA_SPEC_DEFAULT "}}}}}"
436
#else /* !MASK_SH5 */
437
#define LINK_DEFAULT_CPU_EMUL ""
438
#define ASM_ISA_DEFAULT_SPEC ""
439
#endif /* MASK_SH5 */
440
 
441
#define SUBTARGET_LINK_EMUL_SUFFIX ""
442
#define SUBTARGET_LINK_SPEC ""
443
 
444
/* svr4.h redefines LINK_SPEC inappropriately, so go via SH_LINK_SPEC,
445
   so that we can undo the damage without code replication.  */
446
#define LINK_SPEC SH_LINK_SPEC
447
 
448
#define SH_LINK_SPEC "\
449
-m %(link_emul_prefix)\
450
%{m5-compact*|m5-32media*:32}\
451
%{m5-64media*:64}\
452
%{!m1:%{!m2:%{!m3*:%{!m4*:%{!m5*:%(link_default_cpu_emul)}}}}}\
453
%(subtarget_link_emul_suffix) \
454
%{mrelax:-relax} %(subtarget_link_spec)"
455
 
456
#ifndef SH_DIV_STR_FOR_SIZE
457
#define SH_DIV_STR_FOR_SIZE "call"
458
#endif
459
 
460
#define DRIVER_SELF_SPECS "%{m2a:%{ml:%eSH2a does not support little-endian}}"
461
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE)                                \
462
do {                                                                    \
463
  if (LEVEL)                                                            \
464
    {                                                                   \
465
      flag_omit_frame_pointer = -1;                                     \
466
      if (! SIZE)                                                       \
467
        sh_div_str = "inv:minlat";                                      \
468
    }                                                                   \
469
  if (SIZE)                                                             \
470
    {                                                                   \
471
      target_flags |= MASK_SMALLCODE;                                   \
472
      sh_div_str = SH_DIV_STR_FOR_SIZE ;                                \
473
    }                                                                   \
474
  /* We can't meaningfully test TARGET_SHMEDIA here, because -m options \
475
     haven't been parsed yet, hence we';d read only the default.        \
476
     sh_target_reg_class will return NO_REGS if this is not SHMEDIA, so \
477
     it's OK to always set flag_branch_target_load_optimize.  */        \
478
  if (LEVEL > 1)                                                        \
479
    {                                                                   \
480
      flag_branch_target_load_optimize = 1;                             \
481
      if (! (SIZE))                                                     \
482
        target_flags |= MASK_SAVE_ALL_TARGET_REGS;                      \
483
    }                                                                   \
484
  /* Likewise, we can't meaningfully test TARGET_SH2E / TARGET_IEEE     \
485
     here, so leave it to OVERRIDE_OPTIONS to set                       \
486
    flag_finite_math_only.  We set it to 2 here so we know if the user  \
487
    explicitly requested this to be on or off.  */                      \
488
  flag_finite_math_only = 2;                                            \
489
  /* If flag_schedule_insns is 1, we set it to 2 here so we know if     \
490
     the user explicitly requested this to be on or off.  */            \
491
  if (flag_schedule_insns > 0)                                          \
492
    flag_schedule_insns = 2;                                            \
493
} while (0)
494
 
495
#define ASSEMBLER_DIALECT assembler_dialect
496
 
497
extern int assembler_dialect;
498
 
499
enum sh_divide_strategy_e {
500
  SH_DIV_CALL,
501
  SH_DIV_CALL2,
502
  SH_DIV_FP,
503
  SH_DIV_INV,
504
  SH_DIV_INV_MINLAT,
505
  SH_DIV_INV20U,
506
  SH_DIV_INV20L,
507
  SH_DIV_INV_CALL,
508
  SH_DIV_INV_CALL2,
509
  SH_DIV_INV_FP
510
};
511
 
512
extern enum sh_divide_strategy_e sh_div_strategy;
513
 
514
#ifndef SH_DIV_STRATEGY_DEFAULT
515
#define SH_DIV_STRATEGY_DEFAULT SH_DIV_CALL
516
#endif
517
 
518
#define OVERRIDE_OPTIONS                                                \
519
do {                                                                    \
520
  int regno;                                                            \
521
                                                                        \
522
  if (flag_finite_math_only == 2)                                       \
523
    flag_finite_math_only                                               \
524
      = !flag_signaling_nans && TARGET_SH2E && ! TARGET_IEEE;           \
525
  if (TARGET_SH2E && !flag_finite_math_only)                            \
526
    target_flags |= MASK_IEEE;                                          \
527
  sh_cpu = CPU_SH1;                                                     \
528
  assembler_dialect = 0;                                                \
529
  if (TARGET_SH2)                                                       \
530
    sh_cpu = CPU_SH2;                                                   \
531
  if (TARGET_SH2E)                                                      \
532
    sh_cpu = CPU_SH2E;                                                  \
533
  if (TARGET_SH2A)                                                      \
534
    {                                                                   \
535
      sh_cpu = CPU_SH2A;                                                \
536
      if (TARGET_SH2A_DOUBLE)                                           \
537
        target_flags |= MASK_FMOVD;                                     \
538
    }                                                                   \
539
  if (TARGET_SH3)                                                       \
540
    sh_cpu = CPU_SH3;                                                   \
541
  if (TARGET_SH3E)                                                      \
542
    sh_cpu = CPU_SH3E;                                                  \
543
  if (TARGET_SH4)                                                       \
544
    {                                                                   \
545
      assembler_dialect = 1;                                            \
546
      sh_cpu = CPU_SH4;                                                 \
547
    }                                                                   \
548
  if (TARGET_SH4A_ARCH)                                                 \
549
    {                                                                   \
550
      assembler_dialect = 1;                                            \
551
      sh_cpu = CPU_SH4A;                                                \
552
    }                                                                   \
553
  if (TARGET_SH5)                                                       \
554
    {                                                                   \
555
      sh_cpu = CPU_SH5;                                                 \
556
      target_flags |= MASK_ALIGN_DOUBLE;                                \
557
      if (TARGET_SHMEDIA_FPU)                                           \
558
        target_flags |= MASK_FMOVD;                                     \
559
      if (TARGET_SHMEDIA)                                               \
560
        {                                                               \
561
          /* There are no delay slots on SHmedia.  */                   \
562
          flag_delayed_branch = 0;                                      \
563
          /* Relaxation isn't yet supported for SHmedia */              \
564
          target_flags &= ~MASK_RELAX;                                  \
565
          /* After reload, if conversion does little good but can cause \
566
             ICEs:                                                      \
567
             - find_if_block doesn't do anything for SH because we don't\
568
               have conditional execution patterns.  (We use conditional\
569
               move patterns, which are handled differently, and only   \
570
               before reload).                                          \
571
             - find_cond_trap doesn't do anything for the SH because we \       
572
               don't have conditional traps.                            \
573
             - find_if_case_1 uses redirect_edge_and_branch_force in    \
574
               the only path that does an optimization, and this causes \
575
               an ICE when branch targets are in registers.             \
576
             - find_if_case_2 doesn't do anything for the SHmedia after \
577
               reload except when it can redirect a tablejump - and     \
578
               that's rather rare.  */                                  \
579
          flag_if_conversion2 = 0;                                      \
580
          if (! strcmp (sh_div_str, "call"))                            \
581
            sh_div_strategy = SH_DIV_CALL;                              \
582
          else if (! strcmp (sh_div_str, "call2"))                      \
583
            sh_div_strategy = SH_DIV_CALL2;                             \
584
          if (! strcmp (sh_div_str, "fp") && TARGET_FPU_ANY)            \
585
            sh_div_strategy = SH_DIV_FP;                                \
586
          else if (! strcmp (sh_div_str, "inv"))                        \
587
            sh_div_strategy = SH_DIV_INV;                               \
588
          else if (! strcmp (sh_div_str, "inv:minlat"))                 \
589
            sh_div_strategy = SH_DIV_INV_MINLAT;                        \
590
          else if (! strcmp (sh_div_str, "inv20u"))                     \
591
            sh_div_strategy = SH_DIV_INV20U;                            \
592
          else if (! strcmp (sh_div_str, "inv20l"))                     \
593
            sh_div_strategy = SH_DIV_INV20L;                            \
594
          else if (! strcmp (sh_div_str, "inv:call2"))                  \
595
            sh_div_strategy = SH_DIV_INV_CALL2;                         \
596
          else if (! strcmp (sh_div_str, "inv:call"))                   \
597
            sh_div_strategy = SH_DIV_INV_CALL;                          \
598
          else if (! strcmp (sh_div_str, "inv:fp"))                     \
599
            {                                                           \
600
              if (TARGET_FPU_ANY)                                       \
601
                sh_div_strategy = SH_DIV_INV_FP;                        \
602
              else                                                      \
603
                sh_div_strategy = SH_DIV_INV;                           \
604
            }                                                           \
605
        }                                                               \
606
      /* -fprofile-arcs needs a working libgcov .  In unified tree      \
607
         configurations with newlib, this requires to configure with    \
608
         --with-newlib --with-headers.  But there is no way to check    \
609
         here we have a working libgcov, so just assume that we have.  */\
610
      if (profile_flag)                                                 \
611
        warning (0, "profiling is still experimental for this target");\
612
    }                                                                   \
613
  else                                                                  \
614
    {                                                                   \
615
       /* Only the sh64-elf assembler fully supports .quad properly.  */\
616
       targetm.asm_out.aligned_op.di = NULL;                            \
617
       targetm.asm_out.unaligned_op.di = NULL;                          \
618
    }                                                                   \
619
  if (sh_divsi3_libfunc[0])                                             \
620
    ; /* User supplied - leave it alone.  */                            \
621
  else if (TARGET_HARD_SH4 && TARGET_SH2E)                              \
622
    sh_divsi3_libfunc = "__sdivsi3_i4";                                 \
623
  else if (TARGET_SH5)                                                  \
624
    {                                                                   \
625
      if (TARGET_FPU_ANY && TARGET_SH1)                                 \
626
        sh_divsi3_libfunc = "__sdivsi3_i4";                             \
627
      else                                                              \
628
        sh_divsi3_libfunc = "__sdivsi3_1";                              \
629
    }                                                                   \
630
  else                                                                  \
631
    sh_divsi3_libfunc = "__sdivsi3";                                    \
632
  if (TARGET_FMOVD)                                                     \
633
    reg_class_from_letter['e' - 'a'] = NO_REGS;                         \
634
                                                                        \
635
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)               \
636
    if (! VALID_REGISTER_P (regno))                                     \
637
      sh_register_names[regno][0] = '\0';                               \
638
                                                                        \
639
  for (regno = 0; regno < ADDREGNAMES_SIZE; regno++)                    \
640
    if (! VALID_REGISTER_P (ADDREGNAMES_REGNO (regno)))                 \
641
      sh_additional_register_names[regno][0] = '\0';                    \
642
                                                                        \
643
  if (flag_omit_frame_pointer < 0)                                      \
644
   {                                                                    \
645
     /* The debugging information is sufficient,                        \
646
        but gdb doesn't implement this yet */                           \
647
     if (0)                                                             \
648
      flag_omit_frame_pointer                                           \
649
        = (PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG);                   \
650
     else                                                               \
651
      flag_omit_frame_pointer = 0;                                      \
652
   }                                                                    \
653
                                                                        \
654
  if ((flag_pic && ! TARGET_PREFERGOT)                                  \
655
      || (TARGET_SHMEDIA && !TARGET_PT_FIXED))                          \
656
    flag_no_function_cse = 1;                                           \
657
                                                                        \
658
  if (SMALL_REGISTER_CLASSES)                                           \
659
    {                                                                   \
660
      /* Never run scheduling before reload, since that can             \
661
         break global alloc, and generates slower code anyway due       \
662
         to the pressure on R0.  */                                     \
663
      /* Enable sched1 for SH4; ready queue will be reordered by        \
664
         the target hooks when pressure is high. We can not do this for \
665
         SH3 and lower as they give spill failures for R0.  */          \
666
      if (!TARGET_HARD_SH4)                                             \
667
        flag_schedule_insns = 0;                                        \
668
      /* ??? Current exception handling places basic block boundaries   \
669
         after call_insns.  It causes the high pressure on R0 and gives \
670
         spill failures for R0 in reload.  See PR 22553 and the thread  \
671
         on gcc-patches                                                 \
672
         <http://gcc.gnu.org/ml/gcc-patches/2005-10/msg00816.html>.  */ \
673
      else if (flag_exceptions)                                         \
674
        {                                                               \
675
          if (flag_schedule_insns == 1)                                 \
676
            warning (0, "ignoring -fschedule-insns because of exception handling bug"); \
677
          flag_schedule_insns = 0;                                      \
678
        }                                                               \
679
    }                                                                   \
680
                                                                        \
681
  if (align_loops == 0)                                                 \
682
    align_loops =  1 << (TARGET_SH5 ? 3 : 2);                           \
683
  if (align_jumps == 0)                                                 \
684
    align_jumps = 1 << CACHE_LOG;                                       \
685
  else if (align_jumps < (TARGET_SHMEDIA ? 4 : 2))                      \
686
    align_jumps = TARGET_SHMEDIA ? 4 : 2;                               \
687
                                                                        \
688
  /* Allocation boundary (in *bytes*) for the code of a function.       \
689
     SH1: 32 bit alignment is faster, because instructions are always   \
690
     fetched as a pair from a longword boundary.                        \
691
     SH2 .. SH5 : align to cache line start.  */                        \
692
  if (align_functions == 0)                                             \
693
    align_functions                                                     \
694
      = TARGET_SMALLCODE ? FUNCTION_BOUNDARY/8 : (1 << CACHE_LOG);      \
695
  /* The linker relaxation code breaks when a function contains         \
696
     alignments that are larger than that at the start of a             \
697
     compilation unit.  */                                              \
698
  if (TARGET_RELAX)                                                     \
699
    {                                                                   \
700
      int min_align                                                     \
701
        = align_loops > align_jumps ? align_loops : align_jumps;        \
702
                                                                        \
703
      /* Also take possible .long constants / mova tables int account.  */\
704
      if (min_align < 4)                                                \
705
        min_align = 4;                                                  \
706
      if (align_functions < min_align)                                  \
707
        align_functions = min_align;                                    \
708
    }                                                                   \
709
} while (0)
710
 
711
/* Target machine storage layout.  */
712
 
713
/* Define this if most significant bit is lowest numbered
714
   in instructions that operate on numbered bit-fields.  */
715
 
716
#define BITS_BIG_ENDIAN  0
717
 
718
/* Define this if most significant byte of a word is the lowest numbered.  */
719
#define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
720
 
721
/* Define this if most significant word of a multiword number is the lowest
722
   numbered.  */
723
#define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
724
 
725
/* Define this to set the endianness to use in libgcc2.c, which can
726
   not depend on target_flags.  */
727
#if defined(__LITTLE_ENDIAN__)
728
#define LIBGCC2_WORDS_BIG_ENDIAN 0
729
#else
730
#define LIBGCC2_WORDS_BIG_ENDIAN 1
731
#endif
732
 
733
#define MAX_BITS_PER_WORD 64
734
 
735
/* Width in bits of an `int'.  We want just 32-bits, even if words are
736
   longer.  */
737
#define INT_TYPE_SIZE 32
738
 
739
/* Width in bits of a `long'.  */
740
#define LONG_TYPE_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
741
 
742
/* Width in bits of a `long long'.  */
743
#define LONG_LONG_TYPE_SIZE 64
744
 
745
/* Width in bits of a `long double'.  */
746
#define LONG_DOUBLE_TYPE_SIZE 64
747
 
748
/* Width of a word, in units (bytes).  */
749
#define UNITS_PER_WORD  (TARGET_SHMEDIA ? 8 : 4)
750
#define MIN_UNITS_PER_WORD 4
751
 
752
/* Scaling factor for Dwarf data offsets for CFI information.
753
   The dwarf2out.c default would use -UNITS_PER_WORD, which is -8 for
754
   SHmedia; however, since we do partial register saves for the registers
755
   visible to SHcompact, and for target registers for SHMEDIA32, we have
756
   to allow saves that are only 4-byte aligned.  */
757
#define DWARF_CIE_DATA_ALIGNMENT -4
758
 
759
/* Width in bits of a pointer.
760
   See also the macro `Pmode' defined below.  */
761
#define POINTER_SIZE  (TARGET_SHMEDIA64 ? 64 : 32)
762
 
763
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
764
#define PARM_BOUNDARY   (TARGET_SH5 ? 64 : 32)
765
 
766
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
767
#define STACK_BOUNDARY  BIGGEST_ALIGNMENT
768
 
769
/* The log (base 2) of the cache line size, in bytes.  Processors prior to
770
   SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
771
   The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
772
#define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2)
773
 
774
/* ABI given & required minimum allocation boundary (in *bits*) for the
775
   code of a function.  */
776
#define FUNCTION_BOUNDARY (16 << TARGET_SHMEDIA)
777
 
778
/* On SH5, the lowest bit is used to indicate SHmedia functions, so
779
   the vbit must go into the delta field of
780
   pointers-to-member-functions.  */
781
#define TARGET_PTRMEMFUNC_VBIT_LOCATION \
782
  (TARGET_SH5 ? ptrmemfunc_vbit_in_delta : ptrmemfunc_vbit_in_pfn)
783
 
784
/* Alignment of field after `int : 0' in a structure.  */
785
#define EMPTY_FIELD_BOUNDARY  32
786
 
787
/* No data type wants to be aligned rounder than this.  */
788
#define BIGGEST_ALIGNMENT  (TARGET_ALIGN_DOUBLE ? 64 : 32)
789
 
790
/* The best alignment to use in cases where we have a choice.  */
791
#define FASTEST_ALIGNMENT (TARGET_SH5 ? 64 : 32)
792
 
793
/* Make strings word-aligned so strcpy from constants will be faster.  */
794
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
795
  ((TREE_CODE (EXP) == STRING_CST       \
796
    && (ALIGN) < FASTEST_ALIGNMENT)     \
797
    ? FASTEST_ALIGNMENT : (ALIGN))
798
 
