1 |
12 |
jlechner |
/* Definitions of target machine for GNU compiler. NEC V850 series
|
2 |
|
|
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Jeff Law (law@cygnus.com).
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING. If not, write to
|
20 |
|
|
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
21 |
|
|
Boston, MA 02110-1301, USA. */
|
22 |
|
|
|
23 |
|
|
#ifndef GCC_V850_H
|
24 |
|
|
#define GCC_V850_H
|
25 |
|
|
|
26 |
|
|
/* These are defined in svr4.h but we want to override them. */
|
27 |
|
|
#undef LIB_SPEC
|
28 |
|
|
#undef ENDFILE_SPEC
|
29 |
|
|
#undef LINK_SPEC
|
30 |
|
|
#undef STARTFILE_SPEC
|
31 |
|
|
#undef ASM_SPEC
|
32 |
|
|
|
33 |
|
|
#define TARGET_CPU_generic 1
|
34 |
|
|
#define TARGET_CPU_v850e 2
|
35 |
|
|
#define TARGET_CPU_v850e1 3
|
36 |
|
|
|
37 |
|
|
#ifndef TARGET_CPU_DEFAULT
|
38 |
|
|
#define TARGET_CPU_DEFAULT TARGET_CPU_generic
|
39 |
|
|
#endif
|
40 |
|
|
|
41 |
|
|
#define MASK_DEFAULT MASK_V850
|
42 |
|
|
#define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
|
43 |
|
|
#define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
|
44 |
|
|
#define TARGET_VERSION fprintf (stderr, " (NEC V850)");
|
45 |
|
|
|
46 |
|
|
/* Choose which processor will be the default.
|
47 |
|
|
We must pass a -mv850xx option to the assembler if no explicit -mv* option
|
48 |
|
|
is given, because the assembler's processor default may not be correct. */
|
49 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
|
50 |
|
|
#undef MASK_DEFAULT
|
51 |
|
|
#define MASK_DEFAULT MASK_V850E
|
52 |
|
|
#undef SUBTARGET_ASM_SPEC
|
53 |
|
|
#define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}"
|
54 |
|
|
#undef SUBTARGET_CPP_SPEC
|
55 |
|
|
#define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}"
|
56 |
|
|
#undef TARGET_VERSION
|
57 |
|
|
#define TARGET_VERSION fprintf (stderr, " (NEC V850E)");
|
58 |
|
|
#endif
|
59 |
|
|
|
60 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
|
61 |
|
|
#undef MASK_DEFAULT
|
62 |
|
|
#define MASK_DEFAULT MASK_V850E /* No practical difference. */
|
63 |
|
|
#undef SUBTARGET_ASM_SPEC
|
64 |
|
|
#define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}"
|
65 |
|
|
#undef SUBTARGET_CPP_SPEC
|
66 |
|
|
#define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
|
67 |
|
|
#undef TARGET_VERSION
|
68 |
|
|
#define TARGET_VERSION fprintf (stderr, " (NEC V850E1)");
|
69 |
|
|
#endif
|
70 |
|
|
|
71 |
|
|
#define ASM_SPEC "%{mv*:-mv%*}"
|
72 |
|
|
#define CPP_SPEC "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
|
73 |
|
|
|
74 |
|
|
#define EXTRA_SPECS \
|
75 |
|
|
{ "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
|
76 |
|
|
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
|
77 |
|
|
|
78 |
|
|
/* Names to predefine in the preprocessor for this target machine. */
|
79 |
|
|
#define TARGET_CPU_CPP_BUILTINS() do { \
|
80 |
|
|
builtin_define( "__v851__" ); \
|
81 |
|
|
builtin_define( "__v850" ); \
|
82 |
|
|
builtin_assert( "machine=v850" ); \
|
83 |
|
|
builtin_assert( "cpu=v850" ); \
|
84 |
|
|
if (TARGET_EP) \
|
85 |
|
|
builtin_define ("__EP__"); \
|
86 |
|
|
} while(0)
|
87 |
|
|
|
88 |
|
|
#define MASK_CPU (MASK_V850 | MASK_V850E)
|
89 |
|
|
|
90 |
|
|
/* Information about the various small memory areas. */
|
91 |
|
|
struct small_memory_info {
|
92 |
|
|
const char *name;
|
93 |
|
|
long max;
|
94 |
|
|
long physical_max;
|
95 |
|
|
};
|
96 |
|
|
|
97 |
|
|
enum small_memory_type {
|
98 |
|
|
/* tiny data area, using EP as base register */
|
99 |
|
|
SMALL_MEMORY_TDA = 0,
|
100 |
|
|
/* small data area using dp as base register */
|
101 |
|
|
SMALL_MEMORY_SDA,
|
102 |
|
|
/* zero data area using r0 as base register */
|
103 |
|
|
SMALL_MEMORY_ZDA,
|
104 |
|
|
SMALL_MEMORY_max
|
105 |
|
|
};
|
106 |
|
|
|
107 |
|
|
extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
|
108 |
|
|
|
109 |
|
|
/* Show we can debug even without a frame pointer. */
|
110 |
|
|
#define CAN_DEBUG_WITHOUT_FP
|
111 |
|
|
|
112 |
|
|
/* Some machines may desire to change what optimizations are
|
113 |
|
|
performed for various optimization levels. This macro, if
|
114 |
|
|
defined, is executed once just after the optimization level is
|
115 |
|
|
determined and before the remainder of the command options have
|
116 |
|
|
been parsed. Values set in this macro are used as the default
|
117 |
|
|
values for the other command line options.
|
118 |
|
|
|
119 |
|
|
LEVEL is the optimization level specified; 2 if `-O2' is
|
120 |
|
|
specified, 1 if `-O' is specified, and 0 if neither is specified.
|
121 |
|
|
|
122 |
|
|
SIZE is nonzero if `-Os' is specified, 0 otherwise.
|
123 |
|
|
|
124 |
|
|
You should not use this macro to change options that are not
|
125 |
|
|
machine-specific. These should uniformly selected by the same
|
126 |
|
|
optimization level on all supported machines. Use this macro to
|
127 |
|
|
enable machine-specific optimizations.
|
128 |
|
|
|
129 |
|
|
*Do not examine `write_symbols' in this macro!* The debugging
|
130 |
|
|
options are not supposed to alter the generated code. */
|
131 |
|
|
|
132 |
|
|
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
|
133 |
|
|
{ \
|
134 |
|
|
target_flags |= MASK_STRICT_ALIGN; \
|
135 |
|
|
if (LEVEL) \
|
136 |
|
|
/* Note - we no longer enable MASK_EP when optimizing. This is \
|
137 |
|
|
because of a hardware bug which stops the SLD and SST instructions\
|
138 |
|
|
from correctly detecting some hazards. If the user is sure that \
|
139 |
|
|
their hardware is fixed or that their program will not encounter \
|
140 |
|
|
the conditions that trigger the bug then they can enable -mep by \
|
141 |
|
|
hand. */ \
|
142 |
|
|
target_flags |= MASK_PROLOG_FUNCTION; \
|
143 |
|
|
}
|
144 |
|
|
|
145 |
|
|
|
146 |
|
|
/* Target machine storage layout */
|
147 |
|
|
|
148 |
|
|
/* Define this if most significant bit is lowest numbered
|
149 |
|
|
in instructions that operate on numbered bit-fields.
|
150 |
|
|
This is not true on the NEC V850. */
|
151 |
|
|
#define BITS_BIG_ENDIAN 0
|
152 |
|
|
|
153 |
|
|
/* Define this if most significant byte of a word is the lowest numbered. */
|
154 |
|
|
/* This is not true on the NEC V850. */
|
155 |
|
|
#define BYTES_BIG_ENDIAN 0
|
156 |
|
|
|
157 |
|
|
/* Define this if most significant word of a multiword number is lowest
|
158 |
|
|
numbered.
