1 |
12 |
jlechner |
/* Language-dependent node constructors for parse phase of GNU compiler.
|
2 |
|
|
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
4 |
|
|
Hacked by Michael Tiemann (tiemann@cygnus.com)
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING. If not, write to
|
20 |
|
|
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
21 |
|
|
Boston, MA 02110-1301, USA. */
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "tree.h"
|
28 |
|
|
#include "cp-tree.h"
|
29 |
|
|
#include "flags.h"
|
30 |
|
|
#include "real.h"
|
31 |
|
|
#include "rtl.h"
|
32 |
|
|
#include "toplev.h"
|
33 |
|
|
#include "insn-config.h"
|
34 |
|
|
#include "integrate.h"
|
35 |
|
|
#include "tree-inline.h"
|
36 |
|
|
#include "debug.h"
|
37 |
|
|
#include "target.h"
|
38 |
|
|
|
39 |
|
|
static tree bot_manip (tree *, int *, void *);
|
40 |
|
|
static tree bot_replace (tree *, int *, void *);
|
41 |
|
|
static tree build_cplus_array_type_1 (tree, tree);
|
42 |
|
|
static int list_hash_eq (const void *, const void *);
|
43 |
|
|
static hashval_t list_hash_pieces (tree, tree, tree);
|
44 |
|
|
static hashval_t list_hash (const void *);
|
45 |
|
|
static cp_lvalue_kind lvalue_p_1 (tree, int);
|
46 |
|
|
static tree build_target_expr (tree, tree);
|
47 |
|
|
static tree count_trees_r (tree *, int *, void *);
|
48 |
|
|
static tree verify_stmt_tree_r (tree *, int *, void *);
|
49 |
|
|
static tree find_tree_r (tree *, int *, void *);
|
50 |
|
|
static tree build_local_temp (tree);
|
51 |
|
|
|
52 |
|
|
static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
|
53 |
|
|
static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *);
|
54 |
|
|
static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
|
55 |
|
|
|
56 |
|
|
/* If REF is an lvalue, returns the kind of lvalue that REF is.
|
57 |
|
|
Otherwise, returns clk_none. If TREAT_CLASS_RVALUES_AS_LVALUES is
|
58 |
|
|
nonzero, rvalues of class type are considered lvalues. */
|
59 |
|
|
|
60 |
|
|
static cp_lvalue_kind
|
61 |
|
|
lvalue_p_1 (tree ref,
|
62 |
|
|
int treat_class_rvalues_as_lvalues)
|
63 |
|
|
{
|
64 |
|
|
cp_lvalue_kind op1_lvalue_kind = clk_none;
|
65 |
|
|
cp_lvalue_kind op2_lvalue_kind = clk_none;
|
66 |
|
|
|
67 |
|
|
if (TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
|
68 |
|
|
return clk_ordinary;
|
69 |
|
|
|
70 |
|
|
if (ref == current_class_ptr)
|
71 |
|
|
return clk_none;
|
72 |
|
|
|
73 |
|
|
switch (TREE_CODE (ref))
|
74 |
|
|
{
|
75 |
|
|
/* preincrements and predecrements are valid lvals, provided
|
76 |
|
|
what they refer to are valid lvals. */
|
77 |
|
|
case PREINCREMENT_EXPR:
|
78 |
|
|
case PREDECREMENT_EXPR:
|
79 |
|
|
case SAVE_EXPR:
|
80 |
|
|
case TRY_CATCH_EXPR:
|
81 |
|
|
case WITH_CLEANUP_EXPR:
|
82 |
|
|
case REALPART_EXPR:
|
83 |
|
|
case IMAGPART_EXPR:
|
84 |
|
|
return lvalue_p_1 (TREE_OPERAND (ref, 0),
|
85 |
|
|
treat_class_rvalues_as_lvalues);
|
86 |
|
|
|
87 |
|
|
case COMPONENT_REF:
|
88 |
|
|
op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
|
89 |
|
|
treat_class_rvalues_as_lvalues);
|
90 |
|
|
/* Look at the member designator. */
|
91 |
|
|
if (!op1_lvalue_kind
|
92 |
|
|
/* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
|
93 |
|
|
situations. */
|
94 |
|
|
|| TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
|
95 |
|
|
;
|
96 |
|
|
else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
|
97 |
|
|
{
|
98 |
|
|
/* Clear the ordinary bit. If this object was a class
|
99 |
|
|
rvalue we want to preserve that information. */
|
100 |
|
|
op1_lvalue_kind &= ~clk_ordinary;
|
101 |
|
|
/* The lvalue is for a bitfield. */
|
102 |
|
|
op1_lvalue_kind |= clk_bitfield;
|
103 |
|
|
}
|
104 |
|
|
else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
|
105 |
|
|
op1_lvalue_kind |= clk_packed;
|
106 |
|
|
|
107 |
|
|
return op1_lvalue_kind;
|
108 |
|
|
|
109 |
|
|
case STRING_CST:
|
110 |
|
|
return clk_ordinary;
|
111 |
|
|
|
112 |
|
|
case CONST_DECL:
|
113 |
|
|
case VAR_DECL:
|
114 |
|
|
if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
|
115 |
|
|
&& DECL_LANG_SPECIFIC (ref)
|
116 |
|
|
&& DECL_IN_AGGR_P (ref))
|
117 |
|
|
return clk_none;
|
118 |
|
|
case INDIRECT_REF:
|
119 |
|
|
case ARRAY_REF:
|
120 |
|
|
case PARM_DECL:
|
121 |
|
|
case RESULT_DECL:
|
122 |
|
|
if (TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE)
|
123 |
|
|
return clk_ordinary;
|
124 |
|
|
break;
|
125 |
|
|
|
126 |
|
|
/* A currently unresolved scope ref. */
|
127 |
|
|
case SCOPE_REF:
|
128 |
|
|
gcc_unreachable ();
|
129 |
|
|
case MAX_EXPR:
|
130 |
|
|
case MIN_EXPR:
|
131 |
|
|
/* Disallow <? and >? as lvalues if either argument side-effects. */
|
132 |
|
|
if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
|
133 |
|
|
|| TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
|
134 |
|
|
return clk_none;
|
135 |
|
|
op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
|
136 |
|
|
treat_class_rvalues_as_lvalues);
|
137 |
|
|
op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
|
138 |
|
|
treat_class_rvalues_as_lvalues);
|
139 |
|
|
break;
|
140 |
|
|
|
141 |
|
|
case COND_EXPR:
|
142 |
|
|
op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
|
143 |
|
|
treat_class_rvalues_as_lvalues);
|
144 |
|
|
op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 2),
|
145 |
|
|
treat_class_rvalues_as_lvalues);
|
146 |
|
|
break;
|
147 |
|
|
|
148 |
|
|
case MODIFY_EXPR:
|
149 |
|
|
return clk_ordinary;
|
150 |
|
|
|
151 |
|
|
case COMPOUND_EXPR:
|
152 |
|
|
return lvalue_p_1 (TREE_OPERAND (ref, 1),
|
153 |
|
|
treat_class_rvalues_as_lvalues);
|
154 |
|
|
|
155 |
|
|
case TARGET_EXPR:
|
156 |
|
|
return treat_class_rvalues_as_lvalues ? clk_class : clk_none;
|
157 |
|
|
|
158 |
|
|
case VA_ARG_EXPR:
|
159 |
|
|
return (treat_class_rvalues_as_lvalues
|
160 |
|
|
&& CLASS_TYPE_P (TREE_TYPE (ref))
|
161 |
|
|
? clk_class : clk_none);
|
162 |
|
|
|
163 |
|
|
case CALL_EXPR:
|
164 |
|
|
/* Any class-valued call would be wrapped in a TARGET_EXPR. */
|
165 |
|
|
return clk_none;
|
166 |
|
|
|
167 |
|
|
case FUNCTION_DECL:
|
168 |
|
|
/* All functions (except non-static-member functions) are
|
169 |
|
|
lvalues. */
|
170 |
|
|
return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
|
171 |
|
|
? clk_none : clk_ordinary);
|
172 |
|
|
|
173 |
|
|
case NON_DEPENDENT_EXPR:
|
174 |
|
|
/* We must consider NON_DEPENDENT_EXPRs to be lvalues so that
|
175 |
|
|
things like "&E" where "E" is an expression with a
|
176 |
|
|
non-dependent type work. It is safe to be lenient because an
|
177 |
|
|
error will be issued when the template is instantiated if "E"
|
178 |
|
|
is not an lvalue. */
|
179 |
|
|
return clk_ordinary;
|
180 |
|
|
|
181 |
|
|
default:
|
182 |
|
|
break;
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
/* If one operand is not an lvalue at all, then this expression is
|
186 |
|
|
not an lvalue. */
|
187 |
|
|
if (!op1_lvalue_kind || !op2_lvalue_kind)
|
188 |
|
|
return clk_none;
|
189 |
|
|
|
190 |
|
|
/* Otherwise, it's an lvalue, and it has all the odd properties
|
191 |
|
|
contributed by either operand. */
|
192 |
|
|
op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
|
193 |
|
|
/* It's not an ordinary lvalue if it involves either a bit-field or
|
194 |
|
|
a class rvalue. */
|
195 |
|
|
if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
|
196 |
|
|
op1_lvalue_kind &= ~clk_ordinary;
|
197 |
|
|
return op1_lvalue_kind;
|
198 |
|
|
}
|
199 |
|
|
|
200 |
|
|
/* Returns the kind of lvalue that REF is, in the sense of
|
201 |
|
|
[basic.lval]. This function should really be named lvalue_p; it
|
202 |
|
|
computes the C++ definition of lvalue. */
|
203 |
|
|
|
204 |
|
|
cp_lvalue_kind
|
205 |
|
|
real_lvalue_p (tree ref)
|
206 |
|
|
{
|
207 |
|
|
return lvalue_p_1 (ref,
|
208 |
|
|
/*treat_class_rvalues_as_lvalues=*/0);
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
/* This differs from real_lvalue_p in that class rvalues are
|
212 |
|
|
considered lvalues. */
|
213 |
|
|
|
214 |
|
|
int
|
215 |
|
|
lvalue_p (tree ref)
|
216 |
|
|
{
|
217 |
|
|
return
|
218 |
|
|
(lvalue_p_1 (ref, /*class rvalue ok*/ 1) != clk_none);
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
/* Test whether DECL is a builtin that may appear in a
|
222 |
|
|
constant-expression. */
|
223 |
|
|
|
224 |
|
|
bool
|
225 |
|
|
builtin_valid_in_constant_expr_p (tree decl)
|
226 |
|
|
{
|
227 |
|
|
/* At present BUILT_IN_CONSTANT_P is the only builtin we're allowing
|
228 |
|
|
in constant-expressions. We may want to add other builtins later. */
|
229 |
|
|
return DECL_IS_BUILTIN_CONSTANT_P (decl);
|
230 |
|
|
}
|
231 |
|
|
|
232 |
|
|
/* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
|
233 |
|
|
|
234 |
|
|
static tree
|
235 |
|
|
build_target_expr (tree decl, tree value)
|
236 |
|
|
{
|
237 |
|
|
tree t;
|
238 |
|
|
|
239 |
|
|
t = build4 (TARGET_EXPR, TREE_TYPE (decl), decl, value,
|
240 |
|
|
cxx_maybe_build_cleanup (decl), NULL_TREE);
|
241 |
|
|
/* We always set TREE_SIDE_EFFECTS so that expand_expr does not
|
242 |
|
|
ignore the TARGET_EXPR. If there really turn out to be no
|
243 |
|
|
side-effects, then the optimizer should be able to get rid of
|
244 |
|
|
whatever code is generated anyhow. */
|
245 |
|
|
TREE_SIDE_EFFECTS (t) = 1;
|
246 |
|
|
|
247 |
|
|
return t;
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
/* Return an undeclared local temporary of type TYPE for use in building a
|
251 |
|
|
TARGET_EXPR. */
|
252 |
|
|
|
253 |
|
|
static tree
|
254 |
|
|
build_local_temp (tree type)
|
255 |
|
|
{
|
256 |
|
|
tree slot = build_decl (VAR_DECL, NULL_TREE, type);
|
257 |
|
|
DECL_ARTIFICIAL (slot) = 1;
|
258 |
|
|
DECL_IGNORED_P (slot) = 1;
|
259 |
|
|
DECL_CONTEXT (slot) = current_function_decl;
|
260 |
|
|
layout_decl (slot, 0);
|
261 |
|
|
return slot;
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
/* INIT is a CALL_EXPR which needs info about its target.