799
/* get_mode_alignment assumes complex values are always held in multiple
800
   registers, but that is not the case on the SH; CQImode and CHImode are
801
   held in a single integer register.  SH5 also holds CSImode and SCmode
802
   values in integer registers.  This is relevant for argument passing on
803
   SHcompact as we use a stack temp in order to pass CSImode by reference.  */
804
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
805
  ((GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_INT \
806
    || GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_FLOAT) \
807
   ? (unsigned) MIN (BIGGEST_ALIGNMENT, GET_MODE_BITSIZE (TYPE_MODE (TYPE))) \
808
   : (unsigned) ALIGN)
809
 
810
/* Make arrays of chars word-aligned for the same reasons.  */
811
#define DATA_ALIGNMENT(TYPE, ALIGN)             \
812
  (TREE_CODE (TYPE) == ARRAY_TYPE               \
813
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
814
   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
815
 
816
/* Number of bits which any structure or union's size must be a
817
   multiple of.  Each structure or union's size is rounded up to a
818
   multiple of this.  */
819
#define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
820
 
821
/* Set this nonzero if move instructions will actually fail to work
822
   when given unaligned data.  */
823
#define STRICT_ALIGNMENT 1
824
 
825
/* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm.  */
826
#define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
827
  barrier_align (LABEL_AFTER_BARRIER)
828
 
829
#define LOOP_ALIGN(A_LABEL) \
830
  ((! optimize || TARGET_HARD_SH4 || TARGET_SMALLCODE) \
831
   ? 0 : sh_loop_align (A_LABEL))
832
 
833
#define LABEL_ALIGN(A_LABEL) \
834
(                                                                       \
835
  (PREV_INSN (A_LABEL)                                                  \
836
   && GET_CODE (PREV_INSN (A_LABEL)) == INSN                            \
837
   && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE       \
838
   && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN)         \
839
   /* explicit alignment insn in constant tables.  */                   \
840
  ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0))              \
841
  : 0)
842
 
843
/* Jump tables must be 32 bit aligned, no matter the size of the element.  */
844
#define ADDR_VEC_ALIGN(ADDR_VEC) 2
845
 
846
/* The base two logarithm of the known minimum alignment of an insn length.  */
847
#define INSN_LENGTH_ALIGNMENT(A_INSN)                                   \
848
  (GET_CODE (A_INSN) == INSN                                            \
849
   ? 1 << TARGET_SHMEDIA                                                \
850
   : GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN   \
851
   ? 1 << TARGET_SHMEDIA                                                \
852
   : CACHE_LOG)
853
 
854
/* Standard register usage.  */
855
 
856
/* Register allocation for the Renesas calling convention:
857
 
858
        r0              arg return
859
        r1..r3          scratch
860
        r4..r7          args in
861
        r8..r13         call saved
862
        r14             frame pointer/call saved
863
        r15             stack pointer
864
        ap              arg pointer (doesn't really exist, always eliminated)
865
        pr              subroutine return address
866
        t               t bit
867
        mach            multiply/accumulate result, high part
868
        macl            multiply/accumulate result, low part.
869
        fpul            fp/int communication register
870
        rap             return address pointer register
871
        fr0             fp arg return
872
        fr1..fr3        scratch floating point registers
873
        fr4..fr11       fp args in
874
        fr12..fr15      call saved floating point registers  */
875
 
876
#define MAX_REGISTER_NAME_LENGTH 5
877
extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
878
 
879
#define SH_REGISTER_NAMES_INITIALIZER                                   \
880
{                                                                       \
881
  "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",         \
882
  "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",        \
883
  "r16",  "r17",  "r18",  "r19",  "r20",  "r21",  "r22",  "r23",        \
884
  "r24",  "r25",  "r26",  "r27",  "r28",  "r29",  "r30",  "r31",        \
885
  "r32",  "r33",  "r34",  "r35",  "r36",  "r37",  "r38",  "r39",        \
886
  "r40",  "r41",  "r42",  "r43",  "r44",  "r45",  "r46",  "r47",        \
887
  "r48",  "r49",  "r50",  "r51",  "r52",  "r53",  "r54",  "r55",        \
888
  "r56",  "r57",  "r58",  "r59",  "r60",  "r61",  "r62",  "r63",        \
889
  "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",        \
890
  "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",       \
891
  "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",       \
892
  "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",       \
893
  "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",       \
894
  "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",       \
895
  "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",       \
896
  "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",       \
897
  "tr0",  "tr1",  "tr2",  "tr3",  "tr4",  "tr5",  "tr6",  "tr7",        \
898
  "xd0",  "xd2",  "xd4",  "xd6",  "xd8",  "xd10", "xd12", "xd14",       \
899
  "gbr",  "ap",   "pr",   "t",    "mach", "macl", "fpul", "fpscr",      \
900
  "rap",  "sfp"                                                         \
901
}
902
 
903
#define REGNAMES_ARR_INDEX_1(index) \
904
  (sh_register_names[index])
905
#define REGNAMES_ARR_INDEX_2(index) \
906
  REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
907
#define REGNAMES_ARR_INDEX_4(index) \
908
  REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
909
#define REGNAMES_ARR_INDEX_8(index) \
910
  REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
911
#define REGNAMES_ARR_INDEX_16(index) \
912
  REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
913
#define REGNAMES_ARR_INDEX_32(index) \
914
  REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
915
#define REGNAMES_ARR_INDEX_64(index) \
916
  REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
917
 
918
#define REGISTER_NAMES \
919
{ \
920
  REGNAMES_ARR_INDEX_64 (0), \
921
  REGNAMES_ARR_INDEX_64 (64), \
922
  REGNAMES_ARR_INDEX_8 (128), \
923
  REGNAMES_ARR_INDEX_8 (136), \
924
  REGNAMES_ARR_INDEX_8 (144), \
925
  REGNAMES_ARR_INDEX_2 (152) \
926
}
927
 
928
#define ADDREGNAMES_SIZE 32
929
#define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
930
extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
931
  [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
932
 
933
#define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER                        \
934
{                                                                       \
935
  "dr0",  "dr2",  "dr4",  "dr6",  "dr8",  "dr10", "dr12", "dr14",       \
936
  "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",       \
937
  "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",       \
938
  "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62"        \
939
}
940
 
941
#define ADDREGNAMES_REGNO(index) \
942
  ((index < 32) ? (FIRST_FP_REG + (index) * 2) \
943
   : (-1))
944
 
945
#define ADDREGNAMES_ARR_INDEX_1(index) \
946
  { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
947
#define ADDREGNAMES_ARR_INDEX_2(index) \
948
  ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
949
#define ADDREGNAMES_ARR_INDEX_4(index) \
950
  ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
951
#define ADDREGNAMES_ARR_INDEX_8(index) \
952
  ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
953
#define ADDREGNAMES_ARR_INDEX_16(index) \
954
  ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
955
#define ADDREGNAMES_ARR_INDEX_32(index) \
956
  ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
957
 
958
#define ADDITIONAL_REGISTER_NAMES \
959
{                                       \
960
  ADDREGNAMES_ARR_INDEX_32 (0)          \
961
}
962
 
963
/* Number of actual hardware registers.
964
   The hardware registers are assigned numbers for the compiler
965
   from 0 to just below FIRST_PSEUDO_REGISTER.
966
   All registers that the compiler knows about must be given numbers,
967
   even those that are not normally considered general registers.  */
968
 
969
/* There are many other relevant definitions in sh.md's md_constants.  */
970
 
971
#define FIRST_GENERAL_REG R0_REG
972
#define LAST_GENERAL_REG (FIRST_GENERAL_REG + (TARGET_SHMEDIA ? 63 : 15))
973
#define FIRST_FP_REG DR0_REG
974
#define LAST_FP_REG  (FIRST_FP_REG + \
975
                      (TARGET_SHMEDIA_FPU ? 63 : TARGET_SH2E ? 15 : -1))
976
#define FIRST_XD_REG XD0_REG
977
#define LAST_XD_REG  (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
978
#define FIRST_TARGET_REG TR0_REG
979
#define LAST_TARGET_REG  (FIRST_TARGET_REG + (TARGET_SHMEDIA ? 7 : -1))
980
 
981
#define GENERAL_REGISTER_P(REGNO) \
982
  IN_RANGE ((REGNO), \
983
            (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
984
            (unsigned HOST_WIDE_INT) LAST_GENERAL_REG)
985
 
986
#define GENERAL_OR_AP_REGISTER_P(REGNO) \
987
  (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG)    \
988
   || ((REGNO) == FRAME_POINTER_REGNUM))
989
 
990
#define FP_REGISTER_P(REGNO) \
991
  ((int) (REGNO) >= FIRST_FP_REG && (int) (REGNO) <= LAST_FP_REG)
992
 
993
#define XD_REGISTER_P(REGNO) \
994
  ((int) (REGNO) >= FIRST_XD_REG && (int) (REGNO) <= LAST_XD_REG)
995
 
996
#define FP_OR_XD_REGISTER_P(REGNO) \
997
  (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
998
 
999
#define FP_ANY_REGISTER_P(REGNO) \
1000
  (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
1001
 
1002
#define SPECIAL_REGISTER_P(REGNO) \
1003
  ((REGNO) == GBR_REG || (REGNO) == T_REG \
1004
   || (REGNO) == MACH_REG || (REGNO) == MACL_REG)
1005
 
1006
#define TARGET_REGISTER_P(REGNO) \
1007
  ((int) (REGNO) >= FIRST_TARGET_REG && (int) (REGNO) <= LAST_TARGET_REG)
1008
 
1009
#define SHMEDIA_REGISTER_P(REGNO) \
1010
  (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
1011
   || TARGET_REGISTER_P (REGNO))
1012
 
1013
/* This is to be used in CONDITIONAL_REGISTER_USAGE, to mark registers
1014
   that should be fixed.  */
1015
#define VALID_REGISTER_P(REGNO) \
1016
  (SHMEDIA_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) \
1017
   || (REGNO) == AP_REG || (REGNO) == RAP_REG \
1018
   || (REGNO) == FRAME_POINTER_REGNUM \
1019
   || (TARGET_SH1 && (SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
1020
   || (TARGET_SH2E && (REGNO) == FPUL_REG))
1021
 
1022
/* The mode that should be generally used to store a register by
1023
   itself in the stack, or to load it back.  */
1024
#define REGISTER_NATURAL_MODE(REGNO) \
1025
  (FP_REGISTER_P (REGNO) ? SFmode \
1026
   : XD_REGISTER_P (REGNO) ? DFmode \
1027
   : TARGET_SHMEDIA && ! HARD_REGNO_CALL_PART_CLOBBERED ((REGNO), DImode) \
1028
   ? DImode \
1029
   : SImode)
1030
 
1031
#define FIRST_PSEUDO_REGISTER 154
1032
 
1033
/* Don't count soft frame pointer.  */
1034
#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
1035
 
1036
/* 1 for registers that have pervasive standard uses
1037
   and are not available for the register allocator.
1038
 
1039
   Mach register is fixed 'cause it's only 10 bits wide for SH1.
1040
   It is 32 bits wide for SH2.  */
1041
 
1042
#define FIXED_REGISTERS                                                 \
1043
{                                                                       \
1044
/* Regular registers.  */                                               \
1045
  0,      0,      0,      0,      0,      0,      0,      0,            \
1046
  0,      0,      0,      0,      0,      0,      0,      1,            \
1047
  /* r16 is reserved, r18 is the former pr.  */                         \
1048
  1,      0,      0,      0,      0,      0,      0,      0,            \
1049
  /* r24 is reserved for the OS; r25, for the assembler or linker.  */  \
1050
  /* r26 is a global variable data pointer; r27 is for constants.  */   \
1051
  1,      1,      1,      1,      0,      0,      0,      0,            \
1052
  0,      0,      0,      0,      0,      0,      0,      0,            \
1053
  0,      0,      0,      0,      0,      0,      0,      0,            \
1054
  0,      0,      0,      0,      0,      0,      0,      0,            \
1055
  0,      0,      0,      0,      0,      0,      0,      1,            \
1056
/* FP registers.  */                                                    \
1057
  0,      0,      0,      0,      0,      0,      0,      0,            \
1058
  0,      0,      0,      0,      0,      0,      0,      0,            \
1059
  0,      0,      0,      0,      0,      0,      0,      0,            \
1060
  0,      0,      0,      0,      0,      0,      0,      0,            \
1061
  0,      0,      0,      0,      0,      0,      0,      0,            \
1062
  0,      0,      0,      0,      0,      0,      0,      0,            \
1063
  0,      0,      0,      0,      0,      0,      0,      0,            \
1064
  0,      0,      0,      0,      0,      0,      0,      0,            \
1065
/* Branch target registers.  */                                         \
1066
  0,      0,      0,      0,      0,      0,      0,      0,            \
1067
/* XD registers.  */                                                    \
1068
  0,      0,      0,      0,      0,      0,      0,      0,            \
1069
/*"gbr",  "ap",   "pr",   "t",    "mach", "macl", "fpul", "fpscr", */   \
1070
  1,      1,      1,      1,      1,      1,      0,      1,            \
1071
/*"rap",  "sfp" */                                                      \
1072
  1,      1,                                                            \
1073
}
1074
 
1075
/* 1 for registers not available across function calls.
1076
   These must include the FIXED_REGISTERS and also any
1077
   registers that can be used without being saved.
1078
   The latter must include the registers where values are returned
1079
   and the register where structure-value addresses are passed.
1080
   Aside from that, you can include as many other registers as you like.  */
1081
 
1082
#define CALL_USED_REGISTERS                                             \
1083
{                                                                       \
1084
/* Regular registers.  */                                               \
1085
  1,      1,      1,      1,      1,      1,      1,      1,            \
1086
  /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs.   \
1087
     Only the lower 32bits of R10-R14 are guaranteed to be preserved    \
1088
     across SH5 function calls.  */                                     \
1089
  0,      0,      0,      0,      0,      0,      0,      1,            \
1090
  1,      1,      1,      1,      1,      1,      1,      1,            \
1091
  1,      1,      1,      1,      0,      0,      0,      0,            \
1092
  0,      0,      0,      0,      1,      1,      1,      1,            \
1093
  1,      1,      1,      1,      0,      0,      0,      0,            \
1094
  0,      0,      0,      0,      0,      0,      0,      0,            \
1095
  0,      0,      0,      0,      1,      1,      1,      1,            \
1096
/* FP registers.  */                                                    \
1097
  1,      1,      1,      1,      1,      1,      1,      1,            \
1098
  1,      1,      1,      1,      0,      0,      0,      0,            \
1099
  1,      1,      1,      1,      1,      1,      1,      1,            \
1100
  1,      1,      1,      1,      1,      1,      1,      1,            \
1101
  1,      1,      1,      1,      0,      0,      0,      0,            \
1102
  0,      0,      0,      0,      0,      0,      0,      0,            \
1103
  0,      0,      0,      0,      0,      0,      0,      0,            \
1104
  0,      0,      0,      0,      0,      0,      0,      0,            \
1105
/* Branch target registers.  */                                         \
1106
  1,      1,      1,      1,      1,      0,      0,      0,            \
1107
/* XD registers.  */                                                    \
1108
  1,      1,      1,      1,      1,      1,      0,      0,            \
1109
/*"gbr",  "ap",   "pr",   "t",    "mach", "macl", "fpul", "fpscr", */   \
1110
  1,      1,      1,      1,      1,      1,      1,      1,            \
1111
/*"rap",  "sfp" */                                                      \
1112
  1,      1,                                                            \
1113
}
1114
 
1115
/* CONDITIONAL_REGISTER_USAGE might want to make a register call-used, yet
1116
   fixed, like PIC_OFFSET_TABLE_REGNUM.  */
1117
#define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
1118
 
1119
/* Only the lower 32-bits of R10-R14 are guaranteed to be preserved
1120
   across SHcompact function calls.  We can't tell whether a called
1121
   function is SHmedia or SHcompact, so we assume it may be when
1122
   compiling SHmedia code with the 32-bit ABI, since that's the only
1123
   ABI that can be linked with SHcompact code.  */
1124
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO,MODE) \
1125
  (TARGET_SHMEDIA32 \
1126
   && GET_MODE_SIZE (MODE) > 4 \
1127
   && (((REGNO) >= FIRST_GENERAL_REG + 10 \
1128
        && (REGNO) <= FIRST_GENERAL_REG + 15) \
1129
       || TARGET_REGISTER_P (REGNO) \
1130
       || (REGNO) == PR_MEDIA_REG))
1131
 
1132
/* Return number of consecutive hard regs needed starting at reg REGNO
1133
   to hold something of mode MODE.
1134
   This is ordinarily the length in words of a value of mode MODE
1135
   but can be less for certain modes in special long registers.
1136
 
1137
   On the SH all but the XD regs are UNITS_PER_WORD bits wide.  */
1138
 
1139
#define HARD_REGNO_NREGS(REGNO, MODE) \
1140
   (XD_REGISTER_P (REGNO) \
1141
    ? ((GET_MODE_SIZE (MODE) + (2*UNITS_PER_WORD - 1)) / (2*UNITS_PER_WORD)) \
1142
    : (TARGET_SHMEDIA && FP_REGISTER_P (REGNO)) \
1143
    ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2)) \
1144
    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1145
 
1146
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1147
   We can allow any mode in any general register.  The special registers
1148
   only allow SImode.  Don't allow any mode in the PR.  */
1149
 