|
159 |
|
|
This is not true on the NEC V850. */
|
160 |
|
|
#define WORDS_BIG_ENDIAN 0
|
161 |
|
|
|
162 |
|
|
/* Width of a word, in units (bytes). */
|
163 |
|
|
#define UNITS_PER_WORD 4
|
164 |
|
|
|
165 |
|
|
/* Define this macro if it is advisable to hold scalars in registers
|
166 |
|
|
in a wider mode than that declared by the program. In such cases,
|
167 |
|
|
the value is constrained to be within the bounds of the declared
|
168 |
|
|
type, but kept valid in the wider mode. The signedness of the
|
169 |
|
|
extension may differ from that of the type.
|
170 |
|
|
|
171 |
|
|
Some simple experiments have shown that leaving UNSIGNEDP alone
|
172 |
|
|
generates the best overall code. */
|
173 |
|
|
|
174 |
|
|
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
|
175 |
|
|
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
176 |
|
|
&& GET_MODE_SIZE (MODE) < 4) \
|
177 |
|
|
{ (MODE) = SImode; }
|
178 |
|
|
|
179 |
|
|
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
180 |
|
|
#define PARM_BOUNDARY 32
|
181 |
|
|
|
182 |
|
|
/* The stack goes in 32 bit lumps. */
|
183 |
|
|
#define STACK_BOUNDARY 32
|
184 |
|
|
|
185 |
|
|
/* Allocation boundary (in *bits*) for the code of a function.
|
186 |
|
|
16 is the minimum boundary; 32 would give better performance. */
|
187 |
|
|
#define FUNCTION_BOUNDARY 16
|
188 |
|
|
|
189 |
|
|
/* No data type wants to be aligned rounder than this. */
|
190 |
|
|
#define BIGGEST_ALIGNMENT 32
|
191 |
|
|
|
192 |
|
|
/* Alignment of field after `int : 0' in a structure. */
|
193 |
|
|
#define EMPTY_FIELD_BOUNDARY 32
|
194 |
|
|
|
195 |
|
|
/* No structure field wants to be aligned rounder than this. */
|
196 |
|
|
#define BIGGEST_FIELD_ALIGNMENT 32
|
197 |
|
|
|
198 |
|
|
/* Define this if move instructions will actually fail to work
|
199 |
|
|
when given unaligned data. */
|
200 |
|
|
#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
|
201 |
|
|
|
202 |
|
|
/* Define this as 1 if `char' should by default be signed; else as 0.
|
203 |
|
|
|
204 |
|
|
On the NEC V850, loads do sign extension, so make this default. */
|
205 |
|
|
#define DEFAULT_SIGNED_CHAR 1
|
206 |
|
|
|
207 |
|
|
/* Standard register usage. */
|
208 |
|
|
|
209 |
|
|
/* Number of actual hardware registers.
|
210 |
|
|
The hardware registers are assigned numbers for the compiler
|
211 |
|
|
from 0 to just below FIRST_PSEUDO_REGISTER.
|
212 |
|
|
|
213 |
|
|
All registers that the compiler knows about must be given numbers,
|
214 |
|
|
even those that are not normally considered general registers. */
|
215 |
|
|
|
216 |
|
|
#define FIRST_PSEUDO_REGISTER 34
|
217 |
|
|
|
218 |
|
|
/* 1 for registers that have pervasive standard uses
|
219 |
|
|
and are not available for the register allocator. */
|
220 |
|
|
|
221 |
|
|
#define FIXED_REGISTERS \
|
222 |
|
|
{ 1, 1, 0, 1, 1, 0, 0, 0, \
|
223 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
224 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
225 |
|
|
0, 0, 0, 0, 0, 0, 1, 0, \
|
226 |
|
|
1, 1}
|
227 |
|
|
|
228 |
|
|
/* 1 for registers not available across function calls.
|
229 |
|
|
These must include the FIXED_REGISTERS and also any
|
230 |
|
|
registers that can be used without being saved.
|
231 |
|
|
The latter must include the registers where values are returned
|
232 |
|
|
and the register where structure-value addresses are passed.
|
233 |
|
|
Aside from that, you can include as many other registers as you
|
234 |
|
|
like. */
|
235 |
|
|
|
236 |
|
|
#define CALL_USED_REGISTERS \
|
237 |
|
|
{ 1, 1, 0, 1, 1, 1, 1, 1, \
|
238 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
239 |
|
|
1, 1, 1, 1, 0, 0, 0, 0, \
|
240 |
|
|
0, 0, 0, 0, 0, 0, 1, 1, \
|
241 |
|
|
1, 1}
|
242 |
|
|
|
243 |
|
|
/* List the order in which to allocate registers. Each register must be
|
244 |
|
|
listed once, even those in FIXED_REGISTERS.
|
245 |
|
|
|
246 |
|
|
On the 850, we make the return registers first, then all of the volatile
|
247 |
|
|
registers, then the saved registers in reverse order to better save the
|
248 |
|
|
registers with an out of line function, and finally the fixed
|
249 |
|
|
registers. */
|
250 |
|
|
|
251 |
|
|
#define REG_ALLOC_ORDER \
|
252 |
|
|
{ \
|
253 |
|
|
10, 11, /* return registers */ \
|
254 |
|
|
12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
|
255 |
|
|
6, 7, 8, 9, 31, /* argument registers */ \
|
256 |
|
|
29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
|
257 |
|
|
21, 20, 2, \
|
258 |
|
|
0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
/* If TARGET_APP_REGS is not defined then add r2 and r5 to
|
262 |
|
|
the pool of fixed registers. See PR 14505. */
|
263 |
|
|
#define CONDITIONAL_REGISTER_USAGE \
|
264 |
|
|
{ \
|
265 |
|
|
if (!TARGET_APP_REGS) \
|
266 |
|
|
{ \
|
267 |
|
|
fixed_regs[2] = 1; call_used_regs[2] = 1; \
|
268 |
|
|
fixed_regs[5] = 1; call_used_regs[5] = 1; \
|
269 |
|
|
} \
|
270 |
|
|
}
|
271 |
|
|
|
272 |
|
|
/* Return number of consecutive hard regs needed starting at reg REGNO
|
273 |
|
|
to hold something of mode MODE.
|
274 |
|
|
|
275 |
|
|
This is ordinarily the length in words of a value of mode MODE
|
276 |
|
|
but can be less for certain modes in special long registers. */
|
277 |
|
|
|
278 |
|
|
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
279 |
|
|
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
280 |
|
|
|
281 |
|
|
/* Value is 1 if hard register REGNO can hold a value of machine-mode
|
282 |
|
|
MODE. */
|
283 |
|
|
|
284 |
|
|
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
285 |
|
|
((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
|
286 |
|
|
|
287 |
|
|
/* Value is 1 if it is a good idea to tie two pseudo registers
|
288 |
|
|
when one has mode MODE1 and one has mode MODE2.
|
289 |
|
|
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
290 |
|
|
for any hard reg, then this must be 0 for correct output. */
|
291 |
|
|
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
292 |
|
|
(MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
|
293 |
|
|
|
294 |
|
|
|
295 |
|
|
/* Define the classes of registers for register constraints in the
|
296 |
|
|
machine description. Also define ranges of constants.
|
297 |
|
|
|
298 |
|
|
One of the classes must always be named ALL_REGS and include all hard regs.
|
299 |
|
|
If there is more than one class, another class must be named NO_REGS
|
300 |
|
|
and contain no registers.
|
301 |
|
|
|
302 |
|
|
The name GENERAL_REGS must be the name of a class (or an alias for
|
303 |
|
|
another name such as ALL_REGS). This is the class of registers
|
304 |
|
|
that is allowed by "g" or "r" in a register constraint.
|
305 |
|
|
Also, registers outside this class are allocated only when
|
306 |
|
|
instructions express preferences for them.
|
307 |
|
|
|
308 |
|
|
The classes must be numbered in nondecreasing order; that is,
|
309 |
|
|
a larger-numbered class must never be contained completely
|
310 |
|
|
in a smaller-numbered class.
|
311 |
|
|
|
312 |
|
|
For any two classes, it is very desirable that there be another
|
313 |
|
|
class that represents their union. */
|
314 |
|
|
|
315 |
|
|
enum reg_class
|
316 |
|
|
{
|
317 |
|
|
NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
|
318 |
|
|
};
|
319 |
|
|
|
320 |
|
|
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
321 |
|
|
|
322 |
|
|
/* Give names of register classes as strings for dump file. */
|
323 |
|
|
|
324 |
|
|
#define REG_CLASS_NAMES \
|
325 |
|
|
{ "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
|
326 |
|
|
|
327 |
|
|
/* Define which registers fit in which classes.
