OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [config/] [v850/] [v850.h] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Definitions of target machine for GNU compiler. NEC V850 series
2
   Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3
   Free Software Foundation, Inc.
4
   Contributed by Jeff Law (law@cygnus.com).
5
 
6
   This file is part of GCC.
7
 
8
   GCC is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 2, or (at your option)
11
   any later version.
12
 
13
   GCC is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with GCC; see the file COPYING.  If not, write to
20
   the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21
   Boston, MA 02110-1301, USA.  */
22
 
23
#ifndef GCC_V850_H
24
#define GCC_V850_H
25
 
26
/* These are defined in svr4.h but we want to override them.  */
27
#undef LIB_SPEC
28
#undef ENDFILE_SPEC
29
#undef LINK_SPEC
30
#undef STARTFILE_SPEC
31
#undef ASM_SPEC
32
 
33
#define TARGET_CPU_generic      1
34
#define TARGET_CPU_v850e        2
35
#define TARGET_CPU_v850e1       3
36
 
37
#ifndef TARGET_CPU_DEFAULT
38
#define TARGET_CPU_DEFAULT      TARGET_CPU_generic
39
#endif
40
 
41
#define MASK_DEFAULT            MASK_V850
42
#define SUBTARGET_ASM_SPEC      "%{!mv*:-mv850}"
43
#define SUBTARGET_CPP_SPEC      "%{!mv*:-D__v850__}"
44
#define TARGET_VERSION          fprintf (stderr, " (NEC V850)");
45
 
46
/* Choose which processor will be the default.
47
   We must pass a -mv850xx option to the assembler if no explicit -mv* option
48
   is given, because the assembler's processor default may not be correct.  */
49
#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
50
#undef  MASK_DEFAULT
51
#define MASK_DEFAULT            MASK_V850E
52
#undef  SUBTARGET_ASM_SPEC
53
#define SUBTARGET_ASM_SPEC      "%{!mv*:-mv850e}"
54
#undef  SUBTARGET_CPP_SPEC
55
#define SUBTARGET_CPP_SPEC      "%{!mv*:-D__v850e__}"
56
#undef  TARGET_VERSION
57
#define TARGET_VERSION          fprintf (stderr, " (NEC V850E)");
58
#endif
59
 
60
#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
61
#undef  MASK_DEFAULT
62
#define MASK_DEFAULT            MASK_V850E      /* No practical difference.  */
63
#undef  SUBTARGET_ASM_SPEC
64
#define SUBTARGET_ASM_SPEC      "%{!mv*:-mv850e1}"
65
#undef  SUBTARGET_CPP_SPEC
66
#define SUBTARGET_CPP_SPEC      "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
67
#undef  TARGET_VERSION
68
#define TARGET_VERSION          fprintf (stderr, " (NEC V850E1)");
69
#endif
70
 
71
#define ASM_SPEC "%{mv*:-mv%*}"
72
#define CPP_SPEC                "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
73
 
74
#define EXTRA_SPECS \
75
 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
76
 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
77
 
78
/* Names to predefine in the preprocessor for this target machine.  */
79
#define TARGET_CPU_CPP_BUILTINS() do {          \
80
  builtin_define( "__v851__" );                 \
81
  builtin_define( "__v850" );                   \
82
  builtin_assert( "machine=v850" );             \
83
  builtin_assert( "cpu=v850" );                 \
84
  if (TARGET_EP)                                \
85
    builtin_define ("__EP__");                  \
86
} while(0)
87
 
88
#define MASK_CPU (MASK_V850 | MASK_V850E)
89
 
90
/* Information about the various small memory areas.  */
91
struct small_memory_info {
92
  const char *name;
93
  long max;
94
  long physical_max;
95
};
96
 
97
enum small_memory_type {
98
  /* tiny data area, using EP as base register */
99
  SMALL_MEMORY_TDA = 0,
100
  /* small data area using dp as base register */
101
  SMALL_MEMORY_SDA,
102
  /* zero data area using r0 as base register */
103
  SMALL_MEMORY_ZDA,
104
  SMALL_MEMORY_max
105
};
106
 
107
extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
108
 
109
/* Show we can debug even without a frame pointer.  */
110
#define CAN_DEBUG_WITHOUT_FP
111
 
112
/* Some machines may desire to change what optimizations are
113
   performed for various optimization levels.   This macro, if
114
   defined, is executed once just after the optimization level is
115
   determined and before the remainder of the command options have
116
   been parsed.  Values set in this macro are used as the default
117
   values for the other command line options.
118
 
119
   LEVEL is the optimization level specified; 2 if `-O2' is
120
   specified, 1 if `-O' is specified, and 0 if neither is specified.
121
 
122
   SIZE is nonzero if `-Os' is specified, 0 otherwise.
123
 
124
   You should not use this macro to change options that are not
125
   machine-specific.  These should uniformly selected by the same
126
   optimization level on all supported machines.  Use this macro to
127
   enable machine-specific optimizations.
128
 
129
   *Do not examine `write_symbols' in this macro!* The debugging
130
   options are not supposed to alter the generated code.  */
131
 
132
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE)                                \
133
{                                                                       \
134
  target_flags |= MASK_STRICT_ALIGN;                                    \
135
  if (LEVEL)                                                            \
136
    /* Note - we no longer enable MASK_EP when optimizing.  This is     \
137
       because of a hardware bug which stops the SLD and SST instructions\
138
       from correctly detecting some hazards.  If the user is sure that \
139
       their hardware is fixed or that their program will not encounter \
140
       the conditions that trigger the bug then they can enable -mep by \
141
       hand.  */                                                        \
142
    target_flags |= MASK_PROLOG_FUNCTION;                               \
143
}
144
 
145
 
146
/* Target machine storage layout */
147
 
148
/* Define this if most significant bit is lowest numbered
149
   in instructions that operate on numbered bit-fields.
150
   This is not true on the NEC V850.  */
151
#define BITS_BIG_ENDIAN 0
152
 
153
/* Define this if most significant byte of a word is the lowest numbered.  */
154
/* This is not true on the NEC V850.  */
155
#define BYTES_BIG_ENDIAN 0
156
 
157
/* Define this if most significant word of a multiword number is lowest
158
   numbered.
159
   This is not true on the NEC V850.  */
160
#define WORDS_BIG_ENDIAN 0
161
 