1150
/* We cannot hold DCmode values in the XD registers because alter_reg
1151
   handles subregs of them incorrectly.  We could work around this by
1152
   spacing the XD registers like the DR registers, but this would require
1153
   additional memory in every compilation to hold larger register vectors.
1154
   We could hold SFmode / SCmode values in XD registers, but that
1155
   would require a tertiary reload when reloading from / to memory,
1156
   and a secondary reload to reload from / to general regs; that
1157
   seems to be a loosing proposition.  */
1158
/* We want to allow TImode FP regs so that when V4SFmode is loaded as TImode,
1159
   it won't be ferried through GP registers first.  */
1160
#define HARD_REGNO_MODE_OK(REGNO, MODE)         \
1161
  (SPECIAL_REGISTER_P (REGNO) ? (MODE) == SImode \
1162
   : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \
1163
   : FP_REGISTER_P (REGNO) && (MODE) == SFmode \
1164
   ? 1 \
1165
   : (MODE) == V2SFmode \
1166
   ? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 2 == 0) \
1167
      || GENERAL_REGISTER_P (REGNO)) \
1168
   : (MODE) == V4SFmode \
1169
   ? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 4 == 0) \
1170
      || GENERAL_REGISTER_P (REGNO)) \
1171
   : (MODE) == V16SFmode \
1172
   ? (TARGET_SHMEDIA \
1173
      ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 16 == 0) \
1174
      : (REGNO) == FIRST_XD_REG) \
1175
   : FP_REGISTER_P (REGNO) \
1176
   ? ((MODE) == SFmode || (MODE) == SImode \
1177
      || ((TARGET_SH2E || TARGET_SHMEDIA) && (MODE) == SCmode) \
1178
      || ((((TARGET_SH4 || TARGET_SH2A_DOUBLE) && (MODE) == DFmode) || (MODE) == DCmode \
1179
           || (TARGET_SHMEDIA && ((MODE) == DFmode || (MODE) == DImode \
1180
                                  || (MODE) == V2SFmode || (MODE) == TImode))) \
1181
          && (((REGNO) - FIRST_FP_REG) & 1) == 0) \
1182
      || ((TARGET_SH4 || TARGET_SHMEDIA) \
1183
          && (MODE) == TImode \
1184
          && (((REGNO) - FIRST_FP_REG) & 3) == 0)) \
1185
   : XD_REGISTER_P (REGNO) \
1186
   ? (MODE) == DFmode \
1187
   : TARGET_REGISTER_P (REGNO) \
1188
   ? ((MODE) == DImode || (MODE) == SImode || (MODE) == PDImode) \
1189
   : (REGNO) == PR_REG ? (MODE) == SImode \
1190
   : (REGNO) == FPSCR_REG ? (MODE) == PSImode \
1191
   : 1)
1192
 
1193
/* Value is 1 if it is a good idea to tie two pseudo registers
1194
   when one has mode MODE1 and one has mode MODE2.
1195
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1196
   for any hard reg, then this must be 0 for correct output.
1197
   That's the case for xd registers: we don't hold SFmode values in
1198
   them, so we can't tie an SFmode pseudos with one in another
1199
   floating-point mode.  */
1200
 
1201
#define MODES_TIEABLE_P(MODE1, MODE2) \
1202
  ((MODE1) == (MODE2) \
1203
   || (TARGET_SHMEDIA \
1204
       && GET_MODE_SIZE (MODE1) == GET_MODE_SIZE (MODE2) \
1205
       && INTEGRAL_MODE_P (MODE1) && INTEGRAL_MODE_P (MODE2)) \
1206
   || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1207
       && (TARGET_SHMEDIA ? ((GET_MODE_SIZE (MODE1) <= 4) \
1208
                              && (GET_MODE_SIZE (MODE2) <= 4)) \
1209
                          : ((MODE1) != SFmode && (MODE2) != SFmode))))
1210
 
1211
/* A C expression that is nonzero if hard register NEW_REG can be
1212
   considered for use as a rename register for OLD_REG register */
1213
 
1214
#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
1215
   sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
1216
 
1217
/* Specify the registers used for certain standard purposes.
1218
   The values of these macros are register numbers.  */
1219
 
1220
/* Define this if the program counter is overloaded on a register.  */
1221
/* #define PC_REGNUM            15*/
1222
 
1223
/* Register to use for pushing function arguments.  */
1224
#define STACK_POINTER_REGNUM    SP_REG
1225
 
1226
/* Base register for access to local variables of the function.  */
1227
#define HARD_FRAME_POINTER_REGNUM       FP_REG
1228
 
1229
/* Base register for access to local variables of the function.  */
1230
#define FRAME_POINTER_REGNUM    153
1231
 
1232
/* Fake register that holds the address on the stack of the
1233
   current function's return address.  */
1234
#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
1235
 
1236
/* Register to hold the addressing base for position independent
1237
   code access to data items.  */
1238
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REG : INVALID_REGNUM)
1239
 
1240
#define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
1241
 
1242
/* Value should be nonzero if functions must have frame pointers.
1243
   Zero means the frame pointer need not be set up (and parms may be accessed
1244
   via the stack pointer) in functions that seem suitable.  */
1245
 
1246
#define FRAME_POINTER_REQUIRED  0
1247
 
1248
/* Definitions for register eliminations.
1249
 
1250
   We have three registers that can be eliminated on the SH.  First, the
1251
   frame pointer register can often be eliminated in favor of the stack
1252
   pointer register.  Secondly, the argument pointer register can always be
1253
   eliminated; it is replaced with either the stack or frame pointer.
1254
   Third, there is the return address pointer, which can also be replaced
1255
   with either the stack or the frame pointer.  */
1256
 
1257
/* This is an array of structures.  Each structure initializes one pair
1258
   of eliminable registers.  The "from" register number is given first,
1259
   followed by "to".  Eliminations of the same "from" register are listed
1260
   in order of preference.  */
1261
 
1262
/* If you add any registers here that are not actually hard registers,
1263
   and that have any alternative of elimination that doesn't always
1264
   apply, you need to amend calc_live_regs to exclude it, because
1265
   reload spills all eliminable registers where it sees an
1266
   can_eliminate == 0 entry, thus making them 'live' .
1267
   If you add any hard registers that can be eliminated in different
1268
   ways, you have to patch reload to spill them only when all alternatives
1269
   of elimination fail.  */
1270
 
1271
#define ELIMINABLE_REGS                                         \
1272
{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},            \
1273
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},                 \
1274
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},            \
1275
 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM},        \
1276
 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
1277
 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},                   \
1278
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},}
1279
 
1280
/* Given FROM and TO register numbers, say whether this elimination
1281
   is allowed.  */
1282
#define CAN_ELIMINATE(FROM, TO) \
1283
  (!((FROM) == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
1284
 
1285
/* Define the offset between two registers, one to be eliminated, and the other
1286
   its replacement, at the start of a routine.  */
1287
 
1288
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1289
  OFFSET = initial_elimination_offset ((FROM), (TO))
1290
 
1291
/* Base register for access to arguments of the function.  */
1292
#define ARG_POINTER_REGNUM      AP_REG
1293
 
1294
/* Register in which the static-chain is passed to a function.  */
1295
#define STATIC_CHAIN_REGNUM     (TARGET_SH5 ? 1 : 3)
1296
 
1297
/* Don't default to pcc-struct-return, because we have already specified
1298
   exactly how to return structures in the TARGET_RETURN_IN_MEMORY
1299
   target hook.  */
1300
 
1301
#define DEFAULT_PCC_STRUCT_RETURN 0
1302
 
1303
#define SHMEDIA_REGS_STACK_ADJUST() \
1304
  (TARGET_SHCOMPACT && current_function_has_nonlocal_label \
1305
   ? (8 * (/* r28-r35 */ 8 + /* r44-r59 */ 16 + /* tr5-tr7 */ 3) \
1306
      + (TARGET_FPU_ANY ? 4 * (/* fr36 - fr63 */ 28) : 0)) \
1307
   : 0)
1308
 
1309
 
1310
/* Define the classes of registers for register constraints in the
1311
   machine description.  Also define ranges of constants.
1312
 
1313
   One of the classes must always be named ALL_REGS and include all hard regs.
1314
   If there is more than one class, another class must be named NO_REGS
1315
   and contain no registers.
1316
 
1317
   The name GENERAL_REGS must be the name of a class (or an alias for
1318
   another name such as ALL_REGS).  This is the class of registers
1319
   that is allowed by "g" or "r" in a register constraint.
1320
   Also, registers outside this class are allocated only when
1321
   instructions express preferences for them.
1322
 
1323
   The classes must be numbered in nondecreasing order; that is,
1324
   a larger-numbered class must never be contained completely
1325
   in a smaller-numbered class.
1326
 
1327
   For any two classes, it is very desirable that there be another
1328
   class that represents their union.  */
1329
 
1330
/* The SH has two sorts of general registers, R0 and the rest.  R0 can
1331
   be used as the destination of some of the arithmetic ops. There are
1332
   also some special purpose registers; the T bit register, the
1333
   Procedure Return Register and the Multiply Accumulate Registers.  */
1334
/* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
1335
   reg_class_subunion.  We don't want to have an actual union class
1336
   of these, because it would only be used when both classes are calculated
1337
   to give the same cost, but there is only one FPUL register.
1338
   Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
1339
   applying to the actual instruction alternative considered.  E.g., the
1340
   y/r alternative of movsi_ie is considered to have no more cost that
1341
   the r/r alternative, which is patently untrue.  */
1342
 
1343
enum reg_class
1344
{
1345
  NO_REGS,
1346
  R0_REGS,
1347
  PR_REGS,
1348
  T_REGS,
1349
  MAC_REGS,
1350
  FPUL_REGS,
1351
  SIBCALL_REGS,
1352
  GENERAL_REGS,
1353
  FP0_REGS,
1354
  FP_REGS,
1355
  DF_HI_REGS,
1356
  DF_REGS,
1357
  FPSCR_REGS,
1358
  GENERAL_FP_REGS,
1359
  GENERAL_DF_REGS,
1360
  TARGET_REGS,
1361
  ALL_REGS,
1362
  LIM_REG_CLASSES
1363
};
1364
 
1365
#define N_REG_CLASSES  (int) LIM_REG_CLASSES
1366
 
1367
/* Give names of register classes as strings for dump file.  */
1368
#define REG_CLASS_NAMES \
1369
{                       \
1370
  "NO_REGS",            \
1371
  "R0_REGS",            \
1372
  "PR_REGS",            \
1373
  "T_REGS",             \
1374
  "MAC_REGS",           \
1375
  "FPUL_REGS",          \
1376
  "SIBCALL_REGS",       \
1377
  "GENERAL_REGS",       \
1378
  "FP0_REGS",           \
1379
  "FP_REGS",            \
1380
  "DF_HI_REGS",         \
1381
  "DF_REGS",            \
1382
  "FPSCR_REGS",         \
1383
  "GENERAL_FP_REGS",    \
1384
  "GENERAL_DF_REGS",    \
1385
  "TARGET_REGS",        \
1386
  "ALL_REGS",           \
1387
}
1388
 
1389
/* Define which registers fit in which classes.
1390
   This is an initializer for a vector of HARD_REG_SET
1391
   of length N_REG_CLASSES.  */
1392
 
1393
#define REG_CLASS_CONTENTS                                              \
1394
{                                                                       \
1395
/* NO_REGS:  */                                                         \
1396
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },       \
1397
/* R0_REGS:  */                                                         \
1398
  { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },       \
1399
/* PR_REGS:  */                                                         \
1400
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 },       \
1401
/* T_REGS:  */                                                          \
1402
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 },       \
1403
/* MAC_REGS:  */                                                        \
1404
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 },       \
1405
/* FPUL_REGS:  */                                                       \
1406
  { 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0x00400000 },       \
1407
/* SIBCALL_REGS: Initialized in CONDITIONAL_REGISTER_USAGE.  */ \
1408
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },       \
1409
/* GENERAL_REGS:  */                                                    \
1410
  { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 },       \
1411
/* FP0_REGS:  */                                                        \
1412
  { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 },       \
1413
/* FP_REGS:  */                                                         \
1414
  { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 },       \
1415
/* DF_HI_REGS:  Initialized in CONDITIONAL_REGISTER_USAGE.  */          \
1416
  { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 },       \
1417
/* DF_REGS:  */                                                         \
1418
  { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 },       \
1419
/* FPSCR_REGS:  */                                                      \
1420
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 },       \
1421
/* GENERAL_FP_REGS:  */                                                 \
1422
  { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03020000 },       \
1423
/* GENERAL_DF_REGS:  */                                                 \
1424
  { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0302ff00 },       \
1425
/* TARGET_REGS:  */                                                     \
1426
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff },       \
1427
/* ALL_REGS:  */                                                        \
1428
  { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03ffffff },       \
1429
}
1430
 
1431
/* The same information, inverted:
1432
   Return the class number of the smallest class containing
1433
   reg number REGNO.  This could be a conditional expression
1434
   or could index an array.  */
1435
 
1436
extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
1437
#define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
1438
 
1439
/* When defined, the compiler allows registers explicitly used in the
1440
   rtl to be used as spill registers but prevents the compiler from
1441
   extending the lifetime of these registers.  */
1442
 
1443
#define SMALL_REGISTER_CLASSES (! TARGET_SHMEDIA)
1444
 
1445
/* The order in which register should be allocated.  */
1446
/* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
1447
   and GENERAL_FP_REGS the alternate class.  Since FP0 is likely to be
1448
   spilled or used otherwise, we better have the FP_REGS allocated first.  */
1449
#define REG_ALLOC_ORDER \
1450
  {/* Caller-saved FPRs */ \
1451
    65, 66, 67, 68, 69, 70, 71, 64, \
1452
    72, 73, 74, 75, 80, 81, 82, 83, \
1453
    84, 85, 86, 87, 88, 89, 90, 91, \
1454
    92, 93, 94, 95, 96, 97, 98, 99, \
1455
   /* Callee-saved FPRs */ \
1456
    76, 77, 78, 79,100,101,102,103, \
1457
   104,105,106,107,108,109,110,111, \
1458
   112,113,114,115,116,117,118,119, \
1459
   120,121,122,123,124,125,126,127, \
1460
   136,137,138,139,140,141,142,143, \
1461
   /* FPSCR */ 151, \
1462
   /* Caller-saved GPRs (except 8/9 on SH1-4) */ \
1463
     1,  2,  3,  7,  6,  5,  4,  0, \
1464
     8,  9, 17, 19, 20, 21, 22, 23, \
1465
    36, 37, 38, 39, 40, 41, 42, 43, \
1466
    60, 61, 62, \
1467
   /* SH1-4 callee-saved saved GPRs / SH5 partially-saved GPRs */ \
1468
    10, 11, 12, 13, 14, 18, \
1469
    /* SH5 callee-saved GPRs */ \
1470
    28, 29, 30, 31, 32, 33, 34, 35, \
1471
    44, 45, 46, 47, 48, 49, 50, 51, \
1472
    52, 53, 54, 55, 56, 57, 58, 59, \
1473
   /* FPUL */ 150, \
1474
   /* SH5 branch target registers */ \
1475
   128,129,130,131,132,133,134,135, \
1476
   /* Fixed registers */ \
1477
    15, 16, 24, 25, 26, 27, 63,144, \
1478
   145,146,147,148,149,152,153 }
1479
 
1480
/* The class value for index registers, and the one for base regs.  */
1481
#define INDEX_REG_CLASS \
1482
  (!ALLOW_INDEXED_ADDRESS ? NO_REGS : TARGET_SHMEDIA ? GENERAL_REGS : R0_REGS)
1483
#define BASE_REG_CLASS   GENERAL_REGS
1484
 
1485
/* Get reg_class from a letter such as appears in the machine
1486
   description.  */
1487
extern enum reg_class reg_class_from_letter[];
1488
 
1489
/* We might use 'Rxx' constraints in the future for exotic reg classes.*/
1490
#define REG_CLASS_FROM_CONSTRAINT(C, STR) \
1491
  (ISLOWER (C) ? reg_class_from_letter[(C)-'a'] : NO_REGS )
1492
 
1493
/* Overview of uppercase letter constraints:
1494
   A: Addresses (constraint len == 3)
1495
    Ac4: sh4 cache operations
1496
    Ac5: sh5 cache operations
1497
   Bxx: miscellaneous constraints
1498
    Bsc: SCRATCH - for the scratch register in movsi_ie in the
1499
         fldi0 / fldi0 cases
1500
   C: Constants other than only CONST_INT (constraint len == 3)
1501
    C16: 16 bit constant, literal or symbolic
1502
    Csy: label or symbol
1503
    Cpg: non-explicit constants that can be directly loaded into a general
1504
         purpose register in PIC code.  like 's' except we don't allow
1505
         PIC_DIRECT_ADDR_P
1506
   IJKLMNOP: CONT_INT constants
1507
    Ixx: signed xx bit
1508
    J16: 0xffffffff00000000 | 0x00000000ffffffff
1509
    Kxx: unsigned xx bit
1510
    M: 1
1511
    N: 0
1512
    P27: 1 | 2 | 8 | 16
1513
   Q: pc relative load operand
1514
   Rxx: reserved for exotic register classes.
1515
   S: extra memory (storage) constraints (constraint len == 3)
1516
    Sua: unaligned memory operations
1517
   W: vector
1518
   Z: zero in any mode
1519
 
1520
   unused CONST_INT constraint letters: LO
1521
   unused EXTRA_CONSTRAINT letters: D T U Y */
1522
 
1523
#define CONSTRAINT_LEN(C,STR) \
1524
  (((C) == 'A' || (C) == 'B' || (C) == 'C' \
1525
    || (C) == 'I' || (C) == 'J' || (C) == 'K' || (C) == 'P' \
1526
    || (C) == 'R' || (C) == 'S') \
1527
   ? 3 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1528
 
1529
/* The letters I, J, K, L and M in a register constraint string
1530
   can be used to stand for particular ranges of immediate operands.
1531
   This macro defines what the ranges are.
1532
   C is the letter, and VALUE is a constant value.
1533
   Return 1 if VALUE is in the range specified by C.
1534
        I08: arithmetic operand -127..128, as used in add, sub, etc
1535
        I16: arithmetic operand -32768..32767, as used in SHmedia movi and shori
1536
        P27: shift operand 1,2,8 or 16
1537
        K08: logical operand 0..255, as used in and, or, etc.
1538
        M: constant 1
1539
        N: constant 0
1540
        I06: arithmetic operand -32..31, as used in SHmedia beqi, bnei and xori
1541
        I10: arithmetic operand -512..511, as used in SHmedia andi, ori
1542
*/
1543
 