|
328 |
|
|
This is an initializer for a vector of HARD_REG_SET
|
329 |
|
|
of length N_REG_CLASSES. */
|
330 |
|
|
|
331 |
|
|
#define REG_CLASS_CONTENTS \
|
332 |
|
|
{ \
|
333 |
|
|
{ 0x00000000 }, /* NO_REGS */ \
|
334 |
|
|
{ 0xffffffff }, /* GENERAL_REGS */ \
|
335 |
|
|
{ 0xffffffff }, /* ALL_REGS */ \
|
336 |
|
|
}
|
337 |
|
|
|
338 |
|
|
/* The same information, inverted:
|
339 |
|
|
Return the class number of the smallest class containing
|
340 |
|
|
reg number REGNO. This could be a conditional expression
|
341 |
|
|
or could index an array. */
|
342 |
|
|
|
343 |
|
|
#define REGNO_REG_CLASS(REGNO) GENERAL_REGS
|
344 |
|
|
|
345 |
|
|
/* The class value for index registers, and the one for base regs. */
|
346 |
|
|
|
347 |
|
|
#define INDEX_REG_CLASS NO_REGS
|
348 |
|
|
#define BASE_REG_CLASS GENERAL_REGS
|
349 |
|
|
|
350 |
|
|
/* Get reg_class from a letter such as appears in the machine description. */
|
351 |
|
|
|
352 |
|
|
#define REG_CLASS_FROM_LETTER(C) (NO_REGS)
|
353 |
|
|
|
354 |
|
|
/* Macros to check register numbers against specific register classes. */
|
355 |
|
|
|
356 |
|
|
/* These assume that REGNO is a hard or pseudo reg number.
|
357 |
|
|
They give nonzero only if REGNO is a hard reg of the suitable class
|
358 |
|
|
or a pseudo reg currently allocated to a suitable hard reg.
|
359 |
|
|
Since they use reg_renumber, they are safe only once reg_renumber
|
360 |
|
|
has been allocated, which happens in local-alloc.c. */
|
361 |
|
|
|
362 |
|
|
#define REGNO_OK_FOR_BASE_P(regno) \
|
363 |
|
|
((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
|
364 |
|
|
|
365 |
|
|
#define REGNO_OK_FOR_INDEX_P(regno) 0
|
366 |
|
|
|
367 |
|
|
/* Given an rtx X being reloaded into a reg required to be
|
368 |
|
|
in class CLASS, return the class of reg to actually use.
|
369 |
|
|
In general this is just CLASS; but on some machines
|
370 |
|
|
in some cases it is preferable to use a more restrictive class. */
|
371 |
|
|
|
372 |
|
|
#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
|
373 |
|
|
|
374 |
|
|
/* Return the maximum number of consecutive registers
|
375 |
|
|
needed to represent mode MODE in a register of class CLASS. */
|
376 |
|
|
|
377 |
|
|
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
378 |
|
|
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
379 |
|
|
|
380 |
|
|
/* The letters I, J, K, L, M, N, O, P in a register constraint string
|
381 |
|
|
can be used to stand for particular ranges of immediate operands.
|
382 |
|
|
This macro defines what the ranges are.
|
383 |
|
|
C is the letter, and VALUE is a constant value.
|
384 |
|
|
Return 1 if VALUE is in the range specified by C. */
|
385 |
|
|
|
386 |
|
|
#define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
|
387 |
|
|
#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
|
388 |
|
|
/* zero */
|
389 |
|
|
#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
|
390 |
|
|
/* 5 bit signed immediate */
|
391 |
|
|
#define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
|
392 |
|
|
/* 16 bit signed immediate */
|
393 |
|
|
#define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
|
394 |
|
|
/* valid constant for movhi instruction. */
|
395 |
|
|
#define CONST_OK_FOR_L(VALUE) \
|
396 |
|
|
(((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
|
397 |
|
|
&& CONST_OK_FOR_I ((VALUE & 0xffff)))
|
398 |
|
|
/* 16 bit unsigned immediate */
|
399 |
|
|
#define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
|
400 |
|
|
/* 5 bit unsigned immediate in shift instructions */
|
401 |
|
|
#define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
|
402 |
|
|
/* 9 bit signed immediate for word multiply instruction. */
|
403 |
|
|
#define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)
|
404 |
|
|
|
405 |
|
|
#define CONST_OK_FOR_P(VALUE) 0
|
406 |
|
|
|
407 |
|
|
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
408 |
|
|
((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
|
409 |
|
|
(C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
|
410 |
|
|
(C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
|
411 |
|
|
(C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
|
412 |
|
|
(C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
|
413 |
|
|
(C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
|
414 |
|
|
(C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
|
415 |
|
|
(C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
|
416 |
|
|
0)
|
417 |
|
|
|
418 |
|
|
/* Similar, but for floating constants, and defining letters G and H.
|
419 |
|
|
Here VALUE is the CONST_DOUBLE rtx itself.
|
420 |
|
|
|
421 |
|
|
`G' is a zero of some form. */
|
422 |
|
|
|
423 |
|
|
#define CONST_DOUBLE_OK_FOR_G(VALUE) \
|
424 |
|
|
((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
|
425 |
|
|
&& (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
|
426 |
|
|
|| (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
|
427 |
|
|
&& CONST_DOUBLE_LOW (VALUE) == 0 \
|
428 |
|
|
&& CONST_DOUBLE_HIGH (VALUE) == 0))
|
429 |
|
|
|
430 |
|
|
#define CONST_DOUBLE_OK_FOR_H(VALUE) 0
|
431 |
|
|
|
432 |
|
|
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
433 |
|
|
((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
|
434 |
|
|
: (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
|
435 |
|
|
: 0)
|
436 |
|
|
|
437 |
|
|
|
438 |
|
|
/* Stack layout; function entry, exit and calling. */
|
439 |
|
|
|
440 |
|
|
/* Define this if pushing a word on the stack
|
441 |
|
|
makes the stack pointer a smaller address. */
|
442 |
|
|
|
443 |
|
|
#define STACK_GROWS_DOWNWARD
|
444 |
|
|
|
445 |
|
|
/* Define this to nonzero if the nominal address of the stack frame
|
446 |
|
|
is at the high-address end of the local variables;
|
447 |
|
|
that is, each additional local variable allocated
|
448 |
|
|
goes at a more negative offset in the frame. */
|
449 |
|
|
|
450 |
|
|
#define FRAME_GROWS_DOWNWARD 1
|
451 |
|
|
|
452 |
|
|
/* Offset within stack frame to start allocating local variables at.
|
453 |
|
|
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
454 |
|
|
first local allocated. Otherwise, it is the offset to the BEGINNING
|
455 |
|
|
of the first local allocated. */
|
456 |
|
|
|
457 |
|
|
#define STARTING_FRAME_OFFSET 0
|
458 |
|
|
|
459 |
|
|
/* Offset of first parameter from the argument pointer register value. */
|
460 |
|
|
/* Is equal to the size of the saved fp + pc, even if an fp isn't
|
461 |
|
|
saved since the value is used before we know. */
|
462 |
|
|
|
463 |
|
|
#define FIRST_PARM_OFFSET(FNDECL) 0
|
464 |
|
|
|
465 |
|
|
/* Specify the registers used for certain standard purposes.
|
466 |
|
|
The values of these macros are register numbers. */
|
467 |
|
|
|
468 |
|
|
/* Register to use for pushing function arguments. */
|
469 |
|
|
#define STACK_POINTER_REGNUM 3
|
470 |
|
|
|
471 |
|
|
/* Base register for access to local variables of the function. */
|
472 |
|
|
#define FRAME_POINTER_REGNUM 32
|
473 |
|
|
|
474 |
|
|
/* Register containing return address from latest function call. */
|
475 |
|
|
#define LINK_POINTER_REGNUM 31
|
476 |
|
|
|
477 |
|
|
/* On some machines the offset between the frame pointer and starting
|
478 |
|
|
offset of the automatic variables is not known until after register
|
479 |
|
|
allocation has been done (for example, because the saved registers
|
480 |
|
|
are between these two locations). On those machines, define
|
481 |
|
|
`FRAME_POINTER_REGNUM' the number of a special, fixed register to
|
482 |
|
|
be used internally until the offset is known, and define
|
483 |
|
|
`HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
|
484 |
|
|
used for the frame pointer.