|
265 |
|
|
TYPE is the type that this initialization should appear to have.
|
266 |
|
|
|
267 |
|
|
Build an encapsulation of the initialization to perform
|
268 |
|
|
and return it so that it can be processed by language-independent
|
269 |
|
|
and language-specific expression expanders. */
|
270 |
|
|
|
271 |
|
|
tree
|
272 |
|
|
build_cplus_new (tree type, tree init)
|
273 |
|
|
{
|
274 |
|
|
tree fn;
|
275 |
|
|
tree slot;
|
276 |
|
|
tree rval;
|
277 |
|
|
int is_ctor;
|
278 |
|
|
|
279 |
|
|
/* Make sure that we're not trying to create an instance of an
|
280 |
|
|
abstract class. */
|
281 |
|
|
abstract_virtuals_error (NULL_TREE, type);
|
282 |
|
|
|
283 |
|
|
if (TREE_CODE (init) != CALL_EXPR && TREE_CODE (init) != AGGR_INIT_EXPR)
|
284 |
|
|
return convert (type, init);
|
285 |
|
|
|
286 |
|
|
fn = TREE_OPERAND (init, 0);
|
287 |
|
|
is_ctor = (TREE_CODE (fn) == ADDR_EXPR
|
288 |
|
|
&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
|
289 |
|
|
&& DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
|
290 |
|
|
|
291 |
|
|
slot = build_local_temp (type);
|
292 |
|
|
|
293 |
|
|
/* We split the CALL_EXPR into its function and its arguments here.
|
294 |
|
|
Then, in expand_expr, we put them back together. The reason for
|
295 |
|
|
this is that this expression might be a default argument
|
296 |
|
|
expression. In that case, we need a new temporary every time the
|
297 |
|
|
expression is used. That's what break_out_target_exprs does; it
|
298 |
|
|
replaces every AGGR_INIT_EXPR with a copy that uses a fresh
|
299 |
|
|
temporary slot. Then, expand_expr builds up a call-expression
|
300 |
|
|
using the new slot. */
|
301 |
|
|
|
302 |
|
|
/* If we don't need to use a constructor to create an object of this
|
303 |
|
|
type, don't mess with AGGR_INIT_EXPR. */
|
304 |
|
|
if (is_ctor || TREE_ADDRESSABLE (type))
|
305 |
|
|
{
|
306 |
|
|
rval = build3 (AGGR_INIT_EXPR, void_type_node, fn,
|
307 |
|
|
TREE_OPERAND (init, 1), slot);
|
308 |
|
|
TREE_SIDE_EFFECTS (rval) = 1;
|
309 |
|
|
AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
|
310 |
|
|
}
|
311 |
|
|
else
|
312 |
|
|
rval = init;
|
313 |
|
|
|
314 |
|
|
rval = build_target_expr (slot, rval);
|
315 |
|
|
|
316 |
|
|
return rval;
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
/* Build a TARGET_EXPR using INIT to initialize a new temporary of the
|
320 |
|
|
indicated TYPE. */
|
321 |
|
|
|
322 |
|
|
tree
|
323 |
|
|
build_target_expr_with_type (tree init, tree type)
|
324 |
|
|
{
|
325 |
|
|
tree slot;
|
326 |
|
|
|
327 |
|
|
gcc_assert (!VOID_TYPE_P (type));
|
328 |
|
|
|
329 |
|
|
if (TREE_CODE (init) == TARGET_EXPR)
|
330 |
|
|
return init;
|
331 |
|
|
else if (CLASS_TYPE_P (type) && !TYPE_HAS_TRIVIAL_INIT_REF (type)
|
332 |
|
|
&& TREE_CODE (init) != COND_EXPR
|
333 |
|
|
&& TREE_CODE (init) != CONSTRUCTOR
|
334 |
|
|
&& TREE_CODE (init) != VA_ARG_EXPR)
|
335 |
|
|
/* We need to build up a copy constructor call. COND_EXPR is a special
|
336 |
|
|
case because we already have copies on the arms and we don't want
|
337 |
|
|
another one here. A CONSTRUCTOR is aggregate initialization, which
|
338 |
|
|
is handled separately. A VA_ARG_EXPR is magic creation of an
|
339 |
|
|
aggregate; there's no additional work to be done. */
|
340 |
|
|
return force_rvalue (init);
|
341 |
|
|
|
342 |
|
|
slot = build_local_temp (type);
|
343 |
|
|
return build_target_expr (slot, init);
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
/* Like the above function, but without the checking. This function should
|
347 |
|
|
only be used by code which is deliberately trying to subvert the type
|
348 |
|
|
system, such as call_builtin_trap. */
|
349 |
|
|
|
350 |
|
|
tree
|
351 |
|
|
force_target_expr (tree type, tree init)
|
352 |
|
|
{
|
353 |
|
|
tree slot;
|
354 |
|
|
|
355 |
|
|
gcc_assert (!VOID_TYPE_P (type));
|
356 |
|
|
|
357 |
|
|
slot = build_local_temp (type);
|
358 |
|
|
return build_target_expr (slot, init);
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
/* Like build_target_expr_with_type, but use the type of INIT. */
|
362 |
|
|
|
363 |
|
|
tree
|
364 |
|
|
get_target_expr (tree init)
|
365 |
|
|
{
|
366 |
|
|
return build_target_expr_with_type (init, TREE_TYPE (init));
|
367 |
|
|
}
|
368 |
|
|
|
369 |
|
|
/* EXPR is being used in an rvalue context. Return a version of EXPR
|
370 |
|
|
that is marked as an rvalue. */
|
371 |
|
|
|
372 |
|
|
tree
|
373 |
|
|
rvalue (tree expr)
|
374 |
|
|
{
|
375 |
|
|
tree type;
|
376 |
|
|
if (real_lvalue_p (expr))
|
377 |
|
|
{
|
378 |
|
|
type = TREE_TYPE (expr);
|
379 |
|
|
/* [basic.lval]
|
380 |
|
|
|
381 |
|
|
Non-class rvalues always have cv-unqualified types. */
|
382 |
|
|
if (!CLASS_TYPE_P (type))
|
383 |
|
|
type = TYPE_MAIN_VARIANT (type);
|
384 |
|
|
expr = build1 (NON_LVALUE_EXPR, type, expr);
|
385 |
|
|
}
|
386 |
|
|
return expr;
|
387 |
|
|
}
|
388 |
|
|
|
389 |
|
|
|
390 |
|
|
static tree
|
391 |
|
|
build_cplus_array_type_1 (tree elt_type, tree index_type)
|
392 |
|
|
{
|
393 |
|
|
tree t;
|
394 |
|
|
|
395 |
|
|
if (elt_type == error_mark_node || index_type == error_mark_node)
|
396 |
|
|
return error_mark_node;
|
397 |
|
|
|
398 |
|
|
if (dependent_type_p (elt_type)
|
399 |
|
|
|| (index_type
|
400 |
|
|
&& value_dependent_expression_p (TYPE_MAX_VALUE (index_type))))
|
401 |
|
|
{
|
402 |
|
|
t = make_node (ARRAY_TYPE);
|
403 |
|
|
TREE_TYPE (t) = elt_type;
|
404 |
|
|
TYPE_DOMAIN (t) = index_type;
|
405 |
|
|
}
|
406 |
|
|
else
|
407 |
|
|
t = build_array_type (elt_type, index_type);
|
408 |
|
|
|
409 |
|
|
/* Push these needs up so that initialization takes place
|
410 |
|
|
more easily. */
|
411 |
|
|
TYPE_NEEDS_CONSTRUCTING (t)
|
412 |
|
|
= TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type));
|
413 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
414 |
|
|
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type));
|
415 |
|
|
return t;
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
tree
|
419 |
|
|
build_cplus_array_type (tree elt_type, tree index_type)
|
420 |
|
|
{
|
421 |
|
|
tree t;
|
422 |
|
|
int type_quals = cp_type_quals (elt_type);
|
423 |
|
|
|
424 |
|
|
if (type_quals != TYPE_UNQUALIFIED)
|
425 |
|
|
elt_type = cp_build_qualified_type (elt_type, TYPE_UNQUALIFIED);
|
426 |
|
|
|
427 |
|
|
t = build_cplus_array_type_1 (elt_type, index_type);
|
428 |
|
|
|
429 |
|
|
if (type_quals != TYPE_UNQUALIFIED)
|
430 |
|
|
t = cp_build_qualified_type (t, type_quals);
|
431 |
|
|
|
432 |
|
|
return t;
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
/* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
|
436 |
|
|
arrays correctly. In particular, if TYPE is an array of T's, and
|
437 |
|
|
TYPE_QUALS is non-empty, returns an array of qualified T's.
|
438 |
|
|
|
439 |
|
|
FLAGS determines how to deal with illformed qualifications. If
|
440 |
|
|
tf_ignore_bad_quals is set, then bad qualifications are dropped
|
441 |
|
|
(this is permitted if TYPE was introduced via a typedef or template
|
442 |
|
|
type parameter). If bad qualifications are dropped and tf_warning
|
443 |
|
|
is set, then a warning is issued for non-const qualifications. If
|
444 |
|
|
tf_ignore_bad_quals is not set and tf_error is not set, we
|
445 |
|
|
return error_mark_node. Otherwise, we issue an error, and ignore
|
446 |
|
|
the qualifications.
|
447 |
|
|
|
448 |
|
|
Qualification of a reference type is valid when the reference came
|
449 |
|
|
via a typedef or template type argument. [dcl.ref] No such
|
450 |
|
|
dispensation is provided for qualifying a function type. [dcl.fct]
|
451 |
|
|
DR 295 queries this and the proposed resolution brings it into line
|
452 |
|
|
with qualifying a reference. We implement the DR. We also behave
|
453 |
|
|
in a similar manner for restricting non-pointer types. */
|
454 |
|
|
|
455 |
|
|
tree
|
456 |
|
|
cp_build_qualified_type_real (tree type,
|
457 |
|
|
int type_quals,
|
458 |
|
|
tsubst_flags_t complain)
|
459 |
|
|
{
|
460 |
|
|
tree result;
|
461 |
|
|
int bad_quals = TYPE_UNQUALIFIED;
|
462 |
|
|
|
463 |
|
|
if (type == error_mark_node)
|
464 |
|
|
return type;
|
465 |
|
|
|
466 |
|
|
if (type_quals == cp_type_quals (type))
|
467 |
|
|
return type;
|
468 |
|
|
|
469 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
470 |
|
|
{
|
471 |
|
|
/* In C++, the qualification really applies to the array element
|
472 |
|
|
type. Obtain the appropriately qualified element type. */
|
473 |
|
|
tree t;
|
474 |
|
|
tree element_type
|
475 |
|
|
= cp_build_qualified_type_real (TREE_TYPE (type),
|
476 |
|
|
type_quals,
|
477 |
|
|
complain);
|
478 |
|
|
|
479 |
|
|
if (element_type == error_mark_node)
|
480 |
|
|
return error_mark_node;
|
481 |
|
|
|
482 |
|
|
/* See if we already have an identically qualified type. */
|
483 |
|
|
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
484 |
|
|
if (cp_type_quals (t) == type_quals
|
485 |
|
|
&& TYPE_NAME (t) == TYPE_NAME (type)
|
486 |
|
|
&& TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
|
487 |
|
|
break;
|
488 |
|
|
|
489 |
|
|
if (!t)
|
490 |
|
|
{
|
491 |
|
|
/* Make a new array type, just like the old one, but with the
|
492 |
|
|
appropriately qualified element type. */
|
493 |
|
|
t = build_variant_type_copy (type);
|
494 |
|
|
TREE_TYPE (t) = element_type;
|
495 |
|
|
}
|
496 |
|
|
|
497 |
|
|
/* Even if we already had this variant, we update
|
498 |
|
|
TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
|
499 |
|
|
they changed since the variant was originally created.