1544
#define CONST_OK_FOR_I06(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32 \
1545
                                 && ((HOST_WIDE_INT)(VALUE)) <= 31)
1546
#define CONST_OK_FOR_I08(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
1547
                                 && ((HOST_WIDE_INT)(VALUE)) <= 127)
1548
#define CONST_OK_FOR_I10(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -512 \
1549
                                 && ((HOST_WIDE_INT)(VALUE)) <= 511)
1550
#define CONST_OK_FOR_I16(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32768 \
1551
                                 && ((HOST_WIDE_INT)(VALUE)) <= 32767)
1552
#define CONST_OK_FOR_I20(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -524288 \
1553
                                 && ((HOST_WIDE_INT)(VALUE)) <= 524287 \
1554
                                 && TARGET_SH2A)
1555
#define CONST_OK_FOR_I(VALUE, STR) \
1556
  ((STR)[1] == '0' && (STR)[2] == '6' ? CONST_OK_FOR_I06 (VALUE) \
1557
   : (STR)[1] == '0' && (STR)[2] == '8' ? CONST_OK_FOR_I08 (VALUE) \
1558
   : (STR)[1] == '1' && (STR)[2] == '0' ? CONST_OK_FOR_I10 (VALUE) \
1559
   : (STR)[1] == '1' && (STR)[2] == '6' ? CONST_OK_FOR_I16 (VALUE) \
1560
   : (STR)[1] == '2' && (STR)[2] == '0' ? CONST_OK_FOR_I20 (VALUE) \
1561
   : 0)
1562
 
1563
#define CONST_OK_FOR_J16(VALUE) \
1564
  ((HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) 0xffffffff) \
1565
   || (HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) -1 << 32))
1566
#define CONST_OK_FOR_J(VALUE, STR) \
1567
  ((STR)[1] == '1' && (STR)[2] == '6' ? CONST_OK_FOR_J16 (VALUE) \
1568
   : 0)
1569
 
1570
#define CONST_OK_FOR_K08(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
1571
                                 && ((HOST_WIDE_INT)(VALUE)) <= 255)
1572
#define CONST_OK_FOR_K(VALUE, STR) \
1573
  ((STR)[1] == '0' && (STR)[2] == '8' ? CONST_OK_FOR_K08 (VALUE) \
1574
   : 0)
1575
#define CONST_OK_FOR_P27(VALUE) \
1576
  ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
1577
#define CONST_OK_FOR_P(VALUE, STR) \
1578
  ((STR)[1] == '2' && (STR)[2] == '7' ? CONST_OK_FOR_P27 (VALUE) \
1579
   : 0)
1580
#define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
1581
#define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
1582
#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR)        \
1583
     ((C) == 'I' ? CONST_OK_FOR_I ((VALUE), (STR))      \
1584
    : (C) == 'J' ? CONST_OK_FOR_J ((VALUE), (STR))      \
1585
    : (C) == 'K' ? CONST_OK_FOR_K ((VALUE), (STR))      \
1586
    : (C) == 'M' ? CONST_OK_FOR_M (VALUE)               \
1587
    : (C) == 'N' ? CONST_OK_FOR_N (VALUE)               \
1588
    : (C) == 'P' ? CONST_OK_FOR_P ((VALUE), (STR))      \
1589
    : 0)
1590
 
1591
/* Similar, but for floating constants, and defining letters G and H.
1592
   Here VALUE is the CONST_DOUBLE rtx itself.  */
1593
 
1594
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)          \
1595
((C) == 'G' ? (fp_zero_operand (VALUE) && fldi_ok ())   \
1596
 : (C) == 'H' ? (fp_one_operand (VALUE) && fldi_ok ())  \
1597
 : (C) == 'F')
1598
 
1599
/* Given an rtx X being reloaded into a reg required to be
1600
   in class CLASS, return the class of reg to actually use.
1601
   In general this is just CLASS; but on some machines
1602
   in some cases it is preferable to use a more restrictive class.  */
1603
 
1604
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1605
  ((CLASS) == NO_REGS && TARGET_SHMEDIA \
1606
   && (GET_CODE (X) == CONST_DOUBLE \
1607
       || GET_CODE (X) == SYMBOL_REF \
1608
       || PIC_DIRECT_ADDR_P (X)) \
1609
   ? GENERAL_REGS \
1610
   : (CLASS)) \
1611
 
1612
#define SECONDARY_INOUT_RELOAD_CLASS(CLASS,MODE,X,ELSE) \
1613
  ((((REGCLASS_HAS_FP_REG (CLASS)                                       \
1614
      && (GET_CODE (X) == REG                                           \
1615
      && (GENERAL_OR_AP_REGISTER_P (REGNO (X))                          \
1616
          || (FP_REGISTER_P (REGNO (X)) && (MODE) == SImode             \
1617
              && TARGET_FMOVD))))                                       \
1618
     || (REGCLASS_HAS_GENERAL_REG (CLASS)                               \
1619
         && GET_CODE (X) == REG                                         \
1620
         && FP_REGISTER_P (REGNO (X))))                                 \
1621
    && ! TARGET_SHMEDIA                                                 \
1622
    && ((MODE) == SFmode || (MODE) == SImode))                          \
1623
   ? FPUL_REGS                                                          \
1624
   : (((CLASS) == FPUL_REGS                                             \
1625
       || (REGCLASS_HAS_FP_REG (CLASS)                                  \
1626
           && ! TARGET_SHMEDIA && MODE == SImode))                      \
1627
      && (GET_CODE (X) == MEM                                           \
1628
          || (GET_CODE (X) == REG                                       \
1629
              && (REGNO (X) >= FIRST_PSEUDO_REGISTER                    \
1630
                  || REGNO (X) == T_REG                                 \
1631
                  || system_reg_operand (X, VOIDmode)))))               \
1632
   ? GENERAL_REGS                                                       \
1633
   : (((CLASS) == TARGET_REGS                                           \
1634
       || (TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS))                  \
1635
      && !EXTRA_CONSTRAINT_Csy (X)                                      \
1636
      && (GET_CODE (X) != REG || ! GENERAL_REGISTER_P (REGNO (X))))     \
1637
   ? GENERAL_REGS                                                       \
1638
   : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS)                       \
1639
      && GET_CODE (X) == REG && ! GENERAL_REGISTER_P (REGNO (X))        \
1640
      && (CLASS) != REGNO_REG_CLASS (REGNO (X)))                        \
1641
   ? GENERAL_REGS                                                       \
1642
   : ((CLASS) != GENERAL_REGS && GET_CODE (X) == REG                    \
1643
      && TARGET_REGISTER_P (REGNO (X)))                                 \
1644
   ? GENERAL_REGS : (ELSE))
1645
 
1646
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
1647
 SECONDARY_INOUT_RELOAD_CLASS(CLASS,MODE,X,NO_REGS)
1648
 
1649
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X)  \
1650
  ((REGCLASS_HAS_FP_REG (CLASS)                                         \
1651
    && ! TARGET_SHMEDIA                                                 \
1652
    && immediate_operand ((X), (MODE))                                  \
1653
    && ! ((fp_zero_operand (X) || fp_one_operand (X))                   \
1654
          && (MODE) == SFmode && fldi_ok ()))                           \
1655
   ? R0_REGS                                                            \
1656
   : ((CLASS) == FPUL_REGS                                              \
1657
      && ((GET_CODE (X) == REG                                          \
1658
           && (REGNO (X) == MACL_REG || REGNO (X) == MACH_REG           \
1659
               || REGNO (X) == T_REG))                                  \
1660
          || GET_CODE (X) == PLUS))                                     \
1661
   ? GENERAL_REGS                                                       \
1662
   : (CLASS) == FPUL_REGS && immediate_operand ((X), (MODE))            \
1663
   ? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I08 (INTVAL (X))        \
1664
      ? GENERAL_REGS                                                    \
1665
      : R0_REGS)                                                        \
1666
   : ((CLASS) == FPSCR_REGS                                             \
1667
      && ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER)   \
1668
          || (GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)))\
1669
   ? GENERAL_REGS                                                       \
1670
   : (REGCLASS_HAS_FP_REG (CLASS)                                       \
1671
      && TARGET_SHMEDIA                                                 \
1672
      && immediate_operand ((X), (MODE))                                \
1673
      && (X) != CONST0_RTX (GET_MODE (X))                               \
1674
      && GET_MODE (X) != V4SFmode)                                      \
1675
   ? GENERAL_REGS                                                       \
1676
   : (((MODE) == QImode || (MODE) == HImode)                            \
1677
      && TARGET_SHMEDIA && inqhi_operand ((X), (MODE)))                 \
1678
   ? GENERAL_REGS                                                       \
1679
   : (TARGET_SHMEDIA && (CLASS) == GENERAL_REGS                         \
1680
      && (GET_CODE (X) == LABEL_REF || PIC_DIRECT_ADDR_P (X)))          \
1681
   ? TARGET_REGS                                                        \
1682
   : SECONDARY_INOUT_RELOAD_CLASS((CLASS),(MODE),(X), NO_REGS))
1683
 
1684
/* Return the maximum number of consecutive registers
1685
   needed to represent mode MODE in a register of class CLASS.
1686
 
1687
   If TARGET_SHMEDIA, we need two FP registers per word.
1688
   Otherwise we will need at most one register per word.  */
1689
#define CLASS_MAX_NREGS(CLASS, MODE) \
1690
    (TARGET_SHMEDIA \
1691
     && TEST_HARD_REG_BIT (reg_class_contents[CLASS], FIRST_FP_REG) \
1692
     ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2) \
1693
     : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1694
 
1695
/* If defined, gives a class of registers that cannot be used as the
1696
   operand of a SUBREG that changes the mode of the object illegally.  */
1697
/* ??? We need to renumber the internal numbers for the frnn registers
1698
   when in little endian in order to allow mode size changes.  */
1699
 
1700
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)                           \
1701
  sh_cannot_change_mode_class (FROM, TO, CLASS)
1702
 
1703
/* Stack layout; function entry, exit and calling.  */
1704
 
1705
/* Define the number of registers that can hold parameters.
1706
   These macros are used only in other macro definitions below.  */
1707
 
1708
#define NPARM_REGS(MODE) \
1709
  (TARGET_FPU_ANY && (MODE) == SFmode \
1710
   ? (TARGET_SH5 ? 12 : 8) \
1711
   : (TARGET_SH4 || TARGET_SH2A_DOUBLE) && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1712
                    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1713
   ? (TARGET_SH5 ? 12 : 8) \
1714
   : (TARGET_SH5 ? 8 : 4))
1715
 
1716
#define FIRST_PARM_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 4))
1717
#define FIRST_RET_REG  (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 0))
1718
 
1719
#define FIRST_FP_PARM_REG (FIRST_FP_REG + (TARGET_SH5 ? 0 : 4))
1720
#define FIRST_FP_RET_REG FIRST_FP_REG
1721
 
1722
/* Define this if pushing a word on the stack
1723
   makes the stack pointer a smaller address.  */
1724
#define STACK_GROWS_DOWNWARD
1725
 
1726
/*  Define this macro to nonzero if the addresses of local variable slots
1727
    are at negative offsets from the frame pointer.  */
1728
#define FRAME_GROWS_DOWNWARD 1
1729
 
1730
/* Offset from the frame pointer to the first local variable slot to
1731
   be allocated.  */
1732
#define STARTING_FRAME_OFFSET  0
1733
 
1734
/* If we generate an insn to push BYTES bytes,
1735
   this says how many the stack pointer really advances by.  */
1736
/* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
1737
   When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
1738
   do correct alignment.  */
1739
#if 0
1740
#define PUSH_ROUNDING(NPUSHED)  (((NPUSHED) + 3) & ~3)
1741
#endif
1742
 
1743
/* Offset of first parameter from the argument pointer register value.  */
1744
#define FIRST_PARM_OFFSET(FNDECL)  0
1745
 
1746
/* Value is the number of byte of arguments automatically
1747
   popped when returning from a subroutine call.
1748
   FUNDECL is the declaration node of the function (as a tree),
1749
   FUNTYPE is the data type of the function (as a tree),
1750
   or for a library call it is an identifier node for the subroutine name.
1751
   SIZE is the number of bytes of arguments passed on the stack.
1752
 
1753
   On the SH, the caller does not pop any of its arguments that were passed
1754
   on the stack.  */
1755
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE)  0
1756
 
1757
/* Value is the number of bytes of arguments automatically popped when
1758
   calling a subroutine.
1759
   CUM is the accumulated argument list.
1760
 
1761
   On SHcompact, the call trampoline pops arguments off the stack.  */
1762
#define CALL_POPS_ARGS(CUM) (TARGET_SHCOMPACT ? (CUM).stack_regs * 8 : 0)
1763
 
1764
/* Some subroutine macros specific to this machine.  */
1765
 
1766
#define BASE_RETURN_VALUE_REG(MODE) \
1767
  ((TARGET_FPU_ANY && ((MODE) == SFmode))                       \
1768
   ? FIRST_FP_RET_REG                                   \
1769
   : TARGET_FPU_ANY && (MODE) == SCmode         \
1770
   ? FIRST_FP_RET_REG                                   \
1771
   : (TARGET_FPU_DOUBLE                                 \
1772
      && ((MODE) == DFmode || (MODE) == SFmode          \
1773
          || (MODE) == DCmode || (MODE) == SCmode ))    \
1774
   ? FIRST_FP_RET_REG                                   \
1775
   : FIRST_RET_REG)
1776
 
1777
#define BASE_ARG_REG(MODE) \
1778
  ((TARGET_SH2E && ((MODE) == SFmode))                  \
1779
   ? FIRST_FP_PARM_REG                                  \
1780
   : (TARGET_SH4 || TARGET_SH2A_DOUBLE) && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1781
                    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1782
   ? FIRST_FP_PARM_REG                                  \
1783
   : FIRST_PARM_REG)
1784
 
1785
/* Define how to find the value returned by a function.
1786
   VALTYPE is the data type of the value (as a tree).
1787
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1788
   otherwise, FUNC is 0.
1789
   For the SH, this is like LIBCALL_VALUE, except that we must change the
1790
   mode like PROMOTE_MODE does.
1791
   ??? PROMOTE_MODE is ignored for non-scalar types.  The set of types
1792
   tested here has to be kept in sync with the one in explow.c:promote_mode.  */
1793
 
1794
#define FUNCTION_VALUE(VALTYPE, FUNC)                                   \
1795
  gen_rtx_REG (                                                         \
1796
           ((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT           \
1797
             && GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < 4                 \
1798
             && (TREE_CODE (VALTYPE) == INTEGER_TYPE                    \
1799
                 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE                \
1800
                 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE                 \
1801
                 || TREE_CODE (VALTYPE) == CHAR_TYPE                    \
1802
                 || TREE_CODE (VALTYPE) == REAL_TYPE                    \
1803
                 || TREE_CODE (VALTYPE) == OFFSET_TYPE))                \
1804
             && sh_promote_prototypes (VALTYPE)                         \
1805
            ? (TARGET_SHMEDIA64 ? DImode : SImode) : TYPE_MODE (VALTYPE)), \
1806
           BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
1807
 
1808
/* Define how to find the value returned by a library function
1809
   assuming the value has mode MODE.  */
1810
#define LIBCALL_VALUE(MODE) \
1811
  gen_rtx_REG ((MODE), BASE_RETURN_VALUE_REG (MODE));
1812
 
1813
/* 1 if N is a possible register number for a function value.  */
1814
#define FUNCTION_VALUE_REGNO_P(REGNO) \
1815
  ((REGNO) == FIRST_RET_REG || (TARGET_SH2E && (REGNO) == FIRST_FP_RET_REG) \
1816
   || (TARGET_SHMEDIA_FPU && (REGNO) == FIRST_FP_RET_REG))
1817
 
1818
/* 1 if N is a possible register number for function argument passing.  */
1819
/* ??? There are some callers that pass REGNO as int, and others that pass
1820
   it as unsigned.  We get warnings unless we do casts everywhere.  */
1821
#define FUNCTION_ARG_REGNO_P(REGNO) \
1822
  (((unsigned) (REGNO) >= (unsigned) FIRST_PARM_REG                     \
1823
    && (unsigned) (REGNO) < (unsigned) (FIRST_PARM_REG + NPARM_REGS (SImode)))\
1824
   || (TARGET_FPU_ANY                                                   \
1825
       && (unsigned) (REGNO) >= (unsigned) FIRST_FP_PARM_REG            \
1826
       && (unsigned) (REGNO) < (unsigned) (FIRST_FP_PARM_REG            \
1827
                                           + NPARM_REGS (SFmode))))
1828
 
1829
/* Define a data type for recording info about an argument list
1830
   during the scan of that argument list.  This data type should
1831
   hold all necessary information about the function itself
1832
   and about the args processed so far, enough to enable macros
1833
   such as FUNCTION_ARG to determine where the next arg should go.
1834
 
1835
   On SH, this is a single integer, which is a number of words
1836
   of arguments scanned so far (including the invisible argument,
1837
   if any, which holds the structure-value-address).
1838
   Thus NARGREGS or more means all following args should go on the stack.  */
1839
 
1840
enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1841
struct sh_args {
1842
    int arg_count[2];
1843
    int force_mem;
1844
  /* Nonzero if a prototype is available for the function.  */
1845
    int prototype_p;
1846
  /* The number of an odd floating-point register, that should be used
1847
     for the next argument of type float.  */
1848
    int free_single_fp_reg;
1849
  /* Whether we're processing an outgoing function call.  */
1850
    int outgoing;
1851
  /* The number of general-purpose registers that should have been
1852
     used to pass partial arguments, that are passed totally on the
1853
     stack.  On SHcompact, a call trampoline will pop them off the
1854
     stack before calling the actual function, and, if the called
1855
     function is implemented in SHcompact mode, the incoming arguments
1856
     decoder will push such arguments back onto the stack.  For
1857
     incoming arguments, STACK_REGS also takes into account other
1858
     arguments passed by reference, that the decoder will also push
1859
     onto the stack.  */
1860
    int stack_regs;
1861
  /* The number of general-purpose registers that should have been
1862
     used to pass arguments, if the arguments didn't have to be passed
1863
     by reference.  */
1864
    int byref_regs;
1865
  /* Set as by shcompact_byref if the current argument is to be passed
1866
     by reference.  */
1867
    int byref;
1868
 
1869
  /* call_cookie is a bitmask used by call expanders, as well as
1870
     function prologue and epilogues, to allow SHcompact to comply
1871
     with the SH5 32-bit ABI, that requires 64-bit registers to be
1872
     used even though only the lower 32-bit half is visible in
1873
     SHcompact mode.  The strategy is to call SHmedia trampolines.
1874
 
1875
     The alternatives for each of the argument-passing registers are
1876
     (a) leave it unchanged; (b) pop it off the stack; (c) load its
1877
     contents from the address in it; (d) add 8 to it, storing the
1878
     result in the next register, then (c); (e) copy it from some
1879
     floating-point register,
1880
 