162
/* Width of a word, in units (bytes).  */
163
#define UNITS_PER_WORD          4
164
 
165
/* Define this macro if it is advisable to hold scalars in registers
166
   in a wider mode than that declared by the program.  In such cases,
167
   the value is constrained to be within the bounds of the declared
168
   type, but kept valid in the wider mode.  The signedness of the
169
   extension may differ from that of the type.
170
 
171
   Some simple experiments have shown that leaving UNSIGNEDP alone
172
   generates the best overall code.  */
173
 
174
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
175
  if (GET_MODE_CLASS (MODE) == MODE_INT \
176
      && GET_MODE_SIZE (MODE) < 4)      \
177
    { (MODE) = SImode; }
178
 
179
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
180
#define PARM_BOUNDARY           32
181
 
182
/* The stack goes in 32 bit lumps.  */
183
#define STACK_BOUNDARY          32
184
 
185
/* Allocation boundary (in *bits*) for the code of a function.
186
   16 is the minimum boundary; 32 would give better performance.  */
187
#define FUNCTION_BOUNDARY 16
188
 
189
/* No data type wants to be aligned rounder than this.  */
190
#define BIGGEST_ALIGNMENT       32
191
 
192
/* Alignment of field after `int : 0' in a structure.  */
193
#define EMPTY_FIELD_BOUNDARY 32
194
 
195
/* No structure field wants to be aligned rounder than this.  */
196
#define BIGGEST_FIELD_ALIGNMENT 32
197
 
198
/* Define this if move instructions will actually fail to work
199
   when given unaligned data.  */
200
#define STRICT_ALIGNMENT  TARGET_STRICT_ALIGN
201
 
202
/* Define this as 1 if `char' should by default be signed; else as 0.
203
 
204
   On the NEC V850, loads do sign extension, so make this default.  */
205
#define DEFAULT_SIGNED_CHAR 1
206
 
207
/* Standard register usage.  */
208
 
209
/* Number of actual hardware registers.
210
   The hardware registers are assigned numbers for the compiler
211
   from 0 to just below FIRST_PSEUDO_REGISTER.
212
 
213
   All registers that the compiler knows about must be given numbers,
214
   even those that are not normally considered general registers.  */
215
 
216
#define FIRST_PSEUDO_REGISTER 34
217
 
218
/* 1 for registers that have pervasive standard uses
219
   and are not available for the register allocator.  */
220
 
221
#define FIXED_REGISTERS \
222
  { 1, 1, 0, 1, 1, 0, 0, 0, \
223
    0, 0, 0, 0, 0, 0, 0, 0, \
224
    0, 0, 0, 0, 0, 0, 0, 0, \
225
    0, 0, 0, 0, 0, 0, 1, 0, \
226
    1, 1}
227
 
228
/* 1 for registers not available across function calls.
229
   These must include the FIXED_REGISTERS and also any
230
   registers that can be used without being saved.
231
   The latter must include the registers where values are returned
232
   and the register where structure-value addresses are passed.
233
   Aside from that, you can include as many other registers as you
234
   like.  */
235
 
236
#define CALL_USED_REGISTERS \
237
  { 1, 1, 0, 1, 1, 1, 1, 1, \
238
    1, 1, 1, 1, 1, 1, 1, 1, \
239
    1, 1, 1, 1, 0, 0, 0, 0, \
240
    0, 0, 0, 0, 0, 0, 1, 1, \
241
    1, 1}
242
 
243
/* List the order in which to allocate registers.  Each register must be
244
   listed once, even those in FIXED_REGISTERS.
245
 
246
   On the 850, we make the return registers first, then all of the volatile
247
   registers, then the saved registers in reverse order to better save the
248
   registers with an out of line function, and finally the fixed
249
   registers.  */
250
 
251
#define REG_ALLOC_ORDER                                                 \
252
{                                                                       \
253
  10, 11,                               /* return registers */          \
254
  12, 13, 14, 15, 16, 17, 18, 19,       /* scratch registers */         \
255
   6,  7,  8,  9, 31,                   /* argument registers */        \
256
  29, 28, 27, 26, 25, 24, 23, 22,       /* saved registers */           \
257
  21, 20,  2,                                                           \
258
   0,  1,  3,  4,  5, 30, 32, 33 /* fixed registers */           \
259
}
260
 
261
/* If TARGET_APP_REGS is not defined then add r2 and r5 to
262
   the pool of fixed registers. See PR 14505.  */
263
#define CONDITIONAL_REGISTER_USAGE  \
264
{                                                       \
265
  if (!TARGET_APP_REGS)                                 \
266
    {                                                   \
267
      fixed_regs[2] = 1;  call_used_regs[2] = 1;        \
268
      fixed_regs[5] = 1;  call_used_regs[5] = 1;        \
269
    }                                                   \
270
}
271
 
272
/* Return number of consecutive hard regs needed starting at reg REGNO
273
   to hold something of mode MODE.
274
 
275
   This is ordinarily the length in words of a value of mode MODE
276
   but can be less for certain modes in special long registers.  */
277
 
278
#define HARD_REGNO_NREGS(REGNO, MODE)   \
279
  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
280
 
281
/* Value is 1 if hard register REGNO can hold a value of machine-mode
282
   MODE.  */
283
 
284
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
285
 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
286
 
287
/* Value is 1 if it is a good idea to tie two pseudo registers
288
   when one has mode MODE1 and one has mode MODE2.
289
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
290
   for any hard reg, then this must be 0 for correct output.  */
291
#define MODES_TIEABLE_P(MODE1, MODE2) \
292
  (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
293
 
294
 
295
/* Define the classes of registers for register constraints in the
296
   machine description.  Also define ranges of constants.
297
 
298
   One of the classes must always be named ALL_REGS and include all hard regs.
299
   If there is more than one class, another class must be named NO_REGS
300
   and contain no registers.
301
 
302
   The name GENERAL_REGS must be the name of a class (or an alias for
303
   another name such as ALL_REGS).  This is the class of registers
304
   that is allowed by "g" or "r" in a register constraint.
305
   Also, registers outside this class are allocated only when
306
   instructions express preferences for them.
307
 