|
485 |
|
|
|
486 |
|
|
You should define this macro only in the very rare circumstances
|
487 |
|
|
when it is not possible to calculate the offset between the frame
|
488 |
|
|
pointer and the automatic variables until after register
|
489 |
|
|
allocation has been completed. When this macro is defined, you
|
490 |
|
|
must also indicate in your definition of `ELIMINABLE_REGS' how to
|
491 |
|
|
eliminate `FRAME_POINTER_REGNUM' into either
|
492 |
|
|
`HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
|
493 |
|
|
|
494 |
|
|
Do not define this macro if it would be the same as
|
495 |
|
|
`FRAME_POINTER_REGNUM'. */
|
496 |
|
|
#undef HARD_FRAME_POINTER_REGNUM
|
497 |
|
|
#define HARD_FRAME_POINTER_REGNUM 29
|
498 |
|
|
|
499 |
|
|
/* Base register for access to arguments of the function. */
|
500 |
|
|
#define ARG_POINTER_REGNUM 33
|
501 |
|
|
|
502 |
|
|
/* Register in which static-chain is passed to a function. */
|
503 |
|
|
#define STATIC_CHAIN_REGNUM 20
|
504 |
|
|
|
505 |
|
|
/* Value should be nonzero if functions must have frame pointers.
|
506 |
|
|
Zero means the frame pointer need not be set up (and parms
|
507 |
|
|
may be accessed via the stack pointer) in functions that seem suitable.
|
508 |
|
|
This is computed in `reload', in reload1.c. */
|
509 |
|
|
#define FRAME_POINTER_REQUIRED 0
|
510 |
|
|
|
511 |
|
|
/* If defined, this macro specifies a table of register pairs used to
|
512 |
|
|
eliminate unneeded registers that point into the stack frame. If
|
513 |
|
|
it is not defined, the only elimination attempted by the compiler
|
514 |
|
|
is to replace references to the frame pointer with references to
|
515 |
|
|
the stack pointer.
|
516 |
|
|
|
517 |
|
|
The definition of this macro is a list of structure
|
518 |
|
|
initializations, each of which specifies an original and
|
519 |
|
|
replacement register.
|
520 |
|
|
|
521 |
|
|
On some machines, the position of the argument pointer is not
|
522 |
|
|
known until the compilation is completed. In such a case, a
|
523 |
|
|
separate hard register must be used for the argument pointer.
|
524 |
|
|
This register can be eliminated by replacing it with either the
|
525 |
|
|
frame pointer or the argument pointer, depending on whether or not
|
526 |
|
|
the frame pointer has been eliminated.
|
527 |
|
|
|
528 |
|
|
In this case, you might specify:
|
529 |
|
|
#define ELIMINABLE_REGS \
|
530 |
|
|
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
531 |
|
|
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
|
532 |
|
|
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
|
533 |
|
|
|
534 |
|
|
Note that the elimination of the argument pointer with the stack
|
535 |
|
|
pointer is specified first since that is the preferred elimination. */
|
536 |
|
|
|
537 |
|
|
#define ELIMINABLE_REGS \
|
538 |
|
|
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
|
539 |
|
|
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
|
540 |
|
|
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
|
541 |
|
|
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
|
542 |
|
|
|
543 |
|
|
/* A C expression that returns nonzero if the compiler is allowed to
|
544 |
|
|
try to replace register number FROM-REG with register number
|
545 |
|
|
TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
|
546 |
|
|
defined, and will usually be the constant 1, since most of the
|
547 |
|
|
cases preventing register elimination are things that the compiler
|
548 |
|
|
already knows about. */
|
549 |
|
|
|
550 |
|
|
#define CAN_ELIMINATE(FROM, TO) \
|
551 |
|
|
((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
|
552 |
|
|
|
553 |
|
|
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
|
554 |
|
|
specifies the initial difference between the specified pair of
|
555 |
|
|
registers. This macro must be defined if `ELIMINABLE_REGS' is
|
556 |
|
|
defined. */
|
557 |
|
|
|
558 |
|
|
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
559 |
|
|
{ \
|
560 |
|
|
if ((FROM) == FRAME_POINTER_REGNUM) \
|
561 |
|
|
(OFFSET) = get_frame_size () + current_function_outgoing_args_size; \
|
562 |
|
|
else if ((FROM) == ARG_POINTER_REGNUM) \
|
563 |
|
|
(OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
|
564 |
|
|
else \
|
565 |
|
|
gcc_unreachable (); \
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
/* Keep the stack pointer constant throughout the function. */
|
569 |
|
|
#define ACCUMULATE_OUTGOING_ARGS 1
|
570 |
|
|
|
571 |
|
|
/* Value is the number of bytes of arguments automatically
|
572 |
|
|
popped when returning from a subroutine call.
|
573 |
|
|
FUNDECL is the declaration node of the function (as a tree),
|
574 |
|
|
FUNTYPE is the data type of the function (as a tree),
|
575 |
|
|
or for a library call it is an identifier node for the subroutine name.
|
576 |
|
|
SIZE is the number of bytes of arguments passed on the stack. */
|
577 |
|
|
|
578 |
|
|
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
|
579 |
|
|
|
580 |
|
|
#define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
|
581 |
|
|
|
582 |
|
|
/* Define a data type for recording info about an argument list
|
583 |
|
|
during the scan of that argument list. This data type should
|
584 |
|
|
hold all necessary information about the function itself
|
585 |
|
|
and about the args processed so far, enough to enable macros
|
586 |
|
|
such as FUNCTION_ARG to determine where the next arg should go. */
|
587 |
|
|
|
588 |
|
|
#define CUMULATIVE_ARGS struct cum_arg
|
589 |
|
|
struct cum_arg { int nbytes; int anonymous_args; };
|
590 |
|
|
|
591 |
|
|
/* Define where to put the arguments to a function.
|
592 |
|
|
Value is zero to push the argument on the stack,
|
593 |
|
|
or a hard register in which to store the argument.
|
594 |
|
|
|
595 |
|
|
MODE is the argument's machine mode.
|
596 |
|
|
TYPE is the data type of the argument (as a tree).
|
597 |
|
|
This is null for libcalls where that information may
|
598 |
|
|
not be available.
|
599 |
|
|
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
600 |
|
|
the preceding args and about the function being called.
|
601 |
|
|
NAMED is nonzero if this argument is a named parameter
|
602 |
|
|
(otherwise it is an extra parameter matching an ellipsis). */
|
603 |
|
|
|
604 |
|
|
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
605 |
|
|
function_arg (&CUM, MODE, TYPE, NAMED)
|
606 |
|
|
|
607 |
|
|
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
608 |
|
|
for a call to a function whose data type is FNTYPE.
|
609 |
|
|
For a library call, FNTYPE is 0. */
|
610 |
|
|
|
611 |
|
|
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
|
612 |
|
|
((CUM).nbytes = 0, (CUM).anonymous_args = 0)
|
613 |
|
|
|
614 |
|
|
/* Update the data in CUM to advance over an argument
|
615 |
|
|
of mode MODE and data type TYPE.
|
616 |
|
|
(TYPE is null for libcalls where that information may not be available.) */
|
617 |
|
|
|
618 |
|
|
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
619 |
|
|
((CUM).nbytes += ((MODE) != BLKmode \
|
620 |
|
|
? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
|
621 |
|
|
: (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
|
622 |
|
|
|
623 |
|
|
/* When a parameter is passed in a register, stack space is still
|
624 |
|
|
allocated for it. */
|
625 |
|
|
#define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
|
626 |
|
|
|
627 |
|
|
/* Define this if the above stack space is to be considered part of the
|
628 |
|
|
space allocated by the caller. */
|
629 |
|
|
#define OUTGOING_REG_PARM_STACK_SPACE
|
630 |
|
|
|
631 |
|
|
/* 1 if N is a possible register number for function argument passing. */
|
632 |
|
|
|
633 |
|
|
#define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
|
634 |
|
|
|
635 |
|
|
/* Define how to find the value returned by a function.