1881
     Regarding copies from floating-point registers, r2 may only be
1882
     copied from dr0.  r3 may be copied from dr0 or dr2.  r4 maybe
1883
     copied from dr0, dr2 or dr4.  r5 maybe copied from dr0, dr2,
1884
     dr4 or dr6.  r6 may be copied from dr0, dr2, dr4, dr6 or dr8.
1885
     r7 through to r9 may be copied from dr0, dr2, dr4, dr8, dr8 or
1886
     dr10.
1887
 
1888
     The bit mask is structured as follows:
1889
 
1890
     - 1 bit to tell whether to set up a return trampoline.
1891
 
1892
     - 3 bits to count the number consecutive registers to pop off the
1893
       stack.
1894
 
1895
     - 4 bits for each of r9, r8, r7 and r6.
1896
 
1897
     - 3 bits for each of r5, r4, r3 and r2.
1898
 
1899
     - 3 bits set to 0 (the most significant ones)
1900
 
1901
        3           2            1           0
1902
       1098 7654 3210 9876 5432 1098 7654 3210
1903
       FLPF LPFL PFLP FFLP FFLP FFLP FFLP SSST
1904
       2223 3344 4555 6666 7777 8888 9999 SSS-
1905
 
1906
     - If F is set, the register must be copied from an FP register,
1907
       whose number is encoded in the remaining bits.
1908
 
1909
     - Else, if L is set, the register must be loaded from the address
1910
       contained in it.  If the P bit is *not* set, the address of the
1911
       following dword should be computed first, and stored in the
1912
       following register.
1913
 
1914
     - Else, if P is set, the register alone should be popped off the
1915
       stack.
1916
 
1917
     - After all this processing, the number of registers represented
1918
       in SSS will be popped off the stack.  This is an optimization
1919
       for pushing/popping consecutive registers, typically used for
1920
       varargs and large arguments partially passed in registers.
1921
 
1922
     - If T is set, a return trampoline will be set up for 64-bit
1923
     return values to be split into 2 32-bit registers.  */
1924
#define CALL_COOKIE_RET_TRAMP_SHIFT 0
1925
#define CALL_COOKIE_RET_TRAMP(VAL) ((VAL) << CALL_COOKIE_RET_TRAMP_SHIFT)
1926
#define CALL_COOKIE_STACKSEQ_SHIFT 1
1927
#define CALL_COOKIE_STACKSEQ(VAL) ((VAL) << CALL_COOKIE_STACKSEQ_SHIFT)
1928
#define CALL_COOKIE_STACKSEQ_GET(COOKIE) \
1929
  (((COOKIE) >> CALL_COOKIE_STACKSEQ_SHIFT) & 7)
1930
#define CALL_COOKIE_INT_REG_SHIFT(REG) \
1931
  (4 * (7 - (REG)) + (((REG) <= 2) ? ((REG) - 2) : 1) + 3)
1932
#define CALL_COOKIE_INT_REG(REG, VAL) \
1933
  ((VAL) << CALL_COOKIE_INT_REG_SHIFT (REG))
1934
#define CALL_COOKIE_INT_REG_GET(COOKIE, REG) \
1935
  (((COOKIE) >> CALL_COOKIE_INT_REG_SHIFT (REG)) & ((REG) < 4 ? 7 : 15))
1936
    long call_cookie;
1937
 
1938
  /* This is set to nonzero when the call in question must use the Renesas ABI,
1939
     even without the -mrenesas option.  */
1940
    int renesas_abi;
1941
};
1942
 
1943
#define CUMULATIVE_ARGS  struct sh_args
1944
 
1945
#define GET_SH_ARG_CLASS(MODE) \
1946
  ((TARGET_FPU_ANY && (MODE) == SFmode) \
1947
   ? SH_ARG_FLOAT \
1948
   /* There's no mention of complex float types in the SH5 ABI, so we
1949
      should presumably handle them as aggregate types.  */ \
1950
   : TARGET_SH5 && GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1951
   ? SH_ARG_INT \
1952
   : TARGET_FPU_DOUBLE && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1953
                           || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1954
   ? SH_ARG_FLOAT : SH_ARG_INT)
1955
 
1956
#define ROUND_ADVANCE(SIZE) \
1957
  (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1958
 
1959
/* Round a register number up to a proper boundary for an arg of mode
1960
   MODE.
1961
 
1962
   The SH doesn't care about double alignment, so we only
1963
   round doubles to even regs when asked to explicitly.  */
1964
 
1965
#define ROUND_REG(CUM, MODE) \
1966
   (((TARGET_ALIGN_DOUBLE                                       \
1967
      || ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && ((MODE) == DFmode || (MODE) == DCmode)  \
1968
          && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
1969
     && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD)           \
1970
    ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)]           \
1971
       + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1))  \
1972
    : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
1973
 
1974
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1975
   for a call to a function whose data type is FNTYPE.
1976
   For a library call, FNTYPE is 0.
1977
 
1978
   On SH, the offset always starts at 0: the first parm reg is always
1979
   the same reg for a given argument class.
1980
 
1981
   For TARGET_HITACHI, the structure value pointer is passed in memory.  */
1982
 
1983
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1984
  sh_init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL), (N_NAMED_ARGS), VOIDmode)
1985
 
1986
#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1987
  sh_init_cumulative_args (& (CUM), NULL_TREE, (LIBNAME), NULL_TREE, 0, (MODE))
1988
 
1989
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
1990
        sh_function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1991
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)    \
1992
        sh_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1993
 
1994
/* Return boolean indicating arg of mode MODE will be passed in a reg.
1995
   This macro is only used in this file.  */
1996
 
1997
#define PASS_IN_REG_P(CUM, MODE, TYPE) \
1998
  (((TYPE) == 0 \
1999
    || (! TREE_ADDRESSABLE ((tree)(TYPE)) \
2000
        && (! (TARGET_HITACHI || (CUM).renesas_abi) \
2001
            || ! (AGGREGATE_TYPE_P (TYPE) \
2002
                  || (!TARGET_FPU_ANY \
2003
                      && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
2004
                          && GET_MODE_SIZE (MODE) > GET_MODE_SIZE (SFmode))))))) \
2005
   && ! (CUM).force_mem \
2006
   && (TARGET_SH2E \
2007
       ? ((MODE) == BLKmode \
2008
          ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
2009
              + int_size_in_bytes (TYPE)) \
2010
             <= NPARM_REGS (SImode) * UNITS_PER_WORD) \
2011
          : ((ROUND_REG((CUM), (MODE)) \
2012
              + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
2013
             <= NPARM_REGS (MODE))) \
2014
       : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
2015
 
2016
/* By accident we got stuck with passing SCmode on SH4 little endian
2017
   in two registers that are nominally successive - which is different from
2018
   two single SFmode values, where we take endianness translation into
2019
   account.  That does not work at all if an odd number of registers is
2020
   already in use, so that got fixed, but library functions are still more
2021
   likely to use complex numbers without mixing them with SFmode arguments
2022
   (which in C would have to be structures), so for the sake of ABI
2023
   compatibility the way SCmode values are passed when an even number of
2024
   FP registers is in use remains different from a pair of SFmode values for
2025
   now.
2026
   I.e.:
2027
   foo (double); a: fr5,fr4
2028
   foo (float a, float b); a: fr5 b: fr4
2029
   foo (__complex float a); a.real fr4 a.imag: fr5 - for consistency,
2030
                            this should be the other way round...
2031
   foo (float a, __complex float b); a: fr5 b.real: fr4 b.imag: fr7  */
2032
#define FUNCTION_ARG_SCmode_WART 1
2033
 
2034
/* If an argument of size 5, 6 or 7 bytes is to be passed in a 64-bit
2035
   register in SHcompact mode, it must be padded in the most
2036
   significant end.  This means that passing it by reference wouldn't
2037
   pad properly on a big-endian machine.  In this particular case, we
2038
   pass this argument on the stack, in a way that the call trampoline
2039
   will load its value into the appropriate register.  */
2040
#define SHCOMPACT_FORCE_ON_STACK(MODE,TYPE) \
2041
  ((MODE) == BLKmode \
2042
   && TARGET_SHCOMPACT \
2043
   && ! TARGET_LITTLE_ENDIAN \
2044
   && int_size_in_bytes (TYPE) > 4 \
2045
   && int_size_in_bytes (TYPE) < 8)
2046
 
2047
/* Minimum alignment for an argument to be passed by callee-copy
2048
   reference.  We need such arguments to be aligned to 8 byte
2049
   boundaries, because they'll be loaded using quad loads.  */
2050
#define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
2051
 
2052
/* The SH5 ABI requires floating-point arguments to be passed to
2053
   functions without a prototype in both an FP register and a regular
2054
   register or the stack.  When passing the argument in both FP and
2055
   general-purpose registers, list the FP register first.  */
2056
#define SH5_PROTOTYPELESS_FLOAT_ARG(CUM,MODE) \
2057
  (gen_rtx_PARALLEL                                                     \
2058
   ((MODE),                                                             \
2059
    gen_rtvec (2,                                                       \
2060
               gen_rtx_EXPR_LIST                                        \
2061
               (VOIDmode,                                               \
2062
                ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
2063
                 ? gen_rtx_REG ((MODE), FIRST_FP_PARM_REG               \
2064
                                + (CUM).arg_count[(int) SH_ARG_FLOAT])  \
2065
                 : NULL_RTX),                                           \
2066
                const0_rtx),                                            \
2067
               gen_rtx_EXPR_LIST                                        \
2068
               (VOIDmode,                                               \
2069
                ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
2070
                 ? gen_rtx_REG ((MODE), FIRST_PARM_REG                  \
2071
                                + (CUM).arg_count[(int) SH_ARG_INT])    \
2072
                 : gen_rtx_REG ((MODE), FIRST_FP_PARM_REG               \
2073
                                + (CUM).arg_count[(int) SH_ARG_FLOAT])), \
2074
                const0_rtx))))
2075
 
2076
/* The SH5 ABI requires regular registers or stack slots to be
2077
   reserved for floating-point arguments.  Registers are taken care of
2078
   in FUNCTION_ARG_ADVANCE, but stack slots must be reserved here.
2079
   Unfortunately, there's no way to just reserve a stack slot, so
2080
   we'll end up needlessly storing a copy of the argument in the
2081
   stack.  For incoming arguments, however, the PARALLEL will be
2082
   optimized to the register-only form, and the value in the stack
2083
   slot won't be used at all.  */
2084
#define SH5_PROTOTYPED_FLOAT_ARG(CUM,MODE,REG) \
2085
  ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode)              \
2086
   ? gen_rtx_REG ((MODE), (REG))                                        \
2087
   : gen_rtx_PARALLEL ((MODE),                                          \
2088
                       gen_rtvec (2,                                    \
2089
                                  gen_rtx_EXPR_LIST                     \
2090
                                  (VOIDmode, NULL_RTX,                  \
2091
                                   const0_rtx),                         \
2092
                                  gen_rtx_EXPR_LIST                     \
2093
                                  (VOIDmode, gen_rtx_REG ((MODE),       \
2094
                                                          (REG)),       \
2095
                                   const0_rtx))))
2096
 
2097
#define SH5_WOULD_BE_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2098
  (TARGET_SH5                                                   \
2099
   && ((MODE) == BLKmode || (MODE) == TImode || (MODE) == CDImode \
2100
       || (MODE) == DCmode) \
2101
   && ((CUM).arg_count[(int) SH_ARG_INT]                        \
2102
       + (int_size_in_bytes (TYPE) + 7) / 8) > NPARM_REGS (SImode))
2103
 
2104
/* Perform any needed actions needed for a function that is receiving a
2105
   variable number of arguments.  */
2106
 
2107
/* Implement `va_start' for varargs and stdarg.  */
2108
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2109
  sh_va_start (valist, nextarg)
2110
 
2111
/* Call the function profiler with a given profile label.
2112
   We use two .aligns, so as to make sure that both the .long is aligned
2113
   on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
2114
   from the trapa instruction.  */
2115
 
2116
#define FUNCTION_PROFILER(STREAM,LABELNO)                       \
2117
{                                                               \
2118
  if (TARGET_SHMEDIA)                                           \
2119
    {                                                           \
2120
      fprintf((STREAM), "\tmovi\t33,r0\n");                     \
2121
      fprintf((STREAM), "\ttrapa\tr0\n");                       \
2122
      asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO));    \
2123
    }                                                           \
2124
  else                                                          \
2125
    {                                                           \
2126
      fprintf((STREAM), "\t.align\t2\n");                       \
2127
      fprintf((STREAM), "\ttrapa\t#33\n");                      \
2128
      fprintf((STREAM), "\t.align\t2\n");                       \
2129
      asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO));    \
2130
    }                                                           \
2131
}
2132
 
2133
/* Define this macro if the code for function profiling should come
2134
   before the function prologue.  Normally, the profiling code comes
2135
   after.  */
2136
 
2137
#define PROFILE_BEFORE_PROLOGUE
2138
 
2139
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2140
   the stack pointer does not matter.  The value is tested only in
2141
   functions that have frame pointers.
2142
   No definition is equivalent to always zero.  */
2143
 
2144
#define EXIT_IGNORE_STACK 1
2145
 
2146
/*
2147
   On the SH, the trampoline looks like
2148
   2 0002 D202                  mov.l   l2,r2
2149
   1 0000 D301                  mov.l   l1,r3
2150
   3 0004 422B                  jmp     @r2
2151
   4 0006 0009                  nop
2152
   5 0008 00000000      l1:     .long   area
2153
   6 000c 00000000      l2:     .long   function  */
2154
 
2155
/* Length in units of the trampoline for entering a nested function.  */
2156
#define TRAMPOLINE_SIZE  (TARGET_SHMEDIA64 ? 40 : TARGET_SH5 ? 24 : 16)
2157
 
2158
/* Alignment required for a trampoline in bits .  */
2159
#define TRAMPOLINE_ALIGNMENT \
2160
  ((CACHE_LOG < 3 || (TARGET_SMALLCODE && ! TARGET_HARVARD)) ? 32 \
2161
   : TARGET_SHMEDIA ? 256 : 64)
2162
 
2163
/* Emit RTL insns to initialize the variable parts of a trampoline.
2164
   FNADDR is an RTX for the address of the function's pure code.
2165
   CXT is an RTX for the static chain value for the function.  */
2166
 
2167
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
2168
  sh_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
2169
 
2170
/* On SH5, trampolines are SHmedia code, so add 1 to the address.  */
2171
 
2172
#define TRAMPOLINE_ADJUST_ADDRESS(TRAMP) do                             \
2173
{                                                                       \
2174
  if (TARGET_SHMEDIA)                                                   \
2175
    (TRAMP) = expand_simple_binop (Pmode, PLUS, (TRAMP), const1_rtx,    \
2176
                                   gen_reg_rtx (Pmode), 0,               \
2177
                                   OPTAB_LIB_WIDEN);                    \
2178
} while (0)
2179
 
2180
/* A C expression whose value is RTL representing the value of the return
2181
   address for the frame COUNT steps up from the current frame.
2182
   FRAMEADDR is already the frame pointer of the COUNT frame, so we
2183
   can ignore COUNT.  */
2184
 
2185
#define RETURN_ADDR_RTX(COUNT, FRAME)   \
2186
  (((COUNT) == 0) ? sh_get_pr_initial_val () : (rtx) 0)
2187
 
2188
/* A C expression whose value is RTL representing the location of the
2189
   incoming return address at the beginning of any function, before the
2190
   prologue.  This RTL is either a REG, indicating that the return
2191
   value is saved in REG, or a MEM representing a location in
2192
   the stack.  */
2193
#define INCOMING_RETURN_ADDR_RTX \
2194
  gen_rtx_REG (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG)
2195
 
2196
/* Addressing modes, and classification of registers for them.  */
2197
#define HAVE_POST_INCREMENT  TARGET_SH1
2198
#define HAVE_PRE_DECREMENT   TARGET_SH1
2199
 
2200
#define USE_LOAD_POST_INCREMENT(mode)    ((mode == SImode || mode == DImode) \
2201
                                           ? 0 : TARGET_SH1)
2202
#define USE_LOAD_PRE_DECREMENT(mode)     0
2203
#define USE_STORE_POST_INCREMENT(mode)   0
2204
#define USE_STORE_PRE_DECREMENT(mode)    ((mode == SImode || mode == DImode) \
2205
                                           ? 0 : TARGET_SH1)
2206
 
2207
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2208
  (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
2209
   < (TARGET_SMALLCODE ? 2 : ((ALIGN >= 32) ? 16 : 2)))
2210
 
2211
#define STORE_BY_PIECES_P(SIZE, ALIGN) \
2212
  (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
2213
   < (TARGET_SMALLCODE ? 2 : ((ALIGN >= 32) ? 16 : 2)))
2214
 
2215
/* Macros to check register numbers against specific register classes.  */
2216
 
2217
/* These assume that REGNO is a hard or pseudo reg number.
2218
   They give nonzero only if REGNO is a hard reg of the suitable class
2219
   or a pseudo reg currently allocated to a suitable hard reg.
2220
   Since they use reg_renumber, they are safe only once reg_renumber
2221
   has been allocated, which happens in local-alloc.c.  */
2222
 
2223
#define REGNO_OK_FOR_BASE_P(REGNO) \
2224
  (GENERAL_OR_AP_REGISTER_P (REGNO) \
2225
   || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
2226
#define REGNO_OK_FOR_INDEX_P(REGNO) \
2227
  (TARGET_SHMEDIA \
2228
   ? (GENERAL_REGISTER_P (REGNO) \
2229
      || GENERAL_REGISTER_P ((unsigned) reg_renumber[(REGNO)])) \
2230
   : (REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
2231
 
2232
/* Maximum number of registers that can appear in a valid memory
2233
   address.  */
2234
 
2235
#define MAX_REGS_PER_ADDRESS 2
2236
 
2237
/* Recognize any constant value that is a valid address.  */
2238
 
2239
#define CONSTANT_ADDRESS_P(X)   (GET_CODE (X) == LABEL_REF)
2240
 
2241
/* Nonzero if the constant value X is a legitimate general operand.  */
2242
 