308
   The classes must be numbered in nondecreasing order; that is,
309
   a larger-numbered class must never be contained completely
310
   in a smaller-numbered class.
311
 
312
   For any two classes, it is very desirable that there be another
313
   class that represents their union.  */
314
 
315
enum reg_class
316
{
317
  NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
318
};
319
 
320
#define N_REG_CLASSES (int) LIM_REG_CLASSES
321
 
322
/* Give names of register classes as strings for dump file.  */
323
 
324
#define REG_CLASS_NAMES \
325
{ "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
326
 
327
/* Define which registers fit in which classes.
328
   This is an initializer for a vector of HARD_REG_SET
329
   of length N_REG_CLASSES.  */
330
 
331
#define REG_CLASS_CONTENTS              \
332
{                                       \
333
  { 0x00000000 }, /* NO_REGS      */    \
334
  { 0xffffffff }, /* GENERAL_REGS */    \
335
  { 0xffffffff }, /* ALL_REGS   */      \
336
}
337
 
338
/* The same information, inverted:
339
   Return the class number of the smallest class containing
340
   reg number REGNO.  This could be a conditional expression
341
   or could index an array.  */
342
 
343
#define REGNO_REG_CLASS(REGNO)  GENERAL_REGS
344
 
345
/* The class value for index registers, and the one for base regs.  */
346
 
347
#define INDEX_REG_CLASS NO_REGS
348
#define BASE_REG_CLASS  GENERAL_REGS
349
 
350
/* Get reg_class from a letter such as appears in the machine description.  */
351
 
352
#define REG_CLASS_FROM_LETTER(C) (NO_REGS)
353
 
354
/* Macros to check register numbers against specific register classes.  */
355
 
356
/* These assume that REGNO is a hard or pseudo reg number.
357
   They give nonzero only if REGNO is a hard reg of the suitable class
358
   or a pseudo reg currently allocated to a suitable hard reg.
359
   Since they use reg_renumber, they are safe only once reg_renumber
360
   has been allocated, which happens in local-alloc.c.  */
361
 
362
#define REGNO_OK_FOR_BASE_P(regno) \
363
  ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
364
 
365
#define REGNO_OK_FOR_INDEX_P(regno) 0
366
 
367
/* Given an rtx X being reloaded into a reg required to be
368
   in class CLASS, return the class of reg to actually use.
369
   In general this is just CLASS; but on some machines
370
   in some cases it is preferable to use a more restrictive class.  */
371
 
372
#define PREFERRED_RELOAD_CLASS(X,CLASS)  (CLASS)
373
 
374
/* Return the maximum number of consecutive registers
375
   needed to represent mode MODE in a register of class CLASS.  */
376
 
377
#define CLASS_MAX_NREGS(CLASS, MODE)    \
378
  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
379
 
380
/* The letters I, J, K, L, M, N, O, P in a register constraint string
381
   can be used to stand for particular ranges of immediate operands.
382
   This macro defines what the ranges are.
383
   C is the letter, and VALUE is a constant value.
384
   Return 1 if VALUE is in the range specified by C.  */
385
 
386
#define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
387
#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
388
/* zero */
389
#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
390
/* 5 bit signed immediate */
391
#define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
392
/* 16 bit signed immediate */
393
#define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
394
/* valid constant for movhi instruction.  */
395
#define CONST_OK_FOR_L(VALUE) \
396
  (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
397
   && CONST_OK_FOR_I ((VALUE & 0xffff)))
398
/* 16 bit unsigned immediate */
399
#define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
400
/* 5 bit unsigned immediate in shift instructions */
401
#define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
402
/* 9 bit signed immediate for word multiply instruction.  */
403
#define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)
404
 
405
#define CONST_OK_FOR_P(VALUE) 0
406
 
407
#define CONST_OK_FOR_LETTER_P(VALUE, C)  \
408
  ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
409
   (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
410
   (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
411
   (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
412
   (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
413
   (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
414
   (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
415
   (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
416
   0)
417
 
418
/* Similar, but for floating constants, and defining letters G and H.
419
   Here VALUE is the CONST_DOUBLE rtx itself.
420
 
421
  `G' is a zero of some form.  */
422
 
423
#define CONST_DOUBLE_OK_FOR_G(VALUE)                                    \
424
  ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT                     \
425
    && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))                        \
426
   || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT                    \
427
       && CONST_DOUBLE_LOW (VALUE) == 0                                  \
428
       && CONST_DOUBLE_HIGH (VALUE) == 0))
429
 
430
#define CONST_DOUBLE_OK_FOR_H(VALUE) 0
431
 
432
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)                          \
433
  ((C) == 'G'   ? CONST_DOUBLE_OK_FOR_G (VALUE)                         \
434
   : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE)                         \
435
   : 0)
436
 
437
 
438
/* Stack layout; function entry, exit and calling.  */
439
 
440
/* Define this if pushing a word on the stack
441
   makes the stack pointer a smaller address.  */
442
 
443
#define STACK_GROWS_DOWNWARD
444
 
445
/* Define this to nonzero if the nominal address of the stack frame
446
   is at the high-address end of the local variables;
447
   that is, each additional local variable allocated
448
   goes at a more negative offset in the frame.  */
449
 
450
#define FRAME_GROWS_DOWNWARD 1
451
 
452
/* Offset within stack frame to start allocating local variables at.
453
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
454
   first local allocated.  Otherwise, it is the offset to the BEGINNING
455
   of the first local allocated.  */
456
 
457
#define STARTING_FRAME_OFFSET 0
458
 
459
/* Offset of first parameter from the argument pointer register value.  */
460
/* Is equal to the size of the saved fp + pc, even if an fp isn't
461
   saved since the value is used before we know.  */
462
 
463
#define FIRST_PARM_OFFSET(FNDECL) 0
464
 
465
/* Specify the registers used for certain standard purposes.
466
   The values of these macros are register numbers.  */
467
 
468
/* Register to use for pushing function arguments.  */
469
#define STACK_POINTER_REGNUM 3
470
 
471
/* Base register for access to local variables of the function.  */
472
#define FRAME_POINTER_REGNUM 32
473
 
474
/* Register containing return address from latest function call.  */
475
#define LINK_POINTER_REGNUM 31
476
 
