OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [sparc/] [sparc.h] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Definitions of target machine for GNU compiler, for Sun SPARC.
2
   Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3
   2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
   Contributed by Michael Tiemann (tiemann@cygnus.com).
5
   64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6
   at Cygnus Support.
7
 
8
This file is part of GCC.
9
 
10
GCC is free software; you can redistribute it and/or modify
11
it under the terms of the GNU General Public License as published by
12
the Free Software Foundation; either version 2, or (at your option)
13
any later version.
14
 
15
GCC is distributed in the hope that it will be useful,
16
but WITHOUT ANY WARRANTY; without even the implied warranty of
17
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
GNU General Public License for more details.
19
 
20
You should have received a copy of the GNU General Public License
21
along with GCC; see the file COPYING.  If not, write to
22
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23
Boston, MA 02110-1301, USA.  */
24
 
25
/* Note that some other tm.h files include this one and then override
26
   whatever definitions are necessary.  */
27
 
28
/* Define the specific costs for a given cpu */
29
 
30
struct processor_costs {
31
  /* Integer load */
32
  const int int_load;
33
 
34
  /* Integer signed load */
35
  const int int_sload;
36
 
37
  /* Integer zeroed load */
38
  const int int_zload;
39
 
40
  /* Float load */
41
  const int float_load;
42
 
43
  /* fmov, fneg, fabs */
44
  const int float_move;
45
 
46
  /* fadd, fsub */
47
  const int float_plusminus;
48
 
49
  /* fcmp */
50
  const int float_cmp;
51
 
52
  /* fmov, fmovr */
53
  const int float_cmove;
54
 
55
  /* fmul */
56
  const int float_mul;
57
 
58
  /* fdivs */
59
  const int float_div_sf;
60
 
61
  /* fdivd */
62
  const int float_div_df;
63
 
64
  /* fsqrts */
65
  const int float_sqrt_sf;
66
 
67
  /* fsqrtd */
68
  const int float_sqrt_df;
69
 
70
  /* umul/smul */
71
  const int int_mul;
72
 
73
  /* mulX */
74
  const int int_mulX;
75
 
76
  /* integer multiply cost for each bit set past the most
77
     significant 3, so the formula for multiply cost becomes:
78
 
79
        if (rs1 < 0)
80
          highest_bit = highest_clear_bit(rs1);
81
        else
82
          highest_bit = highest_set_bit(rs1);
83
        if (highest_bit < 3)
84
          highest_bit = 3;
85
        cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
86
 
87
     A value of zero indicates that the multiply costs is fixed,
88
     and not variable.  */
89
  const int int_mul_bit_factor;
90
 
91
  /* udiv/sdiv */
92
  const int int_div;
93
 
94
  /* divX */
95
  const int int_divX;
96
 
97
  /* movcc, movr */
98
  const int int_cmove;
99
 
100
  /* penalty for shifts, due to scheduling rules etc. */
101
  const int shift_penalty;
102
};
103
 
104
extern const struct processor_costs *sparc_costs;
105
 
106
/* Target CPU builtins.  FIXME: Defining sparc is for the benefit of
107
   Solaris only; otherwise just define __sparc__.  Sadly the headers
108
   are such a mess there is no Solaris-specific header.  */
109
#define TARGET_CPU_CPP_BUILTINS()               \
110
  do                                            \
111
    {                                           \
112
        builtin_define_std ("sparc");           \
113
        if (TARGET_64BIT)                       \
114
          {                                     \
115
            builtin_assert ("cpu=sparc64");     \
116
            builtin_assert ("machine=sparc64"); \
117
          }                                     \
118
        else                                    \
119
          {                                     \
120
            builtin_assert ("cpu=sparc");       \
121
            builtin_assert ("machine=sparc");   \
122
          }                                     \
123
    }                                           \
124
  while (0)
125
 
126
/* Specify this in a cover file to provide bi-architecture (32/64) support.  */
127
/* #define SPARC_BI_ARCH */
128
 
129
/* Macro used later in this file to determine default architecture.  */
130
#define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
131
 
132
/* TARGET_ARCH{32,64} are the main macros to decide which of the two
133
   architectures to compile for.  We allow targets to choose compile time or
134
   runtime selection.  */
135
#ifdef IN_LIBGCC2
136
#if defined(__sparcv9) || defined(__arch64__)
137
#define TARGET_ARCH32 0
138
#else
139
#define TARGET_ARCH32 1
140
#endif /* sparc64 */
141
#else
142
#ifdef SPARC_BI_ARCH
143
#define TARGET_ARCH32 (! TARGET_64BIT)
144
#else
145
#define TARGET_ARCH32 (DEFAULT_ARCH32_P)
146
#endif /* SPARC_BI_ARCH */
147
#endif /* IN_LIBGCC2 */
148
#define TARGET_ARCH64 (! TARGET_ARCH32)
149
 
150
/* Code model selection in 64-bit environment.
151
 
152
   The machine mode used for addresses is 32-bit wide:
153
 
154
   TARGET_CM_32:     32-bit address space.
155
                     It is the code model used when generating 32-bit code.
156
 
157
   The machine mode used for addresses is 64-bit wide:
158
 
159
   TARGET_CM_MEDLOW: 32-bit address space.
160
                     The executable must be in the low 32 bits of memory.
161
                     This avoids generating %uhi and %ulo terms.  Programs
162
                     can be statically or dynamically linked.
163
 
164
   TARGET_CM_MEDMID: 44-bit address space.
165
                     The executable must be in the low 44 bits of memory,
166
                     and the %[hml]44 terms are used.  The text and data
167
                     segments have a maximum size of 2GB (31-bit span).
168
                     The maximum offset from any instruction to the label
169
                     _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
170
 
171
   TARGET_CM_MEDANY: 64-bit address space.
172
                     The text and data segments have a maximum size of 2GB
173
                     (31-bit span) and may be located anywhere in memory.
174
                     The maximum offset from any instruction to the label
175
                     _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
176
 
177
   TARGET_CM_EMBMEDANY: 64-bit address space.
178
                     The text and data segments have a maximum size of 2GB
179
                     (31-bit span) and may be located anywhere in memory.
180
                     The global register %g4 contains the start address of
181
                     the data segment.  Programs are statically linked and
182
                     PIC is not supported.
183
 
184
   Different code models are not supported in 32-bit environment.  */
185
 
186
enum cmodel {
187
  CM_32,
188
  CM_MEDLOW,
189
  CM_MEDMID,
190
  CM_MEDANY,
191
  CM_EMBMEDANY
192
};
193
 
194
/* One of CM_FOO.  */
195
extern enum cmodel sparc_cmodel;
196
 
197
/* V9 code model selection.  */
198
#define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
199
#define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
200
#define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
201
#define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
202
 
203
#define SPARC_DEFAULT_CMODEL CM_32
204
 
205
/* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
206
   which requires the following macro to be true if enabled.  Prior to V9,
207
   there are no instructions to even talk about memory synchronization.
208
   Note that the UltraSPARC III processors don't implement RMO, unlike the
209
   UltraSPARC II processors.
210
 
211
   Default to false; for example, Solaris never enables RMO, only ever uses
212
   total memory ordering (TMO).  */
213
#define SPARC_RELAXED_ORDERING false
214
 
215
/* Do not use the .note.GNU-stack convention by default.  */
216
#define NEED_INDICATE_EXEC_STACK 0
217
 
218
/* This is call-clobbered in the normal ABI, but is reserved in the
219
   home grown (aka upward compatible) embedded ABI.  */
220
#define EMBMEDANY_BASE_REG "%g4"
221
 
222
/* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
223
   and specified by the user via --with-cpu=foo.
224
   This specifies the cpu implementation, not the architecture size.  */
225
/* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
226
   capable cpu's.  */
227
#define TARGET_CPU_sparc        0
228
#define TARGET_CPU_v7           0        /* alias for previous */
229
#define TARGET_CPU_sparclet     1
230
#define TARGET_CPU_sparclite    2
231
#define TARGET_CPU_v8           3       /* generic v8 implementation */
232
#define TARGET_CPU_supersparc   4
233
#define TARGET_CPU_hypersparc   5
234
#define TARGET_CPU_sparc86x     6
235
#define TARGET_CPU_sparclite86x 6
236
#define TARGET_CPU_v9           7       /* generic v9 implementation */
237
#define TARGET_CPU_sparcv9      7       /* alias */
238
#define TARGET_CPU_sparc64      7       /* alias */
239
#define TARGET_CPU_ultrasparc   8
240
#define TARGET_CPU_ultrasparc3  9
241
 
242
#if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
243
 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
244
 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
245
 
246
#define CPP_CPU32_DEFAULT_SPEC ""
247
#define ASM_CPU32_DEFAULT_SPEC ""
248
 
249
#if TARGET_CPU_DEFAULT == TARGET_CPU_v9
250
/* ??? What does Sun's CC pass?  */
251
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
252
/* ??? It's not clear how other assemblers will handle this, so by default
253
   use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
254
   is handled in sol2.h.  */
255
#define ASM_CPU64_DEFAULT_SPEC "-Av9"
256
#endif
257
#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
258
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
259
#define ASM_CPU64_DEFAULT_SPEC "-Av9a"
260
#endif
261
#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
262
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
263
#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
264
#endif
265
 
266
#else
267
 
268
#define CPP_CPU64_DEFAULT_SPEC ""
269
#define ASM_CPU64_DEFAULT_SPEC ""
270
 
271
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
272
 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
273
#define CPP_CPU32_DEFAULT_SPEC ""
274
#define ASM_CPU32_DEFAULT_SPEC ""
275
#endif
276
 
277
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
278
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
279
#define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
280
#endif
281
 
282
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
283
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
284
#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
285
#endif
286
 
287
#if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
288
#define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
289
#define ASM_CPU32_DEFAULT_SPEC ""
290
#endif
291
 
292
#if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
293
#define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
294
#define ASM_CPU32_DEFAULT_SPEC ""
295
#endif
296
 
297
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
298
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
299
#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
300
#endif
301
 
302
#endif
303
 
304
#if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
305
 #error Unrecognized value in TARGET_CPU_DEFAULT.
306
#endif
307
 
308
#ifdef SPARC_BI_ARCH
309
 
310
#define CPP_CPU_DEFAULT_SPEC \
311
(DEFAULT_ARCH32_P ? "\
312
%{m64:" CPP_CPU64_DEFAULT_SPEC "} \
313
%{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
314
" : "\
315
%{m32:" CPP_CPU32_DEFAULT_SPEC "} \
316
%{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
317
")
318
#define ASM_CPU_DEFAULT_SPEC \
319
(DEFAULT_ARCH32_P ? "\
320
%{m64:" ASM_CPU64_DEFAULT_SPEC "} \
321
%{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
322
" : "\
323
%{m32:" ASM_CPU32_DEFAULT_SPEC "} \
324
%{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
325
")
326
 
327
#else /* !SPARC_BI_ARCH */
328
 
329
#define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
330
#define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
331
 
332
#endif /* !SPARC_BI_ARCH */
333
 
334
/* Define macros to distinguish architectures.  */
335
 
336
/* Common CPP definitions used by CPP_SPEC amongst the various targets
337
   for handling -mcpu=xxx switches.  */
338
#define CPP_CPU_SPEC "\
339
%{msoft-float:-D_SOFT_FLOAT} \
340
%{mcypress:} \
341
%{msparclite:-D__sparclite__} \
342
%{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
343
%{mv8:-D__sparc_v8__} \
344
%{msupersparc:-D__supersparc__ -D__sparc_v8__} \
345
%{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
346
%{mcpu=sparclite:-D__sparclite__} \
347
%{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
348
%{mcpu=v8:-D__sparc_v8__} \
349
%{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
350
%{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
351
%{mcpu=sparclite86x:-D__sparclite86x__} \
352
%{mcpu=v9:-D__sparc_v9__} \
353
%{mcpu=ultrasparc:-D__sparc_v9__} \
354
%{mcpu=ultrasparc3:-D__sparc_v9__} \
355
%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
356
"
357
#define CPP_ARCH32_SPEC ""
358
#define CPP_ARCH64_SPEC "-D__arch64__"
359
 
360
#define CPP_ARCH_DEFAULT_SPEC \
361
(DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
362
 
363
#define CPP_ARCH_SPEC "\
364
%{m32:%(cpp_arch32)} \
365
%{m64:%(cpp_arch64)} \
366
%{!m32:%{!m64:%(cpp_arch_default)}} \
367
"
368
 