2243
#define LEGITIMATE_CONSTANT_P(X) \
2244
  (TARGET_SHMEDIA                                                       \
2245
   ? ((GET_MODE (X) != DFmode                                           \
2246
       && GET_MODE_CLASS (GET_MODE (X)) != MODE_VECTOR_FLOAT)           \
2247
      || (X) == CONST0_RTX (GET_MODE (X))                               \
2248
      || ! TARGET_SHMEDIA_FPU                                           \
2249
      || TARGET_SHMEDIA64)                                              \
2250
   : (GET_CODE (X) != CONST_DOUBLE                                      \
2251
      || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode               \
2252
      || (TARGET_SH2E && (fp_zero_operand (X) || fp_one_operand (X)))))
2253
 
2254
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2255
   and check its validity for a certain class.
2256
   We have two alternate definitions for each of them.
2257
   The usual definition accepts all pseudo regs; the other rejects
2258
   them unless they have been allocated suitable hard regs.
2259
   The symbol REG_OK_STRICT causes the latter definition to be used.  */
2260
 
2261
#ifndef REG_OK_STRICT
2262
 
2263
/* Nonzero if X is a hard reg that can be used as a base reg
2264
   or if it is a pseudo reg.  */
2265
#define REG_OK_FOR_BASE_P(X) \
2266
  (GENERAL_OR_AP_REGISTER_P (REGNO (X)) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2267
 
2268
/* Nonzero if X is a hard reg that can be used as an index
2269
   or if it is a pseudo reg.  */
2270
#define REG_OK_FOR_INDEX_P(X) \
2271
  ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2272
    : REGNO (X) == R0_REG) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2273
 
2274
/* Nonzero if X/OFFSET is a hard reg that can be used as an index
2275
   or if X is a pseudo reg.  */
2276
#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2277
  ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2278
    : REGNO (X) == R0_REG && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2279
 
2280
#else
2281
 
2282
/* Nonzero if X is a hard reg that can be used as a base reg.  */
2283
#define REG_OK_FOR_BASE_P(X) \
2284
  REGNO_OK_FOR_BASE_P (REGNO (X))
2285
 
2286
/* Nonzero if X is a hard reg that can be used as an index.  */
2287
#define REG_OK_FOR_INDEX_P(X) \
2288
  REGNO_OK_FOR_INDEX_P (REGNO (X))
2289
 
2290
/* Nonzero if X/OFFSET is a hard reg that can be used as an index.  */
2291
#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2292
  (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
2293
 
2294
#endif
2295
 
2296
/* The 'Q' constraint is a pc relative load operand.  */
2297
#define EXTRA_CONSTRAINT_Q(OP)                                          \
2298
  (GET_CODE (OP) == MEM                                                 \
2299
   && ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF)                          \
2300
       || (GET_CODE (XEXP ((OP), 0)) == CONST                            \
2301
           && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS         \
2302
           && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \
2303
           && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
2304
 
2305
/* Extra address constraints.  */
2306
#define EXTRA_CONSTRAINT_A(OP, STR) 0
2307
 
2308
/* Constraint for selecting FLDI0 or FLDI1 instruction. If the clobber
2309
   operand is not SCRATCH (i.e. REG) then R0 is probably being
2310
   used, hence mova is being used, hence do not select this pattern */
2311
#define EXTRA_CONSTRAINT_Bsc(OP)    (GET_CODE(OP) == SCRATCH)
2312
#define EXTRA_CONSTRAINT_B(OP, STR) \
2313
  ((STR)[1] == 's' && (STR)[2] == 'c' ? EXTRA_CONSTRAINT_Bsc (OP) \
2314
   : 0)
2315
 
2316
/* The `C16' constraint is a 16-bit constant, literal or symbolic.  */
2317
#define EXTRA_CONSTRAINT_C16(OP) \
2318
  (GET_CODE (OP) == CONST \
2319
   && GET_CODE (XEXP ((OP), 0)) == SIGN_EXTEND \
2320
   && (GET_MODE (XEXP ((OP), 0)) == DImode \
2321
       || GET_MODE (XEXP ((OP), 0)) == SImode) \
2322
   && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == TRUNCATE \
2323
   && GET_MODE (XEXP (XEXP ((OP), 0), 0)) == HImode \
2324
   && (MOVI_SHORI_BASE_OPERAND_P (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) \
2325
       || (GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == ASHIFTRT \
2326
           && (MOVI_SHORI_BASE_OPERAND_P \
2327
               (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), 0))) \
2328
           && GET_CODE (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), \
2329
                              1)) == CONST_INT)))
2330
 
2331
/* Check whether OP is a datalabel unspec.  */
2332
#define DATALABEL_REF_NO_CONST_P(OP) \
2333
  (GET_CODE (OP) == UNSPEC \
2334
   && XINT ((OP), 1) == UNSPEC_DATALABEL \
2335
   && XVECLEN ((OP), 0) == 1 \
2336
   && GET_CODE (XVECEXP ((OP), 0, 0)) == LABEL_REF)
2337
 
2338
#define GOT_ENTRY_P(OP) \
2339
  (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2340
   && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
2341
 
2342
#define GOTPLT_ENTRY_P(OP) \
2343
  (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2344
   && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
2345
 
2346
#define UNSPEC_GOTOFF_P(OP) \
2347
  (GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF)
2348
 
2349
#define GOTOFF_P(OP) \
2350
  (GET_CODE (OP) == CONST \
2351
   && (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \
2352
       || (GET_CODE (XEXP ((OP), 0)) == PLUS \
2353
           && UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \
2354
           && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT)))
2355
 
2356
#define PIC_ADDR_P(OP) \
2357
  (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2358
   && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
2359
 
2360
#define PIC_OFFSET_P(OP) \
2361
  (PIC_ADDR_P (OP) \
2362
   && GET_CODE (XVECEXP (XEXP ((OP), 0), 0, 0)) == MINUS \
2363
   && reg_mentioned_p (pc_rtx, XEXP (XVECEXP (XEXP ((OP), 0), 0, 0), 1)))
2364
 
2365
#define PIC_DIRECT_ADDR_P(OP) \
2366
  (PIC_ADDR_P (OP) && GET_CODE (XVECEXP (XEXP ((OP), 0), 0, 0)) != MINUS)
2367
 
2368
#define NON_PIC_REFERENCE_P(OP) \
2369
  (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
2370
   || (GET_CODE (OP) == CONST \
2371
       && (GET_CODE (XEXP ((OP), 0)) == LABEL_REF \
2372
           || GET_CODE (XEXP ((OP), 0)) == SYMBOL_REF \
2373
           || DATALABEL_REF_NO_CONST_P (XEXP ((OP), 0)))) \
2374
   || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
2375
       && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
2376
           || GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF \
2377
           || DATALABEL_REF_NO_CONST_P (XEXP (XEXP ((OP), 0), 0))) \
2378
       && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT))
2379
 
2380
#define PIC_REFERENCE_P(OP) \
2381
  (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
2382
   || GOTOFF_P (OP) || PIC_ADDR_P (OP))
2383
 
2384
#define MOVI_SHORI_BASE_OPERAND_P(OP) \
2385
  (flag_pic \
2386
   ? (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP)  || GOTOFF_P (OP) \
2387
      || PIC_OFFSET_P (OP)) \
2388
   : NON_PIC_REFERENCE_P (OP))
2389
 
2390
/* The `Csy' constraint is a label or a symbol.  */
2391
#define EXTRA_CONSTRAINT_Csy(OP) \
2392
  (NON_PIC_REFERENCE_P (OP) || PIC_DIRECT_ADDR_P (OP))
2393
 
2394
/* A zero in any shape or form.  */
2395
#define EXTRA_CONSTRAINT_Z(OP) \
2396
  ((OP) == CONST0_RTX (GET_MODE (OP)))
2397
 
2398
/* Any vector constant we can handle.  */
2399
#define EXTRA_CONSTRAINT_W(OP) \
2400
  (GET_CODE (OP) == CONST_VECTOR \
2401
   && (sh_rep_vec ((OP), VOIDmode) \
2402
       || (HOST_BITS_PER_WIDE_INT >= 64 \
2403
           ? sh_const_vec ((OP), VOIDmode) \
2404
           : sh_1el_vec ((OP), VOIDmode))))
2405
 
2406
/* A non-explicit constant that can be loaded directly into a general purpose
2407
   register.  This is like 's' except we don't allow PIC_DIRECT_ADDR_P.  */
2408
#define EXTRA_CONSTRAINT_Cpg(OP) \
2409
  (CONSTANT_P (OP) \
2410
   && GET_CODE (OP) != CONST_INT \
2411
   && GET_CODE (OP) != CONST_DOUBLE \
2412
   && (!flag_pic \
2413
       || (LEGITIMATE_PIC_OPERAND_P (OP) \
2414
        && (! PIC_ADDR_P (OP) || PIC_OFFSET_P (OP)) \
2415
        && GET_CODE (OP) != LABEL_REF)))
2416
#define EXTRA_CONSTRAINT_C(OP, STR) \
2417
  ((STR)[1] == '1' && (STR)[2] == '6' ? EXTRA_CONSTRAINT_C16 (OP) \
2418
   : (STR)[1] == 's' && (STR)[2] == 'y' ? EXTRA_CONSTRAINT_Csy (OP) \
2419
   : (STR)[1] == 'p' && (STR)[2] == 'g' ? EXTRA_CONSTRAINT_Cpg (OP) \
2420
   : 0)
2421
 
2422
#define EXTRA_MEMORY_CONSTRAINT(C,STR) ((C) == 'S')
2423
#define EXTRA_CONSTRAINT_Sr0(OP) \
2424
  (memory_operand((OP), GET_MODE (OP)) \
2425
   && ! refers_to_regno_p (R0_REG, R0_REG + 1, OP, (rtx *)0))
2426
#define EXTRA_CONSTRAINT_Sua(OP) \
2427
  (memory_operand((OP), GET_MODE (OP)) \
2428
   && GET_CODE (XEXP (OP, 0)) != PLUS)
2429
#define EXTRA_CONSTRAINT_S(OP, STR) \
2430
  ((STR)[1] == 'r' && (STR)[2] == '0' ? EXTRA_CONSTRAINT_Sr0 (OP) \
2431
   : (STR)[1] == 'u' && (STR)[2] == 'a' ? EXTRA_CONSTRAINT_Sua (OP) \
2432
   : 0)
2433
 
2434
#define EXTRA_CONSTRAINT_STR(OP, C, STR)                \
2435
  ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \
2436
   : (C) == 'A' ? EXTRA_CONSTRAINT_A ((OP), (STR)) \
2437
   : (C) == 'B' ? EXTRA_CONSTRAINT_B ((OP), (STR)) \
2438
   : (C) == 'C' ? EXTRA_CONSTRAINT_C ((OP), (STR)) \
2439
   : (C) == 'S' ? EXTRA_CONSTRAINT_S ((OP), (STR)) \
2440
   : (C) == 'W' ? EXTRA_CONSTRAINT_W (OP) \
2441
   : (C) == 'Z' ? EXTRA_CONSTRAINT_Z (OP) \
2442
   : 0)
2443
 
2444
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2445
   that is a valid memory address for an instruction.
2446
   The MODE argument is the machine mode for the MEM expression
2447
   that wants to use this address.  */
2448
 
2449
#define MODE_DISP_OK_4(X,MODE) \
2450
(GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64        \
2451
 && ! (INTVAL (X) & 3) && ! (TARGET_SH2E && (MODE) == SFmode))
2452
 
2453
#define MODE_DISP_OK_8(X,MODE) \
2454
((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60)   \
2455
 && ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode))
2456
 
2457
#undef MODE_DISP_OK_4
2458
#define MODE_DISP_OK_4(X,MODE) \
2459
((GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64       \
2460
  && ! (INTVAL (X) & 3) && ! (TARGET_SH2E && (MODE) == SFmode)) \
2461
  || ((GET_MODE_SIZE(MODE)==4) && ((unsigned)INTVAL(X)<16383)   \
2462
  && ! (INTVAL(X) & 3) && TARGET_SH2A))
2463
 
2464
#undef MODE_DISP_OK_8
2465
#define MODE_DISP_OK_8(X,MODE) \
2466
(((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60)  \
2467
  && ! (INTVAL(X) & 3) && ! ((TARGET_SH4 || TARGET_SH2A) && (MODE) == DFmode)) \
2468
 || ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<8192)     \
2469
  && ! (INTVAL(X) & (TARGET_SH2A_DOUBLE ? 7 : 3)) && (TARGET_SH2A && (MODE) == DFmode)))
2470
 
2471
#define BASE_REGISTER_RTX_P(X)                          \
2472
  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))       \
2473
   || (GET_CODE (X) == SUBREG                           \
2474
       && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
2475
                                 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
2476
       && GET_CODE (SUBREG_REG (X)) == REG              \
2477
       && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2478
 
2479
/* Since this must be r0, which is a single register class, we must check
2480
   SUBREGs more carefully, to be sure that we don't accept one that extends
2481
   outside the class.  */
2482
#define INDEX_REGISTER_RTX_P(X)                         \
2483
  ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))      \
2484
   || (GET_CODE (X) == SUBREG                           \
2485
       && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
2486
                                 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
2487
       && GET_CODE (SUBREG_REG (X)) == REG              \
2488
       && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X))))
2489
 
2490
/* Jump to LABEL if X is a valid address RTX.  This must also take
2491
   REG_OK_STRICT into account when deciding about valid registers, but it uses
2492
   the above macros so we are in luck.
2493
 
2494
   Allow  REG
2495
          REG+disp
2496
          REG+r0
2497
          REG++
2498
          --REG  */
2499
 
2500
/* ??? The SH2e does not have the REG+disp addressing mode when loading values
2501
   into the FRx registers.  We implement this by setting the maximum offset
2502
   to zero when the value is SFmode.  This also restricts loading of SFmode
2503
   values into the integer registers, but that can't be helped.  */
2504
 
2505
/* The SH allows a displacement in a QI or HI amode, but only when the
2506
   other operand is R0. GCC doesn't handle this very well, so we forgo
2507
   all of that.
2508
 
2509
   A legitimate index for a QI or HI is 0, SI can be any number 0..63,
2510
   DI can be any number 0..60.  */
2511
 
2512
#define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL)                         \
2513
  do {                                                                  \
2514
    if (GET_CODE (OP) == CONST_INT)                                     \
2515
      {                                                                 \
2516
        if (TARGET_SHMEDIA)                                             \
2517
          {                                                             \
2518
            int MODE_SIZE;                                              \
2519
            /* Check if this the address of an unaligned load / store.  */\
2520
            if ((MODE) == VOIDmode)                                     \
2521
             {                                                          \
2522
              if (CONST_OK_FOR_I06 (INTVAL (OP)))                       \
2523
                goto LABEL;                                             \
2524
              break;                                                    \
2525
             }                                                          \
2526
            MODE_SIZE = GET_MODE_SIZE (MODE);                           \
2527
            if (! (INTVAL (OP) & (MODE_SIZE - 1))                       \
2528
                && INTVAL (OP) >= -512 * MODE_SIZE                      \
2529
                && INTVAL (OP) < 512 * MODE_SIZE)                       \
2530
              goto LABEL;                                               \
2531
            else                                                        \
2532
              break;                                                    \
2533
          }                                                             \
2534
        if (MODE_DISP_OK_4 ((OP), (MODE)))  goto LABEL;                 \
2535
        if (MODE_DISP_OK_8 ((OP), (MODE)))  goto LABEL;                 \
2536
      }                                                                 \
2537
  } while(0)
2538
 
2539
#define ALLOW_INDEXED_ADDRESS \
2540
  ((!TARGET_SHMEDIA32 && !TARGET_SHCOMPACT) || TARGET_ALLOW_INDEXED_ADDRESS)
2541
 
2542
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL)                        \
2543
{                                                                       \
2544
  if (BASE_REGISTER_RTX_P (X))                                          \
2545
    goto LABEL;                                                         \
2546
  else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC)        \
2547
           && ! TARGET_SHMEDIA                                          \
2548
           && BASE_REGISTER_RTX_P (XEXP ((X), 0)))                       \
2549
    goto LABEL;                                                         \
2550
  else if (GET_CODE (X) == PLUS                                         \
2551
           && ((MODE) != PSImode || reload_completed))                  \
2552
    {                                                                   \
2553
      rtx xop0 = XEXP ((X), 0);                                          \
2554
      rtx xop1 = XEXP ((X), 1);                                         \
2555
      if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0))      \
2556
        GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL);                   \
2557
      if ((ALLOW_INDEXED_ADDRESS || GET_MODE (X) == DImode              \
2558
           || ((xop0 == stack_pointer_rtx                               \
2559
                || xop0 == hard_frame_pointer_rtx)                      \
2560
               && REG_P (xop1) && REGNO (xop1) == R0_REG)               \
2561
           || ((xop1 == stack_pointer_rtx                               \
2562
                || xop1 == hard_frame_pointer_rtx)                      \
2563
               && REG_P (xop0) && REGNO (xop0) == R0_REG))              \
2564
          && ((!TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 4)            \
2565
              || (TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 8)          \
2566
              || ((TARGET_SH4 || TARGET_SH2A_DOUBLE)                    \
2567
                  && TARGET_FMOVD && MODE == DFmode)))                  \
2568
        {                                                               \
2569
          if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
2570
            goto LABEL;                                                 \
2571
          if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
2572
            goto LABEL;                                                 \
2573
        }                                                               \
2574
    }                                                                   \
2575
}
2576
 
2577
/* Try machine-dependent ways of modifying an illegitimate address
2578
   to be legitimate.  If we find one, return the new, valid address.
2579
   This macro is used in only one place: `memory_address' in explow.c.
2580
 
2581
   OLDX is the address as it was before break_out_memory_refs was called.
2582
   In some cases it is useful to look at this to decide what needs to be done.
2583
 
2584
   MODE and WIN are passed so that this macro can use
2585
   GO_IF_LEGITIMATE_ADDRESS.
2586
 
2587
   It is always safe for this macro to do nothing.  It exists to recognize
2588
   opportunities to optimize the output.
2589
 
2590
   For the SH, if X is almost suitable for indexing, but the offset is
2591
   out of range, convert it into a normal form so that cse has a chance
2592
   of reducing the number of address registers used.  */
2593
 