|
636 |
|
|
VALTYPE is the data type of the value (as a tree).
|
637 |
|
|
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
638 |
|
|
otherwise, FUNC is 0. */
|
639 |
|
|
|
640 |
|
|
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
641 |
|
|
gen_rtx_REG (TYPE_MODE (VALTYPE), 10)
|
642 |
|
|
|
643 |
|
|
/* Define how to find the value returned by a library function
|
644 |
|
|
assuming the value has mode MODE. */
|
645 |
|
|
|
646 |
|
|
#define LIBCALL_VALUE(MODE) \
|
647 |
|
|
gen_rtx_REG (MODE, 10)
|
648 |
|
|
|
649 |
|
|
/* 1 if N is a possible register number for a function value. */
|
650 |
|
|
|
651 |
|
|
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
|
652 |
|
|
|
653 |
|
|
#define DEFAULT_PCC_STRUCT_RETURN 0
|
654 |
|
|
|
655 |
|
|
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
656 |
|
|
the stack pointer does not matter. The value is tested only in
|
657 |
|
|
functions that have frame pointers.
|
658 |
|
|
No definition is equivalent to always zero. */
|
659 |
|
|
|
660 |
|
|
#define EXIT_IGNORE_STACK 1
|
661 |
|
|
|
662 |
|
|
/* Define this macro as a C expression that is nonzero for registers
|
663 |
|
|
used by the epilogue or the `return' pattern. */
|
664 |
|
|
|
665 |
|
|
#define EPILOGUE_USES(REGNO) \
|
666 |
|
|
(reload_completed && (REGNO) == LINK_POINTER_REGNUM)
|
667 |
|
|
|
668 |
|
|
/* Output assembler code to FILE to increment profiler label # LABELNO
|
669 |
|
|
for profiling a function entry. */
|
670 |
|
|
|
671 |
|
|
#define FUNCTION_PROFILER(FILE, LABELNO) ;
|
672 |
|
|
|
673 |
|
|
#define TRAMPOLINE_TEMPLATE(FILE) \
|
674 |
|
|
do { \
|
675 |
|
|
fprintf (FILE, "\tjarl .+4,r12\n"); \
|
676 |
|
|
fprintf (FILE, "\tld.w 12[r12],r20\n"); \
|
677 |
|
|
fprintf (FILE, "\tld.w 16[r12],r12\n"); \
|
678 |
|
|
fprintf (FILE, "\tjmp [r12]\n"); \
|
679 |
|
|
fprintf (FILE, "\tnop\n"); \
|
680 |
|
|
fprintf (FILE, "\t.long 0\n"); \
|
681 |
|
|
fprintf (FILE, "\t.long 0\n"); \
|
682 |
|
|
} while (0)
|
683 |
|
|
|
684 |
|
|
/* Length in units of the trampoline for entering a nested function. */
|
685 |
|
|
|
686 |
|
|
#define TRAMPOLINE_SIZE 24
|
687 |
|
|
|
688 |
|
|
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
689 |
|
|
FNADDR is an RTX for the address of the function's pure code.
|
690 |
|
|
CXT is an RTX for the static chain value for the function. */
|
691 |
|
|
|
692 |
|
|
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
693 |
|
|
{ \
|
694 |
|
|
emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \
|
695 |
|
|
(CXT)); \
|
696 |
|
|
emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \
|
697 |
|
|
(FNADDR)); \
|
698 |
|
|
}
|
699 |
|
|
|
700 |
|
|
/* Addressing modes, and classification of registers for them. */
|
701 |
|
|
|
702 |
|
|
|
703 |
|
|
/* 1 if X is an rtx for a constant that is a valid address. */
|
704 |
|
|
|
705 |
|
|
/* ??? This seems too exclusive. May get better code by accepting more
|
706 |
|
|
possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
|
707 |
|
|
|
708 |
|
|
#define CONSTANT_ADDRESS_P(X) \
|
709 |
|
|
(GET_CODE (X) == CONST_INT \
|
710 |
|
|
&& CONST_OK_FOR_K (INTVAL (X)))
|
711 |
|
|
|
712 |
|
|
/* Maximum number of registers that can appear in a valid memory address. */
|
713 |
|
|
|
714 |
|
|
#define MAX_REGS_PER_ADDRESS 1
|
715 |
|
|
|
716 |
|
|
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
717 |
|
|
and check its validity for a certain class.
|
718 |
|
|
We have two alternate definitions for each of them.
|
719 |
|
|
The usual definition accepts all pseudo regs; the other rejects
|
720 |
|
|
them unless they have been allocated suitable hard regs.
|
721 |
|
|
The symbol REG_OK_STRICT causes the latter definition to be used.
|
722 |
|
|
|
723 |
|
|
Most source files want to accept pseudo regs in the hope that
|
724 |
|
|
they will get allocated to the class that the insn wants them to be in.
|
725 |
|
|
Source files for reload pass need to be strict.
|
726 |
|
|
After reload, it makes no difference, since pseudo regs have
|
727 |
|
|
been eliminated by then. */
|
728 |
|
|
|
729 |
|
|
#ifndef REG_OK_STRICT
|
730 |
|
|
|
731 |
|
|
/* Nonzero if X is a hard reg that can be used as an index
|
732 |
|
|
or if it is a pseudo reg. */
|
733 |
|
|
#define REG_OK_FOR_INDEX_P(X) 0
|
734 |
|
|
/* Nonzero if X is a hard reg that can be used as a base reg
|
735 |
|
|
or if it is a pseudo reg. */
|
736 |
|
|
#define REG_OK_FOR_BASE_P(X) 1
|
737 |
|
|
#define REG_OK_FOR_INDEX_P_STRICT(X) 0
|
738 |
|
|
#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
739 |
|
|
#define STRICT 0
|
740 |
|
|
|
741 |
|
|
#else
|
742 |
|
|
|
743 |
|
|
/* Nonzero if X is a hard reg that can be used as an index. */
|
744 |
|
|
#define REG_OK_FOR_INDEX_P(X) 0
|
745 |
|
|
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
746 |
|
|
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
747 |
|
|
#define STRICT 1
|
748 |
|
|
|
749 |
|
|
#endif
|
750 |
|
|
|
751 |
|
|
/* A C expression that defines the optional machine-dependent
|
752 |
|
|
constraint letters that can be used to segregate specific types of
|
753 |
|
|
operands, usually memory references, for the target machine.
|
754 |
|
|
Normally this macro will not be defined. If it is required for a
|
755 |
|
|
particular target machine, it should return 1 if VALUE corresponds
|
756 |
|
|
to the operand type represented by the constraint letter C. If C
|
757 |
|
|
is not defined as an extra constraint, the value returned should
|
758 |
|
|
be 0 regardless of VALUE.
|
759 |
|
|
|
760 |
|
|
For example, on the ROMP, load instructions cannot have their
|
761 |
|
|
output in r0 if the memory reference contains a symbolic address.
|
762 |
|
|
Constraint letter `Q' is defined as representing a memory address
|
763 |
|
|
that does *not* contain a symbolic address. An alternative is
|
764 |
|
|
specified with a `Q' constraint on the input and `r' on the
|
765 |
|
|
output. The next alternative specifies `m' on the input and a
|
766 |
|
|
register class that does not include r0 on the output. */
|
767 |
|
|
|
768 |
|
|
#define EXTRA_CONSTRAINT(OP, C) \
|
769 |
|
|
((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), FALSE) \
|
770 |
|
|
: (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
|
771 |
|
|
: (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF \
|
772 |
|
|
&& !SYMBOL_REF_ZDA_P (OP)) \
|
773 |
|
|
: (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE) \
|
774 |
|
|
: (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF \
|
775 |
|
|
&& SYMBOL_REF_ZDA_P (OP)) \
|
776 |
|
|
|| (GET_CODE (OP) == CONST \
|
777 |
|
|
&& GET_CODE (XEXP (OP, 0)) == PLUS \
|
778 |
|
|
&& GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
|
779 |
|
|
&& SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0)))) \
|
780 |
|
|
: 0)
|
781 |
|
|
|
782 |
|
|
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
783 |
|
|
that is a valid memory address for an instruction.