|
500 |
|
|
|
501 |
|
|
This seems hokey; if there is some way to use a previous
|
502 |
|
|
variant *without* coming through here,
|
503 |
|
|
TYPE_NEEDS_CONSTRUCTING will never be updated. */
|
504 |
|
|
TYPE_NEEDS_CONSTRUCTING (t)
|
505 |
|
|
= TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
|
506 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
507 |
|
|
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
|
508 |
|
|
return t;
|
509 |
|
|
}
|
510 |
|
|
else if (TYPE_PTRMEMFUNC_P (type))
|
511 |
|
|
{
|
512 |
|
|
/* For a pointer-to-member type, we can't just return a
|
513 |
|
|
cv-qualified version of the RECORD_TYPE. If we do, we
|
514 |
|
|
haven't changed the field that contains the actual pointer to
|
515 |
|
|
a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */
|
516 |
|
|
tree t;
|
517 |
|
|
|
518 |
|
|
t = TYPE_PTRMEMFUNC_FN_TYPE (type);
|
519 |
|
|
t = cp_build_qualified_type_real (t, type_quals, complain);
|
520 |
|
|
return build_ptrmemfunc_type (t);
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
/* A reference or method type shall not be cv qualified.
|
524 |
|
|
[dcl.ref], [dct.fct] */
|
525 |
|
|
if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
|
526 |
|
|
&& (TREE_CODE (type) == REFERENCE_TYPE
|
527 |
|
|
|| TREE_CODE (type) == METHOD_TYPE))
|
528 |
|
|
{
|
529 |
|
|
bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
|
530 |
|
|
type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
|
531 |
|
|
}
|
532 |
|
|
|
533 |
|
|
/* A restrict-qualified type must be a pointer (or reference)
|
534 |
|
|
to object or incomplete type, or a function type. */
|
535 |
|
|
if ((type_quals & TYPE_QUAL_RESTRICT)
|
536 |
|
|
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM
|
537 |
|
|
&& TREE_CODE (type) != TYPENAME_TYPE
|
538 |
|
|
&& TREE_CODE (type) != FUNCTION_TYPE
|
539 |
|
|
&& !POINTER_TYPE_P (type))
|
540 |
|
|
{
|
541 |
|
|
bad_quals |= TYPE_QUAL_RESTRICT;
|
542 |
|
|
type_quals &= ~TYPE_QUAL_RESTRICT;
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
if (bad_quals == TYPE_UNQUALIFIED)
|
546 |
|
|
/*OK*/;
|
547 |
|
|
else if (!(complain & (tf_error | tf_ignore_bad_quals)))
|
548 |
|
|
return error_mark_node;
|
549 |
|
|
else
|
550 |
|
|
{
|
551 |
|
|
if (complain & tf_ignore_bad_quals)
|
552 |
|
|
/* We're not going to warn about constifying things that can't
|
553 |
|
|
be constified. */
|
554 |
|
|
bad_quals &= ~TYPE_QUAL_CONST;
|
555 |
|
|
if (bad_quals)
|
556 |
|
|
{
|
557 |
|
|
tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
|
558 |
|
|
|
559 |
|
|
if (!(complain & tf_ignore_bad_quals))
|
560 |
|
|
error ("%qV qualifiers cannot be applied to %qT",
|
561 |
|
|
bad_type, type);
|
562 |
|
|
}
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
/* Retrieve (or create) the appropriately qualified variant. */
|
566 |
|
|
result = build_qualified_type (type, type_quals);
|
567 |
|
|
|
568 |
|
|
/* If this was a pointer-to-method type, and we just made a copy,
|
569 |
|
|
then we need to unshare the record that holds the cached
|
570 |
|
|
pointer-to-member-function type, because these will be distinct
|
571 |
|
|
between the unqualified and qualified types. */
|
572 |
|
|
if (result != type
|
573 |
|
|
&& TREE_CODE (type) == POINTER_TYPE
|
574 |
|
|
&& TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE)
|
575 |
|
|
TYPE_LANG_SPECIFIC (result) = NULL;
|
576 |
|
|
|
577 |
|
|
return result;
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
/* Returns the canonical version of TYPE. In other words, if TYPE is
|
581 |
|
|
a typedef, returns the underlying type. The cv-qualification of
|
582 |
|
|
the type returned matches the type input; they will always be
|
583 |
|
|
compatible types. */
|
584 |
|
|
|
585 |
|
|
tree
|
586 |
|
|
canonical_type_variant (tree t)
|
587 |
|
|
{
|
588 |
|
|
return cp_build_qualified_type (TYPE_MAIN_VARIANT (t), cp_type_quals (t));
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
/* Makes a copy of BINFO and TYPE, which is to be inherited into a
|
592 |
|
|
graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
|
593 |
|
|
and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
|
594 |
|
|
VIRT indicates whether TYPE is inherited virtually or not.
|
595 |
|
|
IGO_PREV points at the previous binfo of the inheritance graph
|
596 |
|
|
order chain. The newly copied binfo's TREE_CHAIN forms this
|
597 |
|
|
ordering.
|
598 |
|
|
|
599 |
|
|
The CLASSTYPE_VBASECLASSES vector of T is constructed in the
|
600 |
|
|
correct order. That is in the order the bases themselves should be
|
601 |
|
|
constructed in.
|
602 |
|
|
|
603 |
|
|
The BINFO_INHERITANCE of a virtual base class points to the binfo
|
604 |
|
|
of the most derived type. ??? We could probably change this so that
|
605 |
|
|
BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
|
606 |
|
|
remove a field. They currently can only differ for primary virtual
|
607 |
|
|
virtual bases. */
|
608 |
|
|
|
609 |
|
|
tree
|
610 |
|
|
copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
|
611 |
|
|
{
|
612 |
|
|
tree new_binfo;
|
613 |
|
|
|
614 |
|
|
if (virt)
|
615 |
|
|
{
|
616 |
|
|
/* See if we've already made this virtual base. */
|
617 |
|
|
new_binfo = binfo_for_vbase (type, t);
|
618 |
|
|
if (new_binfo)
|
619 |
|
|
return new_binfo;
|
620 |
|
|
}
|
621 |
|
|
|
622 |
|
|
new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
|
623 |
|
|
BINFO_TYPE (new_binfo) = type;
|
624 |
|
|
|
625 |
|
|
/* Chain it into the inheritance graph. */
|
626 |
|
|
TREE_CHAIN (*igo_prev) = new_binfo;
|
627 |
|
|
*igo_prev = new_binfo;
|
628 |
|
|
|
629 |
|
|
if (binfo)
|
630 |
|
|
{
|
631 |
|
|
int ix;
|
632 |
|
|
tree base_binfo;
|
633 |
|
|
|
634 |
|
|
gcc_assert (!BINFO_DEPENDENT_BASE_P (binfo));
|
635 |
|
|
gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
|
636 |
|
|
|
637 |
|
|
BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
|
638 |
|
|
BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
|
639 |
|
|
|
640 |
|
|
/* We do not need to copy the accesses, as they are read only. */
|
641 |
|
|
BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
|
642 |
|
|
|
643 |
|
|
/* Recursively copy base binfos of BINFO. */
|
644 |
|
|
for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
|
645 |
|
|
{
|
646 |
|
|
tree new_base_binfo;
|
647 |
|
|
|
648 |
|
|
gcc_assert (!BINFO_DEPENDENT_BASE_P (base_binfo));
|
649 |
|
|
new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
|
650 |
|
|
t, igo_prev,
|
651 |
|
|
BINFO_VIRTUAL_P (base_binfo));
|
652 |
|
|
|
653 |
|
|
if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
|
654 |
|
|
BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
|
655 |
|
|
BINFO_BASE_APPEND (new_binfo, new_base_binfo);
|
656 |
|
|
}
|
657 |
|
|
}
|
658 |
|
|
else
|
659 |
|
|
BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
|
660 |
|
|
|
661 |
|
|
if (virt)
|
662 |
|
|
{
|
663 |
|
|
/* Push it onto the list after any virtual bases it contains
|
664 |
|
|
will have been pushed. */
|
665 |
|
|
VEC_quick_push (tree, CLASSTYPE_VBASECLASSES (t), new_binfo);
|
666 |
|
|
BINFO_VIRTUAL_P (new_binfo) = 1;
|
667 |
|
|
BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
return new_binfo;
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
/* Hashing of lists so that we don't make duplicates.
|
674 |
|
|
The entry point is `list_hash_canon'. */
|
675 |
|
|
|
676 |
|
|
/* Now here is the hash table. When recording a list, it is added
|
677 |
|
|
to the slot whose index is the hash code mod the table size.
|
678 |
|
|
Note that the hash table is used for several kinds of lists.