369
/* Macros to distinguish endianness.  */
370
#define CPP_ENDIAN_SPEC "\
371
%{mlittle-endian:-D__LITTLE_ENDIAN__} \
372
%{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
373
 
374
/* Macros to distinguish the particular subtarget.  */
375
#define CPP_SUBTARGET_SPEC ""
376
 
377
#define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
378
 
379
/* Prevent error on `-sun4' and `-target sun4' options.  */
380
/* This used to translate -dalign to -malign, but that is no good
381
   because it can't turn off the usual meaning of making debugging dumps.  */
382
/* Translate old style -m<cpu> into new style -mcpu=<cpu>.
383
   ??? Delete support for -m<cpu> for 2.9.  */
384
 
385
#define CC1_SPEC "\
386
%{sun4:} %{target:} \
387
%{mcypress:-mcpu=cypress} \
388
%{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
389
%{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
390
"
391
 
392
/* Override in target specific files.  */
393
#define ASM_CPU_SPEC "\
394
%{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
395
%{msparclite:-Asparclite} \
396
%{mf930:-Asparclite} %{mf934:-Asparclite} \
397
%{mcpu=sparclite:-Asparclite} \
398
%{mcpu=sparclite86x:-Asparclite} \
399
%{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
400
%{mv8plus:-Av8plus} \
401
%{mcpu=v9:-Av9} \
402
%{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
403
%{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
404
%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
405
"
406
 
407
/* Word size selection, among other things.
408
   This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
409
 
410
#define ASM_ARCH32_SPEC "-32"
411
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
412
#define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
413
#else
414
#define ASM_ARCH64_SPEC "-64"
415
#endif
416
#define ASM_ARCH_DEFAULT_SPEC \
417
(DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
418
 
419
#define ASM_ARCH_SPEC "\
420
%{m32:%(asm_arch32)} \
421
%{m64:%(asm_arch64)} \
422
%{!m32:%{!m64:%(asm_arch_default)}} \
423
"
424
 
425
#ifdef HAVE_AS_RELAX_OPTION
426
#define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
427
#else
428
#define ASM_RELAX_SPEC ""
429
#endif
430
 
431
/* Special flags to the Sun-4 assembler when using pipe for input.  */
432
 
433
#define ASM_SPEC "\
434
%{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
435
%(asm_cpu) %(asm_relax)"
436
 
437
#define AS_NEEDS_DASH_FOR_PIPED_INPUT
438
 
439
/* This macro defines names of additional specifications to put in the specs
440
   that can be used in various specifications like CC1_SPEC.  Its definition
441
   is an initializer with a subgrouping for each command option.
442
 
443
   Each subgrouping contains a string constant, that defines the
444
   specification name, and a string constant that used by the GCC driver
445
   program.
446
 
447
   Do not define this macro if it does not need to do anything.  */
448
 
449
#define EXTRA_SPECS \
450
  { "cpp_cpu",          CPP_CPU_SPEC },         \
451
  { "cpp_cpu_default",  CPP_CPU_DEFAULT_SPEC }, \
452
  { "cpp_arch32",       CPP_ARCH32_SPEC },      \
453
  { "cpp_arch64",       CPP_ARCH64_SPEC },      \
454
  { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
455
  { "cpp_arch",         CPP_ARCH_SPEC },        \
456
  { "cpp_endian",       CPP_ENDIAN_SPEC },      \
457
  { "cpp_subtarget",    CPP_SUBTARGET_SPEC },   \
458
  { "asm_cpu",          ASM_CPU_SPEC },         \
459
  { "asm_cpu_default",  ASM_CPU_DEFAULT_SPEC }, \
460
  { "asm_arch32",       ASM_ARCH32_SPEC },      \
461
  { "asm_arch64",       ASM_ARCH64_SPEC },      \
462
  { "asm_relax",        ASM_RELAX_SPEC },       \
463
  { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
464
  { "asm_arch",         ASM_ARCH_SPEC },        \
465
  SUBTARGET_EXTRA_SPECS
466
 
467
#define SUBTARGET_EXTRA_SPECS
468
 
469
/* Because libgcc can generate references back to libc (via .umul etc.) we have
470
   to list libc again after the second libgcc.  */
471
#define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
472
 
473
 
474
#define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
475
#define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
476
 
477
/* ??? This should be 32 bits for v9 but what can we do?  */
478
#define WCHAR_TYPE "short unsigned int"
479
#define WCHAR_TYPE_SIZE 16
480
 
481
/* Show we can debug even without a frame pointer.  */
482
#define CAN_DEBUG_WITHOUT_FP
483
 
484
/* Option handling.  */
485
 
486
#define OVERRIDE_OPTIONS  sparc_override_options ()
487
 
488
/* Mask of all CPU selection flags.  */
489
#define MASK_ISA \
490
(MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
491
 
492
/* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
493
   TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
494
   to get high 32 bits.  False in V8+ or V9 because multiply stores
495
   a 64 bit result in a register.  */
496
 
497
#define TARGET_HARD_MUL32                               \
498
  ((TARGET_V8 || TARGET_SPARCLITE                       \
499
    || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS)   \
500
   && ! TARGET_V8PLUS && TARGET_ARCH32)
501
 
502
#define TARGET_HARD_MUL                                 \
503
  (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET     \
504
   || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
505
 
506
/* MASK_APP_REGS must always be the default because that's what
507
   FIXED_REGISTERS is set to and -ffixed- is processed before
508
   CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs).  */
509
#define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
510
 
511
/* Processor type.
512
   These must match the values for the cpu attribute in sparc.md.  */
513
enum processor_type {
514
  PROCESSOR_V7,
515
  PROCESSOR_CYPRESS,
516
  PROCESSOR_V8,
517
  PROCESSOR_SUPERSPARC,
518
  PROCESSOR_SPARCLITE,
519
  PROCESSOR_F930,
520
  PROCESSOR_F934,
521
  PROCESSOR_HYPERSPARC,
522
  PROCESSOR_SPARCLITE86X,
523
  PROCESSOR_SPARCLET,
524
  PROCESSOR_TSC701,
525
  PROCESSOR_V9,
526
  PROCESSOR_ULTRASPARC,
527
  PROCESSOR_ULTRASPARC3
528
};
529
 
530
/* This is set from -m{cpu,tune}=xxx.  */
531
extern enum processor_type sparc_cpu;
532
 
533
/* Recast the cpu class to be the cpu attribute.
534
   Every file includes us, but not every file includes insn-attr.h.  */
535
#define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
536
 
537
/* Support for a compile-time default CPU, et cetera.  The rules are:
538
   --with-cpu is ignored if -mcpu is specified.
539
   --with-tune is ignored if -mtune is specified.
540
   --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
541
     are specified.  */
542
#define OPTION_DEFAULT_SPECS \
543
  {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
544
  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
545
  {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
546
 
547
/* sparc_select[0] is reserved for the default cpu.  */
548
struct sparc_cpu_select
549
{
550
  const char *string;
551
  const char *const name;
552
  const int set_tune_p;
553
  const int set_arch_p;
554
};
555
 
556
extern struct sparc_cpu_select sparc_select[];
557
 
558
/* target machine storage layout */
559
 
560
/* Define this if most significant bit is lowest numbered
561
   in instructions that operate on numbered bit-fields.  */
562
#define BITS_BIG_ENDIAN 1
563
 
564
/* Define this if most significant byte of a word is the lowest numbered.  */
565
#define BYTES_BIG_ENDIAN 1
566
 
567
/* Define this if most significant word of a multiword number is the lowest
568
   numbered.  */
569
#define WORDS_BIG_ENDIAN 1
570
 
571
/* Define this to set the endianness to use in libgcc2.c, which can
572
   not depend on target_flags.  */
573
#if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
574
#define LIBGCC2_WORDS_BIG_ENDIAN 0
575
#else
576
#define LIBGCC2_WORDS_BIG_ENDIAN 1
577
#endif
578
 
579
#define MAX_BITS_PER_WORD       64
580
 
581
/* Width of a word, in units (bytes).  */
582
#define UNITS_PER_WORD          (TARGET_ARCH64 ? 8 : 4)
583
#ifdef IN_LIBGCC2
584
#define MIN_UNITS_PER_WORD      UNITS_PER_WORD
585
#else
586
#define MIN_UNITS_PER_WORD      4
587
#endif
588
 
589
#define UNITS_PER_SIMD_WORD     (TARGET_VIS ? 8 : UNITS_PER_WORD)
590
 
591
/* Now define the sizes of the C data types.  */
592
 
593
#define SHORT_TYPE_SIZE         16
594
#define INT_TYPE_SIZE           32
595
#define LONG_TYPE_SIZE          (TARGET_ARCH64 ? 64 : 32)
596
#define LONG_LONG_TYPE_SIZE     64
597
#define FLOAT_TYPE_SIZE         32
598
#define DOUBLE_TYPE_SIZE        64
599
/* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
600
   SPARC ABI says that it is 128-bit wide.  */
601
/* #define LONG_DOUBLE_TYPE_SIZE        128 */
602
 
603
/* Width in bits of a pointer.
604
   See also the macro `Pmode' defined below.  */
605
#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
606
 
607
/* If we have to extend pointers (only when TARGET_ARCH64 and not
608
   TARGET_PTR64), we want to do it unsigned.   This macro does nothing
609
   if ptr_mode and Pmode are the same.  */
610
#define POINTERS_EXTEND_UNSIGNED 1
611
 
612
/* For TARGET_ARCH64 we need this, as we don't have instructions
613
   for arithmetic operations which do zero/sign extension at the same time,
614
   so without this we end up with a srl/sra after every assignment to an
615
   user variable,  which means very very bad code.  */
616
#define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \
617
if (TARGET_ARCH64                               \
618
    && GET_MODE_CLASS (MODE) == MODE_INT        \
619
    && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)   \
620
  (MODE) = word_mode;
621
 
622
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
623
#define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
624
 
625
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
626
/* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
627
   then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
628
#define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
629
/* Temporary hack until the FIXME above is fixed.  */
630
#define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
631
 
632
/* ALIGN FRAMES on double word boundaries */
633
 
634
#define SPARC_STACK_ALIGN(LOC) \
635
  (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
636
 
637
/* Allocation boundary (in *bits*) for the code of a function.  */
638
#define FUNCTION_BOUNDARY 32
639
 
640
/* Alignment of field after `int : 0' in a structure.  */
641
#define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
642
 
643
/* Every structure's size must be a multiple of this.  */
644
#define STRUCTURE_SIZE_BOUNDARY 8
645
 
646
/* A bit-field declared as `int' forces `int' alignment for the struct.  */
647
#define PCC_BITFIELD_TYPE_MATTERS 1
648
 
649
/* No data type wants to be aligned rounder than this.  */
650
#define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
651
 
652
/* The best alignment to use in cases where we have a choice.  */
653
#define FASTEST_ALIGNMENT 64
654
 
655
/* Define this macro as an expression for the alignment of a structure
656
   (given by STRUCT as a tree node) if the alignment computed in the
657
   usual way is COMPUTED and the alignment explicitly specified was
658
   SPECIFIED.
659
 
660
   The default is to use SPECIFIED if it is larger; otherwise, use
661
   the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
662
#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)   \
663
 (TARGET_FASTER_STRUCTS ?                               \
664
  ((TREE_CODE (STRUCT) == RECORD_TYPE                   \
665
    || TREE_CODE (STRUCT) == UNION_TYPE                 \
666
    || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
667
   && TYPE_FIELDS (STRUCT) != 0                         \
668
     ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
669
     : MAX ((COMPUTED), (SPECIFIED)))                   \
670
   :  MAX ((COMPUTED), (SPECIFIED)))
671
 
672
/* Make strings word-aligned so strcpy from constants will be faster.  */
673
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
674
  ((TREE_CODE (EXP) == STRING_CST       \
675
    && (ALIGN) < FASTEST_ALIGNMENT)     \
676
   ? FASTEST_ALIGNMENT : (ALIGN))
677
 
678
/* Make arrays of chars word-aligned for the same reasons.  */
679
#define DATA_ALIGNMENT(TYPE, ALIGN)             \
680
  (TREE_CODE (TYPE) == ARRAY_TYPE               \
681
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
682
   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
683
 