477
/* On some machines the offset between the frame pointer and starting
478
   offset of the automatic variables is not known until after register
479
   allocation has been done (for example, because the saved registers
480
   are between these two locations).  On those machines, define
481
   `FRAME_POINTER_REGNUM' the number of a special, fixed register to
482
   be used internally until the offset is known, and define
483
   `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
484
   used for the frame pointer.
485
 
486
   You should define this macro only in the very rare circumstances
487
   when it is not possible to calculate the offset between the frame
488
   pointer and the automatic variables until after register
489
   allocation has been completed.  When this macro is defined, you
490
   must also indicate in your definition of `ELIMINABLE_REGS' how to
491
   eliminate `FRAME_POINTER_REGNUM' into either
492
   `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
493
 
494
   Do not define this macro if it would be the same as
495
   `FRAME_POINTER_REGNUM'.  */
496
#undef  HARD_FRAME_POINTER_REGNUM 
497
#define HARD_FRAME_POINTER_REGNUM 29
498
 
499
/* Base register for access to arguments of the function.  */
500
#define ARG_POINTER_REGNUM 33
501
 
502
/* Register in which static-chain is passed to a function.  */
503
#define STATIC_CHAIN_REGNUM 20
504
 
505
/* Value should be nonzero if functions must have frame pointers.
506
   Zero means the frame pointer need not be set up (and parms
507
   may be accessed via the stack pointer) in functions that seem suitable.
508
   This is computed in `reload', in reload1.c.  */
509
#define FRAME_POINTER_REQUIRED 0
510
 
511
/* If defined, this macro specifies a table of register pairs used to
512
   eliminate unneeded registers that point into the stack frame.  If
513
   it is not defined, the only elimination attempted by the compiler
514
   is to replace references to the frame pointer with references to
515
   the stack pointer.
516
 
517
   The definition of this macro is a list of structure
518
   initializations, each of which specifies an original and
519
   replacement register.
520
 
521
   On some machines, the position of the argument pointer is not
522
   known until the compilation is completed.  In such a case, a
523
   separate hard register must be used for the argument pointer.
524
   This register can be eliminated by replacing it with either the
525
   frame pointer or the argument pointer, depending on whether or not
526
   the frame pointer has been eliminated.
527
 
528
   In this case, you might specify:
529
        #define ELIMINABLE_REGS  \
530
        {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
531
         {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
532
         {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
533
 
534
   Note that the elimination of the argument pointer with the stack
535
   pointer is specified first since that is the preferred elimination.  */
536
 
537
#define ELIMINABLE_REGS                                                 \
538
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },                        \
539
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },                   \
540
 { ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM },                        \
541
 { ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM }}                   \
542
 
543
/* A C expression that returns nonzero if the compiler is allowed to
544
   try to replace register number FROM-REG with register number
545
   TO-REG.  This macro need only be defined if `ELIMINABLE_REGS' is
546
   defined, and will usually be the constant 1, since most of the
547
   cases preventing register elimination are things that the compiler
548
   already knows about.  */
549
 
550
#define CAN_ELIMINATE(FROM, TO) \
551
 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
552
 
553
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It
554
   specifies the initial difference between the specified pair of
555
   registers.  This macro must be defined if `ELIMINABLE_REGS' is
556
   defined.  */
557
 
558
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
559
{                                                                       \
560
  if ((FROM) == FRAME_POINTER_REGNUM)                                   \
561
    (OFFSET) = get_frame_size () + current_function_outgoing_args_size; \
562
  else if ((FROM) == ARG_POINTER_REGNUM)                                \
563
   (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
564
  else                                                                  \
565
    gcc_unreachable ();                                                 \
566
}
567
 
568
/* Keep the stack pointer constant throughout the function.  */
569
#define ACCUMULATE_OUTGOING_ARGS 1
570
 
571
/* Value is the number of bytes of arguments automatically
572
   popped when returning from a subroutine call.
573
   FUNDECL is the declaration node of the function (as a tree),
574
   FUNTYPE is the data type of the function (as a tree),
575
   or for a library call it is an identifier node for the subroutine name.
576
   SIZE is the number of bytes of arguments passed on the stack.  */
577
 
578
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
579
 
580
#define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
581
 
582
/* Define a data type for recording info about an argument list
583
   during the scan of that argument list.  This data type should
584
   hold all necessary information about the function itself
585
   and about the args processed so far, enough to enable macros
586
   such as FUNCTION_ARG to determine where the next arg should go.  */
587
 
588
#define CUMULATIVE_ARGS struct cum_arg
589
struct cum_arg { int nbytes; int anonymous_args; };
590
 
591
/* Define where to put the arguments to a function.
592
   Value is zero to push the argument on the stack,
593
   or a hard register in which to store the argument.
594
 
595
   MODE is the argument's machine mode.
596
   TYPE is the data type of the argument (as a tree).
597
    This is null for libcalls where that information may
598
    not be available.
599
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
600
    the preceding args and about the function being called.
601
   NAMED is nonzero if this argument is a named parameter
602
    (otherwise it is an extra parameter matching an ellipsis).  */
603
 
604
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
605
  function_arg (&CUM, MODE, TYPE, NAMED)
606
 
607
/* Initialize a variable CUM of type CUMULATIVE_ARGS
608
   for a call to a function whose data type is FNTYPE.
609
   For a library call, FNTYPE is 0.  */
610
 
611
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
612
 ((CUM).nbytes = 0, (CUM).anonymous_args = 0)
613
 
614
/* Update the data in CUM to advance over an argument
615
   of mode MODE and data type TYPE.
616
   (TYPE is null for libcalls where that information may not be available.)  */
617
 
618
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
619
 ((CUM).nbytes += ((MODE) != BLKmode                    \
620
  ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD       \
621
  : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
622
 
623
/* When a parameter is passed in a register, stack space is still
624
   allocated for it.  */
625
#define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
626
 
627
/* Define this if the above stack space is to be considered part of the
628
   space allocated by the caller.  */
629
#define OUTGOING_REG_PARM_STACK_SPACE
630
 
631
/* 1 if N is a possible register number for function argument passing.  */
632
 
633
#define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
634
 
635
/* Define how to find the value returned by a function.
636
   VALTYPE is the data type of the value (as a tree).
637
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
638
   otherwise, FUNC is 0.  */
639
 