|
784 |
|
|
The MODE argument is the machine mode for the MEM expression
|
785 |
|
|
that wants to use this address.
|
786 |
|
|
|
787 |
|
|
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
|
788 |
|
|
except for CONSTANT_ADDRESS_P which is actually
|
789 |
|
|
machine-independent. */
|
790 |
|
|
|
791 |
|
|
/* Accept either REG or SUBREG where a register is valid. */
|
792 |
|
|
|
793 |
|
|
#define RTX_OK_FOR_BASE_P(X) \
|
794 |
|
|
((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
|
795 |
|
|
|| (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
|
796 |
|
|
&& REG_OK_FOR_BASE_P (SUBREG_REG (X))))
|
797 |
|
|
|
798 |
|
|
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
799 |
|
|
do { \
|
800 |
|
|
if (RTX_OK_FOR_BASE_P (X)) \
|
801 |
|
|
goto ADDR; \
|
802 |
|
|
if (CONSTANT_ADDRESS_P (X) \
|
803 |
|
|
&& (MODE == QImode || INTVAL (X) % 2 == 0) \
|
804 |
|
|
&& (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
|
805 |
|
|
goto ADDR; \
|
806 |
|
|
if (GET_CODE (X) == LO_SUM \
|
807 |
|
|
&& REG_P (XEXP (X, 0)) \
|
808 |
|
|
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
|
809 |
|
|
&& CONSTANT_P (XEXP (X, 1)) \
|
810 |
|
|
&& (GET_CODE (XEXP (X, 1)) != CONST_INT \
|
811 |
|
|
|| ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
|
812 |
|
|
&& CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
|
813 |
|
|
&& GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
|
814 |
|
|
goto ADDR; \
|
815 |
|
|
if (special_symbolref_operand (X, MODE) \
|
816 |
|
|
&& (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
|
817 |
|
|
goto ADDR; \
|
818 |
|
|
if (GET_CODE (X) == PLUS \
|
819 |
|
|
&& RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
|
820 |
|
|
&& CONSTANT_ADDRESS_P (XEXP (X, 1)) \
|
821 |
|
|
&& ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
|
822 |
|
|
&& CONST_OK_FOR_K (INTVAL (XEXP (X, 1)) \
|
823 |
|
|
+ (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \
|
824 |
|
|
goto ADDR; \
|
825 |
|
|
} while (0)
|
826 |
|
|
|
827 |
|
|
|
828 |
|
|
/* Go to LABEL if ADDR (a legitimate address expression)
|
829 |
|
|
has an effect that depends on the machine mode it is used for. */
|
830 |
|
|
|
831 |
|
|
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
|
832 |
|
|
|
833 |
|
|
/* Nonzero if the constant value X is a legitimate general operand.
|
834 |
|
|
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
835 |
|
|
|
836 |
|
|
#define LEGITIMATE_CONSTANT_P(X) \
|
837 |
|
|
(GET_CODE (X) == CONST_DOUBLE \
|
838 |
|
|
|| !(GET_CODE (X) == CONST \
|
839 |
|
|
&& GET_CODE (XEXP (X, 0)) == PLUS \
|
840 |
|
|
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
|
841 |
|
|
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
|
842 |
|
|
&& ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
|
843 |
|
|
|
844 |
|
|
/* Tell final.c how to eliminate redundant test instructions. */
|
845 |
|
|
|
846 |
|
|
/* Here we define machine-dependent flags and fields in cc_status
|
847 |
|
|
(see `conditions.h'). No extra ones are needed for the VAX. */
|
848 |
|
|
|
849 |
|
|
/* Store in cc_status the expressions
|
850 |
|
|
that the condition codes will describe
|
851 |
|
|
after execution of an instruction whose pattern is EXP.
|
852 |
|
|
Do not alter them if the instruction would not alter the cc's. */
|
853 |
|
|
|
854 |
|
|
#define CC_OVERFLOW_UNUSABLE 0x200
|
855 |
|
|
#define CC_NO_CARRY CC_NO_OVERFLOW
|
856 |
|
|
#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
|
857 |
|
|
|
858 |
|
|
/* Nonzero if access to memory by bytes or half words is no faster
|
859 |
|
|
than accessing full words. */
|
860 |
|
|
#define SLOW_BYTE_ACCESS 1
|
861 |
|
|
|
862 |
|
|
/* According expr.c, a value of around 6 should minimize code size, and
|
863 |
|
|
for the V850 series, that's our primary concern. */
|
864 |
|
|
#define MOVE_RATIO 6
|
865 |
|
|
|
866 |
|
|
/* Indirect calls are expensive, never turn a direct call
|
867 |
|
|
into an indirect call. */
|
868 |
|
|
#define NO_FUNCTION_CSE
|
869 |
|
|
|
870 |
|
|
/* The four different data regions on the v850. */
|
871 |
|
|
typedef enum
|
872 |
|
|
{
|
873 |
|
|
DATA_AREA_NORMAL,
|
874 |
|
|
DATA_AREA_SDA,
|
875 |
|
|
DATA_AREA_TDA,
|
876 |
|
|
DATA_AREA_ZDA
|
877 |
|
|
} v850_data_area;
|
878 |
|
|
|
879 |
|
|
/* A list of names for sections other than the standard two, which are
|
880 |
|
|
`in_text' and `in_data'. You need not define this macro on a
|
881 |
|
|
system with no other sections (that GCC needs to use). */
|
882 |
|
|
#undef EXTRA_SECTIONS
|
883 |
|
|
#define EXTRA_SECTIONS in_tdata, in_sdata, in_zdata, \
|
884 |
|
|
in_rozdata, in_rosdata, in_sbss, in_zbss, in_zcommon, in_scommon
|
885 |
|
|
|
886 |
|
|
/* One or more functions to be defined in `varasm.c'. These
|
887 |
|
|
functions should do jobs analogous to those of `text_section' and
|
888 |
|
|
`data_section', for your additional sections. Do not define this
|
889 |
|
|
macro if you do not define `EXTRA_SECTIONS'. */
|
890 |
|
|
#undef EXTRA_SECTION_FUNCTIONS
|
891 |
|
|
|
892 |
|
|
/* This could be done a lot more cleanly using ANSI C.... */
|
893 |
|
|
#define EXTRA_SECTION_FUNCTIONS \
|
894 |
|
|
void \
|
895 |
|
|
sdata_section () \
|
896 |
|
|
{ \
|
897 |
|
|
if (in_section != in_sdata) \
|
898 |
|
|
{ \
|
899 |
|
|
fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
|
900 |
|
|
in_section = in_sdata; \
|
901 |
|
|
} \
|
902 |
|
|
} \
|
903 |
|
|
\
|
904 |
|
|
void \
|
905 |
|
|
rosdata_section () \
|
906 |
|
|
{ \
|
907 |
|
|
if (in_section != in_rosdata) \
|
908 |
|
|
{ \
|
909 |
|
|
fprintf (asm_out_file, "%s\n", ROSDATA_SECTION_ASM_OP); \
|
910 |
|
|
in_section = in_sdata; \
|
911 |
|
|
} \
|
912 |
|
|
} \
|
913 |
|
|
\
|
914 |
|
|
void \
|
915 |
|
|
sbss_section () \
|
916 |
|
|
{ \
|
917 |
|
|
if (in_section != in_sbss) \
|
918 |
|
|
{ \
|
919 |
|
|
fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP); \
|
920 |
|
|
in_section = in_sbss; \
|
921 |
|
|
} \
|
922 |
|
|
} \
|
923 |
|
|
\
|
924 |
|
|
void \
|
925 |
|
|
tdata_section () \
|
926 |
|
|
{ \
|
927 |
|
|
if (in_section != in_tdata) \
|
928 |
|
|
{ \
|
929 |
|
|
fprintf (asm_out_file, "%s\n", TDATA_SECTION_ASM_OP); \
|
930 |
|
|
in_section = in_tdata; \
|
931 |
|
|
} \
|
932 |
|
|
} \
|
933 |
|
|
\
|
934 |
|
|
void \
|
935 |
|
|
zdata_section () \
|
936 |
|
|
{ \
|
937 |
|
|
if (in_section != in_zdata) \
|
938 |
|
|
{ \
|
939 |
|
|
fprintf (asm_out_file, "%s\n", ZDATA_SECTION_ASM_OP); \
|
940 |
|
|
in_section = in_zdata; \
|
941 |
|
|
} \
|
942 |
|
|
} \
|
943 |
|
|
\
|
944 |
|
|
void \
|
945 |
|
|
rozdata_section () \
|
946 |
|
|
{ \
|
947 |
|
|
if (in_section != in_rozdata) \
|
948 |
|
|
{ \
|
949 |
|
|
fprintf (asm_out_file, "%s\n", ROZDATA_SECTION_ASM_OP); \