|
679 |
|
|
While all these live in the same table, they are completely independent,
|
680 |
|
|
and the hash code is computed differently for each of these. */
|
681 |
|
|
|
682 |
|
|
static GTY ((param_is (union tree_node))) htab_t list_hash_table;
|
683 |
|
|
|
684 |
|
|
struct list_proxy
|
685 |
|
|
{
|
686 |
|
|
tree purpose;
|
687 |
|
|
tree value;
|
688 |
|
|
tree chain;
|
689 |
|
|
};
|
690 |
|
|
|
691 |
|
|
/* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
|
692 |
|
|
for a node we are thinking about adding). */
|
693 |
|
|
|
694 |
|
|
static int
|
695 |
|
|
list_hash_eq (const void* entry, const void* data)
|
696 |
|
|
{
|
697 |
|
|
tree t = (tree) entry;
|
698 |
|
|
struct list_proxy *proxy = (struct list_proxy *) data;
|
699 |
|
|
|
700 |
|
|
return (TREE_VALUE (t) == proxy->value
|
701 |
|
|
&& TREE_PURPOSE (t) == proxy->purpose
|
702 |
|
|
&& TREE_CHAIN (t) == proxy->chain);
|
703 |
|
|
}
|
704 |
|
|
|
705 |
|
|
/* Compute a hash code for a list (chain of TREE_LIST nodes
|
706 |
|
|
with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
|
707 |
|
|
TREE_COMMON slots), by adding the hash codes of the individual entries. */
|
708 |
|
|
|
709 |
|
|
static hashval_t
|
710 |
|
|
list_hash_pieces (tree purpose, tree value, tree chain)
|
711 |
|
|
{
|
712 |
|
|
hashval_t hashcode = 0;
|
713 |
|
|
|
714 |
|
|
if (chain)
|
715 |
|
|
hashcode += TREE_HASH (chain);
|
716 |
|
|
|
717 |
|
|
if (value)
|
718 |
|
|
hashcode += TREE_HASH (value);
|
719 |
|
|
else
|
720 |
|
|
hashcode += 1007;
|
721 |
|
|
if (purpose)
|
722 |
|
|
hashcode += TREE_HASH (purpose);
|
723 |
|
|
else
|
724 |
|
|
hashcode += 1009;
|
725 |
|
|
return hashcode;
|
726 |
|
|
}
|
727 |
|
|
|
728 |
|
|
/* Hash an already existing TREE_LIST. */
|
729 |
|
|
|
730 |
|
|
static hashval_t
|
731 |
|
|
list_hash (const void* p)
|
732 |
|
|
{
|
733 |
|
|
tree t = (tree) p;
|
734 |
|
|
return list_hash_pieces (TREE_PURPOSE (t),
|
735 |
|
|
TREE_VALUE (t),
|
736 |
|
|
TREE_CHAIN (t));
|
737 |
|
|
}
|
738 |
|
|
|
739 |
|
|
/* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
|
740 |
|
|
object for an identical list if one already exists. Otherwise, build a
|
741 |
|
|
new one, and record it as the canonical object. */
|
742 |
|
|
|
743 |
|
|
tree
|
744 |
|
|
hash_tree_cons (tree purpose, tree value, tree chain)
|
745 |
|
|
{
|
746 |
|
|
int hashcode = 0;
|
747 |
|
|
void **slot;
|
748 |
|
|
struct list_proxy proxy;
|
749 |
|
|
|
750 |
|
|
/* Hash the list node. */
|
751 |
|
|
hashcode = list_hash_pieces (purpose, value, chain);
|
752 |
|
|
/* Create a proxy for the TREE_LIST we would like to create. We
|
753 |
|
|
don't actually create it so as to avoid creating garbage. */
|
754 |
|
|
proxy.purpose = purpose;
|
755 |
|
|
proxy.value = value;
|
756 |
|
|
proxy.chain = chain;
|
757 |
|
|
/* See if it is already in the table. */
|
758 |
|
|
slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode,
|
759 |
|
|
INSERT);
|
760 |
|
|
/* If not, create a new node. */
|
761 |
|
|
if (!*slot)
|
762 |
|
|
*slot = tree_cons (purpose, value, chain);
|
763 |
|
|
return *slot;
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
/* Constructor for hashed lists. */
|
767 |
|
|
|
768 |
|
|
tree
|
769 |
|
|
hash_tree_chain (tree value, tree chain)
|
770 |
|
|
{
|
771 |
|
|
return hash_tree_cons (NULL_TREE, value, chain);
|
772 |
|
|
}
|
773 |
|
|
|
774 |
|
|
void
|
775 |
|
|
debug_binfo (tree elem)
|
776 |
|
|
{
|
777 |
|
|
HOST_WIDE_INT n;
|
778 |
|
|
tree virtuals;
|
779 |
|
|
|
780 |
|
|
fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
|
781 |
|
|
"\nvtable type:\n",
|
782 |
|
|
TYPE_NAME_STRING (BINFO_TYPE (elem)),
|
783 |
|
|
TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
|
784 |
|
|
debug_tree (BINFO_TYPE (elem));
|
785 |
|
|
if (BINFO_VTABLE (elem))
|
786 |
|
|
fprintf (stderr, "vtable decl \"%s\"\n",
|
787 |
|
|
IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
|
788 |
|
|
else
|
789 |
|
|
fprintf (stderr, "no vtable decl yet\n");
|
790 |
|
|
fprintf (stderr, "virtuals:\n");
|
791 |
|
|
virtuals = BINFO_VIRTUALS (elem);
|
792 |
|
|
n = 0;
|
793 |
|
|
|
794 |
|
|
while (virtuals)
|
795 |
|
|
{
|
796 |
|
|
tree fndecl = TREE_VALUE (virtuals);
|
797 |
|
|
fprintf (stderr, "%s [%ld =? %ld]\n",
|
798 |
|
|
IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
|
799 |
|
|
(long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
|
800 |
|
|
++n;
|
801 |
|
|
virtuals = TREE_CHAIN (virtuals);
|
802 |
|
|
}
|
803 |
|
|
}
|
804 |
|
|
|
805 |
|
|
/* Build a representation for the qualified name SCOPE::NAME. TYPE is
|
806 |
|
|
the type of the result expression, if known, or NULL_TREE if the
|
807 |
|
|
resulting expression is type-dependent. If TEMPLATE_P is true,
|
808 |
|
|
NAME is known to be a template because the user explicitly used the
|
809 |
|
|
"template" keyword after the "::".
|
810 |
|
|
|
811 |
|
|
All SCOPE_REFs should be built by use of this function. */
|
812 |
|
|
|
813 |
|
|
tree
|
814 |
|
|
build_qualified_name (tree type, tree scope, tree name, bool template_p)
|
815 |
|
|
{
|
816 |
|
|
tree t;
|
817 |
|
|
if (type == error_mark_node
|
818 |
|
|
|| scope == error_mark_node
|
819 |
|
|
|| name == error_mark_node)
|
820 |
|
|
return error_mark_node;
|
821 |
|
|
t = build2 (SCOPE_REF, type, scope, name);
|
822 |
|
|
QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
|
823 |
|
|
return t;
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
int
|
827 |
|
|
is_overloaded_fn (tree x)
|
828 |
|
|
{
|
829 |
|
|
/* A baselink is also considered an overloaded function. */
|
830 |
|
|
if (TREE_CODE (x) == OFFSET_REF)
|
831 |
|
|
x = TREE_OPERAND (x, 1);
|
832 |
|
|
if (BASELINK_P (x))
|
833 |
|
|
x = BASELINK_FUNCTIONS (x);
|
834 |
|
|
return (TREE_CODE (x) == FUNCTION_DECL
|
835 |
|
|
|| TREE_CODE (x) == TEMPLATE_ID_EXPR
|
836 |
|
|
|| DECL_FUNCTION_TEMPLATE_P (x)
|
837 |
|
|
|| TREE_CODE (x) == OVERLOAD);
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
int
|
841 |
|
|
really_overloaded_fn (tree x)
|
842 |
|
|
{
|
843 |
|
|
/* A baselink is also considered an overloaded function. */
|
844 |
|
|
if (TREE_CODE (x) == OFFSET_REF)
|
845 |
|
|
x = TREE_OPERAND (x, 1);
|
846 |
|
|
if (BASELINK_P (x))
|
847 |
|
|
x = BASELINK_FUNCTIONS (x);
|
848 |
|
|
|
849 |
|
|
return ((TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x))
|
850 |
|
|
|| DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
|
851 |
|
|
|| TREE_CODE (x) == TEMPLATE_ID_EXPR);
|
852 |
|
|
}
|
853 |
|
|
|
854 |
|
|
tree
|
855 |
|
|
get_first_fn (tree from)
|
856 |
|
|
{
|
857 |
|
|
gcc_assert (is_overloaded_fn (from));
|
858 |
|
|
/* A baselink is also considered an overloaded function. */
|
859 |
|
|
if (BASELINK_P (from))
|
860 |
|
|
from = BASELINK_FUNCTIONS (from);
|
861 |
|
|
return OVL_CURRENT (from);
|
862 |
|
|
}
|
863 |
|
|
|
864 |
|
|
/* Return a new OVL node, concatenating it with the old one. */
|
865 |
|
|
|
866 |
|
|
tree
|
867 |
|
|
ovl_cons (tree decl, tree chain)
|
868 |
|
|
{
|
869 |
|
|
tree result = make_node (OVERLOAD);
|
870 |
|
|
TREE_TYPE (result) = unknown_type_node;
|
871 |
|
|
OVL_FUNCTION (result) = decl;
|
872 |
|
|
TREE_CHAIN (result) = chain;
|
873 |
|
|
|
874 |
|
|
return result;
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
/* Build a new overloaded function. If this is the first one,
|
878 |
|
|
just return it; otherwise, ovl_cons the _DECLs */
|
879 |
|
|
|
880 |
|
|
tree
|
881 |
|
|
build_overload (tree decl, tree chain)
|
882 |
|
|
{
|
883 |
|
|
if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
|
884 |
|
|
return decl;
|
885 |
|
|
if (chain && TREE_CODE (chain) != OVERLOAD)
|
886 |
|
|
chain = ovl_cons (chain, NULL_TREE);
|
887 |
|
|
return ovl_cons (decl, chain);
|
888 |
|
|
}
|
889 |
|
|
|
890 |
|
|
|
891 |
|
|
#define PRINT_RING_SIZE 4
|
892 |
|
|
|
893 |
|
|
const char *
|
894 |
|
|
cxx_printable_name (tree decl, int v)
|
895 |
|
|
{
|
896 |
|
|
static tree decl_ring[PRINT_RING_SIZE];
|
897 |
|
|
static char *print_ring[PRINT_RING_SIZE];
|
898 |
|
|
static int ring_counter;
|
899 |
|
|
int i;
|
900 |
|
|
|
901 |
|
|
/* Only cache functions. */
|
902 |
|
|
if (v < 2
|
903 |
|
|
|| TREE_CODE (decl) != FUNCTION_DECL
|
904 |
|
|
|| DECL_LANG_SPECIFIC (decl) == 0)
|
905 |
|
|
return lang_decl_name (decl, v);
|
906 |
|
|
|
907 |
|
|
/* See if this print name is lying around. */
|
908 |
|
|
for (i = 0; i < PRINT_RING_SIZE; i++)
|
909 |
|
|
if (decl_ring[i] == decl)
|
910 |
|
|
/* yes, so return it. */
|
911 |
|
|
return print_ring[i];
|
912 |
|
|
|
913 |
|
|
if (++ring_counter == PRINT_RING_SIZE)
|
914 |
|
|
ring_counter = 0;
|
915 |
|
|
|
916 |
|
|
if (current_function_decl != NULL_TREE)
|
917 |
|
|
{
|
918 |
|
|
if (decl_ring[ring_counter] == current_function_decl)
|
919 |
|
|
ring_counter += 1;
|
920 |
|
|
if (ring_counter == PRINT_RING_SIZE)
|
921 |
|
|
ring_counter = 0;
|
922 |
|
|
gcc_assert (decl_ring[ring_counter] != current_function_decl);
|
923 |
|
|
}
|
924 |
|
|
|
925 |
|
|
if (print_ring[ring_counter])
|
926 |
|
|
free (print_ring[ring_counter]);
|
927 |
|
|
|
928 |
|
|
print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v));
|
929 |
|
|
decl_ring[ring_counter] = decl;
|
930 |
|
|
return print_ring[ring_counter];
|
931 |
|
|
}
|
932 |
|
|
|
933 |
|
|
/* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
|
934 |
|
|
listed in RAISES. */
|
935 |
|
|
|
936 |
|
|
tree
|
937 |
|
|
build_exception_variant (tree type, tree raises)
|
938 |
|
|
{
|
939 |
|
|
tree v = TYPE_MAIN_VARIANT (type);
|
940 |
|
|
int type_quals = TYPE_QUALS (type);
|
941 |
|
|
|
942 |
|
|
for (; v; v = TYPE_NEXT_VARIANT (v))
|
943 |
|
|
if (check_qualified_type (v, type, type_quals)
|
944 |
|
|
&& comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (v), 1))
|
945 |
|
|
return v;
|
946 |
|
|
|
947 |
|
|
/* Need to build a new variant. */
|
948 |
|
|
v = build_variant_type_copy (type);
|
949 |
|
|
TYPE_RAISES_EXCEPTIONS (v) = raises;
|
950 |
|