640
#define FUNCTION_VALUE(VALTYPE, FUNC) \
641
  gen_rtx_REG (TYPE_MODE (VALTYPE), 10)
642
 
643
/* Define how to find the value returned by a library function
644
   assuming the value has mode MODE.  */
645
 
646
#define LIBCALL_VALUE(MODE) \
647
  gen_rtx_REG (MODE, 10)
648
 
649
/* 1 if N is a possible register number for a function value.  */
650
 
651
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
652
 
653
#define DEFAULT_PCC_STRUCT_RETURN 0
654
 
655
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
656
   the stack pointer does not matter.  The value is tested only in
657
   functions that have frame pointers.
658
   No definition is equivalent to always zero.  */
659
 
660
#define EXIT_IGNORE_STACK 1
661
 
662
/* Define this macro as a C expression that is nonzero for registers
663
   used by the epilogue or the `return' pattern.  */
664
 
665
#define EPILOGUE_USES(REGNO) \
666
  (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
667
 
668
/* Output assembler code to FILE to increment profiler label # LABELNO
669
   for profiling a function entry.  */
670
 
671
#define FUNCTION_PROFILER(FILE, LABELNO) ;
672
 
673
#define TRAMPOLINE_TEMPLATE(FILE)                       \
674
  do {                                                  \
675
    fprintf (FILE, "\tjarl .+4,r12\n");                 \
676
    fprintf (FILE, "\tld.w 12[r12],r20\n");             \
677
    fprintf (FILE, "\tld.w 16[r12],r12\n");             \
678
    fprintf (FILE, "\tjmp [r12]\n");                    \
679
    fprintf (FILE, "\tnop\n");                          \
680
    fprintf (FILE, "\t.long 0\n");                      \
681
    fprintf (FILE, "\t.long 0\n");                      \
682
  } while (0)
683
 
684
/* Length in units of the trampoline for entering a nested function.  */
685
 
686
#define TRAMPOLINE_SIZE 24
687
 
688
/* Emit RTL insns to initialize the variable parts of a trampoline.
689
   FNADDR is an RTX for the address of the function's pure code.
690
   CXT is an RTX for the static chain value for the function.  */
691
 
692
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)                       \
693
{                                                                       \
694
  emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)),    \
695
                 (CXT));                                                \
696
  emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)),    \
697
                 (FNADDR));                                             \
698
}
699
 
700
/* Addressing modes, and classification of registers for them.  */
701
 
702
 
703
/* 1 if X is an rtx for a constant that is a valid address.  */
704
 
705
/* ??? This seems too exclusive.  May get better code by accepting more
706
   possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs.  */
707
 
708
#define CONSTANT_ADDRESS_P(X)   \
709
  (GET_CODE (X) == CONST_INT                            \
710
   && CONST_OK_FOR_K (INTVAL (X)))
711
 
712
/* Maximum number of registers that can appear in a valid memory address.  */
713
 
714
#define MAX_REGS_PER_ADDRESS 1
715
 
716
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
717
   and check its validity for a certain class.
718
   We have two alternate definitions for each of them.
719
   The usual definition accepts all pseudo regs; the other rejects
720
   them unless they have been allocated suitable hard regs.
721
   The symbol REG_OK_STRICT causes the latter definition to be used.
722
 
723
   Most source files want to accept pseudo regs in the hope that
724
   they will get allocated to the class that the insn wants them to be in.
725
   Source files for reload pass need to be strict.
726
   After reload, it makes no difference, since pseudo regs have
727
   been eliminated by then.  */
728
 
729
#ifndef REG_OK_STRICT
730
 
731
/* Nonzero if X is a hard reg that can be used as an index
732
   or if it is a pseudo reg.  */
733
#define REG_OK_FOR_INDEX_P(X) 0
734
/* Nonzero if X is a hard reg that can be used as a base reg
735
   or if it is a pseudo reg.  */
736
#define REG_OK_FOR_BASE_P(X) 1
737
#define REG_OK_FOR_INDEX_P_STRICT(X) 0
738
#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
739
#define STRICT 0
740
 
741
#else
742
 
743
/* Nonzero if X is a hard reg that can be used as an index.  */
744
#define REG_OK_FOR_INDEX_P(X) 0
745
/* Nonzero if X is a hard reg that can be used as a base reg.  */
746
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
747
#define STRICT 1
748
 
749
#endif
750
 
751
/* A C expression that defines the optional machine-dependent
752
   constraint letters that can be used to segregate specific types of
753
   operands, usually memory references, for the target machine.
754
   Normally this macro will not be defined.  If it is required for a
755
   particular target machine, it should return 1 if VALUE corresponds
756
   to the operand type represented by the constraint letter C.  If C
757
   is not defined as an extra constraint, the value returned should
758
   be 0 regardless of VALUE.
759
 
760
   For example, on the ROMP, load instructions cannot have their
761
   output in r0 if the memory reference contains a symbolic address.
762
   Constraint letter `Q' is defined as representing a memory address
763
   that does *not* contain a symbolic address.  An alternative is
764
   specified with a `Q' constraint on the input and `r' on the
765
   output.  The next alternative specifies `m' on the input and a
766
   register class that does not include r0 on the output.  */
767
 
768
#define EXTRA_CONSTRAINT(OP, C)                                         \
769
 ((C) == 'Q'   ? ep_memory_operand (OP, GET_MODE (OP), FALSE)           \
770
  : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode)               \
771
  : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF                           \
772
                  && !SYMBOL_REF_ZDA_P (OP))                            \
773
  : (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE)            \
774
  : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF                          \
775
                   && SYMBOL_REF_ZDA_P (OP))                            \
776
                  || (GET_CODE (OP) == CONST                            \
777
                      && GET_CODE (XEXP (OP, 0)) == PLUS         \
778
                      && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
779
                      && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0))))      \
780
  : 0)
781
 
782
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
783
   that is a valid memory address for an instruction.
784
   The MODE argument is the machine mode for the MEM expression
785
   that wants to use this address.
786
 
787
   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
788
   except for CONSTANT_ADDRESS_P which is actually
789
   machine-independent.  */
790
 