684
/* Set this nonzero if move instructions will actually fail to work
685
   when given unaligned data.  */
686
#define STRICT_ALIGNMENT 1
687
 
688
/* Things that must be doubleword aligned cannot go in the text section,
689
   because the linker fails to align the text section enough!
690
   Put them in the data section.  This macro is only used in this file.  */
691
#define MAX_TEXT_ALIGN 32
692
 
693
/* Standard register usage.  */
694
 
695
/* Number of actual hardware registers.
696
   The hardware registers are assigned numbers for the compiler
697
   from 0 to just below FIRST_PSEUDO_REGISTER.
698
   All registers that the compiler knows about must be given numbers,
699
   even those that are not normally considered general registers.
700
 
701
   SPARC has 32 integer registers and 32 floating point registers.
702
   64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
703
   accessible.  We still account for them to simplify register computations
704
   (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
705
   32+32+32+4 == 100.
706
   Register 100 is used as the integer condition code register.
707
   Register 101 is used as the soft frame pointer register.  */
708
 
709
#define FIRST_PSEUDO_REGISTER 102
710
 
711
#define SPARC_FIRST_FP_REG     32
712
/* Additional V9 fp regs.  */
713
#define SPARC_FIRST_V9_FP_REG  64
714
#define SPARC_LAST_V9_FP_REG   95
715
/* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
716
#define SPARC_FIRST_V9_FCC_REG 96
717
#define SPARC_LAST_V9_FCC_REG  99
718
/* V8 fcc reg.  */
719
#define SPARC_FCC_REG 96
720
/* Integer CC reg.  We don't distinguish %icc from %xcc.  */
721
#define SPARC_ICC_REG 100
722
 
723
/* Nonzero if REGNO is an fp reg.  */
724
#define SPARC_FP_REG_P(REGNO) \
725
((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
726
 
727
/* Argument passing regs.  */
728
#define SPARC_OUTGOING_INT_ARG_FIRST 8
729
#define SPARC_INCOMING_INT_ARG_FIRST 24
730
#define SPARC_FP_ARG_FIRST           32
731
 
732
/* 1 for registers that have pervasive standard uses
733
   and are not available for the register allocator.
734
 
735
   On non-v9 systems:
736
   g1 is free to use as temporary.
737
   g2-g4 are reserved for applications.  Gcc normally uses them as
738
   temporaries, but this can be disabled via the -mno-app-regs option.
739
   g5 through g7 are reserved for the operating system.
740
 
741
   On v9 systems:
742
   g1,g5 are free to use as temporaries, and are free to use between calls
743
   if the call is to an external function via the PLT.
744
   g4 is free to use as a temporary in the non-embedded case.
745
   g4 is reserved in the embedded case.
746
   g2-g3 are reserved for applications.  Gcc normally uses them as
747
   temporaries, but this can be disabled via the -mno-app-regs option.
748
   g6-g7 are reserved for the operating system (or application in
749
   embedded case).
750
   ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
751
   currently be a fixed register until this pattern is rewritten.
752
   Register 1 is also used when restoring call-preserved registers in large
753
   stack frames.
754
 
755
   Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
756
   CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
757
*/
758
 
759
#define FIXED_REGISTERS  \
760
 {1, 0, 2, 2, 2, 2, 1, 1,       \
761
  0, 0, 0, 0, 0, 0, 1, 0,       \
762
  0, 0, 0, 0, 0, 0, 0, 0,       \
763
  0, 0, 0, 0, 0, 0, 1, 1,       \
764
                                \
765
  0, 0, 0, 0, 0, 0, 0, 0,       \
766
  0, 0, 0, 0, 0, 0, 0, 0,       \
767
  0, 0, 0, 0, 0, 0, 0, 0,       \
768
  0, 0, 0, 0, 0, 0, 0, 0,       \
769
                                \
770
  0, 0, 0, 0, 0, 0, 0, 0,       \
771
  0, 0, 0, 0, 0, 0, 0, 0,       \
772
  0, 0, 0, 0, 0, 0, 0, 0,       \
773
  0, 0, 0, 0, 0, 0, 0, 0,       \
774
                                \
775
  0, 0, 0, 0, 0, 1}
776
 
777
/* 1 for registers not available across function calls.
778
   These must include the FIXED_REGISTERS and also any
779
   registers that can be used without being saved.
780
   The latter must include the registers where values are returned
781
   and the register where structure-value addresses are passed.
782
   Aside from that, you can include as many other registers as you like.  */
783
 
784
#define CALL_USED_REGISTERS  \
785
 {1, 1, 1, 1, 1, 1, 1, 1,       \
786
  1, 1, 1, 1, 1, 1, 1, 1,       \
787
  0, 0, 0, 0, 0, 0, 0, 0,       \
788
  0, 0, 0, 0, 0, 0, 1, 1,       \
789
                                \
790
  1, 1, 1, 1, 1, 1, 1, 1,       \
791
  1, 1, 1, 1, 1, 1, 1, 1,       \
792
  1, 1, 1, 1, 1, 1, 1, 1,       \
793
  1, 1, 1, 1, 1, 1, 1, 1,       \
794
                                \
795
  1, 1, 1, 1, 1, 1, 1, 1,       \
796
  1, 1, 1, 1, 1, 1, 1, 1,       \
797
  1, 1, 1, 1, 1, 1, 1, 1,       \
798
  1, 1, 1, 1, 1, 1, 1, 1,       \
799
                                \
800
  1, 1, 1, 1, 1, 1}
801
 
802
/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
803
   they won't be allocated.  */
804
 
805
#define CONDITIONAL_REGISTER_USAGE                              \
806
do                                                              \
807
  {                                                             \
808
    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)              \
809
      {                                                         \
810
        fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;                \
811
        call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;            \
812
      }                                                         \
813
    /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
814
    /* then honor it.  */                                       \
815
    if (TARGET_ARCH32 && fixed_regs[5])                         \
816
      fixed_regs[5] = 1;                                        \
817
    else if (TARGET_ARCH64 && fixed_regs[5] == 2)               \
818
      fixed_regs[5] = 0;                                        \
819
    if (! TARGET_V9)                                            \
820
      {                                                         \
821
        int regno;                                              \
822
        for (regno = SPARC_FIRST_V9_FP_REG;                     \
823
             regno <= SPARC_LAST_V9_FP_REG;                     \
824
             regno++)                                           \
825
          fixed_regs[regno] = 1;                                \
826
        /* %fcc0 is used by v8 and v9.  */                      \
827
        for (regno = SPARC_FIRST_V9_FCC_REG + 1;                \
828
             regno <= SPARC_LAST_V9_FCC_REG;                    \
829
             regno++)                                           \
830
          fixed_regs[regno] = 1;                                \
831
      }                                                         \
832
    if (! TARGET_FPU)                                           \
833
      {                                                         \
834
        int regno;                                              \
835
        for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
836
          fixed_regs[regno] = 1;                                \
837
      }                                                         \
838
    /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
839
    /* then honor it.  Likewise with g3 and g4.  */             \
840
    if (fixed_regs[2] == 2)                                     \
841
      fixed_regs[2] = ! TARGET_APP_REGS;                        \
842
    if (fixed_regs[3] == 2)                                     \
843
      fixed_regs[3] = ! TARGET_APP_REGS;                        \
844
    if (TARGET_ARCH32 && fixed_regs[4] == 2)                    \
845
      fixed_regs[4] = ! TARGET_APP_REGS;                        \
846
    else if (TARGET_CM_EMBMEDANY)                               \
847
      fixed_regs[4] = 1;                                        \
848
    else if (fixed_regs[4] == 2)                                \
849
      fixed_regs[4] = 0;                                        \
850
  }                                                             \
851
while (0)
852
 
853
/* Return number of consecutive hard regs needed starting at reg REGNO
854
   to hold something of mode MODE.
855
   This is ordinarily the length in words of a value of mode MODE
856
   but can be less for certain modes in special long registers.
857
 
858
   On SPARC, ordinary registers hold 32 bits worth;
859
   this means both integer and floating point registers.
860
   On v9, integer regs hold 64 bits worth; floating point regs hold
861
   32 bits worth (this includes the new fp regs as even the odd ones are
862
   included in the hard register count).  */
863
 
864
#define HARD_REGNO_NREGS(REGNO, MODE) \
865
  (TARGET_ARCH64                                                        \
866
   ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM                   \
867
      ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD    \
868
      : (GET_MODE_SIZE (MODE) + 3) / 4)                                 \
869
   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
870
 
871
/* Due to the ARCH64 discrepancy above we must override this next
872
   macro too.  */
873
#define REGMODE_NATURAL_SIZE(MODE) \
874
  ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
875
 
876
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
877
   See sparc.c for how we initialize this.  */
878
extern const int *hard_regno_mode_classes;
879
extern int sparc_mode_class[];
880
 
881
/* ??? Because of the funny way we pass parameters we should allow certain
882
   ??? types of float/complex values to be in integer registers during
883
   ??? RTL generation.  This only matters on arch32.  */
884
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
885
  ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
886
 
887
/* Value is 1 if it is OK to rename a hard register FROM to another hard
888
   register TO.  We cannot rename %g1 as it may be used before the save
889
   register window instruction in the prologue.  */
890
#define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
891
 
892
/* Value is 1 if it is a good idea to tie two pseudo registers
893
   when one has mode MODE1 and one has mode MODE2.
894
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
895
   for any hard reg, then this must be 0 for correct output.
896
 
897
   For V9: SFmode can't be combined with other float modes, because they can't
898
   be allocated to the %d registers.  Also, DFmode won't fit in odd %f
899
   registers, but SFmode will.  */
900
#define MODES_TIEABLE_P(MODE1, MODE2) \
901
  ((MODE1) == (MODE2)                                           \
902
   || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)         \
903
       && (! TARGET_V9                                          \
904
           || (GET_MODE_CLASS (MODE1) != MODE_FLOAT             \
905
               || (MODE1 != SFmode && MODE2 != SFmode)))))
906
 
907
/* Specify the registers used for certain standard purposes.
908
   The values of these macros are register numbers.  */
909
 
910
/* Register to use for pushing function arguments.  */
911
#define STACK_POINTER_REGNUM 14
912
 
913
/* The stack bias (amount by which the hardware register is offset by).  */
914
#define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
915
 
916
/* Actual top-of-stack address is 92/176 greater than the contents of the
917
   stack pointer register for !v9/v9.  That is:
918
   - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
919
     address, and 6*4 bytes for the 6 register parameters.
920
   - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
921
     parameter regs.  */
922
#define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
923
 
924
/* Base register for access to local variables of the function.  */
925
#define HARD_FRAME_POINTER_REGNUM 30
926
 
927
/* The soft frame pointer does not have the stack bias applied.  */
928
#define FRAME_POINTER_REGNUM 101
929
 
930
/* Given the stack bias, the stack pointer isn't actually aligned.  */
931
#define INIT_EXPANDERS                                                   \
932
  do {                                                                   \
933
    if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS)     \
934
      {                                                                  \
935
        REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT;      \
936
        REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
937
      }                                                                  \
938
  } while (0)
939
 
940
/* Value should be nonzero if functions must have frame pointers.
941
   Zero means the frame pointer need not be set up (and parms
942
   may be accessed via the stack pointer) in functions that seem suitable.
943
   Used in flow.c, global.c, ra.c and reload1.c.  */
944
#define FRAME_POINTER_REQUIRED  \
945
  (! (leaf_function_p () && only_leaf_regs_used ()))
946
 
947
/* Base register for access to arguments of the function.  */
948
#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
949
 
950
/* Register in which static-chain is passed to a function.  This must
951
   not be a register used by the prologue.  */
952
#define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
953
 
954
/* Register which holds offset table for position-independent
955
   data references.  */
956
 
957
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
958
 
959
/* Pick a default value we can notice from override_options:
960
   !v9: Default is on.
961
   v9: Default is off.  */
962
 
963
#define DEFAULT_PCC_STRUCT_RETURN -1
964
 
965
/* Functions which return large structures get the address
966
   to place the wanted value at offset 64 from the frame.
967
   Must reserve 64 bytes for the in and local registers.
968
   v9: Functions which return large structures get the address to place the
969
   wanted value from an invisible first argument.  */
970
#define STRUCT_VALUE_OFFSET 64
971
 
972
/* Define the classes of registers for register constraints in the
973
   machine description.  Also define ranges of constants.
974
 