|
return v;
|
951 |
|
|
}
|
952 |
|
|
|
953 |
|
|
/* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
|
954 |
|
|
BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
|
955 |
|
|
arguments. */
|
956 |
|
|
|
957 |
|
|
tree
|
958 |
|
|
bind_template_template_parm (tree t, tree newargs)
|
959 |
|
|
{
|
960 |
|
|
tree decl = TYPE_NAME (t);
|
961 |
|
|
tree t2;
|
962 |
|
|
|
963 |
|
|
t2 = make_aggr_type (BOUND_TEMPLATE_TEMPLATE_PARM);
|
964 |
|
|
decl = build_decl (TYPE_DECL, DECL_NAME (decl), NULL_TREE);
|
965 |
|
|
|
966 |
|
|
/* These nodes have to be created to reflect new TYPE_DECL and template
|
967 |
|
|
arguments. */
|
968 |
|
|
TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
|
969 |
|
|
TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
|
970 |
|
|
TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
|
971 |
|
|
= tree_cons (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t),
|
972 |
|
|
newargs, NULL_TREE);
|
973 |
|
|
|
974 |
|
|
TREE_TYPE (decl) = t2;
|
975 |
|
|
TYPE_NAME (t2) = decl;
|
976 |
|
|
TYPE_STUB_DECL (t2) = decl;
|
977 |
|
|
TYPE_SIZE (t2) = 0;
|
978 |
|
|
|
979 |
|
|
return t2;
|
980 |
|
|
}
|
981 |
|
|
|
982 |
|
|
/* Called from count_trees via walk_tree. */
|
983 |
|
|
|
984 |
|
|
static tree
|
985 |
|
|
count_trees_r (tree *tp, int *walk_subtrees, void *data)
|
986 |
|
|
{
|
987 |
|
|
++*((int *) data);
|
988 |
|
|
|
989 |
|
|
if (TYPE_P (*tp))
|
990 |
|
|
*walk_subtrees = 0;
|
991 |
|
|
|
992 |
|
|
return NULL_TREE;
|
993 |
|
|
}
|
994 |
|
|
|
995 |
|
|
/* Debugging function for measuring the rough complexity of a tree
|
996 |
|
|
representation. */
|
997 |
|
|
|
998 |
|
|
int
|
999 |
|
|
count_trees (tree t)
|
1000 |
|
|
{
|
1001 |
|
|
int n_trees = 0;
|
1002 |
|
|
walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
|
1003 |
|
|
return n_trees;
|
1004 |
|
|
}
|
1005 |
|
|
|
1006 |
|
|
/* Called from verify_stmt_tree via walk_tree. */
|
1007 |
|
|
|
1008 |
|
|
static tree
|
1009 |
|
|
verify_stmt_tree_r (tree* tp,
|
1010 |
|
|
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
1011 |
|
|
void* data)
|
1012 |
|
|
{
|
1013 |
|
|
tree t = *tp;
|
1014 |
|
|
htab_t *statements = (htab_t *) data;
|
1015 |
|
|
void **slot;
|
1016 |
|
|
|
1017 |
|
|
if (!STATEMENT_CODE_P (TREE_CODE (t)))
|
1018 |
|
|
return NULL_TREE;
|
1019 |
|
|
|
1020 |
|
|
/* If this statement is already present in the hash table, then
|
1021 |
|
|
there is a circularity in the statement tree. */
|
1022 |
|
|
gcc_assert (!htab_find (*statements, t));
|
1023 |
|
|
|
1024 |
|
|
slot = htab_find_slot (*statements, t, INSERT);
|
1025 |
|
|
*slot = t;
|
1026 |
|
|
|
1027 |
|
|
return NULL_TREE;
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
/* Debugging function to check that the statement T has not been
|
1031 |
|
|
corrupted. For now, this function simply checks that T contains no
|
1032 |
|
|
circularities. */
|
1033 |
|
|
|
1034 |
|
|
void
|
1035 |
|
|
verify_stmt_tree (tree t)
|
1036 |
|
|
{
|
1037 |
|
|
htab_t statements;
|
1038 |
|
|
statements = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
|
1039 |
|
|
walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
|
1040 |
|
|
htab_delete (statements);
|
1041 |
|
|
}
|
1042 |
|
|
|
1043 |
|
|
/* Called from find_tree via walk_tree. */
|
1044 |
|
|
|
1045 |
|
|
static tree
|
1046 |
|
|
find_tree_r (tree* tp,
|
1047 |
|
|
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
1048 |
|
|
void* data)
|
1049 |
|
|
{
|
1050 |
|
|
if (*tp == (tree) data)
|
1051 |
|
|
return (tree) data;
|
1052 |
|
|
|
1053 |
|
|
return NULL_TREE;
|
1054 |
|
|
}
|
1055 |
|
|
|
1056 |
|
|
/* Returns X if X appears in the tree structure rooted at T. */
|
1057 |
|
|
|
1058 |
|
|
tree
|
1059 |
|
|
find_tree (tree t, tree x)
|
1060 |
|
|
{
|
1061 |
|
|
return walk_tree_without_duplicates (&t, find_tree_r, x);
|
1062 |
|
|
}
|
1063 |
|
|
|
1064 |
|
|
/* Check if the type T depends on a type with no linkage and if so, return
|
1065 |
|
|
it. If RELAXED_P then do not consider a class type declared within
|
1066 |
|
|
a TREE_PUBLIC function to have no linkage. */
|
1067 |
|
|
|
1068 |
|
|
tree
|
1069 |
|
|
no_linkage_check (tree t, bool relaxed_p)
|
1070 |
|
|
{
|
1071 |
|
|
tree r;
|
1072 |
|
|
|
1073 |
|
|
/* There's no point in checking linkage on template functions; we
|
1074 |
|
|
can't know their complete types. */
|
1075 |
|
|
if (processing_template_decl)
|
1076 |
|
|
return NULL_TREE;
|
1077 |
|
|
|
1078 |
|
|
switch (TREE_CODE (t))
|
1079 |
|
|
{
|
1080 |
|
|
tree fn;
|
1081 |
|
|
|
1082 |
|
|
case RECORD_TYPE:
|
1083 |
|
|
if (TYPE_PTRMEMFUNC_P (t))
|
1084 |
|
|
goto ptrmem;
|
1085 |
|
|
/* Fall through. */
|
1086 |
|
|
case UNION_TYPE:
|
1087 |
|
|
if (!CLASS_TYPE_P (t))
|
1088 |
|
|
return NULL_TREE;
|
1089 |
|
|
/* Fall through. */
|
1090 |
|
|
case ENUMERAL_TYPE:
|
1091 |
|
|
if (TYPE_ANONYMOUS_P (t))
|
1092 |
|
|
return t;
|
1093 |
|
|
fn = decl_function_context (TYPE_MAIN_DECL (t));
|
1094 |
|
|
if (fn && (!relaxed_p || !TREE_PUBLIC (fn)))
|
1095 |
|
|
return t;
|
1096 |
|
|
return NULL_TREE;
|
1097 |
|
|
|
1098 |
|
|
case ARRAY_TYPE:
|
1099 |
|
|
case POINTER_TYPE:
|
1100 |
|
|
case REFERENCE_TYPE:
|
1101 |
|
|
return no_linkage_check (TREE_TYPE (t), relaxed_p);
|
1102 |
|
|
|
1103 |
|
|
case OFFSET_TYPE:
|
1104 |
|
|
ptrmem:
|
1105 |
|
|
r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
|
1106 |
|
|
relaxed_p);
|
1107 |
|
|
if (r)
|
1108 |
|
|
return r;
|
1109 |
|
|
return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
|
1110 |
|
|
|
1111 |
|
|
case METHOD_TYPE:
|
1112 |
|
|
r = no_linkage_check (TYPE_METHOD_BASETYPE (t), relaxed_p);
|
1113 |
|
|
if (r)
|
1114 |
|
|
return r;
|
1115 |
|
|
/* Fall through. */
|
1116 |
|
|
case FUNCTION_TYPE:
|
1117 |
|
|
{
|
1118 |
|
|
tree parm;
|
1119 |
|
|
for (parm = TYPE_ARG_TYPES (t);
|
1120 |
|
|
parm && parm != void_list_node;
|
1121 |
|
|
parm = TREE_CHAIN (parm))
|
1122 |
|
|
{
|
1123 |
|
|
r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
|
1124 |
|
|
if (r)
|
1125 |
|
|
return r;
|
1126 |
|
|
}
|
1127 |
|
|
return no_linkage_check (TREE_TYPE (t), relaxed_p);
|
1128 |
|
|
}
|
1129 |
|
|
|
1130 |
|
|
default:
|
1131 |
|
|
return NULL_TREE;
|
1132 |
|
|
}
|
1133 |
|
|
}
|
1134 |
|
|
|
1135 |
|
|
#ifdef GATHER_STATISTICS
|
1136 |
|
|
extern int depth_reached;
|
1137 |
|
|
#endif
|
1138 |
|
|
|
1139 |
|
|
void
|
1140 |
|
|
cxx_print_statistics (void)
|
1141 |
|
|
{
|
1142 |
|
|
print_search_statistics ();
|
1143 |
|
|
print_class_statistics ();
|
1144 |
|
|
#ifdef GATHER_STATISTICS
|
1145 |
|
|
fprintf (stderr, "maximum template instantiation depth reached: %d\n",
|
1146 |
|
|
depth_reached);
|
1147 |
|
|
#endif
|
1148 |
|
|
}
|
1149 |
|
|
|
1150 |
|
|
/* Return, as an INTEGER_CST node, the number of elements for TYPE
|
1151 |
|
|
(which is an ARRAY_TYPE). This counts only elements of the top
|
1152 |
|
|
array. */
|
1153 |
|
|
|
1154 |
|
|
tree
|
1155 |
|
|
array_type_nelts_top (tree type)
|
1156 |
|
|
{
|
1157 |
|
|
return fold_build2 (PLUS_EXPR, sizetype,
|
1158 |
|
|
array_type_nelts (type),
|
1159 |
|
|
integer_one_node);
|
1160 |
|
|
}
|
1161 |
|
|
|
1162 |
|
|
/* Return, as an INTEGER_CST node, the number of elements for TYPE
|
1163 |
|
|
(which is an ARRAY_TYPE). This one is a recursive count of all
|
1164 |
|
|
ARRAY_TYPEs that are clumped together. */
|
1165 |
|
|
|
1166 |
|
|
tree
|
1167 |
|
|
array_type_nelts_total (tree type)
|
1168 |
|
|
{
|
1169 |
|
|
tree sz = array_type_nelts_top (type);
|
1170 |
|
|
type = TREE_TYPE (type);
|
1171 |
|
|
while (TREE_CODE (type) == ARRAY_TYPE)
|
1172 |
|
|
{
|
1173 |
|
|
tree n = array_type_nelts_top (type);
|
1174 |
|
|
sz = fold_build2 (MULT_EXPR, sizetype, sz, n);
|
1175 |
|
|
type = TREE_TYPE (type);
|
1176 |
|
|
}
|
1177 |
|
|
return sz;
|
1178 |
|
|
}
|
1179 |
|
|
|
1180 |
|
|
/* Called from break_out_target_exprs via mapcar. */
|
1181 |
|
|
|
1182 |
|
|
static tree
|
1183 |
|
|
bot_manip (tree* tp, int* walk_subtrees, void* data)
|
1184 |
|
|
{
|
1185 |
|
|
splay_tree target_remap = ((splay_tree) data);
|
1186 |
|
|
tree t = *tp;
|
1187 |
|
|
|
1188 |
|
|
if (!TYPE_P (t) && TREE_CONSTANT (t))
|
1189 |
|
|
{
|
1190 |
|
|
/* There can't be any TARGET_EXPRs or their slot variables below
|
1191 |
|
|
this point. We used to check !TREE_SIDE_EFFECTS, but then we
|
1192 |
|
|
failed to copy an ADDR_EXPR of the slot VAR_DECL. */
|
1193 |
|
|
*walk_subtrees = 0;
|
1194 |
|
|
return NULL_TREE;
|
1195 |
|
|
}
|
1196 |
|
|
if (TREE_CODE (t) == TARGET_EXPR)
|
1197 |
|
|
{
|
1198 |
|
|
tree u;
|
1199 |
|
|
|
1200 |
|
|
if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
|
1201 |
|
|
{
|
1202 |
|
|
mark_used (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 1), 0), 0));
|
1203 |
|
|
u = build_cplus_new
|
1204 |
|
|
(TREE_TYPE (t), break_out_target_exprs (TREE_OPERAND (t, 1)));
|
1205 |
|
|
}
|
1206 |
|
|
else
|
1207 |
|
|
{
|
1208 |
|
|
u = build_target_expr_with_type
|
1209 |
|
|
(break_out_target_exprs (TREE_OPERAND (t, 1)), TREE_TYPE (t));
|
1210 |
|
|
}
|
1211 |
|
|
|
1212 |
|
|
/* Map the old variable to the new one. */
|
1213 |
|
|
splay_tree_insert (target_remap,
|
1214 |
|
|
(splay_tree_key) TREE_OPERAND (t, 0),
|
1215 |
|
|
(splay_tree_value) TREE_OPERAND (u, 0));
|
1216 |
|
|
|
1217 |
|
|
/* Replace the old expression with the new version. */
|
1218 |
|
|
*tp = u;
|
1219 |
|
|
/* We don't have to go below this point; the recursive call to
|
1220 |
|
|
break_out_target_exprs will have handled anything below this
|
1221 |
|
|
point. */
|
1222 |
|
|
*walk_subtrees = 0;
|
1223 |
|
|
return NULL_TREE;
|
1224 |
|
|
}
|
1225 |
|
|
else if (TREE_CODE (t) == CALL_EXPR)
|
1226 |
|
|
mark_used (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
|
1227 |
|
|
|
1228 |
|
|
/* Make a copy of this node. */
|
1229 |
|
|
return copy_tree_r (tp, walk_subtrees, NULL);
|
1230 |
|
|
}
|
1231 |
|
|
|
1232 |
|
|
/* Replace all remapped VAR_DECLs in T with their new equivalents.