|
950 |
|
|
in_section = in_rozdata; \
|
951 |
|
|
} \
|
952 |
|
|
} \
|
953 |
|
|
\
|
954 |
|
|
void \
|
955 |
|
|
zbss_section () \
|
956 |
|
|
{ \
|
957 |
|
|
if (in_section != in_zbss) \
|
958 |
|
|
{ \
|
959 |
|
|
fprintf (asm_out_file, "%s\n", ZBSS_SECTION_ASM_OP); \
|
960 |
|
|
in_section = in_zbss; \
|
961 |
|
|
} \
|
962 |
|
|
}
|
963 |
|
|
|
964 |
|
|
#define TEXT_SECTION_ASM_OP "\t.section .text"
|
965 |
|
|
#define DATA_SECTION_ASM_OP "\t.section .data"
|
966 |
|
|
#define BSS_SECTION_ASM_OP "\t.section .bss"
|
967 |
|
|
#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
|
968 |
|
|
#define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
|
969 |
|
|
#define ZDATA_SECTION_ASM_OP "\t.section .zdata,\"aw\""
|
970 |
|
|
#define ZBSS_SECTION_ASM_OP "\t.section .zbss,\"aw\""
|
971 |
|
|
#define TDATA_SECTION_ASM_OP "\t.section .tdata,\"aw\""
|
972 |
|
|
#define ROSDATA_SECTION_ASM_OP "\t.section .rosdata,\"a\""
|
973 |
|
|
#define ROZDATA_SECTION_ASM_OP "\t.section .rozdata,\"a\""
|
974 |
|
|
|
975 |
|
|
#define SCOMMON_ASM_OP "\t.scomm\t"
|
976 |
|
|
#define ZCOMMON_ASM_OP "\t.zcomm\t"
|
977 |
|
|
#define TCOMMON_ASM_OP "\t.tcomm\t"
|
978 |
|
|
|
979 |
|
|
#define ASM_COMMENT_START "#"
|
980 |
|
|
|
981 |
|
|
/* Output to assembler file text saying following lines
|
982 |
|
|
may contain character constants, extra white space, comments, etc. */
|
983 |
|
|
|
984 |
|
|
#define ASM_APP_ON "#APP\n"
|
985 |
|
|
|
986 |
|
|
/* Output to assembler file text saying following lines
|
987 |
|
|
no longer contain unusual constructs. */
|
988 |
|
|
|
989 |
|
|
#define ASM_APP_OFF "#NO_APP\n"
|
990 |
|
|
|
991 |
|
|
#undef USER_LABEL_PREFIX
|
992 |
|
|
#define USER_LABEL_PREFIX "_"
|
993 |
|
|
|
994 |
|
|
#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
|
995 |
|
|
if (! v850_output_addr_const_extra (FILE, X)) \
|
996 |
|
|
goto FAIL
|
997 |
|
|
|
998 |
|
|
/* This says how to output the assembler to define a global
|
999 |
|
|
uninitialized but not common symbol. */
|
1000 |
|
|
|
1001 |
|
|
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
1002 |
|
|
asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
|
1003 |
|
|
|
1004 |
|
|
#undef ASM_OUTPUT_ALIGNED_BSS
|
1005 |
|
|
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
1006 |
|
|
v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
|
1007 |
|
|
|
1008 |
|
|
/* This says how to output the assembler to define a global
|
1009 |
|
|
uninitialized, common symbol. */
|
1010 |
|
|
#undef ASM_OUTPUT_ALIGNED_COMMON
|
1011 |
|
|
#undef ASM_OUTPUT_COMMON
|
1012 |
|
|
#define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
|
1013 |
|
|
v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
|
1014 |
|
|
|
1015 |
|
|
/* This says how to output the assembler to define a local
|
1016 |
|
|
uninitialized symbol. */
|
1017 |
|
|
#undef ASM_OUTPUT_ALIGNED_LOCAL
|
1018 |
|
|
#undef ASM_OUTPUT_LOCAL
|
1019 |
|
|
#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
|
1020 |
|
|
v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
|
1021 |
|
|
|
1022 |
|
|
/* Globalizing directive for a label. */
|
1023 |
|
|
#define GLOBAL_ASM_OP "\t.global "
|
1024 |
|
|
|
1025 |
|
|
#define ASM_PN_FORMAT "%s___%lu"
|
1026 |
|
|
|
1027 |
|
|
/* This is how we tell the assembler that two symbols have the same value. */
|
1028 |
|
|
|
1029 |
|
|
#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
|
1030 |
|
|
do { assemble_name(FILE, NAME1); \
|
1031 |
|
|
fputs(" = ", FILE); \
|
1032 |
|
|
assemble_name(FILE, NAME2); \
|
1033 |
|
|
fputc('\n', FILE); } while (0)
|
1034 |
|
|
|
1035 |
|
|
|
1036 |
|
|
/* How to refer to registers in assembler output.
|
1037 |
|
|
This sequence is indexed by compiler's hard-register-number (see above). */
|
1038 |
|
|
|
1039 |
|
|
#define REGISTER_NAMES \
|
1040 |
|
|
{ "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
|
1041 |
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
|
1042 |
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
|
1043 |
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
|
1044 |
|
|
".fp", ".ap"}
|
1045 |
|
|
|
1046 |
|
|
#define ADDITIONAL_REGISTER_NAMES \
|
1047 |
|
|
{ { "zero", 0 }, \
|
1048 |
|
|
{ "hp", 2 }, \
|
1049 |
|
|
{ "r3", 3 }, \
|
1050 |
|
|
{ "r4", 4 }, \
|
1051 |
|
|
{ "tp", 5 }, \
|
1052 |
|
|
{ "fp", 29 }, \
|
1053 |
|
|
{ "r30", 30 }, \
|
1054 |
|
|
{ "lp", 31} }
|
1055 |
|
|
|
1056 |
|
|
/* Print an instruction operand X on file FILE.
|
1057 |
|
|
look in v850.c for details */
|
1058 |
|
|
|
1059 |
|
|
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
1060 |
|
|
|
1061 |
|
|
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
1062 |
|
|
((CODE) == '.')
|
1063 |
|
|
|
1064 |
|
|
/* Print a memory operand whose address is X, on file FILE.
|
1065 |
|
|
This uses a function in output-vax.c. */
|
1066 |
|
|
|
1067 |
|
|
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
|
1068 |
|
|
|
1069 |
|
|
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
|
1070 |
|
|
#define ASM_OUTPUT_REG_POP(FILE,REGNO)
|
1071 |
|
|
|
1072 |
|
|
/* This is how to output an element of a case-vector that is absolute. */
|
1073 |
|
|
|
1074 |
|
|
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
1075 |
|
|
fprintf (FILE, "\t%s .L%d\n", \
|
1076 |
|
|
(TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
|
1077 |
|
|
|
1078 |
|
|
/* This is how to output an element of a case-vector that is relative. */
|
1079 |
|
|
|
1080 |
|
|
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
1081 |
|
|
fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \
|
1082 |
|
|
(TARGET_BIG_SWITCH ? ".long" : ".short"), \
|
1083 |
|
|
(! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""), \
|
1084 |
|
|
VALUE, REL, \
|
1085 |
|
|
(! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : ""))
|
1086 |
|
|
|
1087 |
|
|
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
|
1088 |
|
|
if ((LOG) != 0) \
|
1089 |
|
|
fprintf (FILE, "\t.align %d\n", (LOG))
|
1090 |
|
|
|
1091 |
|
|
/* We don't have to worry about dbx compatibility for the v850. */
|
1092 |
|
|
#define DEFAULT_GDB_EXTENSIONS 1
|
1093 |
|
|
|
1094 |
|
|
/* Use stabs debugging info by default. */
|
1095 |
|
|
#undef PREFERRED_DEBUGGING_TYPE
|
1096 |
|
|
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
|
1097 |
|
|
|
1098 |
|
|
/* Specify the machine mode that this machine uses
|
1099 |
|
|
for the index in the tablejump instruction. */
|
1100 |
|
|
#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
|
1101 |
|
|
|
1102 |
|
|
/* Define as C expression which evaluates to nonzero if the tablejump
|
1103 |
|
|
instruction expects the table to contain offsets from the address of the
|
1104 |
|
|
table.