975
   One of the classes must always be named ALL_REGS and include all hard regs.
976
   If there is more than one class, another class must be named NO_REGS
977
   and contain no registers.
978
 
979
   The name GENERAL_REGS must be the name of a class (or an alias for
980
   another name such as ALL_REGS).  This is the class of registers
981
   that is allowed by "g" or "r" in a register constraint.
982
   Also, registers outside this class are allocated only when
983
   instructions express preferences for them.
984
 
985
   The classes must be numbered in nondecreasing order; that is,
986
   a larger-numbered class must never be contained completely
987
   in a smaller-numbered class.
988
 
989
   For any two classes, it is very desirable that there be another
990
   class that represents their union.  */
991
 
992
/* The SPARC has various kinds of registers: general, floating point,
993
   and condition codes [well, it has others as well, but none that we
994
   care directly about].
995
 
996
   For v9 we must distinguish between the upper and lower floating point
997
   registers because the upper ones can't hold SFmode values.
998
   HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
999
   satisfying a group need for a class will also satisfy a single need for
1000
   that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1001
   regs.
1002
 
1003
   It is important that one class contains all the general and all the standard
1004
   fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
1005
   because reg_class_record() will bias the selection in favor of fp regs,
1006
   because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1007
   because FP_REGS > GENERAL_REGS.
1008
 
1009
   It is also important that one class contain all the general and all
1010
   the fp regs.  Otherwise when spilling a DFmode reg, it may be from
1011
   EXTRA_FP_REGS but find_reloads() may use class
1012
   GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
1013
   because the compiler thinks it doesn't have a spill reg when in
1014
   fact it does.
1015
 
1016
   v9 also has 4 floating point condition code registers.  Since we don't
1017
   have a class that is the union of FPCC_REGS with either of the others,
1018
   it is important that it appear first.  Otherwise the compiler will die
1019
   trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1020
   constraints.
1021
 
1022
   It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
1023
   may try to use it to hold an SImode value.  See register_operand.
1024
   ??? Should %fcc[0123] be handled similarly?
1025
*/
1026
 
1027
enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1028
                 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1029
                 ALL_REGS, LIM_REG_CLASSES };
1030
 
1031
#define N_REG_CLASSES (int) LIM_REG_CLASSES
1032
 
1033
/* Give names of register classes as strings for dump file.  */
1034
 
1035
#define REG_CLASS_NAMES \
1036
  { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",      \
1037
     "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1038
     "ALL_REGS" }
1039
 
1040
/* Define which registers fit in which classes.
1041
   This is an initializer for a vector of HARD_REG_SET
1042
   of length N_REG_CLASSES.  */
1043
 
1044
#define REG_CLASS_CONTENTS                              \
1045
  {{0, 0, 0, 0},        /* NO_REGS */                   \
1046
   {0, 0, 0, 0xf},      /* FPCC_REGS */                 \
1047
   {0xffff, 0, 0, 0},   /* I64_REGS */                  \
1048
   {-1, 0, 0, 0x20},    /* GENERAL_REGS */              \
1049
   {0, -1, 0, 0},       /* FP_REGS */                   \
1050
   {0, -1, -1, 0},      /* EXTRA_FP_REGS */             \
1051
   {-1, -1, 0, 0x20},   /* GENERAL_OR_FP_REGS */        \
1052
   {-1, -1, -1, 0x20},  /* GENERAL_OR_EXTRA_FP_REGS */  \
1053
   {-1, -1, -1, 0x3f}}  /* ALL_REGS */
1054
 
1055
/* Defines invalid mode changes.  Borrowed from pa64-regs.h.
1056
 
1057
   SImode loads to floating-point registers are not zero-extended.
1058
   The definition for LOAD_EXTEND_OP specifies that integer loads
1059
   narrower than BITS_PER_WORD will be zero-extended.  As a result,
1060
   we inhibit changes from SImode unless they are to a mode that is
1061
   identical in size.  */
1062
 
1063
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
1064
  (TARGET_ARCH64                                                \
1065
   && (FROM) == SImode                                          \
1066
   && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)                \
1067
   ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1068
 
1069
/* The same information, inverted:
1070
   Return the class number of the smallest class containing
1071
   reg number REGNO.  This could be a conditional expression
1072
   or could index an array.  */
1073
 
1074
extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1075
 
1076
#define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1077
 
1078
/* This is the order in which to allocate registers normally.
1079
 
1080
   We put %f0-%f7 last among the float registers, so as to make it more
1081
   likely that a pseudo-register which dies in the float return register
1082
   area will get allocated to the float return register, thus saving a move
1083
   instruction at the end of the function.
1084
 
1085
   Similarly for integer return value registers.
1086
 
1087
   We know in this case that we will not end up with a leaf function.
1088
 
1089
   The register allocator is given the global and out registers first
1090
   because these registers are call clobbered and thus less useful to
1091
   global register allocation.
1092
 
1093
   Next we list the local and in registers.  They are not call clobbered
1094
   and thus very useful for global register allocation.  We list the input
1095
   registers before the locals so that it is more likely the incoming
1096
   arguments received in those registers can just stay there and not be
1097
   reloaded.  */
1098
 
1099
#define REG_ALLOC_ORDER \
1100
{ 1, 2, 3, 4, 5, 6, 7,                  /* %g1-%g7 */   \
1101
  13, 12, 11, 10, 9, 8,                 /* %o5-%o0 */   \
1102
  15,                                   /* %o7 */       \
1103
  16, 17, 18, 19, 20, 21, 22, 23,       /* %l0-%l7 */   \
1104
  29, 28, 27, 26, 25, 24, 31,           /* %i5-%i0,%i7 */\
1105
  40, 41, 42, 43, 44, 45, 46, 47,       /* %f8-%f15 */  \
1106
  48, 49, 50, 51, 52, 53, 54, 55,       /* %f16-%f23 */ \
1107
  56, 57, 58, 59, 60, 61, 62, 63,       /* %f24-%f31 */ \
1108
  64, 65, 66, 67, 68, 69, 70, 71,       /* %f32-%f39 */ \
1109
  72, 73, 74, 75, 76, 77, 78, 79,       /* %f40-%f47 */ \
1110
  80, 81, 82, 83, 84, 85, 86, 87,       /* %f48-%f55 */ \
1111
  88, 89, 90, 91, 92, 93, 94, 95,       /* %f56-%f63 */ \
1112
  39, 38, 37, 36, 35, 34, 33, 32,       /* %f7-%f0 */   \
1113
  96, 97, 98, 99,                       /* %fcc0-3 */   \
1114
  100, 0, 14, 30, 101}                  /* %icc, %g0, %o6, %i6, %sfp */
1115
 
1116
/* This is the order in which to allocate registers for
1117
   leaf functions.  If all registers can fit in the global and
1118
   output registers, then we have the possibility of having a leaf
1119
   function.
1120
 
1121
   The macro actually mentioned the input registers first,
1122
   because they get renumbered into the output registers once
1123
   we know really do have a leaf function.
1124
 
1125
   To be more precise, this register allocation order is used
1126
   when %o7 is found to not be clobbered right before register
1127
   allocation.  Normally, the reason %o7 would be clobbered is
1128
   due to a call which could not be transformed into a sibling
1129
   call.
1130
 
1131
   As a consequence, it is possible to use the leaf register
1132
   allocation order and not end up with a leaf function.  We will
1133
   not get suboptimal register allocation in that case because by
1134
   definition of being potentially leaf, there were no function
1135
   calls.  Therefore, allocation order within the local register
1136
   window is not critical like it is when we do have function calls.  */
1137
 
1138
#define REG_LEAF_ALLOC_ORDER \
1139
{ 1, 2, 3, 4, 5, 6, 7,                  /* %g1-%g7 */   \
1140
  29, 28, 27, 26, 25, 24,               /* %i5-%i0 */   \
1141
  15,                                   /* %o7 */       \
1142
  13, 12, 11, 10, 9, 8,                 /* %o5-%o0 */   \
1143
  16, 17, 18, 19, 20, 21, 22, 23,       /* %l0-%l7 */   \
1144
  40, 41, 42, 43, 44, 45, 46, 47,       /* %f8-%f15 */  \
1145
  48, 49, 50, 51, 52, 53, 54, 55,       /* %f16-%f23 */ \
1146
  56, 57, 58, 59, 60, 61, 62, 63,       /* %f24-%f31 */ \
1147
  64, 65, 66, 67, 68, 69, 70, 71,       /* %f32-%f39 */ \
1148
  72, 73, 74, 75, 76, 77, 78, 79,       /* %f40-%f47 */ \
1149
  80, 81, 82, 83, 84, 85, 86, 87,       /* %f48-%f55 */ \
1150
  88, 89, 90, 91, 92, 93, 94, 95,       /* %f56-%f63 */ \
1151
  39, 38, 37, 36, 35, 34, 33, 32,       /* %f7-%f0 */   \
1152
  96, 97, 98, 99,                       /* %fcc0-3 */   \
1153
  100, 0, 14, 30, 31, 101}              /* %icc, %g0, %o6, %i6, %i7, %sfp */
1154
 
1155
#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1156
 
1157
extern char sparc_leaf_regs[];
1158
#define LEAF_REGISTERS sparc_leaf_regs
1159
 
1160
extern char leaf_reg_remap[];
1161
#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1162
 
1163
/* The class value for index registers, and the one for base regs.  */
1164
#define INDEX_REG_CLASS GENERAL_REGS
1165
#define BASE_REG_CLASS GENERAL_REGS
1166
 
1167
/* Local macro to handle the two v9 classes of FP regs.  */
1168
#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1169
 
1170
/* Get reg_class from a letter such as appears in the machine description.
1171
   In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1172
   .md file for v8 and v9.
1173
   'd' and 'b' are used for single and double precision VIS operations,
1174
   if TARGET_VIS.
1175
   'h' is used for V8+ 64 bit global and out registers.  */
1176
 
1177
#define REG_CLASS_FROM_LETTER(C)                \
1178
(TARGET_V9                                      \
1179
 ? ((C) == 'f' ? FP_REGS                        \
1180
    : (C) == 'e' ? EXTRA_FP_REGS                \
1181
    : (C) == 'c' ? FPCC_REGS                    \
1182
    : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1183
    : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1184
    : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1185
    : NO_REGS)                                  \
1186
 : ((C) == 'f' ? FP_REGS                        \
1187
    : (C) == 'e' ? FP_REGS                      \
1188
    : (C) == 'c' ? FPCC_REGS                    \
1189
    : NO_REGS))
1190
 
1191
/* The letters I, J, K, L, M, N, O, P in a register constraint string
1192
   can be used to stand for particular ranges of CONST_INTs.
1193
   This macro defines what the ranges are.
1194
   C is the letter, and VALUE is a constant value.
1195
   Return 1 if VALUE is in the range specified by C.
1196
 
1197
   `I' is used for the range of constants an insn can actually contain.
1198
   `J' is used for the range which is just zero (since that is R0).
1199
   `K' is used for constants which can be loaded with a single sethi insn.
1200
   `L' is used for the range of constants supported by the movcc insns.
1201
   `M' is used for the range of constants supported by the movrcc insns.
1202
   `N' is like K, but for constants wider than 32 bits.
1203
   `O' is used for the range which is just 4096.
1204
   `P' is free.  */
1205
 
1206
/* Predicates for 10-bit, 11-bit and 13-bit signed constants.  */
1207
#define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1208
#define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1209
#define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1210
 
1211
/* 10- and 11-bit immediates are only used for a few specific insns.
1212
   SMALL_INT is used throughout the port so we continue to use it.  */
1213
#define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1214
 
1215
/* Predicate for constants that can be loaded with a sethi instruction.
1216
   This is the general, 64-bit aware, bitwise version that ensures that
1217
   only constants whose representation fits in the mask
1218
 
1219
     0x00000000fffffc00
1220
 
1221
   are accepted.  It will reject, for example, negative SImode constants
1222
   on 64-bit hosts, so correct handling is to mask the value beforehand
1223
   according to the mode of the instruction.  */
1224
#define SPARC_SETHI_P(X) \
1225
  (((unsigned HOST_WIDE_INT) (X) \
1226
    & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1227
 
1228
/* Version of the above predicate for SImode constants and below.  */
1229
#define SPARC_SETHI32_P(X) \
1230
  (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1231
 