|
1233 |
|
|
DATA is really a splay-tree mapping old variables to new
|
1234 |
|
|
variables. */
|
1235 |
|
|
|
1236 |
|
|
static tree
|
1237 |
|
|
bot_replace (tree* t,
|
1238 |
|
|
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
1239 |
|
|
void* data)
|
1240 |
|
|
{
|
1241 |
|
|
splay_tree target_remap = ((splay_tree) data);
|
1242 |
|
|
|
1243 |
|
|
if (TREE_CODE (*t) == VAR_DECL)
|
1244 |
|
|
{
|
1245 |
|
|
splay_tree_node n = splay_tree_lookup (target_remap,
|
1246 |
|
|
(splay_tree_key) *t);
|
1247 |
|
|
if (n)
|
1248 |
|
|
*t = (tree) n->value;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
return NULL_TREE;
|
1252 |
|
|
}
|
1253 |
|
|
|
1254 |
|
|
/* When we parse a default argument expression, we may create
|
1255 |
|
|
temporary variables via TARGET_EXPRs. When we actually use the
|
1256 |
|
|
default-argument expression, we make a copy of the expression, but
|
1257 |
|
|
we must replace the temporaries with appropriate local versions. */
|
1258 |
|
|
|
1259 |
|
|
tree
|
1260 |
|
|
break_out_target_exprs (tree t)
|
1261 |
|
|
{
|
1262 |
|
|
static int target_remap_count;
|
1263 |
|
|
static splay_tree target_remap;
|
1264 |
|
|
|
1265 |
|
|
if (!target_remap_count++)
|
1266 |
|
|
target_remap = splay_tree_new (splay_tree_compare_pointers,
|
1267 |
|
|
/*splay_tree_delete_key_fn=*/NULL,
|
1268 |
|
|
/*splay_tree_delete_value_fn=*/NULL);
|
1269 |
|
|
walk_tree (&t, bot_manip, target_remap, NULL);
|
1270 |
|
|
walk_tree (&t, bot_replace, target_remap, NULL);
|
1271 |
|
|
|
1272 |
|
|
if (!--target_remap_count)
|
1273 |
|
|
{
|
1274 |
|
|
splay_tree_delete (target_remap);
|
1275 |
|
|
target_remap = NULL;
|
1276 |
|
|
}
|
1277 |
|
|
|
1278 |
|
|
return t;
|
1279 |
|
|
}
|
1280 |
|
|
|
1281 |
|
|
/* Similar to `build_nt', but for template definitions of dependent
|
1282 |
|
|
expressions */
|
1283 |
|
|
|
1284 |
|
|
tree
|
1285 |
|
|
build_min_nt (enum tree_code code, ...)
|
1286 |
|
|
{
|
1287 |
|
|
tree t;
|
1288 |
|
|
int length;
|
1289 |
|
|
int i;
|
1290 |
|
|
va_list p;
|
1291 |
|
|
|
1292 |
|
|
va_start (p, code);
|
1293 |
|
|
|
1294 |
|
|
t = make_node (code);
|
1295 |
|
|
length = TREE_CODE_LENGTH (code);
|
1296 |
|
|
|
1297 |
|
|
for (i = 0; i < length; i++)
|
1298 |
|
|
{
|
1299 |
|
|
tree x = va_arg (p, tree);
|
1300 |
|
|
TREE_OPERAND (t, i) = x;
|
1301 |
|
|
}
|
1302 |
|
|
|
1303 |
|
|
va_end (p);
|
1304 |
|
|
return t;
|
1305 |
|
|
}
|
1306 |
|
|
|
1307 |
|
|
/* Similar to `build', but for template definitions. */
|
1308 |
|
|
|
1309 |
|
|
tree
|
1310 |
|
|
build_min (enum tree_code code, tree tt, ...)
|
1311 |
|
|
{
|
1312 |
|
|
tree t;
|
1313 |
|
|
int length;
|
1314 |
|
|
int i;
|
1315 |
|
|
va_list p;
|
1316 |
|
|
|
1317 |
|
|
va_start (p, tt);
|
1318 |
|
|
|
1319 |
|
|
t = make_node (code);
|
1320 |
|
|
length = TREE_CODE_LENGTH (code);
|
1321 |
|
|
TREE_TYPE (t) = tt;
|
1322 |
|
|
|
1323 |
|
|
for (i = 0; i < length; i++)
|
1324 |
|
|
{
|
1325 |
|
|
tree x = va_arg (p, tree);
|
1326 |
|
|
TREE_OPERAND (t, i) = x;
|
1327 |
|
|
if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
|
1328 |
|
|
TREE_SIDE_EFFECTS (t) = 1;
|
1329 |
|
|
}
|
1330 |
|
|
|
1331 |
|
|
va_end (p);
|
1332 |
|
|
return t;
|
1333 |
|
|
}
|
1334 |
|
|
|
1335 |
|
|
/* Similar to `build', but for template definitions of non-dependent
|
1336 |
|
|
expressions. NON_DEP is the non-dependent expression that has been
|
1337 |
|
|
built. */
|
1338 |
|
|
|
1339 |
|
|
tree
|
1340 |
|
|
build_min_non_dep (enum tree_code code, tree non_dep, ...)
|
1341 |
|
|
{
|
1342 |
|
|
tree t;
|
1343 |
|
|
int length;
|
1344 |
|
|
int i;
|
1345 |
|
|
va_list p;
|
1346 |
|
|
|
1347 |
|
|
va_start (p, non_dep);
|
1348 |
|
|
|
1349 |
|
|
t = make_node (code);
|
1350 |
|
|
length = TREE_CODE_LENGTH (code);
|
1351 |
|
|
TREE_TYPE (t) = TREE_TYPE (non_dep);
|
1352 |
|
|
TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
|
1353 |
|
|
|
1354 |
|
|
for (i = 0; i < length; i++)
|
1355 |
|
|
{
|
1356 |
|
|
tree x = va_arg (p, tree);
|
1357 |
|
|
TREE_OPERAND (t, i) = x;
|
1358 |
|
|
}
|
1359 |
|
|
|
1360 |
|
|
if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
|
1361 |
|
|
/* This should not be considered a COMPOUND_EXPR, because it
|
1362 |
|
|
resolves to an overload. */
|
1363 |
|
|
COMPOUND_EXPR_OVERLOADED (t) = 1;
|
1364 |
|
|
|
1365 |
|
|
va_end (p);
|
1366 |
|
|
return t;
|
1367 |
|
|
}
|
1368 |
|
|
|
1369 |
|
|
tree
|
1370 |
|
|
get_type_decl (tree t)
|
1371 |
|
|
{
|
1372 |
|
|
if (TREE_CODE (t) == TYPE_DECL)
|
1373 |
|
|
return t;
|
1374 |
|
|
if (TYPE_P (t))
|
1375 |
|
|
return TYPE_STUB_DECL (t);
|
1376 |
|
|
gcc_assert (t == error_mark_node);
|
1377 |
|
|
return t;
|
1378 |
|
|
}
|
1379 |
|
|
|
1380 |
|
|
/* Returns the namespace that contains DECL, whether directly or
|
1381 |
|
|
indirectly. */
|
1382 |
|
|
|
1383 |
|
|
tree
|
1384 |
|
|
decl_namespace_context (tree decl)
|
1385 |
|
|
{
|
1386 |
|
|
while (1)
|
1387 |
|
|
{
|
1388 |
|
|
if (TREE_CODE (decl) == NAMESPACE_DECL)
|
1389 |
|
|
return decl;
|
1390 |
|
|
else if (TYPE_P (decl))
|
1391 |
|
|
decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
|
1392 |
|
|
else
|
1393 |
|
|
decl = CP_DECL_CONTEXT (decl);
|
1394 |
|
|
}
|
1395 |
|
|
}
|
1396 |
|
|
|
1397 |
|
|
/* Return truthvalue of whether T1 is the same tree structure as T2.