791
/* Accept either REG or SUBREG where a register is valid.  */
792
 
793
#define RTX_OK_FOR_BASE_P(X)                                            \
794
  ((REG_P (X) && REG_OK_FOR_BASE_P (X))                                 \
795
   || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X))                 \
796
       && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
797
 
798
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)                         \
799
do {                                                                    \
800
  if (RTX_OK_FOR_BASE_P (X))                                            \
801
    goto ADDR;                                                          \
802
  if (CONSTANT_ADDRESS_P (X)                                            \
803
      && (MODE == QImode || INTVAL (X) % 2 == 0)                 \
804
      && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0))             \
805
    goto ADDR;                                                          \
806
  if (GET_CODE (X) == LO_SUM                                            \
807
      && REG_P (XEXP (X, 0))                                             \
808
      && REG_OK_FOR_BASE_P (XEXP (X, 0))                         \
809
      && CONSTANT_P (XEXP (X, 1))                                       \
810
      && (GET_CODE (XEXP (X, 1)) != CONST_INT                           \
811
          || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0)          \
812
              && CONST_OK_FOR_K (INTVAL (XEXP (X, 1)))))                \
813
      && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))             \
814
    goto ADDR;                                                          \
815
  if (special_symbolref_operand (X, MODE)                               \
816
      && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)))           \
817
     goto ADDR;                                                         \
818
  if (GET_CODE (X) == PLUS                                              \
819
      && RTX_OK_FOR_BASE_P (XEXP (X, 0))                                 \
820
      && CONSTANT_ADDRESS_P (XEXP (X, 1))                               \
821
      && ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0)              \
822
           && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))                      \
823
                              + (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \
824
    goto ADDR;                  \
825
} while (0)
826
 
827
 
828
/* Go to LABEL if ADDR (a legitimate address expression)
829
   has an effect that depends on the machine mode it is used for.  */
830
 
831
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  {}
832
 
833
/* Nonzero if the constant value X is a legitimate general operand.
834
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
835
 
836
#define LEGITIMATE_CONSTANT_P(X)                                        \
837
  (GET_CODE (X) == CONST_DOUBLE                                         \
838
   || !(GET_CODE (X) == CONST                                           \
839
        && GET_CODE (XEXP (X, 0)) == PLUS                                \
840
        && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF         \
841
        && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT         \
842
        && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
843
 
844
/* Tell final.c how to eliminate redundant test instructions.  */
845
 
846
/* Here we define machine-dependent flags and fields in cc_status
847
   (see `conditions.h').  No extra ones are needed for the VAX.  */
848
 
849
/* Store in cc_status the expressions
850
   that the condition codes will describe
851
   after execution of an instruction whose pattern is EXP.
852
   Do not alter them if the instruction would not alter the cc's.  */
853
 
854
#define CC_OVERFLOW_UNUSABLE 0x200
855
#define CC_NO_CARRY CC_NO_OVERFLOW
856
#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
857
 
858
/* Nonzero if access to memory by bytes or half words is no faster
859
   than accessing full words.  */
860
#define SLOW_BYTE_ACCESS 1
861
 
862
/* According expr.c, a value of around 6 should minimize code size, and
863
   for the V850 series, that's our primary concern.  */
864
#define MOVE_RATIO 6
865
 
866
/* Indirect calls are expensive, never turn a direct call
867
   into an indirect call.  */
868
#define NO_FUNCTION_CSE
869
 
870
/* The four different data regions on the v850.  */
871
typedef enum
872
{
873
  DATA_AREA_NORMAL,
874
  DATA_AREA_SDA,
875
  DATA_AREA_TDA,
876
  DATA_AREA_ZDA
877
} v850_data_area;
878
 
879
/* A list of names for sections other than the standard two, which are
880
   `in_text' and `in_data'.  You need not define this macro on a
881
   system with no other sections (that GCC needs to use).  */
882
#undef  EXTRA_SECTIONS
883
#define EXTRA_SECTIONS in_tdata, in_sdata, in_zdata, \
884
 in_rozdata, in_rosdata, in_sbss, in_zbss, in_zcommon, in_scommon
885
 
886
/* One or more functions to be defined in `varasm.c'.  These
887
   functions should do jobs analogous to those of `text_section' and
888
   `data_section', for your additional sections.  Do not define this
889
   macro if you do not define `EXTRA_SECTIONS'.  */
890
#undef  EXTRA_SECTION_FUNCTIONS
891
 
892
/* This could be done a lot more cleanly using ANSI C....  */
893
#define EXTRA_SECTION_FUNCTIONS                                         \
894
void                                                                    \
895
sdata_section ()                                                        \
896
{                                                                       \
897
  if (in_section != in_sdata)                                           \
898
    {                                                                   \
899
      fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP);             \
900
      in_section = in_sdata;                                            \
901
    }                                                                   \
902
}                                                                       \
903
                                                                        \
904
void                                                                    \
905
rosdata_section ()                                                      \
906
{                                                                       \
907
  if (in_section != in_rosdata)                                         \
908
    {                                                                   \
909
      fprintf (asm_out_file, "%s\n", ROSDATA_SECTION_ASM_OP);           \
910
      in_section = in_sdata;                                            \
911
    }                                                                   \
912
}                                                                       \
913
                                                                        \
914
void                                                                    \
915
sbss_section ()                                                         \
916
{                                                                       \
917
  if (in_section != in_sbss)                                            \
918
    {                                                                   \
919
      fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP);              \
920
      in_section = in_sbss;                                             \
921
    }                                                                   \
922
}                                                                       \
923
                                                                        \
924
void                                                                    \
925
tdata_section ()                                                        \
926
{                                                                       \
927
  if (in_section != in_tdata)                                           \
928
    {                                                                   \
929
      fprintf (asm_out_file, "%s\n", TDATA_SECTION_ASM_OP);             \
930
      in_section = in_tdata;                                            \
931
    }                                                                   \
932
}                                                                       \
933
                                                                        \
934
void                                                                    \
935
zdata_section ()                                                        \
936
{                                                                       \
937
  if (in_section != in_zdata)                                           \
938
    {                                                                   \
939
      fprintf (asm_out_file, "%s\n", ZDATA_SECTION_ASM_OP);             \
940
      in_section = in_zdata;                                            \
941
    }                                                                   \
942
}                                                                       \
943
                                                                        \
944
void                                                                    \
945
rozdata_section ()                                                      \
946
{                                                                       \
947
  if (in_section != in_rozdata)                                         \
948
    {                                                                   \
949
      fprintf (asm_out_file, "%s\n", ROZDATA_SECTION_ASM_OP);           \
950
      in_section = in_rozdata;                                          \
951
    }                                                                   \
952
}                                                                       \
953
                                                                        \
954
void                                                                    \
955
zbss_section ()                                                         \
956
{                                                                       \
957
  if (in_section != in_zbss)                                            \
958
    {                                                                   \
959
      fprintf (asm_out_file, "%s\n", ZBSS_SECTION_ASM_OP);              \
960
      in_section = in_zbss;                                             \
961
    }                                                                   \
962
}
963
 