1232
#define CONST_OK_FOR_LETTER_P(VALUE, C)  \
1233
  ((C) == 'I' ? SPARC_SIMM13_P (VALUE)                  \
1234
   : (C) == 'J' ? (VALUE) == 0                          \
1235
   : (C) == 'K' ? SPARC_SETHI32_P (VALUE)               \
1236
   : (C) == 'L' ? SPARC_SIMM11_P (VALUE)                \
1237
   : (C) == 'M' ? SPARC_SIMM10_P (VALUE)                \
1238
   : (C) == 'N' ? SPARC_SETHI_P (VALUE)                 \
1239
   : (C) == 'O' ? (VALUE) == 4096                       \
1240
   : 0)
1241
 
1242
/* Similar, but for CONST_DOUBLEs, and defining letters G and H.
1243
   Here VALUE is the CONST_DOUBLE rtx itself.  */
1244
 
1245
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1246
  ((C) == 'G' ? const_zero_operand (VALUE, GET_MODE (VALUE))    \
1247
   : (C) == 'H' ? arith_double_operand (VALUE, DImode)          \
1248
   : 0)
1249
 
1250
/* Given an rtx X being reloaded into a reg required to be
1251
   in class CLASS, return the class of reg to actually use.
1252
   In general this is just CLASS; but on some machines
1253
   in some cases it is preferable to use a more restrictive class.  */
1254
/* - We can't load constants into FP registers.
1255
   - We can't load FP constants into integer registers when soft-float,
1256
     because there is no soft-float pattern with a r/F constraint.
1257
   - We can't load FP constants into integer registers for TFmode unless
1258
     it is 0.0L, because there is no movtf pattern with a r/F constraint.
1259
   - Try and reload integer constants (symbolic or otherwise) back into
1260
     registers directly, rather than having them dumped to memory.  */
1261
 
1262
#define PREFERRED_RELOAD_CLASS(X,CLASS)                 \
1263
  (CONSTANT_P (X)                                       \
1264
   ? ((FP_REG_CLASS_P (CLASS)                           \
1265
       || (CLASS) == GENERAL_OR_FP_REGS                 \
1266
       || (CLASS) == GENERAL_OR_EXTRA_FP_REGS           \
1267
       || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT  \
1268
           && ! TARGET_FPU)                             \
1269
       || (GET_MODE (X) == TFmode                       \
1270
           && ! const_zero_operand (X, TFmode)))        \
1271
      ? NO_REGS                                         \
1272
      : (!FP_REG_CLASS_P (CLASS)                        \
1273
         && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)  \
1274
      ? GENERAL_REGS                                    \
1275
      : (CLASS))                                        \
1276
   : (CLASS))
1277
 
1278
/* Return the register class of a scratch register needed to load IN into
1279
   a register of class CLASS in MODE.
1280
 
1281
   We need a temporary when loading/storing a HImode/QImode value
1282
   between memory and the FPU registers.  This can happen when combine puts
1283
   a paradoxical subreg in a float/fix conversion insn.
1284
 
1285
   We need a temporary when loading/storing a DFmode value between
1286
   unaligned memory and the upper FPU registers.  */
1287
 
1288
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN)           \
1289
  ((FP_REG_CLASS_P (CLASS)                                      \
1290
    && ((MODE) == HImode || (MODE) == QImode)                   \
1291
    && (GET_CODE (IN) == MEM                                    \
1292
        || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)   \
1293
            && true_regnum (IN) == -1)))                        \
1294
   ? GENERAL_REGS                                               \
1295
   : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode              \
1296
      && GET_CODE (IN) == MEM && TARGET_ARCH32                  \
1297
      && ! mem_min_alignment ((IN), 8))                         \
1298
     ? FP_REGS                                                  \
1299
     : (((TARGET_CM_MEDANY                                      \
1300
          && symbolic_operand ((IN), (MODE)))                   \
1301
         || (TARGET_CM_EMBMEDANY                                \
1302
             && text_segment_operand ((IN), (MODE))))           \
1303
        && !flag_pic)                                           \
1304
       ? GENERAL_REGS                                           \
1305
       : NO_REGS)
1306
 
1307
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN)          \
1308
  ((FP_REG_CLASS_P (CLASS)                                      \
1309
     && ((MODE) == HImode || (MODE) == QImode)                  \
1310
     && (GET_CODE (IN) == MEM                                   \
1311
         || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)  \
1312
             && true_regnum (IN) == -1)))                       \
1313
   ? GENERAL_REGS                                               \
1314
   : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode              \
1315
      && GET_CODE (IN) == MEM && TARGET_ARCH32                  \
1316
      && ! mem_min_alignment ((IN), 8))                         \
1317
     ? FP_REGS                                                  \
1318
     : (((TARGET_CM_MEDANY                                      \
1319
          && symbolic_operand ((IN), (MODE)))                   \
1320
         || (TARGET_CM_EMBMEDANY                                \
1321
             && text_segment_operand ((IN), (MODE))))           \
1322
        && !flag_pic)                                           \
1323
       ? GENERAL_REGS                                           \
1324
       : NO_REGS)
1325
 
1326
/* On SPARC it is not possible to directly move data between
1327
   GENERAL_REGS and FP_REGS.  */
1328
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1329
  (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1330
 
1331
/* Return the stack location to use for secondary memory needed reloads.
1332
   We want to use the reserved location just below the frame pointer.
1333
   However, we must ensure that there is a frame, so use assign_stack_local
1334
   if the frame size is zero.  */
1335
#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1336
  (get_frame_size () == 0                                               \
1337
   ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0)                 \
1338
   : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx,               \
1339
                                       STARTING_FRAME_OFFSET)))
1340
 
1341
/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1342
   because the movsi and movsf patterns don't handle r/f moves.
1343
   For v8 we copy the default definition.  */
1344
#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1345
  (TARGET_ARCH64                                                \
1346
   ? (GET_MODE_BITSIZE (MODE) < 32                              \
1347
      ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)            \
1348
      : MODE)                                                   \
1349
   : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD                   \
1350
      ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1351
      : MODE))
1352
 
1353
/* Return the maximum number of consecutive registers
1354
   needed to represent mode MODE in a register of class CLASS.  */
1355
/* On SPARC, this is the size of MODE in words.  */
1356
#define CLASS_MAX_NREGS(CLASS, MODE)    \
1357
  (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1358
   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1359
 
1360
/* Stack layout; function entry, exit and calling.  */
1361
 
1362
/* Define this if pushing a word on the stack
1363
   makes the stack pointer a smaller address.  */
1364
#define STACK_GROWS_DOWNWARD
1365
 
1366
/* Define this to nonzero if the nominal address of the stack frame
1367
   is at the high-address end of the local variables;
1368
   that is, each additional local variable allocated
1369
   goes at a more negative offset in the frame.  */
1370
#define FRAME_GROWS_DOWNWARD 1
1371
 
1372
/* Offset within stack frame to start allocating local variables at.
1373
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1374
   first local allocated.  Otherwise, it is the offset to the BEGINNING
1375
   of the first local allocated.  */
1376
/* This allows space for one TFmode floating point value, which is used
1377
   by SECONDARY_MEMORY_NEEDED_RTX.  */
1378
#define STARTING_FRAME_OFFSET \
1379
  (TARGET_ARCH64 ? -16 \
1380
   : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1381
 
1382
/* Offset of first parameter from the argument pointer register value.
1383
   !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1384
   even if this function isn't going to use it.
1385
   v9: This is 128 for the ins and locals.  */
1386
#define FIRST_PARM_OFFSET(FNDECL) \
1387
  (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1388
 
1389
/* Offset from the argument pointer register value to the CFA.
1390
   This is different from FIRST_PARM_OFFSET because the register window
1391
   comes between the CFA and the arguments.  */
1392
#define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1393
 
1394
/* When a parameter is passed in a register, stack space is still
1395
   allocated for it.
1396
   !v9: All 6 possible integer registers have backing store allocated.
1397
   v9: Only space for the arguments passed is allocated.  */
1398
/* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1399
   meaning to the backend.  Further, we need to be able to detect if a
1400
   varargs/unprototyped function is called, as they may want to spill more
1401
   registers than we've provided space.  Ugly, ugly.  So for now we retain
1402
   all 6 slots even for v9.  */
1403
#define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1404
 
1405
/* Definitions for register elimination.  */
1406
 
1407
#define ELIMINABLE_REGS \
1408
  {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1409
   { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1410
 
1411
/* The way this is structured, we can't eliminate SFP in favor of SP
1412
   if the frame pointer is required: we want to use the SFP->HFP elimination
1413
   in that case.  But the test in update_eliminables doesn't know we are
1414
   assuming below that we only do the former elimination.  */
1415
#define CAN_ELIMINATE(FROM, TO) \
1416
  ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1417
 
1418
/* We always pretend that this is a leaf function because if it's not,
1419
   there's no point in trying to eliminate the frame pointer.  If it
1420
   is a leaf function, we guessed right!  */
1421
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
1422
  do {                                                                  \
1423
    if ((TO) == STACK_POINTER_REGNUM)                                   \
1424
      (OFFSET) = sparc_compute_frame_size (get_frame_size (), 1);       \
1425
    else                                                                \
1426
      (OFFSET) = 0;                                                     \
1427
    (OFFSET) += SPARC_STACK_BIAS;                                       \
1428
  } while (0)
1429
 
1430
/* Keep the stack pointer constant throughout the function.
1431
   This is both an optimization and a necessity: longjmp
1432
   doesn't behave itself when the stack pointer moves within
1433
   the function!  */
1434
#define ACCUMULATE_OUTGOING_ARGS 1
1435
 
1436
/* Value is the number of bytes of arguments automatically
1437
   popped when returning from a subroutine call.
1438
   FUNDECL is the declaration node of the function (as a tree),
1439
   FUNTYPE is the data type of the function (as a tree),
1440
   or for a library call it is an identifier node for the subroutine name.
1441
   SIZE is the number of bytes of arguments passed on the stack.  */
1442
 
1443
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1444
 
1445
/* Define this macro if the target machine has "register windows".  This
1446
   C expression returns the register number as seen by the called function
1447
   corresponding to register number OUT as seen by the calling function.
1448
   Return OUT if register number OUT is not an outbound register.  */
1449
 
1450
#define INCOMING_REGNO(OUT) \
1451
 (((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1452
 
1453
/* Define this macro if the target machine has "register windows".  This
1454
   C expression returns the register number as seen by the calling function
1455
   corresponding to register number IN as seen by the called function.
1456
   Return IN if register number IN is not an inbound register.  */
1457
 
1458
#define OUTGOING_REGNO(IN) \
1459
 (((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1460
 
1461
/* Define this macro if the target machine has register windows.  This
1462
   C expression returns true if the register is call-saved but is in the
1463
   register window.  */
1464
 
1465
#define LOCAL_REGNO(REGNO) \
1466
  ((REGNO) >= 16 && (REGNO) <= 31)
1467
 
1468
/* Define how to find the value returned by a function.
1469
   VALTYPE is the data type of the value (as a tree).
1470
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1471
   otherwise, FUNC is 0.  */
1472
 
1473
/* On SPARC the value is found in the first "output" register.  */
1474
 
1475
#define FUNCTION_VALUE(VALTYPE, FUNC) \
1476
  function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1477
 
1478
/* But the called function leaves it in the first "input" register.  */
1479
 
1480
#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1481
  function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1482
 
1483
/* Define how to find the value returned by a library function
1484
   assuming the value has mode MODE.  */
1485
 
1486
#define LIBCALL_VALUE(MODE) \
1487
  function_value (NULL_TREE, (MODE), 1)
1488
 
1489
/* 1 if N is a possible register number for a function value
1490
   as seen by the caller.
1491
   On SPARC, the first "output" reg is used for integer values,
1492
   and the first floating point register is used for floating point values.  */
1493
 
1494
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1495
 
1496
/* Define the size of space to allocate for the return value of an
1497
   untyped_call.  */
1498
 
1499
#define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1500
 
1501
/* 1 if N is a possible register number for function argument passing.
1502
   On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1503
 
1504
#define FUNCTION_ARG_REGNO_P(N) \
1505
(TARGET_ARCH64 \
1506
 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1507
 : ((N) >= 8 && (N) <= 13))
1508
 
1509
/* Define a data type for recording info about an argument list
1510
   during the scan of that argument list.  This data type should
1511
   hold all necessary information about the function itself
1512
   and about the args processed so far, enough to enable macros
1513
   such as FUNCTION_ARG to determine where the next arg should go.
1514
 