|
1105 |
|
|
Do not define this if the table should contain absolute addresses. */
|
1106 |
|
|
#define CASE_VECTOR_PC_RELATIVE 1
|
1107 |
|
|
|
1108 |
|
|
/* The switch instruction requires that the jump table immediately follow
|
1109 |
|
|
it. */
|
1110 |
|
|
#define JUMP_TABLES_IN_TEXT_SECTION 1
|
1111 |
|
|
|
1112 |
|
|
/* svr4.h defines this assuming that 4 byte alignment is required. */
|
1113 |
|
|
#undef ASM_OUTPUT_BEFORE_CASE_LABEL
|
1114 |
|
|
#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
|
1115 |
|
|
ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
|
1116 |
|
|
|
1117 |
|
|
#define WORD_REGISTER_OPERATIONS
|
1118 |
|
|
|
1119 |
|
|
/* Byte and short loads sign extend the value to a word. */
|
1120 |
|
|
#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
|
1121 |
|
|
|
1122 |
|
|
/* This flag, if defined, says the same insns that convert to a signed fixnum
|
1123 |
|
|
also convert validly to an unsigned one. */
|
1124 |
|
|
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
|
1125 |
|
|
|
1126 |
|
|
/* Max number of bytes we can move from memory to memory
|
1127 |
|
|
in one reasonably fast instruction. */
|
1128 |
|
|
#define MOVE_MAX 4
|
1129 |
|
|
|
1130 |
|
|
/* Define if shifts truncate the shift count
|
1131 |
|
|
which implies one can omit a sign-extension or zero-extension
|
1132 |
|
|
of a shift count. */
|
1133 |
|
|
#define SHIFT_COUNT_TRUNCATED 1
|
1134 |
|
|
|
1135 |
|
|
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
1136 |
|
|
is done just by pretending it is already truncated. */
|
1137 |
|
|
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
1138 |
|
|
|
1139 |
|
|
/* Specify the machine mode that pointers have.
|
1140 |
|
|
After generation of rtl, the compiler makes no further distinction
|
1141 |
|
|
between pointers and any other objects of this machine mode. */
|
1142 |
|
|
#define Pmode SImode
|
1143 |
|
|
|
1144 |
|
|
/* A function address in a call instruction
|
1145 |
|
|
is a byte address (for indexing purposes)
|
1146 |
|
|
so give the MEM rtx a byte's mode. */
|
1147 |
|
|
#define FUNCTION_MODE QImode
|
1148 |
|
|
|
1149 |
|
|
/* Tell compiler we want to support GHS pragmas */
|
1150 |
|
|
#define REGISTER_TARGET_PRAGMAS() do { \
|
1151 |
|
|
c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
|
1152 |
|
|
c_register_pragma ("ghs", "section", ghs_pragma_section); \
|
1153 |
|
|
c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \
|
1154 |
|
|
c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \
|
1155 |
|
|
c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \
|
1156 |
|
|
c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \
|
1157 |
|
|
c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \
|
1158 |
|
|
c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \
|
1159 |
|
|
} while (0)
|
1160 |
|
|
|
1161 |
|
|
/* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
|
1162 |
|
|
can appear in the "ghs section" pragma. These names are used to index
|
1163 |
|
|
into the GHS_default_section_names[] and GHS_current_section_names[]
|
1164 |
|
|
that are defined in v850.c, and so the ordering of each must remain
|
1165 |
|
|
consistent.
|
1166 |
|
|
|
1167 |
|
|
These arrays give the default and current names for each kind of
|
1168 |
|
|
section defined by the GHS pragmas. The current names can be changed
|
1169 |
|
|
by the "ghs section" pragma. If the current names are null, use
|
1170 |
|
|
the default names. Note that the two arrays have different types.
|
1171 |
|
|
|
1172 |
|
|
For the *normal* section kinds (like .data, .text, etc.) we do not
|
1173 |
|
|
want to explicitly force the name of these sections, but would rather
|
1174 |
|
|
let the linker (or at least the back end) choose the name of the
|
1175 |
|
|
section, UNLESS the user has force a specific name for these section
|
1176 |
|
|
kinds. To accomplish this set the name in ghs_default_section_names
|
1177 |
|
|
to null. */
|
1178 |
|
|
|
1179 |
|
|
enum GHS_section_kind
|
1180 |
|
|
{
|
1181 |
|
|
GHS_SECTION_KIND_DEFAULT,
|
1182 |
|
|
|
1183 |
|
|
GHS_SECTION_KIND_TEXT,
|
1184 |
|
|
GHS_SECTION_KIND_DATA,
|
1185 |
|
|
GHS_SECTION_KIND_RODATA,
|
1186 |
|
|
GHS_SECTION_KIND_BSS,
|
1187 |
|
|
GHS_SECTION_KIND_SDATA,
|
1188 |
|
|
GHS_SECTION_KIND_ROSDATA,
|
1189 |
|
|
GHS_SECTION_KIND_TDATA,
|
1190 |
|
|
GHS_SECTION_KIND_ZDATA,
|
1191 |
|
|
GHS_SECTION_KIND_ROZDATA,
|
1192 |
|
|
|
1193 |
|
|
COUNT_OF_GHS_SECTION_KINDS /* must be last */
|
1194 |
|
|
};
|
1195 |
|
|
|
1196 |
|
|
/* The following code is for handling pragmas supported by the
|
1197 |
|
|
v850 compiler produced by Green Hills Software. This is at
|
1198 |
|
|
the specific request of a customer. */
|
1199 |
|
|
|
1200 |
|
|
typedef struct data_area_stack_element
|
1201 |
|
|
{
|
1202 |
|
|
struct data_area_stack_element * prev;
|
1203 |
|
|
v850_data_area data_area; /* Current default data area. */
|
1204 |
|
|
} data_area_stack_element;
|
1205 |
|
|
|
1206 |
|
|
/* Track the current data area set by the
|
1207 |
|
|
data area pragma (which can be nested). */
|
1208 |
|
|
extern data_area_stack_element * data_area_stack;
|
1209 |
|
|
|
1210 |
|
|
/* Names of the various data areas used on the v850. */
|
1211 |
|
|
extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
|
1212 |
|
|
extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
|
1213 |
|
|
|
1214 |
|
|
/* The assembler op to start the file. */
|
1215 |
|
|
|
1216 |
|
|
#define FILE_ASM_OP "\t.file\n"
|
1217 |
|
|
|
1218 |
|
|
/* Enable the register move pass to improve code. */
|
1219 |
|
|
#define ENABLE_REGMOVE_PASS
|
1220 |
|
|
|
1221 |
|
|
|
1222 |
|
|
/* Implement ZDA, TDA, and SDA */
|
1223 |
|
|
|
1224 |
|
|
#define EP_REGNUM 30 /* ep register number */
|
1225 |
|
|
|
1226 |
|
|
#define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0)
|
1227 |
|
|
#define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1)
|
1228 |
|
|
#define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2)
|
1229 |
|
|
#define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
|
1230 |
|
|
#define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
|
1231 |
|
|
#define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
|
1232 |
|
|
|
1233 |
|
|
#endif /* ! GCC_V850_H */
|