964
#define TEXT_SECTION_ASM_OP  "\t.section .text"
965
#define DATA_SECTION_ASM_OP  "\t.section .data"
966
#define BSS_SECTION_ASM_OP   "\t.section .bss"
967
#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
968
#define SBSS_SECTION_ASM_OP  "\t.section .sbss,\"aw\""
969
#define ZDATA_SECTION_ASM_OP "\t.section .zdata,\"aw\""
970
#define ZBSS_SECTION_ASM_OP  "\t.section .zbss,\"aw\""
971
#define TDATA_SECTION_ASM_OP "\t.section .tdata,\"aw\""
972
#define ROSDATA_SECTION_ASM_OP "\t.section .rosdata,\"a\""
973
#define ROZDATA_SECTION_ASM_OP "\t.section .rozdata,\"a\""
974
 
975
#define SCOMMON_ASM_OP         "\t.scomm\t"
976
#define ZCOMMON_ASM_OP         "\t.zcomm\t"
977
#define TCOMMON_ASM_OP         "\t.tcomm\t"
978
 
979
#define ASM_COMMENT_START "#"
980
 
981
/* Output to assembler file text saying following lines
982
   may contain character constants, extra white space, comments, etc.  */
983
 
984
#define ASM_APP_ON "#APP\n"
985
 
986
/* Output to assembler file text saying following lines
987
   no longer contain unusual constructs.  */
988
 
989
#define ASM_APP_OFF "#NO_APP\n"
990
 
991
#undef  USER_LABEL_PREFIX
992
#define USER_LABEL_PREFIX "_"
993
 
994
#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)  \
995
  if (! v850_output_addr_const_extra (FILE, X)) \
996
     goto FAIL
997
 
998
/* This says how to output the assembler to define a global
999
   uninitialized but not common symbol.  */
1000
 
1001
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1002
  asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
1003
 
1004
#undef  ASM_OUTPUT_ALIGNED_BSS 
1005
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1006
  v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1007
 
1008
/* This says how to output the assembler to define a global
1009
   uninitialized, common symbol.  */
1010
#undef  ASM_OUTPUT_ALIGNED_COMMON
1011
#undef  ASM_OUTPUT_COMMON
1012
#define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
1013
     v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
1014
 
1015
/* This says how to output the assembler to define a local
1016
   uninitialized symbol.  */
1017
#undef  ASM_OUTPUT_ALIGNED_LOCAL
1018
#undef  ASM_OUTPUT_LOCAL
1019
#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
1020
     v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
1021
 
1022
/* Globalizing directive for a label.  */
1023
#define GLOBAL_ASM_OP "\t.global "
1024
 
1025
#define ASM_PN_FORMAT "%s___%lu"
1026
 
1027
/* This is how we tell the assembler that two symbols have the same value.  */
1028
 
1029
#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
1030
  do { assemble_name(FILE, NAME1);       \
1031
       fputs(" = ", FILE);               \
1032
       assemble_name(FILE, NAME2);       \
1033
       fputc('\n', FILE); } while (0)
1034
 
1035
 
1036
/* How to refer to registers in assembler output.
1037
   This sequence is indexed by compiler's hard-register-number (see above).  */
1038
 
1039
#define REGISTER_NAMES                                                  \
1040
{  "r0",  "r1",  "r2",  "sp",  "gp",  "r5",  "r6" , "r7",               \
1041
   "r8",  "r9", "r10", "r11", "r12", "r13", "r14", "r15",               \
1042
  "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",               \
1043
  "r24", "r25", "r26", "r27", "r28", "r29",  "ep", "r31",               \
1044
  ".fp", ".ap"}
1045
 
1046
#define ADDITIONAL_REGISTER_NAMES                                       \
1047
{ { "zero",     0 },                                                     \
1048
  { "hp",       2 },                                                    \
1049
  { "r3",       3 },                                                    \
1050
  { "r4",       4 },                                                    \
1051
  { "tp",       5 },                                                    \
1052
  { "fp",       29 },                                                   \
1053
  { "r30",      30 },                                                   \
1054
  { "lp",       31} }
1055
 
1056
/* Print an instruction operand X on file FILE.
1057
   look in v850.c for details */
1058
 
1059
#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
1060
 
1061
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1062
  ((CODE) == '.')
1063
 
1064
/* Print a memory operand whose address is X, on file FILE.
1065
   This uses a function in output-vax.c.  */
1066
 
1067
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1068
 
1069
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
1070
#define ASM_OUTPUT_REG_POP(FILE,REGNO)
1071
 
1072
/* This is how to output an element of a case-vector that is absolute.  */
1073
 
1074
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1075
  fprintf (FILE, "\t%s .L%d\n",                                 \
1076
           (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
1077
 
1078
/* This is how to output an element of a case-vector that is relative.  */
1079
 
1080
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)                \
1081
  fprintf (FILE, "\t%s %s.L%d-.L%d%s\n",                                \
1082
           (TARGET_BIG_SWITCH ? ".long" : ".short"),                    \
1083
           (! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""),            \
1084
           VALUE, REL,                                                  \
1085
           (! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : ""))
1086
 
1087
#define ASM_OUTPUT_ALIGN(FILE, LOG)     \
1088
  if ((LOG) != 0)                        \
1089
    fprintf (FILE, "\t.align %d\n", (LOG))
1090
 
1091
/* We don't have to worry about dbx compatibility for the v850.  */
1092
#define DEFAULT_GDB_EXTENSIONS 1
1093
 