1515
   On SPARC (!v9), this is a single integer, which is a number of words
1516
   of arguments scanned so far (including the invisible argument,
1517
   if any, which holds the structure-value-address).
1518
   Thus 7 or more means all following args should go on the stack.
1519
 
1520
   For v9, we also need to know whether a prototype is present.  */
1521
 
1522
struct sparc_args {
1523
  int words;       /* number of words passed so far */
1524
  int prototype_p; /* nonzero if a prototype is present */
1525
  int libcall_p;   /* nonzero if a library call */
1526
};
1527
#define CUMULATIVE_ARGS struct sparc_args
1528
 
1529
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1530
   for a call to a function whose data type is FNTYPE.
1531
   For a library call, FNTYPE is 0.  */
1532
 
1533
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1534
init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1535
 
1536
/* Update the data in CUM to advance over an argument
1537
   of mode MODE and data type TYPE.
1538
   TYPE is null for libcalls where that information may not be available.  */
1539
 
1540
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1541
function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1542
 
1543
/* Determine where to put an argument to a function.
1544
   Value is zero to push the argument on the stack,
1545
   or a hard register in which to store the argument.
1546
 
1547
   MODE is the argument's machine mode.
1548
   TYPE is the data type of the argument (as a tree).
1549
    This is null for libcalls where that information may
1550
    not be available.
1551
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1552
    the preceding args and about the function being called.
1553
   NAMED is nonzero if this argument is a named parameter
1554
    (otherwise it is an extra parameter matching an ellipsis).  */
1555
 
1556
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1557
function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1558
 
1559
/* Define where a function finds its arguments.
1560
   This is different from FUNCTION_ARG because of register windows.  */
1561
 
1562
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1563
function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1564
 
1565
/* If defined, a C expression which determines whether, and in which direction,
1566
   to pad out an argument with extra space.  The value should be of type
1567
   `enum direction': either `upward' to pad above the argument,
1568
   `downward' to pad below, or `none' to inhibit padding.  */
1569
 
1570
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
1571
function_arg_padding ((MODE), (TYPE))
1572
 
1573
/* If defined, a C expression that gives the alignment boundary, in bits,
1574
   of an argument with the specified mode and type.  If it is not defined,
1575
   PARM_BOUNDARY is used for all arguments.
1576
   For sparc64, objects requiring 16 byte alignment are passed that way.  */
1577
 
1578
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1579
((TARGET_ARCH64                                 \
1580
  && (GET_MODE_ALIGNMENT (MODE) == 128          \
1581
      || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1582
 ? 128 : PARM_BOUNDARY)
1583
 
1584
/* Define the information needed to generate branch and scc insns.  This is
1585
   stored from the compare operation.  Note that we can't use "rtx" here
1586
   since it hasn't been defined!  */
1587
 
1588
extern GTY(()) rtx sparc_compare_op0;
1589
extern GTY(()) rtx sparc_compare_op1;
1590
extern GTY(()) rtx sparc_compare_emitted;
1591
 
1592
 
1593
/* Generate the special assembly code needed to tell the assembler whatever
1594
   it might need to know about the return value of a function.
1595
 
1596
   For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1597
   information to the assembler relating to peephole optimization (done in
1598
   the assembler).  */
1599
 
1600
#define ASM_DECLARE_RESULT(FILE, RESULT) \
1601
  fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1602
 
1603
/* Output the special assembly code needed to tell the assembler some
1604
   register is used as global register variable.
1605
 
1606
   SPARC 64bit psABI declares registers %g2 and %g3 as application
1607
   registers and %g6 and %g7 as OS registers.  Any object using them
1608
   should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1609
   and how they are used (scratch or some global variable).
1610
   Linker will then refuse to link together objects which use those
1611
   registers incompatibly.
1612
 
1613
   Unless the registers are used for scratch, two different global
1614
   registers cannot be declared to the same name, so in the unlikely
1615
   case of a global register variable occupying more than one register
1616
   we prefix the second and following registers with .gnu.part1. etc.  */
1617
 
1618
extern GTY(()) char sparc_hard_reg_printed[8];
1619
 
1620
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
1621
#define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)            \
1622
do {                                                                    \
1623
  if (TARGET_ARCH64)                                                    \
1624
    {                                                                   \
1625
      int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1626
      int reg;                                                          \
1627
      for (reg = (REGNO); reg < 8 && reg < end; reg++)                  \
1628
        if ((reg & ~1) == 2 || (reg & ~1) == 6)                         \
1629
          {                                                             \
1630
            if (reg == (REGNO))                                         \
1631
              fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1632
            else                                                        \
1633
              fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",  \
1634
                       reg, reg - (REGNO), (NAME));                     \
1635
            sparc_hard_reg_printed[reg] = 1;                            \
1636
          }                                                             \
1637
    }                                                                   \
1638
} while (0)
1639
#endif
1640
 
1641
 
1642
/* Emit rtl for profiling.  */
1643
#define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1644
 
1645
/* All the work done in PROFILE_HOOK, but still required.  */
1646
#define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1647
 
1648
/* Set the name of the mcount function for the system.  */
1649
#define MCOUNT_FUNCTION "*mcount"
1650
 
1651
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1652
   the stack pointer does not matter.  The value is tested only in
1653
   functions that have frame pointers.
1654
   No definition is equivalent to always zero.  */
1655
 
1656
#define EXIT_IGNORE_STACK       \
1657
 (get_frame_size () != 0        \
1658
  || current_function_calls_alloca || current_function_outgoing_args_size)
1659
 
1660
/* Define registers used by the epilogue and return instruction.  */
1661
#define EPILOGUE_USES(REGNO) ((REGNO) == 31 \
1662
  || (current_function_calls_eh_return && (REGNO) == 1))
1663
 
1664
/* Length in units of the trampoline for entering a nested function.  */
1665
 
1666
#define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1667
 
1668
#define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1669
 
1670
/* Emit RTL insns to initialize the variable parts of a trampoline.
1671
   FNADDR is an RTX for the address of the function's pure code.
1672
   CXT is an RTX for the static chain value for the function.  */
1673
 
1674
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1675
    if (TARGET_ARCH64)                                          \
1676
      sparc64_initialize_trampoline (TRAMP, FNADDR, CXT);       \
1677
    else                                                        \
1678
      sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1679
 
1680
/* Implement `va_start' for varargs and stdarg.  */
1681
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1682
  sparc_va_start (valist, nextarg)
1683
 
1684
/* Generate RTL to flush the register windows so as to make arbitrary frames
1685
   available.  */
1686
#define SETUP_FRAME_ADDRESSES()         \
1687
  emit_insn (gen_flush_register_windows ())
1688
 
1689
/* Given an rtx for the address of a frame,
1690
   return an rtx for the address of the word in the frame
1691
   that holds the dynamic chain--the previous frame's address.  */
1692
#define DYNAMIC_CHAIN_ADDRESS(frame)    \
1693
  plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1694
 
1695
/* The return address isn't on the stack, it is in a register, so we can't
1696
   access it from the current frame pointer.  We can access it from the
1697
   previous frame pointer though by reading a value from the register window
1698
   save area.  */
1699
#define RETURN_ADDR_IN_PREVIOUS_FRAME
1700
 
1701
/* This is the offset of the return address to the true next instruction to be
1702
   executed for the current function.  */
1703
#define RETURN_ADDR_OFFSET \
1704
  (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1705
 
1706
/* The current return address is in %i7.  The return address of anything
1707
   farther back is in the register window save area at [%fp+60].  */
1708
/* ??? This ignores the fact that the actual return address is +8 for normal
1709
   returns, and +12 for structure returns.  */
1710
#define RETURN_ADDR_RTX(count, frame)           \
1711
  ((count == -1)                                \
1712
   ? gen_rtx_REG (Pmode, 31)                    \
1713
   : gen_rtx_MEM (Pmode,                        \
1714
                  memory_address (Pmode, plus_constant (frame, \
1715
                                                        15 * UNITS_PER_WORD \
1716
                                                        + SPARC_STACK_BIAS))))
1717
 
1718
/* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1719
   +12, but always using +8 is close enough for frame unwind purposes.
1720
   Actually, just using %o7 is close enough for unwinding, but %o7+8
1721
   is something you can return to.  */
1722
#define INCOMING_RETURN_ADDR_RTX \
1723
  plus_constant (gen_rtx_REG (word_mode, 15), 8)
1724
#define DWARF_FRAME_RETURN_COLUMN       DWARF_FRAME_REGNUM (15)
1725
 
1726
/* The offset from the incoming value of %sp to the top of the stack frame
1727
   for the current function.  On sparc64, we have to account for the stack
1728
   bias if present.  */
1729
#define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1730
 
1731
/* Describe how we implement __builtin_eh_return.  */
1732
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1733
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 1)  /* %g1 */
1734
#define EH_RETURN_HANDLER_RTX   gen_rtx_REG (Pmode, 31) /* %i7 */
1735
 
1736
/* Select a format to encode pointers in exception handling data.  CODE
1737
   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1738
   true if the symbol may be affected by dynamic relocations.
1739
 
1740
   If assembler and linker properly support .uaword %r_disp32(foo),
1741
   then use PC relative 32-bit relocations instead of absolute relocs
1742
   for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1743
   for binaries, to save memory.
1744
 
1745
   binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1746
   symbol %r_disp32() is against was not local, but .hidden.  In that
1747
   case, we have to use DW_EH_PE_absptr for pic personality.  */
1748
#ifdef HAVE_AS_SPARC_UA_PCREL
1749
#ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1750
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
1751
  (flag_pic                                                             \
1752
   ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1753
   : ((TARGET_ARCH64 && ! GLOBAL)                                       \
1754
      ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)                              \
1755
      : DW_EH_PE_absptr))
1756
#else
1757
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
1758
  (flag_pic                                                             \
1759
   ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))    \
1760
   : ((TARGET_ARCH64 && ! GLOBAL)                                       \
1761
      ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)                              \
1762
      : DW_EH_PE_absptr))
1763
#endif
1764
 
1765
/* Emit a PC-relative relocation.  */
1766
#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)       \
1767
  do {                                                  \
1768
    fputs (integer_asm_op (SIZE, FALSE), FILE);         \
1769
    fprintf (FILE, "%%r_disp%d(", SIZE * 8);            \
1770
    assemble_name (FILE, LABEL);                        \
1771
    fputc (')', FILE);                                  \
1772
  } while (0)
1773
#endif
1774
 
1775
/* Addressing modes, and classification of registers for them.  */
1776
 
1777
/* Macros to check register numbers against specific register classes.  */
1778
 
1779
/* These assume that REGNO is a hard or pseudo reg number.
1780
   They give nonzero only if REGNO is a hard reg of the suitable class
1781
   or a pseudo reg currently allocated to a suitable hard reg.
1782
   Since they use reg_renumber, they are safe only once reg_renumber
1783
   has been allocated, which happens in local-alloc.c.  */
1784
 
1785
#define REGNO_OK_FOR_INDEX_P(REGNO) \
1786
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32  \
1787
 || (REGNO) == FRAME_POINTER_REGNUM                             \
1788
 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1789
 
1790
#define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1791
 
1792
#define REGNO_OK_FOR_FP_P(REGNO) \
1793
  (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1794
   || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1795
#define REGNO_OK_FOR_CCFP_P(REGNO) \
1796
 (TARGET_V9 \
1797
  && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1798
      || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1799
 
1800
/* Now macros that check whether X is a register and also,
1801
   strictly, whether it is in a specified class.
1802
 
1803
   These macros are specific to the SPARC, and may be used only
1804
   in code for printing assembler insns and in conditions for
1805
   define_optimization.  */
1806
 
1807
/* 1 if X is an fp register.  */
1808
 
1809
#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1810
 
1811
/* Is X, a REG, an in or global register?  i.e. is regno 0..7 or 24..31 */
1812
#define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
1813
 
1814
/* Maximum number of registers that can appear in a valid memory address.  */
1815
 
1816
#define MAX_REGS_PER_ADDRESS 2
1817
 
1818
/* Recognize any constant value that is a valid address.
1819
   When PIC, we do not accept an address that would require a scratch reg
1820
   to load into a register.  */
1821
 
1822
#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1823
 
1824
/* Define this, so that when PIC, reload won't try to reload invalid
1825
   addresses which require two reload registers.  */
1826
 