2594
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)                     \
2595
{                                                               \
2596
  if (flag_pic)                                                 \
2597
    (X) = legitimize_pic_address (OLDX, MODE, NULL_RTX);        \
2598
  if (GET_CODE (X) == PLUS                                      \
2599
      && (GET_MODE_SIZE (MODE) == 4                             \
2600
          || GET_MODE_SIZE (MODE) == 8)                         \
2601
      && GET_CODE (XEXP ((X), 1)) == CONST_INT                  \
2602
      && BASE_REGISTER_RTX_P (XEXP ((X), 0))                     \
2603
      && ! TARGET_SHMEDIA                                       \
2604
      && ! ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && (MODE) == DFmode)                     \
2605
      && ! (TARGET_SH2E && (MODE) == SFmode))                   \
2606
    {                                                           \
2607
      rtx index_rtx = XEXP ((X), 1);                            \
2608
      HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base;   \
2609
      rtx sum;                                                  \
2610
                                                                \
2611
      GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN);          \
2612
      /* On rare occasions, we might get an unaligned pointer   \
2613
         that is indexed in a way to give an aligned address.   \
2614
         Therefore, keep the lower two bits in offset_base.  */ \
2615
      /* Instead of offset_base 128..131 use 124..127, so that  \
2616
         simple add suffices.  */                               \
2617
      if (offset > 127)                                         \
2618
        {                                                       \
2619
          offset_base = ((offset + 4) & ~60) - 4;               \
2620
        }                                                       \
2621
      else                                                      \
2622
        offset_base = offset & ~60;                             \
2623
      /* Sometimes the normal form does not suit DImode.  We    \
2624
         could avoid that by using smaller ranges, but that     \
2625
         would give less optimized code when SImode is          \
2626
         prevalent.  */                                         \
2627
      if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64)    \
2628
        {                                                       \
2629
          sum = expand_binop (Pmode, add_optab, XEXP ((X), 0),   \
2630
                              GEN_INT (offset_base), NULL_RTX, 0, \
2631
                              OPTAB_LIB_WIDEN);                 \
2632
                                                                \
2633
          (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); \
2634
          goto WIN;                                             \
2635
        }                                                       \
2636
    }                                                           \
2637
}
2638
 
2639
/* A C compound statement that attempts to replace X, which is an address
2640
   that needs reloading, with a valid memory address for an operand of
2641
   mode MODE.  WIN is a C statement label elsewhere in the code.
2642
 
2643
   Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
2644
   of the address.  That will allow inheritance of the address reloads.  */
2645
 
2646
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)     \
2647
{                                                                       \
2648
  if (GET_CODE (X) == PLUS                                              \
2649
      && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8)       \
2650
      && GET_CODE (XEXP (X, 1)) == CONST_INT                            \
2651
      && BASE_REGISTER_RTX_P (XEXP (X, 0))                               \
2652
      && ! TARGET_SHMEDIA                                               \
2653
      && ! (TARGET_SH4 && (MODE) == DFmode)                             \
2654
      && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS)    \
2655
      && (ALLOW_INDEXED_ADDRESS                                         \
2656
          || XEXP ((X), 0) == stack_pointer_rtx                          \
2657
          || XEXP ((X), 0) == hard_frame_pointer_rtx))                   \
2658
    {                                                                   \
2659
      rtx index_rtx = XEXP (X, 1);                                      \
2660
      HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base;           \
2661
      rtx sum;                                                          \
2662
                                                                        \
2663
      if (TARGET_SH2A && (MODE) == DFmode && (offset & 0x7))            \
2664
        {                                                               \
2665
          push_reload (X, NULL_RTX, &X, NULL,                           \
2666
                       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM),    \
2667
                       (TYPE));                                         \
2668
          goto WIN;                                                     \
2669
        }                                                               \
2670
      if (TARGET_SH2E && MODE == SFmode)                                \
2671
        {                                                               \
2672
          X = copy_rtx (X);                                             \
2673
          push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL,         \
2674
                       R0_REGS, Pmode, VOIDmode, 0, 0, (OPNUM),           \
2675
                       (TYPE));                                         \
2676
          goto WIN;                                                     \
2677
        }                                                               \
2678
      /* Instead of offset_base 128..131 use 124..127, so that          \
2679
         simple add suffices.  */                                       \
2680
      if (offset > 127)                                                 \
2681
        {                                                               \
2682
          offset_base = ((offset + 4) & ~60) - 4;                       \
2683
        }                                                               \
2684
      else                                                              \
2685
        offset_base = offset & ~60;                                     \
2686
      /* Sometimes the normal form does not suit DImode.  We            \
2687
         could avoid that by using smaller ranges, but that             \
2688
         would give less optimized code when SImode is                  \
2689
         prevalent.  */                                                 \
2690
      if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64)            \
2691
        {                                                               \
2692
          sum = gen_rtx_PLUS (Pmode, XEXP (X, 0),                        \
2693
                         GEN_INT (offset_base));                        \
2694
          X = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base));\
2695
          push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL,                \
2696
                       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM),    \
2697
                       (TYPE));                                         \
2698
          goto WIN;                                                     \
2699
        }                                                               \
2700
    }                                                                   \
2701
  /* We must re-recognize what we created before.  */                   \
2702
  else if (GET_CODE (X) == PLUS                                         \
2703
           && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8)  \
2704
           && GET_CODE (XEXP (X, 0)) == PLUS                             \
2705
           && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT              \
2706
           && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0))         \
2707
           && GET_CODE (XEXP (X, 1)) == CONST_INT                       \
2708
           && ! TARGET_SHMEDIA                                          \
2709
           && ! (TARGET_SH2E && MODE == SFmode))                        \
2710
    {                                                                   \
2711
      /* Because this address is so complex, we know it must have       \
2712
         been created by LEGITIMIZE_RELOAD_ADDRESS before; thus,        \
2713
         it is already unshared, and needs no further unsharing.  */    \
2714
      push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL, \
2715
                   BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
2716
      goto WIN;                                                         \
2717
    }                                                                   \
2718
}
2719
 
2720
/* Go to LABEL if ADDR (a legitimate address expression)
2721
   has an effect that depends on the machine mode it is used for.
2722
 
2723
   ??? Strictly speaking, we should also include all indexed addressing,
2724
   because the index scale factor is the length of the operand.
2725
   However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
2726
   high if we did that.  So we rely on reload to fix things up.  */
2727
 
2728
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)                        \
2729
{                                                                       \
2730
  if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC)          \
2731
    goto LABEL;                                                         \
2732
}
2733
 
2734
/* Specify the machine mode that this machine uses
2735
   for the index in the tablejump instruction.  */
2736
#define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode)
2737
 
2738
#define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
2739
((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
2740
 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
2741
 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
2742
 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
2743
 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
2744
 : SImode)
2745
 
2746
/* Define as C expression which evaluates to nonzero if the tablejump
2747
   instruction expects the table to contain offsets from the address of the
2748
   table.
2749
   Do not define this if the table should contain absolute addresses.  */
2750
#define CASE_VECTOR_PC_RELATIVE 1
2751
 
2752
/* Define it here, so that it doesn't get bumped to 64-bits on SHmedia.  */
2753
#define FLOAT_TYPE_SIZE 32
2754
 
2755
/* Since the SH2e has only `float' support, it is desirable to make all
2756
   floating point types equivalent to `float'.  */
2757
#define DOUBLE_TYPE_SIZE ((TARGET_SH2E && ! TARGET_SH4 && ! TARGET_SH2A_DOUBLE) ? 32 : 64)
2758
 
2759
/* 'char' is signed by default.  */
2760
#define DEFAULT_SIGNED_CHAR  1
2761
 
2762
/* The type of size_t unsigned int.  */
2763
#define SIZE_TYPE (TARGET_SH5 ? "long unsigned int" : "unsigned int")
2764
 
2765
#undef  PTRDIFF_TYPE
2766
#define PTRDIFF_TYPE (TARGET_SH5 ? "long int" : "int")
2767
 
2768
#define WCHAR_TYPE "short unsigned int"
2769
#define WCHAR_TYPE_SIZE 16
2770
 
2771
#define SH_ELF_WCHAR_TYPE "long int"
2772
 
2773
/* Max number of bytes we can move from memory to memory
2774
   in one reasonably fast instruction.  */
2775
#define MOVE_MAX (TARGET_SHMEDIA ? 8 : 4)
2776
 
2777
/* Maximum value possibly taken by MOVE_MAX.  Must be defined whenever
2778
   MOVE_MAX is not a compile-time constant.  */
2779
#define MAX_MOVE_MAX 8
2780
 
2781
/* Max number of bytes we want move_by_pieces to be able to copy
2782
   efficiently.  */
2783
#define MOVE_MAX_PIECES (TARGET_SH4 || TARGET_SHMEDIA ? 8 : 4)
2784
 
2785
/* Define if operations between registers always perform the operation
2786
   on the full register even if a narrower mode is specified.  */
2787
#define WORD_REGISTER_OPERATIONS
2788
 
2789
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2790
   will either zero-extend or sign-extend.  The value of this macro should
2791
   be the code that says which one of the two operations is implicitly
2792
   done, UNKNOWN if none.  */
2793
/* For SHmedia, we can truncate to QImode easier using zero extension.  */
2794
/* FP registers can load SImode values, but don't implicitly sign-extend
2795
   them to DImode.  */
2796
#define LOAD_EXTEND_OP(MODE) \
2797
 (((MODE) == QImode  && TARGET_SHMEDIA) ? ZERO_EXTEND \
2798
  : (MODE) != SImode ? SIGN_EXTEND : UNKNOWN)
2799
 
2800
/* Define if loading short immediate values into registers sign extends.  */
2801
#define SHORT_IMMEDIATES_SIGN_EXTEND
2802
 
2803
/* Nonzero if access to memory by bytes is no faster than for words.  */
2804
#define SLOW_BYTE_ACCESS 1
2805
 
2806
/* Immediate shift counts are truncated by the output routines (or was it
2807
   the assembler?).  Shift counts in a register are truncated by SH.  Note
2808
   that the native compiler puts too large (> 32) immediate shift counts
2809
   into a register and shifts by the register, letting the SH decide what
2810
   to do instead of doing that itself.  */
2811
/* ??? The library routines in lib1funcs.asm truncate the shift count.
2812
   However, the SH3 has hardware shifts that do not truncate exactly as gcc
2813
   expects - the sign bit is significant - so it appears that we need to
2814
   leave this zero for correct SH3 code.  */
2815
#define SHIFT_COUNT_TRUNCATED (! TARGET_SH3 && ! TARGET_SH2A)
2816
 
2817
/* All integers have the same format so truncation is easy.  */
2818
/* But SHmedia must sign-extend DImode when truncating to SImode.  */
2819
#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) \
2820
 (!TARGET_SHMEDIA || (INPREC) < 64 || (OUTPREC) >= 64)
2821
 
2822
/* Define this if addresses of constant functions
2823
   shouldn't be put through pseudo regs where they can be cse'd.
2824
   Desirable on machines where ordinary constants are expensive
2825
   but a CALL with constant address is cheap.  */
2826
/*#define NO_FUNCTION_CSE 1*/
2827
 
2828
/* The machine modes of pointers and functions.  */
2829
#define Pmode  (TARGET_SHMEDIA64 ? DImode : SImode)
2830
#define FUNCTION_MODE  Pmode
2831
 
2832
/* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
2833
   are actually function calls with some special constraints on arguments
2834
   and register usage.
2835
 
2836
   These macros tell reorg that the references to arguments and
2837
   register clobbers for insns of type sfunc do not appear to happen
2838
   until after the millicode call.  This allows reorg to put insns
2839
   which set the argument registers into the delay slot of the millicode
2840
   call -- thus they act more like traditional CALL_INSNs.
2841
 
2842
   get_attr_is_sfunc will try to recognize the given insn, so make sure to
2843
   filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
2844
   in particular.  */
2845
 
2846
#define INSN_SETS_ARE_DELAYED(X)                \
2847
  ((GET_CODE (X) == INSN                        \
2848
    && GET_CODE (PATTERN (X)) != SEQUENCE       \
2849
    && GET_CODE (PATTERN (X)) != USE            \
2850
    && GET_CODE (PATTERN (X)) != CLOBBER        \
2851
    && get_attr_is_sfunc (X)))
2852
 
2853
#define INSN_REFERENCES_ARE_DELAYED(X)          \
2854
  ((GET_CODE (X) == INSN                        \
2855
    && GET_CODE (PATTERN (X)) != SEQUENCE       \
2856
    && GET_CODE (PATTERN (X)) != USE            \
2857
    && GET_CODE (PATTERN (X)) != CLOBBER        \
2858
    && get_attr_is_sfunc (X)))
2859
 
2860
 
2861
/* Position Independent Code.  */
2862
 
2863
/* We can't directly access anything that contains a symbol,
2864
   nor can we indirect via the constant pool.  */
2865
#define LEGITIMATE_PIC_OPERAND_P(X)                             \
2866
        ((! nonpic_symbol_mentioned_p (X)                       \
2867
          && (GET_CODE (X) != SYMBOL_REF                        \
2868
              || ! CONSTANT_POOL_ADDRESS_P (X)                  \
2869
              || ! nonpic_symbol_mentioned_p (get_pool_constant (X)))) \
2870
         || (TARGET_SHMEDIA && GET_CODE (X) == LABEL_REF))
2871
 
2872
#define SYMBOLIC_CONST_P(X)     \
2873
((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF)      \
2874
  && nonpic_symbol_mentioned_p (X))
2875
 
2876
/* Compute extra cost of moving data between one register class
2877
   and another.  */
2878
 
2879
/* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
2880
   uses this information.  Hence, the general register <-> floating point
2881
   register information here is not used for SFmode.  */
2882
 
2883
#define REGCLASS_HAS_GENERAL_REG(CLASS) \
2884
  ((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS \
2885
    || (! TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS))
2886
 
2887
#define REGCLASS_HAS_FP_REG(CLASS) \
2888
  ((CLASS) == FP0_REGS || (CLASS) == FP_REGS \
2889
   || (CLASS) == DF_REGS || (CLASS) == DF_HI_REGS)
2890
 
2891
#define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) \
2892
  sh_register_move_cost ((MODE), (SRCCLASS), (DSTCLASS))
2893
 
2894
/* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option?  This
2895
   would be so that people with slow memory systems could generate
2896
   different code that does fewer memory accesses.  */
2897
 
2898
/* A C expression for the cost of a branch instruction.  A value of 1
2899
   is the default; other values are interpreted relative to that.
2900
   The SH1 does not have delay slots, hence we get a pipeline stall
2901
   at every branch.  The SH4 is superscalar, so the single delay slot
2902
   is not sufficient to keep both pipelines filled.  */
2903
#define BRANCH_COST (TARGET_SH5 ? 1 : ! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1)
2904
 
2905
/* Assembler output control.  */
2906
 
2907
/* A C string constant describing how to begin a comment in the target
2908
   assembler language.  The compiler assumes that the comment will end at
2909
   the end of the line.  */
2910
#define ASM_COMMENT_START "!"
2911
 
2912
#define ASM_APP_ON              ""
2913
#define ASM_APP_OFF             ""
2914
#define FILE_ASM_OP             "\t.file\n"
2915
#define SET_ASM_OP              "\t.set\t"
2916
 
2917
/* How to change between sections.  */
2918
 
2919
#define TEXT_SECTION_ASM_OP             (TARGET_SHMEDIA32 ? "\t.section\t.text..SHmedia32,\"ax\"" : "\t.text")
2920
#define DATA_SECTION_ASM_OP             "\t.data"
2921
 
2922
#if defined CRT_BEGIN || defined CRT_END
2923
/* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant.  */
2924
# undef TEXT_SECTION_ASM_OP
2925
# if __SHMEDIA__ == 1 && __SH5__ == 32
2926
#  define TEXT_SECTION_ASM_OP "\t.section\t.text..SHmedia32,\"ax\""
2927
# else
2928
#  define TEXT_SECTION_ASM_OP "\t.text"
2929
# endif
2930
#endif
2931
 
2932
 
2933
/* If defined, a C expression whose value is a string containing the
2934
   assembler operation to identify the following data as
2935
   uninitialized global data.  If not defined, and neither
2936
   `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2937
   uninitialized global data will be output in the data section if
2938
   `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2939
   used.  */
2940
#ifndef BSS_SECTION_ASM_OP
2941
#define BSS_SECTION_ASM_OP      "\t.section\t.bss"
2942
#endif
2943
 
2944
/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
2945
   separate, explicit argument.  If you define this macro, it is used
2946
   in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
2947
   handling the required alignment of the variable.  The alignment is
2948
   specified as the number of bits.
2949
 
2950
   Try to use function `asm_output_aligned_bss' defined in file
2951
   `varasm.c' when defining this macro.  */
2952
#ifndef ASM_OUTPUT_ALIGNED_BSS
2953
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2954
  asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
2955
#endif
2956
 
2957
/* Define this so that jump tables go in same section as the current function,
2958
   which could be text or it could be a user defined section.  */
2959
#define JUMP_TABLES_IN_TEXT_SECTION 1
2960
 
2961
#undef DO_GLOBAL_CTORS_BODY
2962
#define DO_GLOBAL_CTORS_BODY                    \
2963
{                                               \
2964
  typedef (*pfunc)();                           \
2965
  extern pfunc __ctors[];                       \
2966
  extern pfunc __ctors_end[];                   \
2967
  pfunc *p;                                     \
2968
  for (p = __ctors_end; p > __ctors; )          \
2969
    {                                           \
2970
      (*--p)();                                 \
2971
    }                                           \
2972
}
2973
 
2974
#undef DO_GLOBAL_DTORS_BODY
2975
#define DO_GLOBAL_DTORS_BODY                    \
2976
{                                               \
2977
  typedef (*pfunc)();                           \
2978
  extern pfunc __dtors[];                       \
2979
  extern pfunc __dtors_end[];                   \
2980
  pfunc *p;                                     \
2981
  for (p = __dtors; p < __dtors_end; p++)       \
2982
    {                                           \
2983
      (*p)();                                   \
2984
    }                                           \
2985
}
2986
 
2987
#define ASM_OUTPUT_REG_PUSH(file, v) \
2988
{                                                       \
2989
  if (TARGET_SHMEDIA)                                   \
2990
    {                                                   \
2991
      fprintf ((file), "\taddi.l\tr15,-8,r15\n");       \
2992
      fprintf ((file), "\tst.q\tr15,0,r%d\n", (v));     \
2993
    }                                                   \
2994
  else                                                  \
2995
    fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v));      \
2996
}
2997
 