|
1398 |
|
|
Return 1 if they are the same. Return 0 if they are different. */
|
1399 |
|
|
|
1400 |
|
|
bool
|
1401 |
|
|
cp_tree_equal (tree t1, tree t2)
|
1402 |
|
|
{
|
1403 |
|
|
enum tree_code code1, code2;
|
1404 |
|
|
|
1405 |
|
|
if (t1 == t2)
|
1406 |
|
|
return true;
|
1407 |
|
|
if (!t1 || !t2)
|
1408 |
|
|
return false;
|
1409 |
|
|
|
1410 |
|
|
for (code1 = TREE_CODE (t1);
|
1411 |
|
|
code1 == NOP_EXPR || code1 == CONVERT_EXPR
|
1412 |
|
|
|| code1 == NON_LVALUE_EXPR;
|
1413 |
|
|
code1 = TREE_CODE (t1))
|
1414 |
|
|
t1 = TREE_OPERAND (t1, 0);
|
1415 |
|
|
for (code2 = TREE_CODE (t2);
|
1416 |
|
|
code2 == NOP_EXPR || code2 == CONVERT_EXPR
|
1417 |
|
|
|| code1 == NON_LVALUE_EXPR;
|
1418 |
|
|
code2 = TREE_CODE (t2))
|
1419 |
|
|
t2 = TREE_OPERAND (t2, 0);
|
1420 |
|
|
|
1421 |
|
|
/* They might have become equal now. */
|
1422 |
|
|
if (t1 == t2)
|
1423 |
|
|
return true;
|
1424 |
|
|
|
1425 |
|
|
if (code1 != code2)
|
1426 |
|
|
return false;
|
1427 |
|
|
|
1428 |
|
|
switch (code1)
|
1429 |
|
|
{
|
1430 |
|
|
case INTEGER_CST:
|
1431 |
|
|
return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
|
1432 |
|
|
&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
|
1433 |
|
|
|
1434 |
|
|
case REAL_CST:
|
1435 |
|
|
return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
|
1436 |
|
|
|
1437 |
|
|
case STRING_CST:
|
1438 |
|
|
return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
|
1439 |
|
|
&& !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
|
1440 |
|
|
TREE_STRING_LENGTH (t1));
|
1441 |
|
|
|
1442 |
|
|
case CONSTRUCTOR:
|
1443 |
|
|
/* We need to do this when determining whether or not two
|
1444 |
|
|
non-type pointer to member function template arguments
|
1445 |
|
|
are the same. */
|
1446 |
|
|
if (!(same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
|
1447 |
|
|
/* The first operand is RTL. */
|
1448 |
|
|
&& TREE_OPERAND (t1, 0) == TREE_OPERAND (t2, 0)))
|
1449 |
|
|
return false;
|
1450 |
|
|
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
1451 |
|
|
|
1452 |
|
|
case TREE_LIST:
|
1453 |
|
|
if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
|
1454 |
|
|
return false;
|
1455 |
|
|
if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
|
1456 |
|
|
return false;
|
1457 |
|
|
return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
|
1458 |
|
|
|
1459 |
|
|
case SAVE_EXPR:
|
1460 |
|
|
return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
1461 |
|
|
|
1462 |
|
|
case CALL_EXPR:
|
1463 |
|
|
if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
|
1464 |
|
|
return false;
|
1465 |
|
|
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
1466 |
|
|
|
1467 |
|
|
case TARGET_EXPR:
|
1468 |
|
|
{
|
1469 |
|
|
tree o1 = TREE_OPERAND (t1, 0);
|
1470 |
|
|
tree o2 = TREE_OPERAND (t2, 0);
|
1471 |
|
|
|
1472 |
|
|
/* Special case: if either target is an unallocated VAR_DECL,
|
1473 |
|
|
it means that it's going to be unified with whatever the
|
1474 |
|
|
TARGET_EXPR is really supposed to initialize, so treat it
|
1475 |
|
|
as being equivalent to anything. */
|
1476 |
|
|
if (TREE_CODE (o1) == VAR_DECL && DECL_NAME (o1) == NULL_TREE
|
1477 |
|
|
&& !DECL_RTL_SET_P (o1))
|
1478 |
|
|
/*Nop*/;
|
1479 |
|
|
else if (TREE_CODE (o2) == VAR_DECL && DECL_NAME (o2) == NULL_TREE
|
1480 |
|
|
&& !DECL_RTL_SET_P (o2))
|
1481 |
|
|
/*Nop*/;
|
1482 |
|
|
else if (!cp_tree_equal (o1, o2))
|
1483 |
|
|
return false;
|
1484 |
|
|
|
1485 |
|
|
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
1486 |
|
|
}
|
1487 |
|
|
|
1488 |
|
|
case WITH_CLEANUP_EXPR:
|
1489 |
|
|
if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
|
1490 |
|
|
return false;
|
1491 |
|
|
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
|
1492 |
|
|
|
1493 |
|
|
case COMPONENT_REF:
|
1494 |
|
|
if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
|
1495 |
|
|
return false;
|
1496 |
|
|
return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
1497 |
|
|
|
1498 |
|
|
case VAR_DECL:
|
1499 |
|
|
case PARM_DECL:
|
1500 |
|
|
case CONST_DECL:
|
1501 |
|
|
case FUNCTION_DECL:
|
1502 |
|
|
case TEMPLATE_DECL:
|
1503 |
|
|
case IDENTIFIER_NODE:
|
1504 |
|
|
case SSA_NAME:
|
1505 |
|
|
return false;
|
1506 |
|
|
|
1507 |
|
|
case BASELINK:
|
1508 |
|
|
return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
|
1509 |
|
|
&& BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
|
1510 |
|
|
&& cp_tree_equal (BASELINK_FUNCTIONS (t1),
|
1511 |
|
|
BASELINK_FUNCTIONS (t2)));
|
1512 |
|
|
|
1513 |
|
|
case TEMPLATE_PARM_INDEX:
|
1514 |
|
|
return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
|
1515 |
|
|
&& TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
|
1516 |
|
|
&& same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
|
1517 |
|
|
TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
|
1518 |
|
|
|
1519 |
|
|
case TEMPLATE_ID_EXPR:
|
1520 |
|
|
{
|
1521 |
|
|
unsigned ix;
|
1522 |
|
|
tree vec1, vec2;
|
1523 |
|
|
|
1524 |
|
|
if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
|
1525 |
|
|
return false;
|
1526 |
|
|
vec1 = TREE_OPERAND (t1, 1);
|
1527 |
|
|
vec2 = TREE_OPERAND (t2, 1);
|
1528 |
|
|
|
1529 |
|
|
if (!vec1 || !vec2)
|
1530 |
|
|
return !vec1 && !vec2;
|
1531 |
|
|
|
1532 |
|
|
if (TREE_VEC_LENGTH (vec1) != TREE_VEC_LENGTH (vec2))
|
1533 |
|
|
return false;
|
1534 |
|
|
|
1535 |
|
|
for (ix = TREE_VEC_LENGTH (vec1); ix--;)
|
1536 |
|
|
if (!cp_tree_equal (TREE_VEC_ELT (vec1, ix),
|
1537 |
|
|
TREE_VEC_ELT (vec2, ix)))
|
1538 |
|
|
return false;
|
1539 |
|
|
|
1540 |
|
|
return true;
|
1541 |
|
|
}
|
1542 |
|
|
|
1543 |
|
|
case SIZEOF_EXPR:
|
1544 |
|
|
case ALIGNOF_EXPR:
|
1545 |
|
|
{
|
1546 |
|
|
tree o1 = TREE_OPERAND (t1, 0);
|
1547 |
|
|
tree o2 = TREE_OPERAND (t2, 0);
|
1548 |
|
|
|
1549 |
|
|
if (TREE_CODE (o1) != TREE_CODE (o2))
|
1550 |
|
|
return false;
|
1551 |
|
|
if (TYPE_P (o1))
|
1552 |
|
|
return same_type_p (o1, o2);
|
1553 |
|
|
else
|
1554 |
|
|
return cp_tree_equal (o1, o2);
|
1555 |
|
|
}
|
1556 |
|
|
|
1557 |
|
|
case PTRMEM_CST:
|
1558 |
|
|
/* Two pointer-to-members are the same if they point to the same
|
1559 |
|
|
field or function in the same class. */
|
1560 |
|
|
if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
|
1561 |
|
|
return false;
|
1562 |
|
|
|
1563 |
|
|
return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
|
1564 |
|
|
|
1565 |
|
|
case OVERLOAD:
|
1566 |
|
|
if (OVL_FUNCTION (t1) != OVL_FUNCTION (t2))
|
1567 |
|
|
return false;
|
1568 |
|
|
return cp_tree_equal (OVL_CHAIN (t1), OVL_CHAIN (t2));
|
1569 |
|
|
|
1570 |
|
|
default:
|
1571 |
|
|
break;
|
1572 |
|
|
}
|
1573 |
|
|
|
1574 |
|
|
switch (TREE_CODE_CLASS (code1))
|
1575 |
|
|
{
|
1576 |
|
|
case tcc_unary:
|
1577 |
|
|
case tcc_binary:
|
1578 |
|
|
case tcc_comparison:
|
1579 |
|
|
case tcc_expression:
|
1580 |
|
|
case tcc_reference:
|
1581 |
|
|
case tcc_statement:
|
1582 |
|
|
{
|
1583 |
|
|
int i;
|
1584 |
|
|
|
1585 |
|
|
for (i = 0; i < TREE_CODE_LENGTH (code1); ++i)
|
1586 |
|
|
if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
|
1587 |
|
|
return false;
|
1588 |
|
|
|
1589 |
|
|
return true;
|
1590 |
|
|
}
|
1591 |
|
|
|
1592 |
|
|
case tcc_type:
|
1593 |
|
|
return same_type_p (t1, t2);
|
1594 |
|
|
default:
|
1595 |
|
|
gcc_unreachable ();
|
1596 |
|
|
}
|
1597 |
|
|
/* We can get here with --disable-checking. */
|
1598 |
|
|
return false;
|
1599 |
|
|
}
|
1600 |
|
|
|
1601 |
|
|
/* The type of ARG when used as an lvalue. */
|
1602 |
|
|
|
1603 |
|
|
tree
|
1604 |
|
|
lvalue_type (tree arg)
|
1605 |
|
|
{
|
1606 |
|
|
tree type = TREE_TYPE (arg);
|
1607 |
|
|
return type;
|
1608 |
|
|
}
|
1609 |
|
|
|
1610 |
|
|
/* The type of ARG for printing error messages; denote lvalues with
|
1611 |
|
|
reference types. */
|
1612 |
|
|
|
1613 |
|
|
tree
|
1614 |
|
|
error_type (tree arg)
|
1615 |
|
|
{
|
1616 |
|
|
tree type = TREE_TYPE (arg);
|
1617 |
|
|
|
1618 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
1619 |
|
|
;
|
1620 |
|
|
else if (TREE_CODE (type) == ERROR_MARK)
|
1621 |
|
|
;
|
1622 |
|
|
else if (real_lvalue_p (arg))
|
1623 |
|
|
type = build_reference_type (lvalue_type (arg));
|
1624 |
|
|
else if (IS_AGGR_TYPE (type))
|
1625 |
|
|
type = lvalue_type (arg);
|
1626 |
|
|
|
1627 |
|
|
return type;
|
1628 |
|
|
}
|
1629 |
|
|
|
1630 |
|
|
/* Does FUNCTION use a variable-length argument list? */
|
1631 |
|
|
|
1632 |
|
|
int
|
1633 |
|
|
varargs_function_p (tree function)
|
1634 |
|
|
{
|
1635 |
|
|
tree parm = TYPE_ARG_TYPES (TREE_TYPE (function));
|
1636 |
|
|
for (; parm; parm = TREE_CHAIN (parm))
|
1637 |
|
|
if (TREE_VALUE (parm) == void_type_node)
|
1638 |
|
|
return 0;
|
1639 |
|
|
return 1;
|
1640 |
|
|
}
|
1641 |
|
|
|
1642 |
|
|
/* Returns 1 if decl is a member of a class. */
|
1643 |
|
|
|
1644 |
|
|
int
|
1645 |
|
|
member_p (tree decl)
|
1646 |
|
|
{
|
1647 |
|
|
const tree ctx = DECL_CONTEXT (decl);
|
1648 |
|
|
return (ctx && TYPE_P (ctx));
|
1649 |
|
|
}
|
1650 |
|
|
|
1651 |
|
|
/* Create a placeholder for member access where we don't actually have an
|
1652 |
|
|
object that the access is against. */
|
1653 |
|
|
|
1654 |
|
|
tree
|
1655 |
|
|
build_dummy_object (tree type)
|
1656 |
|
|
{
|
1657 |
|
|
tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node);
|
1658 |
|
|