1827
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1828
 
1829
/* Nonzero if the constant value X is a legitimate general operand.
1830
   Anything can be made to work except floating point constants.
1831
   If TARGET_VIS, 0.0 can be made to work as well.  */
1832
 
1833
#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1834
 
1835
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1836
   and check its validity for a certain class.
1837
   We have two alternate definitions for each of them.
1838
   The usual definition accepts all pseudo regs; the other rejects
1839
   them unless they have been allocated suitable hard regs.
1840
   The symbol REG_OK_STRICT causes the latter definition to be used.
1841
 
1842
   Most source files want to accept pseudo regs in the hope that
1843
   they will get allocated to the class that the insn wants them to be in.
1844
   Source files for reload pass need to be strict.
1845
   After reload, it makes no difference, since pseudo regs have
1846
   been eliminated by then.  */
1847
 
1848
/* Optional extra constraints for this machine.
1849
 
1850
   'Q' handles floating point constants which can be moved into
1851
       an integer register with a single sethi instruction.
1852
 
1853
   'R' handles floating point constants which can be moved into
1854
       an integer register with a single mov instruction.
1855
 
1856
   'S' handles floating point constants which can be moved into
1857
       an integer register using a high/lo_sum sequence.
1858
 
1859
   'T' handles memory addresses where the alignment is known to
1860
       be at least 8 bytes.
1861
 
1862
   `U' handles all pseudo registers or a hard even numbered
1863
       integer register, needed for ldd/std instructions.
1864
 
1865
   'W' handles the memory operand when moving operands in/out
1866
       of 'e' constraint floating point registers.
1867
 
1868
   'Y' handles the zero vector constant.  */
1869
 
1870
#ifndef REG_OK_STRICT
1871
 
1872
/* Nonzero if X is a hard reg that can be used as an index
1873
   or if it is a pseudo reg.  */
1874
#define REG_OK_FOR_INDEX_P(X) \
1875
  (REGNO (X) < 32                               \
1876
   || REGNO (X) == FRAME_POINTER_REGNUM         \
1877
   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1878
 
1879
/* Nonzero if X is a hard reg that can be used as a base reg
1880
   or if it is a pseudo reg.  */
1881
#define REG_OK_FOR_BASE_P(X)  REG_OK_FOR_INDEX_P (X)
1882
 
1883
/* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
1884
   'W' is like 'T' but is assumed true on arch64.
1885
 
1886
   Remember to accept pseudo-registers for memory constraints if reload is
1887
   in progress.  */
1888
 
1889
#define EXTRA_CONSTRAINT(OP, C) \
1890
        sparc_extra_constraint_check(OP, C, 0)
1891
 
1892
#else
1893
 
1894
/* Nonzero if X is a hard reg that can be used as an index.  */
1895
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1896
/* Nonzero if X is a hard reg that can be used as a base reg.  */
1897
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1898
 
1899
#define EXTRA_CONSTRAINT(OP, C) \
1900
        sparc_extra_constraint_check(OP, C, 1)
1901
 
1902
#endif
1903
 
1904
/* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1905
 
1906
#ifdef HAVE_AS_OFFSETABLE_LO10
1907
#define USE_AS_OFFSETABLE_LO10 1
1908
#else
1909
#define USE_AS_OFFSETABLE_LO10 0
1910
#endif
1911
 
1912
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1913
   that is a valid memory address for an instruction.
1914
   The MODE argument is the machine mode for the MEM expression
1915
   that wants to use this address.
1916
 
1917
   On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1918
   ordinarily.  This changes a bit when generating PIC.
1919
 
1920
   If you change this, execute "rm explow.o recog.o reload.o".  */
1921
 
1922
#define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
1923
 
1924
#define RTX_OK_FOR_BASE_P(X)                                            \
1925
  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))                       \
1926
  || (GET_CODE (X) == SUBREG                                            \
1927
      && GET_CODE (SUBREG_REG (X)) == REG                               \
1928
      && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1929
 
1930
#define RTX_OK_FOR_INDEX_P(X)                                           \
1931
  ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))                      \
1932
  || (GET_CODE (X) == SUBREG                                            \
1933
      && GET_CODE (SUBREG_REG (X)) == REG                               \
1934
      && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1935
 
1936
#define RTX_OK_FOR_OFFSET_P(X)                                          \
1937
  (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
1938
 
1939
#define RTX_OK_FOR_OLO10_P(X)                                           \
1940
  (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
1941
 
1942
#ifdef REG_OK_STRICT
1943
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)         \
1944
{                                                       \
1945
  if (legitimate_address_p (MODE, X, 1))                \
1946
    goto ADDR;                                          \
1947
}
1948
#else
1949
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)         \
1950
{                                                       \
1951
  if (legitimate_address_p (MODE, X, 0))                \
1952
    goto ADDR;                                          \
1953
}
1954
#endif
1955
 
1956
/* Go to LABEL if ADDR (a legitimate address expression)
1957
   has an effect that depends on the machine mode it is used for.
1958
 
1959
   In PIC mode,
1960
 
1961
      (mem:HI [%l7+a])
1962
 
1963
   is not equivalent to
1964
 
1965
      (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
1966
 
1967
   because [%l7+a+1] is interpreted as the address of (a+1).  */
1968
 
1969
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)       \
1970
{                                                       \
1971
  if (flag_pic == 1)                                    \
1972
    {                                                   \
1973
      if (GET_CODE (ADDR) == PLUS)                      \
1974
        {                                               \
1975
          rtx op0 = XEXP (ADDR, 0);                     \
1976
          rtx op1 = XEXP (ADDR, 1);                     \
1977
          if (op0 == pic_offset_table_rtx               \
1978
              && SYMBOLIC_CONST (op1))                  \
1979
            goto LABEL;                                 \
1980
        }                                               \
1981
    }                                                   \
1982
}
1983
 
1984
/* Try machine-dependent ways of modifying an illegitimate address
1985
   to be legitimate.  If we find one, return the new, valid address.
1986
   This macro is used in only one place: `memory_address' in explow.c.
1987
 
1988
   OLDX is the address as it was before break_out_memory_refs was called.
1989
   In some cases it is useful to look at this to decide what needs to be done.
1990
 
1991
   MODE and WIN are passed so that this macro can use
1992
   GO_IF_LEGITIMATE_ADDRESS.
1993
 
1994
   It is always safe for this macro to do nothing.  It exists to recognize
1995
   opportunities to optimize the output.  */
1996
 
1997
/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG.  */
1998
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)     \
1999
{                                               \
2000
  (X) = legitimize_address (X, OLDX, MODE);     \
2001
  if (memory_address_p (MODE, X))               \
2002
    goto WIN;                                   \
2003
}
2004
 
2005
/* Try a machine-dependent way of reloading an illegitimate address
2006
   operand.  If we find one, push the reload and jump to WIN.  This
2007
   macro is used in only one place: `find_reloads_address' in reload.c.
2008
 
2009
   For SPARC 32, we wish to handle addresses by splitting them into
2010
   HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2011
   This cuts the number of extra insns by one.
2012
 
2013
   Do nothing when generating PIC code and the address is a
2014
   symbolic operand or requires a scratch register.  */
2015
 
2016
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)     \
2017
do {                                                                    \
2018
  /* Decompose SImode constants into hi+lo_sum.  We do have to          \
2019
     rerecognize what we produce, so be careful.  */                    \
2020
  if (CONSTANT_P (X)                                                    \
2021
      && (MODE != TFmode || TARGET_ARCH64)                              \
2022
      && GET_MODE (X) == SImode                                         \
2023
      && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH                 \
2024
      && ! (flag_pic                                                    \
2025
            && (symbolic_operand (X, Pmode)                             \
2026
                || pic_address_needs_scratch (X)))                      \
2027
      && sparc_cmodel <= CM_MEDLOW)                                     \
2028
    {                                                                   \
2029
      X = gen_rtx_LO_SUM (GET_MODE (X),                                 \
2030
                          gen_rtx_HIGH (GET_MODE (X), X), X);           \
2031
      push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL,           \
2032
                   BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0,        \
2033
                   OPNUM, TYPE);                                        \
2034
      goto WIN;                                                         \
2035
    }                                                                   \
2036
  /* ??? 64-bit reloads.  */                                            \
2037
} while (0)
2038
 
2039
/* Specify the machine mode that this machine uses
2040
   for the index in the tablejump instruction.  */
2041
/* If we ever implement any of the full models (such as CM_FULLANY),
2042
   this has to be DImode in that case */
2043
#ifdef HAVE_GAS_SUBSECTION_ORDERING
2044
#define CASE_VECTOR_MODE \
2045
(! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2046
#else
2047
/* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2048
   we have to sign extend which slows things down.  */
2049
#define CASE_VECTOR_MODE \
2050
(! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2051
#endif
2052
 
2053
/* Define this as 1 if `char' should by default be signed; else as 0.  */
2054
#define DEFAULT_SIGNED_CHAR 1
2055
 
2056
/* Max number of bytes we can move from memory to memory
2057
   in one reasonably fast instruction.  */
2058
#define MOVE_MAX 8
2059
 
2060
/* If a memory-to-memory move would take MOVE_RATIO or more simple
2061
   move-instruction pairs, we will do a movmem or libcall instead.  */
2062
 
2063
#define MOVE_RATIO (optimize_size ? 3 : 8)
2064
 
2065
/* Define if operations between registers always perform the operation
2066
   on the full register even if a narrower mode is specified.  */
2067
#define WORD_REGISTER_OPERATIONS
2068
 
2069
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2070
   will either zero-extend or sign-extend.  The value of this macro should
2071
   be the code that says which one of the two operations is implicitly
2072
   done, UNKNOWN if none.  */
2073
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2074
 
2075
/* Nonzero if access to memory by bytes is slow and undesirable.
2076
   For RISC chips, it means that access to memory by bytes is no
2077
   better than access by words when possible, so grab a whole word
2078
   and maybe make use of that.  */
2079
#define SLOW_BYTE_ACCESS 1
2080
 
2081
/* Define this to be nonzero if shift instructions ignore all but the low-order
2082
   few bits.  */
2083
#define SHIFT_COUNT_TRUNCATED 1
2084
 
2085
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2086
   is done just by pretending it is already truncated.  */
2087
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2088
 
2089
/* Specify the machine mode used for addresses.  */
2090
#define Pmode (TARGET_ARCH64 ? DImode : SImode)
2091
 
2092
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2093
   return the mode to be used for the comparison.  For floating-point,
2094
   CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand
2095
   is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
2096
   processing is needed.  */
2097
#define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
2098
 
2099
/* Return nonzero if MODE implies a floating point inequality can be
2100
   reversed.  For SPARC this is always true because we have a full
2101
   compliment of ordered and unordered comparisons, but until generic
2102
   code knows how to reverse it correctly we keep the old definition.  */
2103
#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2104
 
2105
/* A function address in a call instruction for indexing purposes.  */
2106
#define FUNCTION_MODE Pmode
2107
 
2108
/* Define this if addresses of constant functions
2109
   shouldn't be put through pseudo regs where they can be cse'd.
2110
   Desirable on machines where ordinary constants are expensive
2111
   but a CALL with constant address is cheap.  */
2112
#define NO_FUNCTION_CSE
2113
 
2114
/* alloca should avoid clobbering the old register save area.  */
2115
#define SETJMP_VIA_SAVE_AREA
2116
 
2117
/* The _Q_* comparison libcalls return booleans.  */
2118
#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2119
 
2120
/* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2121
   that the inputs are fully consumed before the output memory is clobbered.  */
2122
 
2123
#define TARGET_BUGGY_QP_LIB     0
2124
 
2125
/* Assume by default that we do not have the Solaris-specific conversion
2126
   routines nor 64-bit integer multiply and divide routines.  */
2127
 
2128
#define SUN_CONVERSION_LIBFUNCS         0
2129
#define DITF_CONVERSION_LIBFUNCS        0
2130
#define SUN_INTEGER_MULTIPLY_64         0
2131
 
2132
/* Compute extra cost of moving data between one register class
2133
   and another.  */
2134
#define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2135
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)                \
2136
  (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2137
    || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2138
    || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS)          \
2139
   ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2140
       || sparc_cpu == PROCESSOR_ULTRASPARC3) ? 12 : 6) : 2)
2141
 