2998
#define ASM_OUTPUT_REG_POP(file, v) \
2999
{                                                       \
3000
  if (TARGET_SHMEDIA)                                   \
3001
    {                                                   \
3002
      fprintf ((file), "\tld.q\tr15,0,r%d\n", (v));     \
3003
      fprintf ((file), "\taddi.l\tr15,8,r15\n");        \
3004
    }                                                   \
3005
  else                                                  \
3006
    fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v));      \
3007
}
3008
 
3009
/* DBX register number for a given compiler register number.  */
3010
/* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
3011
   to match gdb.  */
3012
/* svr4.h undefines this macro, yet we really want to use the same numbers
3013
   for coff as for elf, so we go via another macro: SH_DBX_REGISTER_NUMBER.  */
3014
/* expand_builtin_init_dwarf_reg_sizes uses this to test if a
3015
   register exists, so we should return -1 for invalid register numbers.  */
3016
#define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
3017
 
3018
/* SHcompact PR_REG used to use the encoding 241, and SHcompact FP registers
3019
   used to use the encodings 245..260, but that doesn't make sense:
3020
   PR_REG and PR_MEDIA_REG are actually the same register, and likewise
3021
   the FP registers stay the same when switching between compact and media
3022
   mode.  Hence, we also need to use the same dwarf frame columns.
3023
   Likewise, we need to support unwind information for SHmedia registers
3024
   even in compact code.  */
3025
#define SH_DBX_REGISTER_NUMBER(REGNO) \
3026
  (IN_RANGE ((REGNO), \
3027
             (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
3028
             FIRST_GENERAL_REG + (TARGET_SH5 ? 63U :15U)) \
3029
   ? ((unsigned) (REGNO) - FIRST_GENERAL_REG) \
3030
  : ((int) (REGNO) >= FIRST_FP_REG \
3031
     && ((int) (REGNO) \
3032
         <= (FIRST_FP_REG + \
3033
             ((TARGET_SH5 && TARGET_FPU_ANY) ? 63 : TARGET_SH2E ? 15 : -1)))) \
3034
   ? ((unsigned) (REGNO) - FIRST_FP_REG \
3035
      + (TARGET_SH5 ? 77 : 25)) \
3036
   : XD_REGISTER_P (REGNO) \
3037
   ? ((unsigned) (REGNO) - FIRST_XD_REG + (TARGET_SH5 ? 289 : 87)) \
3038
   : TARGET_REGISTER_P (REGNO) \
3039
   ? ((unsigned) (REGNO) - FIRST_TARGET_REG + 68) \
3040
   : (REGNO) == PR_REG \
3041
   ? (TARGET_SH5 ? 18 : 17) \
3042
   : (REGNO) == PR_MEDIA_REG \
3043
   ? (TARGET_SH5 ? 18 : (unsigned) -1) \
3044
   : (REGNO) == T_REG \
3045
   ? (TARGET_SH5 ? 242 : 18) \
3046
   : (REGNO) == GBR_REG \
3047
   ? (TARGET_SH5 ? 238 : 19) \
3048
   : (REGNO) == MACH_REG \
3049
   ? (TARGET_SH5 ? 239 : 20) \
3050
   : (REGNO) == MACL_REG \
3051
   ? (TARGET_SH5 ? 240 : 21) \
3052
   : (REGNO) == FPUL_REG \
3053
   ? (TARGET_SH5 ? 244 : 23) \
3054
   : (unsigned) -1)
3055
 
3056
/* This is how to output a reference to a symbol_ref.  On SH5,
3057
   references to non-code symbols must be preceded by `datalabel'.  */
3058
#define ASM_OUTPUT_SYMBOL_REF(FILE,SYM)                 \
3059
  do                                                    \
3060
    {                                                   \
3061
      if (TARGET_SH5 && !SYMBOL_REF_FUNCTION_P (SYM))   \
3062
        fputs ("datalabel ", (FILE));                   \
3063
      assemble_name ((FILE), XSTR ((SYM), 0));           \
3064
    }                                                   \
3065
  while (0)
3066
 
3067
/* This is how to output an assembler line
3068
   that says to advance the location counter
3069
   to a multiple of 2**LOG bytes.  */
3070
 
3071
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
3072
  if ((LOG) != 0)                        \
3073
    fprintf ((FILE), "\t.align %d\n", (LOG))
3074
 
3075
/* Globalizing directive for a label.  */
3076
#define GLOBAL_ASM_OP "\t.global\t"
3077
 
3078
/* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE)            */
3079
 
3080
/* Output a relative address table.  */
3081
 
3082
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL)                 \
3083
  switch (GET_MODE (BODY))                                              \
3084
    {                                                                   \
3085
    case SImode:                                                        \
3086
      if (TARGET_SH5)                                                   \
3087
        {                                                               \
3088
          asm_fprintf ((STREAM), "\t.long\t%LL%d-datalabel %LL%d\n",    \
3089
                       (VALUE), (REL));                                 \
3090
          break;                                                        \
3091
        }                                                               \
3092
      asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL));  \
3093
      break;                                                            \
3094
    case HImode:                                                        \
3095
      if (TARGET_SH5)                                                   \
3096
        {                                                               \
3097
          asm_fprintf ((STREAM), "\t.word\t%LL%d-datalabel %LL%d\n",    \
3098
                       (VALUE), (REL));                                 \
3099
          break;                                                        \
3100
        }                                                               \
3101
      asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL));  \
3102
      break;                                                            \
3103
    case QImode:                                                        \
3104
      if (TARGET_SH5)                                                   \
3105
        {                                                               \
3106
          asm_fprintf ((STREAM), "\t.byte\t%LL%d-datalabel %LL%d\n",    \
3107
                       (VALUE), (REL));                                 \
3108
          break;                                                        \
3109
        }                                                               \
3110
      asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL));  \
3111
      break;                                                            \
3112
    default:                                                            \
3113
      break;                                                            \
3114
    }
3115
 
3116
/* Output an absolute table element.  */
3117
 
3118
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE)                           \
3119
  if (! optimize || TARGET_BIGTABLE)                                    \
3120
    asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE));                \
3121
  else                                                                  \
3122
    asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));
3123
 
3124
 
3125
/* A C statement to be executed just prior to the output of
3126
   assembler code for INSN, to modify the extracted operands so
3127
   they will be output differently.
3128
 
3129
   Here the argument OPVEC is the vector containing the operands
3130
   extracted from INSN, and NOPERANDS is the number of elements of
3131
   the vector which contain meaningful data for this insn.
3132
   The contents of this vector are what will be used to convert the insn
3133
   template into assembler code, so you can change the assembler output
3134
   by changing the contents of the vector.  */
3135
 
3136
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3137
  final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
3138
 
3139
/* Print operand X (an rtx) in assembler syntax to file FILE.
3140
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3141
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
3142
 
3143
#define PRINT_OPERAND(STREAM, X, CODE)  print_operand ((STREAM), (X), (CODE))
3144
 
3145
/* Print a memory address as an operand to reference that memory location.  */
3146
 
3147
#define PRINT_OPERAND_ADDRESS(STREAM,X)  print_operand_address ((STREAM), (X))
3148
 
3149
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
3150
  ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ','     \
3151
   || (CHAR) == '$' || (CHAR) == '\'' || (CHAR) == '>')
3152
 
3153
/* Recognize machine-specific patterns that may appear within
3154
   constants.  Used for PIC-specific UNSPECs.  */
3155
#define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
3156
  do                                                                    \
3157
    if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
3158
      {                                                                 \
3159
        switch (XINT ((X), 1))                                          \
3160
          {                                                             \
3161
          case UNSPEC_DATALABEL:                                        \
3162
            fputs ("datalabel ", (STREAM));                             \
3163
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
3164
            break;                                                      \
3165
          case UNSPEC_PIC:                                              \
3166
            /* GLOBAL_OFFSET_TABLE or local symbols, no suffix.  */     \
3167
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
3168
            break;                                                      \
3169
          case UNSPEC_GOT:                                              \
3170
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
3171
            fputs ("@GOT", (STREAM));                                   \
3172
            break;                                                      \
3173
          case UNSPEC_GOTOFF:                                           \
3174
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
3175
            fputs ("@GOTOFF", (STREAM));                                \
3176
            break;                                                      \
3177
          case UNSPEC_PLT:                                              \
3178
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
3179
            fputs ("@PLT", (STREAM));                                   \
3180
            break;                                                      \
3181
          case UNSPEC_GOTPLT:                                           \
3182
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
3183
            fputs ("@GOTPLT", (STREAM));                                \
3184
            break;                                                      \
3185
          case UNSPEC_DTPOFF:                                           \
3186
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
3187
            fputs ("@DTPOFF", (STREAM));                                \
3188
            break;                                                      \
3189
          case UNSPEC_GOTTPOFF:                                         \
3190
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
3191
            fputs ("@GOTTPOFF", (STREAM));                              \
3192
            break;                                                      \
3193
          case UNSPEC_TPOFF:                                            \
3194
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
3195
            fputs ("@TPOFF", (STREAM));                                 \
3196
            break;                                                      \
3197
          case UNSPEC_CALLER:                                           \
3198
            {                                                           \
3199
              char name[32];                                            \
3200
              /* LPCS stands for Label for PIC Call Site.  */           \
3201
              ASM_GENERATE_INTERNAL_LABEL                               \
3202
                (name, "LPCS", INTVAL (XVECEXP ((X), 0, 0)));             \
3203
              assemble_name ((STREAM), name);                           \
3204
            }                                                           \
3205
            break;                                                      \
3206
          default:                                                      \
3207
            goto FAIL;                                                  \
3208
          }                                                             \
3209
        break;                                                          \
3210
      }                                                                 \
3211
    else                                                                \
3212
      goto FAIL;                                                        \
3213
  while (0)
3214
 
3215
 
3216
extern struct rtx_def *sh_compare_op0;
3217
extern struct rtx_def *sh_compare_op1;
3218
 
3219
/* Which processor to schedule for.  The elements of the enumeration must
3220
   match exactly the cpu attribute in the sh.md file.  */
3221
 
3222
enum processor_type {
3223
  PROCESSOR_SH1,
3224
  PROCESSOR_SH2,
3225
  PROCESSOR_SH2E,
3226
  PROCESSOR_SH2A,
3227
  PROCESSOR_SH3,
3228
  PROCESSOR_SH3E,
3229
  PROCESSOR_SH4,
3230
  PROCESSOR_SH4A,
3231
  PROCESSOR_SH5
3232
};
3233
 
3234
#define sh_cpu_attr ((enum attr_cpu)sh_cpu)
3235
extern enum processor_type sh_cpu;
3236
 
3237
extern int optimize; /* needed for gen_casesi.  */
3238
 
3239
enum mdep_reorg_phase_e
3240
{
3241
  SH_BEFORE_MDEP_REORG,
3242
  SH_INSERT_USES_LABELS,
3243
  SH_SHORTEN_BRANCHES0,
3244
  SH_FIXUP_PCLOAD,
3245
  SH_SHORTEN_BRANCHES1,
3246
  SH_AFTER_MDEP_REORG
3247
};
3248
 
3249
extern enum mdep_reorg_phase_e mdep_reorg_phase;
3250
 
3251
/* Handle Renesas compiler's pragmas.  */
3252
#define REGISTER_TARGET_PRAGMAS() do {                                  \
3253
  c_register_pragma (0, "interrupt", sh_pr_interrupt);                   \
3254
  c_register_pragma (0, "trapa", sh_pr_trapa);                           \
3255
  c_register_pragma (0, "nosave_low_regs", sh_pr_nosave_low_regs);       \
3256
} while (0)
3257
 
3258
extern tree sh_deferred_function_attributes;
3259
extern tree *sh_deferred_function_attributes_tail;
3260
 
3261
/* Set when processing a function with interrupt attribute.  */
3262
 
3263
extern int current_function_interrupt;
3264
 
3265
 
3266
/* Instructions with unfilled delay slots take up an
3267
   extra two bytes for the nop in the delay slot.
3268
   sh-dsp parallel processing insns are four bytes long.  */
3269
 
3270
#define ADJUST_INSN_LENGTH(X, LENGTH)                           \
3271
  (LENGTH) += sh_insn_length_adjustment (X);
3272
 
3273
/* Define this macro if it is advisable to hold scalars in registers
3274
   in a wider mode than that declared by the program.  In such cases,
3275
   the value is constrained to be within the bounds of the declared
3276
   type, but kept valid in the wider mode.  The signedness of the
3277
   extension may differ from that of the type.
3278
 
3279
   Leaving the unsignedp unchanged gives better code than always setting it
3280
   to 0.  This is despite the fact that we have only signed char and short
3281
   load instructions.  */
3282
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
3283
  if (GET_MODE_CLASS (MODE) == MODE_INT                 \
3284
      && GET_MODE_SIZE (MODE) < 4/* ! UNITS_PER_WORD */)\
3285
    (UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)),  \
3286
    (MODE) = (TARGET_SH1 ? SImode \
3287
              : TARGET_SHMEDIA32 ? SImode : DImode);
3288
 
3289
#define MAX_FIXED_MODE_SIZE (TARGET_SH5 ? 128 : 64)
3290
 
3291
#define SIDI_OFF (TARGET_LITTLE_ENDIAN ? 0 : 4)
3292
 
3293
/* ??? Define ACCUMULATE_OUTGOING_ARGS?  This is more efficient than pushing
3294
   and popping arguments.  However, we do have push/pop instructions, and
3295
   rather limited offsets (4 bits) in load/store instructions, so it isn't
3296
   clear if this would give better code.  If implemented, should check for
3297
   compatibility problems.  */
3298
 
3299
#define SH_DYNAMIC_SHIFT_COST \
3300
  (TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
3301
 
3302
 
3303
#define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
3304
 
3305
#define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_SH4 || TARGET_SH2A_DOUBLE)
3306
 
3307
#define ACTUAL_NORMAL_MODE(ENTITY) \
3308
  (TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
3309
 
3310
#define NORMAL_MODE(ENTITY) \
3311
  (sh_cfun_interrupt_handler_p () \
3312
   ? (TARGET_FMOVD ? FP_MODE_DOUBLE : FP_MODE_NONE) \
3313
   : ACTUAL_NORMAL_MODE (ENTITY))
3314
 
3315
#define MODE_ENTRY(ENTITY) NORMAL_MODE (ENTITY)
3316
 
3317
#define MODE_EXIT(ENTITY) \
3318
  (sh_cfun_attr_renesas_p () ? FP_MODE_NONE : NORMAL_MODE (ENTITY))
3319
 
3320
#define EPILOGUE_USES(REGNO)       ((TARGET_SH2E || TARGET_SH4)         \
3321
                                    && (REGNO) == FPSCR_REG)
3322
 
3323
#define MODE_NEEDED(ENTITY, INSN)                                       \
3324
  (recog_memoized (INSN) >= 0                                            \
3325
   ? get_attr_fp_mode (INSN)                                            \
3326
   : FP_MODE_NONE)
3327
 
3328
#define MODE_AFTER(MODE, INSN)                  \
3329
     (TARGET_HITACHI                            \
3330
      && recog_memoized (INSN) >= 0              \
3331
      && get_attr_fp_set (INSN) != FP_SET_NONE  \
3332
      ? (int) get_attr_fp_set (INSN)            \
3333
      : (MODE))
3334
 
3335
#define MODE_PRIORITY_TO_MODE(ENTITY, N) \
3336
  ((TARGET_FPU_SINGLE != 0) ^ (N) ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
3337
 
3338
#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3339
  fpscr_set_from_mem ((MODE), (HARD_REGS_LIVE))
3340
 
3341
#define MD_CAN_REDIRECT_BRANCH(INSN, SEQ) \
3342
  sh_can_redirect_branch ((INSN), (SEQ))
3343
 
3344
#define DWARF_FRAME_RETURN_COLUMN \
3345
  (TARGET_SH5 ? DWARF_FRAME_REGNUM (PR_MEDIA_REG) : DWARF_FRAME_REGNUM (PR_REG))
3346
 
3347
#define EH_RETURN_DATA_REGNO(N) \
3348
  ((N) < 4 ? (N) + (TARGET_SH5 ? 2U : 4U) : INVALID_REGNUM)
3349
 
3350
#define EH_RETURN_STACKADJ_REGNO STATIC_CHAIN_REGNUM
3351
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
3352
 
3353
/* We have to distinguish between code and data, so that we apply
3354
   datalabel where and only where appropriate.  Use sdataN for data.  */
3355
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
3356
 ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
3357
  | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \
3358
  | ((CODE) ? 0 : (TARGET_SHMEDIA64 ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)))
3359
 
3360
/* Handle special EH pointer encodings.  Absolute, pc-relative, and
3361
   indirect are handled automatically.  */
3362
#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
3363
  do { \
3364
    if (((ENCODING) & 0xf) != DW_EH_PE_sdata4 \
3365
        && ((ENCODING) & 0xf) != DW_EH_PE_sdata8) \
3366
      { \
3367
        gcc_assert (GET_CODE (ADDR) == SYMBOL_REF); \
3368
        SYMBOL_REF_FLAGS (ADDR) |= SYMBOL_FLAG_FUNCTION; \
3369
        if (0) goto DONE; \
3370
      } \
3371
  } while (0)
3372
 
3373
#if (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__
3374
/* SH constant pool breaks the devices in crtstuff.c to control section
3375
   in where code resides.  We have to write it as asm code.  */
3376
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3377
   asm (SECTION_OP "\n\
3378
        mov.l   1f,r1\n\
3379
        mova    2f,r0\n\
3380
        braf    r1\n\
3381
        lds     r0,pr\n\
3382
0:      .p2align 2\n\
3383
1:      .long   " USER_LABEL_PREFIX #FUNC " - 0b\n\
3384
2:\n" TEXT_SECTION_ASM_OP);
3385
#endif /* (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__ */
3386
 
3387
#define SIMULTANEOUS_PREFETCHES 2
3388
 
3389
/* FIXME: middle-end support for highpart optimizations is missing.  */
3390
#define high_life_started reload_in_progress
3391
 
3392
#endif /* ! GCC_SH_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.