1094
/* Use stabs debugging info by default.  */
1095
#undef PREFERRED_DEBUGGING_TYPE
1096
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1097
 
1098
/* Specify the machine mode that this machine uses
1099
   for the index in the tablejump instruction.  */
1100
#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
1101
 
1102
/* Define as C expression which evaluates to nonzero if the tablejump
1103
   instruction expects the table to contain offsets from the address of the
1104
   table.
1105
   Do not define this if the table should contain absolute addresses.  */
1106
#define CASE_VECTOR_PC_RELATIVE 1
1107
 
1108
/* The switch instruction requires that the jump table immediately follow
1109
   it.  */
1110
#define JUMP_TABLES_IN_TEXT_SECTION 1
1111
 
1112
/* svr4.h defines this assuming that 4 byte alignment is required.  */
1113
#undef ASM_OUTPUT_BEFORE_CASE_LABEL
1114
#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1115
  ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
1116
 
1117
#define WORD_REGISTER_OPERATIONS
1118
 
1119
/* Byte and short loads sign extend the value to a word.  */
1120
#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1121
 
1122
/* This flag, if defined, says the same insns that convert to a signed fixnum
1123
   also convert validly to an unsigned one.  */
1124
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1125
 
1126
/* Max number of bytes we can move from memory to memory
1127
   in one reasonably fast instruction.  */
1128
#define MOVE_MAX        4
1129
 
1130
/* Define if shifts truncate the shift count
1131
   which implies one can omit a sign-extension or zero-extension
1132
   of a shift count.  */
1133
#define SHIFT_COUNT_TRUNCATED 1
1134
 
1135
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1136
   is done just by pretending it is already truncated.  */
1137
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1138
 
1139
/* Specify the machine mode that pointers have.
1140
   After generation of rtl, the compiler makes no further distinction
1141
   between pointers and any other objects of this machine mode.  */
1142
#define Pmode SImode
1143
 
1144
/* A function address in a call instruction
1145
   is a byte address (for indexing purposes)
1146
   so give the MEM rtx a byte's mode.  */
1147
#define FUNCTION_MODE QImode
1148
 
1149
/* Tell compiler we want to support GHS pragmas */
1150
#define REGISTER_TARGET_PRAGMAS() do {                          \
1151
  c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
1152
  c_register_pragma ("ghs", "section",   ghs_pragma_section);   \
1153
  c_register_pragma ("ghs", "starttda",  ghs_pragma_starttda);  \
1154
  c_register_pragma ("ghs", "startsda",  ghs_pragma_startsda);  \
1155
  c_register_pragma ("ghs", "startzda",  ghs_pragma_startzda);  \
1156
  c_register_pragma ("ghs", "endtda",    ghs_pragma_endtda);    \
1157
  c_register_pragma ("ghs", "endsda",    ghs_pragma_endsda);    \
1158
  c_register_pragma ("ghs", "endzda",    ghs_pragma_endzda);    \
1159
} while (0)
1160
 
1161
/* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
1162
   can appear in the "ghs section" pragma.  These names are used to index
1163
   into the GHS_default_section_names[] and GHS_current_section_names[]
1164
   that are defined in v850.c, and so the ordering of each must remain
1165
   consistent.
1166
 
1167
   These arrays give the default and current names for each kind of
1168
   section defined by the GHS pragmas.  The current names can be changed
1169
   by the "ghs section" pragma.  If the current names are null, use
1170
   the default names.  Note that the two arrays have different types.
1171
 
1172
   For the *normal* section kinds (like .data, .text, etc.) we do not
1173
   want to explicitly force the name of these sections, but would rather
1174
   let the linker (or at least the back end) choose the name of the
1175
   section, UNLESS the user has force a specific name for these section
1176
   kinds.  To accomplish this set the name in ghs_default_section_names
1177
   to null.  */
1178
 
1179
enum GHS_section_kind
1180
{
1181
  GHS_SECTION_KIND_DEFAULT,
1182
 
1183
  GHS_SECTION_KIND_TEXT,
1184
  GHS_SECTION_KIND_DATA,
1185
  GHS_SECTION_KIND_RODATA,
1186
  GHS_SECTION_KIND_BSS,
1187
  GHS_SECTION_KIND_SDATA,
1188
  GHS_SECTION_KIND_ROSDATA,
1189
  GHS_SECTION_KIND_TDATA,
1190
  GHS_SECTION_KIND_ZDATA,
1191
  GHS_SECTION_KIND_ROZDATA,
1192
 
1193
  COUNT_OF_GHS_SECTION_KINDS  /* must be last */
1194
};
1195
 
1196
/* The following code is for handling pragmas supported by the
1197
   v850 compiler produced by Green Hills Software.  This is at
1198
   the specific request of a customer.  */
1199
 
1200
typedef struct data_area_stack_element
1201
{
1202
  struct data_area_stack_element * prev;
1203
  v850_data_area                   data_area; /* Current default data area.  */
1204
} data_area_stack_element;
1205
 
1206
/* Track the current data area set by the
1207
   data area pragma (which can be nested).  */
1208
extern data_area_stack_element * data_area_stack;
1209
 
1210
/* Names of the various data areas used on the v850.  */
1211
extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1212
extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1213
 
1214
/* The assembler op to start the file.  */
1215
 
1216
#define FILE_ASM_OP "\t.file\n"
1217
 
1218
/* Enable the register move pass to improve code.  */
1219
#define ENABLE_REGMOVE_PASS
1220
 
1221
 
1222
/* Implement ZDA, TDA, and SDA */
1223
 
1224
#define EP_REGNUM 30    /* ep register number */
1225
 
1226
#define SYMBOL_FLAG_ZDA         (SYMBOL_FLAG_MACH_DEP << 0)
1227
#define SYMBOL_FLAG_TDA         (SYMBOL_FLAG_MACH_DEP << 1)
1228
#define SYMBOL_FLAG_SDA         (SYMBOL_FLAG_MACH_DEP << 2)
1229
#define SYMBOL_REF_ZDA_P(X)     ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
1230
#define SYMBOL_REF_TDA_P(X)     ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
1231
#define SYMBOL_REF_SDA_P(X)     ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
1232
 
1233
#endif /* ! GCC_V850_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.