2142
/* Provide the cost of a branch.  For pre-v9 processors we use
2143
   a value of 3 to take into account the potential annulling of
2144
   the delay slot (which ends up being a bubble in the pipeline slot)
2145
   plus a cycle to take into consideration the instruction cache
2146
   effects.
2147
 
2148
   On v9 and later, which have branch prediction facilities, we set
2149
   it to the depth of the pipeline as that is the cost of a
2150
   mispredicted branch.  */
2151
 
2152
#define BRANCH_COST \
2153
        ((sparc_cpu == PROCESSOR_V9 \
2154
          || sparc_cpu == PROCESSOR_ULTRASPARC) \
2155
         ? 7 \
2156
         : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2157
            ? 9 : 3))
2158
 
2159
#define PREFETCH_BLOCK \
2160
        ((sparc_cpu == PROCESSOR_ULTRASPARC \
2161
          || sparc_cpu == PROCESSOR_ULTRASPARC3) \
2162
         ? 64 : 32)
2163
 
2164
#define SIMULTANEOUS_PREFETCHES \
2165
        ((sparc_cpu == PROCESSOR_ULTRASPARC) \
2166
         ? 2 \
2167
         : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2168
            ? 8 : 3))
2169
 
2170
/* Control the assembler format that we output.  */
2171
 
2172
/* A C string constant describing how to begin a comment in the target
2173
   assembler language.  The compiler assumes that the comment will end at
2174
   the end of the line.  */
2175
 
2176
#define ASM_COMMENT_START "!"
2177
 
2178
/* Output to assembler file text saying following lines
2179
   may contain character constants, extra white space, comments, etc.  */
2180
 
2181
#define ASM_APP_ON ""
2182
 
2183
/* Output to assembler file text saying following lines
2184
   no longer contain unusual constructs.  */
2185
 
2186
#define ASM_APP_OFF ""
2187
 
2188
/* How to refer to registers in assembler output.
2189
   This sequence is indexed by compiler's hard-register-number (see above).  */
2190
 
2191
#define REGISTER_NAMES \
2192
{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",                \
2193
 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",                \
2194
 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",                \
2195
 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",                \
2196
 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",                \
2197
 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",          \
2198
 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",        \
2199
 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",        \
2200
 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",        \
2201
 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",        \
2202
 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",        \
2203
 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",        \
2204
 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2205
 
2206
/* Define additional names for use in asm clobbers and asm declarations.  */
2207
 
2208
#define ADDITIONAL_REGISTER_NAMES \
2209
{{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2210
 
2211
/* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
2212
   can run past this up to a continuation point.  Once we used 1500, but
2213
   a single entry in C++ can run more than 500 bytes, due to the length of
2214
   mangled symbol names.  dbxout.c should really be fixed to do
2215
   continuations when they are actually needed instead of trying to
2216
   guess...  */
2217
#define DBX_CONTIN_LENGTH 1000
2218
 
2219
/* This is how to output a command to make the user-level label named NAME
2220
   defined for reference from other files.  */
2221
 
2222
/* Globalizing directive for a label.  */
2223
#define GLOBAL_ASM_OP "\t.global "
2224
 
2225
/* The prefix to add to user-visible assembler symbols.  */
2226
 
2227
#define USER_LABEL_PREFIX "_"
2228
 
2229
/* This is how to store into the string LABEL
2230
   the symbol_ref name of an internal numbered label where
2231
   PREFIX is the class of label and NUM is the number within the class.
2232
   This is suitable for output with `assemble_name'.  */
2233
 
2234
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
2235
  sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2236
 
2237
/* This is how we hook in and defer the case-vector until the end of
2238
   the function.  */
2239
#define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2240
  sparc_defer_case_vector ((LAB),(VEC), 0)
2241
 
2242
#define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2243
  sparc_defer_case_vector ((LAB),(VEC), 1)
2244
 
2245
/* This is how to output an element of a case-vector that is absolute.  */
2246
 
2247
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2248
do {                                                                    \
2249
  char label[30];                                                       \
2250
  ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);                      \
2251
  if (CASE_VECTOR_MODE == SImode)                                       \
2252
    fprintf (FILE, "\t.word\t");                                        \
2253
  else                                                                  \
2254
    fprintf (FILE, "\t.xword\t");                                       \
2255
  assemble_name (FILE, label);                                          \
2256
  fputc ('\n', FILE);                                                   \
2257
} while (0)
2258
 
2259
/* This is how to output an element of a case-vector that is relative.
2260
   (SPARC uses such vectors only when generating PIC.)  */
2261
 
2262
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)                \
2263
do {                                                                    \
2264
  char label[30];                                                       \
2265
  ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));                    \
2266
  if (CASE_VECTOR_MODE == SImode)                                       \
2267
    fprintf (FILE, "\t.word\t");                                        \
2268
  else                                                                  \
2269
    fprintf (FILE, "\t.xword\t");                                       \
2270
  assemble_name (FILE, label);                                          \
2271
  ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));                      \
2272
  fputc ('-', FILE);                                                    \
2273
  assemble_name (FILE, label);                                          \
2274
  fputc ('\n', FILE);                                                   \
2275
} while (0)
2276
 
2277
/* This is what to output before and after case-vector (both
2278
   relative and absolute).  If .subsection -1 works, we put case-vectors
2279
   at the beginning of the current section.  */
2280
 
2281
#ifdef HAVE_GAS_SUBSECTION_ORDERING
2282
 
2283
#define ASM_OUTPUT_ADDR_VEC_START(FILE)                                 \
2284
  fprintf(FILE, "\t.subsection\t-1\n")
2285
 
2286
#define ASM_OUTPUT_ADDR_VEC_END(FILE)                                   \
2287
  fprintf(FILE, "\t.previous\n")
2288
 
2289
#endif
2290
 
2291
/* This is how to output an assembler line
2292
   that says to advance the location counter
2293
   to a multiple of 2**LOG bytes.  */
2294
 
2295
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
2296
  if ((LOG) != 0)                       \
2297
    fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2298
 
2299
/* This is how to output an assembler line that says to advance
2300
   the location counter to a multiple of 2**LOG bytes using the
2301
   "nop" instruction as padding.  */
2302
#define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG)   \
2303
  if ((LOG) != 0)                             \
2304
    fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2305
 
2306
#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
2307
  fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2308
 
2309
/* This says how to output an assembler line
2310
   to define a global common symbol.  */
2311
 
2312
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
2313
( fputs ("\t.common ", (FILE)),         \
2314
  assemble_name ((FILE), (NAME)),               \
2315
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
2316
 
2317
/* This says how to output an assembler line to define a local common
2318
   symbol.  */
2319
 
2320
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)             \
2321
( fputs ("\t.reserve ", (FILE)),                                        \
2322
  assemble_name ((FILE), (NAME)),                                       \
2323
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",      \
2324
           (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2325
 
2326
/* A C statement (sans semicolon) to output to the stdio stream
2327
   FILE the assembler definition of uninitialized global DECL named
2328
   NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2329
   Try to use asm_output_aligned_bss to implement this macro.  */
2330
 
2331
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)   \
2332
  do {                                                          \
2333
    ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);         \
2334
  } while (0)
2335
 
2336
#define IDENT_ASM_OP "\t.ident\t"
2337
 
2338
/* Output #ident as a .ident.  */
2339
 
2340
#define ASM_OUTPUT_IDENT(FILE, NAME) \
2341
  fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2342
 
2343
/* Prettify the assembly.  */
2344
 
2345
extern int sparc_indent_opcode;
2346
 
2347
#define ASM_OUTPUT_OPCODE(FILE, PTR)    \
2348
  do {                                  \
2349
    if (sparc_indent_opcode)            \
2350
      {                                 \
2351
        putc (' ', FILE);               \
2352
        sparc_indent_opcode = 0; \
2353
      }                                 \
2354
  } while (0)
2355
 
2356
#define SPARC_SYMBOL_REF_TLS_P(RTX) \
2357
  (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
2358
 
2359
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2360
  ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '('              \
2361
   || (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&')
2362
 
2363
/* Print operand X (an rtx) in assembler syntax to file FILE.
2364
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2365
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2366
 
2367
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2368
 
2369
/* Print a memory address as an operand to reference that memory location.  */
2370
 
2371
#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2372
{ register rtx base, index = 0;                                  \
2373
  int offset = 0;                                                \
2374
  register rtx addr = ADDR;                                     \
2375
  if (GET_CODE (addr) == REG)                                   \
2376
    fputs (reg_names[REGNO (addr)], FILE);                      \
2377
  else if (GET_CODE (addr) == PLUS)                             \
2378
    {                                                           \
2379
      if (GET_CODE (XEXP (addr, 0)) == CONST_INT)                \
2380
        offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2381
      else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)          \
2382
        offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2383
      else                                                      \
2384
        base = XEXP (addr, 0), index = XEXP (addr, 1);           \
2385
      if (GET_CODE (base) == LO_SUM)                            \
2386
        {                                                       \
2387
          gcc_assert (USE_AS_OFFSETABLE_LO10                    \
2388
                      && TARGET_ARCH64                          \
2389
                      && ! TARGET_CM_MEDMID);                   \
2390
          output_operand (XEXP (base, 0), 0);                     \
2391
          fputs ("+%lo(", FILE);                                \
2392
          output_address (XEXP (base, 1));                      \
2393
          fprintf (FILE, ")+%d", offset);                       \
2394
        }                                                       \
2395
      else                                                      \
2396
        {                                                       \
2397
          fputs (reg_names[REGNO (base)], FILE);                \
2398
          if (index == 0)                                        \
2399
            fprintf (FILE, "%+d", offset);                      \
2400
          else if (GET_CODE (index) == REG)                     \
2401
            fprintf (FILE, "+%s", reg_names[REGNO (index)]);    \
2402
          else if (GET_CODE (index) == SYMBOL_REF               \
2403
                   || GET_CODE (index) == CONST)                \
2404
            fputc ('+', FILE), output_addr_const (FILE, index); \
2405
          else gcc_unreachable ();                              \
2406
        }                                                       \
2407
    }                                                           \
2408
  else if (GET_CODE (addr) == MINUS                             \
2409
           && GET_CODE (XEXP (addr, 1)) == LABEL_REF)           \
2410
    {                                                           \
2411
      output_addr_const (FILE, XEXP (addr, 0));                  \
2412
      fputs ("-(", FILE);                                       \
2413
      output_addr_const (FILE, XEXP (addr, 1));                 \
2414
      fputs ("-.)", FILE);                                      \
2415
    }                                                           \
2416
  else if (GET_CODE (addr) == LO_SUM)                           \
2417
    {                                                           \
2418
      output_operand (XEXP (addr, 0), 0);                 \
2419
      if (TARGET_CM_MEDMID)                                     \
2420
        fputs ("+%l44(", FILE);                                 \
2421
      else                                                      \
2422
        fputs ("+%lo(", FILE);                                  \
2423
      output_address (XEXP (addr, 1));                          \
2424
      fputc (')', FILE);                                        \
2425
    }                                                           \
2426
  else if (flag_pic && GET_CODE (addr) == CONST                 \
2427
           && GET_CODE (XEXP (addr, 0)) == MINUS         \
2428
           && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST       \
2429
           && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS      \
2430
           && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx)     \
2431
    {                                                           \
2432
      addr = XEXP (addr, 0);                                     \
2433
      output_addr_const (FILE, XEXP (addr, 0));                  \
2434
      /* Group the args of the second CONST in parenthesis.  */ \
2435
      fputs ("-(", FILE);                                       \
2436
      /* Skip past the second CONST--it does nothing for us.  */\
2437
      output_addr_const (FILE, XEXP (XEXP (addr, 1), 0));        \
2438
      /* Close the parenthesis.  */                             \
2439
      fputc (')', FILE);                                        \
2440
    }                                                           \
2441
  else                                                          \
2442
    {                                                           \
2443
      output_addr_const (FILE, addr);                           \
2444
    }                                                           \
2445
}
2446
 
2447
/* TLS support defaulting to original Sun flavor.  GNU extensions
2448
   must be activated in separate configuration files.  */
2449
#ifdef HAVE_AS_TLS
2450
#define TARGET_TLS 1
2451
#else
2452
#define TARGET_TLS 0
2453
#endif
2454
 
2455
#define TARGET_SUN_TLS TARGET_TLS
2456
#define TARGET_GNU_TLS 0
2457
 
2458
/* The number of Pmode words for the setjmp buffer.  */
2459
#define JMP_BUF_SIZE 12

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.