return build_indirect_ref (decl, NULL);
|
1659 |
|
|
}
|
1660 |
|
|
|
1661 |
|
|
/* We've gotten a reference to a member of TYPE. Return *this if appropriate,
|
1662 |
|
|
or a dummy object otherwise. If BINFOP is non-0, it is filled with the
|
1663 |
|
|
binfo path from current_class_type to TYPE, or 0. */
|
1664 |
|
|
|
1665 |
|
|
tree
|
1666 |
|
|
maybe_dummy_object (tree type, tree* binfop)
|
1667 |
|
|
{
|
1668 |
|
|
tree decl, context;
|
1669 |
|
|
tree binfo;
|
1670 |
|
|
|
1671 |
|
|
if (current_class_type
|
1672 |
|
|
&& (binfo = lookup_base (current_class_type, type,
|
1673 |
|
|
ba_unique | ba_quiet, NULL)))
|
1674 |
|
|
context = current_class_type;
|
1675 |
|
|
else
|
1676 |
|
|
{
|
1677 |
|
|
/* Reference from a nested class member function. */
|
1678 |
|
|
context = type;
|
1679 |
|
|
binfo = TYPE_BINFO (type);
|
1680 |
|
|
}
|
1681 |
|
|
|
1682 |
|
|
if (binfop)
|
1683 |
|
|
*binfop = binfo;
|
1684 |
|
|
|
1685 |
|
|
if (current_class_ref && context == current_class_type
|
1686 |
|
|
/* Kludge: Make sure that current_class_type is actually
|
1687 |
|
|
correct. It might not be if we're in the middle of
|
1688 |
|
|
tsubst_default_argument. */
|
1689 |
|
|
&& same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (current_class_ref)),
|
1690 |
|
|
current_class_type))
|
1691 |
|
|
decl = current_class_ref;
|
1692 |
|
|
else
|
1693 |
|
|
decl = build_dummy_object (context);
|
1694 |
|
|
|
1695 |
|
|
return decl;
|
1696 |
|
|
}
|
1697 |
|
|
|
1698 |
|
|
/* Returns 1 if OB is a placeholder object, or a pointer to one. */
|
1699 |
|
|
|
1700 |
|
|
int
|
1701 |
|
|
is_dummy_object (tree ob)
|
1702 |
|
|
{
|
1703 |
|
|
if (TREE_CODE (ob) == INDIRECT_REF)
|
1704 |
|
|
ob = TREE_OPERAND (ob, 0);
|
1705 |
|
|
return (TREE_CODE (ob) == NOP_EXPR
|
1706 |
|
|
&& TREE_OPERAND (ob, 0) == void_zero_node);
|
1707 |
|
|
}
|
1708 |
|
|
|
1709 |
|
|
/* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
|
1710 |
|
|
|
1711 |
|
|
int
|
1712 |
|
|
pod_type_p (tree t)
|
1713 |
|
|
{
|
1714 |
|
|
t = strip_array_types (t);
|
1715 |
|
|
|
1716 |
|
|
if (t == error_mark_node)
|
1717 |
|
|
return 1;
|
1718 |
|
|
if (INTEGRAL_TYPE_P (t))
|
1719 |
|
|
return 1; /* integral, character or enumeral type */
|
1720 |
|
|
if (FLOAT_TYPE_P (t))
|
1721 |
|
|
return 1;
|
1722 |
|
|
if (TYPE_PTR_P (t))
|
1723 |
|
|
return 1; /* pointer to non-member */
|
1724 |
|
|
if (TYPE_PTR_TO_MEMBER_P (t))
|
1725 |
|
|
return 1; /* pointer to member */
|
1726 |
|
|
|
1727 |
|
|
if (TREE_CODE (t) == VECTOR_TYPE)
|
1728 |
|
|
return 1; /* vectors are (small) arrays of scalars */
|
1729 |
|
|
|
1730 |
|
|
if (! CLASS_TYPE_P (t))
|
1731 |
|
|
return 0; /* other non-class type (reference or function) */
|
1732 |
|
|
if (CLASSTYPE_NON_POD_P (t))
|
1733 |
|
|
return 0;
|
1734 |
|
|
return 1;
|
1735 |
|
|
}
|
1736 |
|
|
|
1737 |
|
|
/* Returns 1 iff zero initialization of type T means actually storing
|
1738 |
|
|
zeros in it. */
|
1739 |
|
|
|
1740 |
|
|
int
|
1741 |
|
|
zero_init_p (tree t)
|
1742 |
|
|
{
|
1743 |
|
|
t = strip_array_types (t);
|
1744 |
|
|
|
1745 |
|
|
if (t == error_mark_node)
|
1746 |
|
|
return 1;
|
1747 |
|
|
|
1748 |
|
|
/* NULL pointers to data members are initialized with -1. */
|
1749 |
|
|
if (TYPE_PTRMEM_P (t))
|
1750 |
|
|
return 0;
|
1751 |
|
|
|
1752 |
|
|
/* Classes that contain types that can't be zero-initialized, cannot
|
1753 |
|
|
be zero-initialized themselves. */
|
1754 |
|
|
if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
|
1755 |
|
|
return 0;
|
1756 |
|
|
|
1757 |
|
|
return 1;
|
1758 |
|
|
}
|
1759 |
|
|
|
1760 |
|
|
/* Table of valid C++ attributes. */
|
1761 |
|
|
const struct attribute_spec cxx_attribute_table[] =
|
1762 |
|
|
{
|
1763 |
|
|
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
|
1764 |
|
|
{ "java_interface", 0, 0, false, false, false, handle_java_interface_attribute },
|
1765 |
|
|
{ "com_interface", 0, 0, false, false, false, handle_com_interface_attribute },
|
1766 |
|
|
{ "init_priority", 1, 1, true, false, false, handle_init_priority_attribute },
|
1767 |
|
|
{ NULL, 0, 0, false, false, false, NULL }
|
1768 |
|
|
};
|
1769 |
|
|
|
1770 |
|
|
/* Handle a "java_interface" attribute; arguments as in
|
1771 |
|
|
struct attribute_spec.handler. */
|
1772 |
|
|
static tree
|
1773 |
|
|
handle_java_interface_attribute (tree* node,
|
1774 |
|
|
tree name,
|
1775 |
|
|
tree args ATTRIBUTE_UNUSED ,
|
1776 |
|
|
int flags,
|
1777 |
|
|
bool* no_add_attrs)
|
1778 |
|
|
{
|
1779 |
|
|
if (DECL_P (*node)
|
1780 |
|
|
|| !CLASS_TYPE_P (*node)
|
1781 |
|
|
|| !TYPE_FOR_JAVA (*node))
|
1782 |
|
|
{
|
1783 |
|
|
error ("%qE attribute can only be applied to Java class definitions",
|
1784 |
|
|
name);
|
1785 |
|
|
*no_add_attrs = true;
|
1786 |
|
|
return NULL_TREE;
|
1787 |
|
|
}
|
1788 |
|
|
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
1789 |
|
|
*node = build_variant_type_copy (*node);
|
1790 |
|
|
TYPE_JAVA_INTERFACE (*node) = 1;
|
1791 |
|
|
|
1792 |
|
|
return NULL_TREE;
|
1793 |
|
|
}
|
1794 |
|
|
|
1795 |
|
|
/* Handle a "com_interface" attribute; arguments as in
|
1796 |
|
|
struct attribute_spec.handler. */
|
1797 |
|
|
static tree
|
1798 |
|
|
handle_com_interface_attribute (tree* node,
|
1799 |
|
|
tree name,
|
1800 |
|
|
tree args ATTRIBUTE_UNUSED ,
|
1801 |
|
|
int flags ATTRIBUTE_UNUSED ,
|
1802 |
|
|
bool* no_add_attrs)
|
1803 |
|
|
{
|
1804 |
|
|
static int warned;
|
1805 |
|
|
|
1806 |
|
|
*no_add_attrs = true;
|
1807 |
|
|
|
1808 |
|
|
if (DECL_P (*node)
|
1809 |
|
|
|| !CLASS_TYPE_P (*node)
|
1810 |
|
|
|| *node != TYPE_MAIN_VARIANT (*node))
|
1811 |
|
|
{
|
1812 |
|
|
warning (OPT_Wattributes, "%qE attribute can only be applied "
|
1813 |
|
|
"to class definitions", name);
|
1814 |
|
|
return NULL_TREE;
|
1815 |
|
|
}
|
1816 |
|
|
|
1817 |
|
|
if (!warned++)
|
1818 |
|
|
warning (0, "%qE is obsolete; g++ vtables are now COM-compatible by default",
|
1819 |
|
|
name);
|
1820 |
|
|
|
1821 |
|
|
return NULL_TREE;
|
1822 |
|
|
}
|
1823 |
|
|
|
1824 |
|
|
/* Handle an "init_priority" attribute; arguments as in
|
1825 |
|
|
struct attribute_spec.handler. */
|
1826 |
|
|
static tree
|
1827 |
|
|
handle_init_priority_attribute (tree* node,
|
1828 |
|
|
tree name,
|
1829 |
|
|
tree args,
|
1830 |
|
|
int flags ATTRIBUTE_UNUSED ,
|
1831 |
|
|
bool* no_add_attrs)
|
1832 |
|
|
{
|
1833 |
|
|
tree initp_expr = TREE_VALUE (args);
|
1834 |
|
|
tree decl = *node;
|
1835 |
|
|
tree type = TREE_TYPE (decl);
|
1836 |
|
|
int pri;
|
1837 |
|
|
|
1838 |
|
|
STRIP_NOPS (initp_expr);
|
1839 |
|
|
|
1840 |
|
|
if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
|
1841 |
|
|
{
|
1842 |
|
|
error ("requested init_priority is not an integer constant");
|
1843 |
|
|
*no_add_attrs = true;
|
1844 |
|
|
return NULL_TREE;
|
1845 |
|
|
}
|
1846 |
|
|
|
1847 |
|
|
pri = TREE_INT_CST_LOW (initp_expr);
|
1848 |
|
|
|
1849 |
|
|
type = strip_array_types (type);
|
1850 |
|
|
|
1851 |
|
|
if (decl == NULL_TREE
|
1852 |
|
|
|| TREE_CODE (decl) != VAR_DECL
|
1853 |
|
|
|| !TREE_STATIC (decl)
|
1854 |
|
|
|| DECL_EXTERNAL (decl)
|
1855 |
|
|
|| (TREE_CODE (type) != RECORD_TYPE
|
1856 |
|
|
&& TREE_CODE (type) != UNION_TYPE)
|
1857 |
|
|
/* Static objects in functions are initialized the
|
1858 |
|
|
first time control passes through that
|
1859 |
|
|
function. This is not precise enough to pin down an
|
1860 |
|
|
init_priority value, so don't allow it. */
|
1861 |
|
|
|| current_function_decl)
|
1862 |
|
|
{
|
1863 |
|
|
error ("can only use %qE attribute on file-scope definitions "
|
1864 |
|
|
"of objects of class type", name);
|
1865 |
|
|
*no_add_attrs = true;
|
1866 |
|
|
return NULL_TREE;
|
1867 |
|
|
}
|
1868 |
|
|
|
1869 |
|
|
if (pri > MAX_INIT_PRIORITY || pri <= 0)
|
1870 |
|
|
{
|
1871 |
|
|
error ("requested init_priority is out of range");
|
1872 |
|
|
*no_add_attrs = true;
|
1873 |
|
|
return NULL_TREE;
|
1874 |
|
|
}
|
1875 |
|
|
|
1876 |
|
|
/* Check for init_priorities that are reserved for
|
1877 |
|
|
language and runtime support implementations.*/
|
1878 |
|
|
if (pri <= MAX_RESERVED_INIT_PRIORITY)
|
1879 |
|
|
{
|
1880 |
|
|
warning
|
1881 |
|
|
(0, "requested init_priority is reserved for internal use");
|
1882 |
|
|
}
|
1883 |
|
|
|
1884 |
|
|
if (SUPPORTS_INIT_PRIORITY)
|
1885 |
|
|
{
|
1886 |
|
|
SET_DECL_INIT_PRIORITY (decl, pri);
|
1887 |
|
|
DECL_HAS_INIT_PRIORITY_P (decl) = 1;
|
1888 |
|
|
return NULL_TREE;
|
1889 |
|
|
}
|
1890 |
|
|
else
|
1891 |
|
|
{
|
1892 |
|
|
error ("%qE attribute is not supported on this platform", name);
|
1893 |
|
|
*no_add_attrs = true;
|
1894 |
|
|
return NULL_TREE;
|
1895 |
|
|
}
|
1896 |
|
|
}
|
1897 |
|
|
|
1898 |
|
|
/* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
|
1899 |
|
|
thing pointed to by the constant. */
|
1900 |
|
|
|
1901 |
|
|
tree
|
1902 |
|
|
make_ptrmem_cst (tree type, tree member)
|
1903 |
|
|
{
|
1904 |
|
|
tree ptrmem_cst = make_node (PTRMEM_CST);
|
1905 |
|
|
TREE_TYPE (ptrmem_cst) = type;
|
1906 |
|
|
PTRMEM_CST_MEMBER (ptrmem_cst) = member;
|
1907 |
|
|
return ptrmem_cst;
|
1908 |
|
|
}
|
1909 |
|
|
|
1910 |
|
|
/* Build a variant of TYPE that has the indicated ATTRIBUTES. May
|
1911 |
|
|
return an existing type of an appropriate type already exists. */
|
1912 |
|
|
|
1913 |
|
|
tree
|
1914 |
|
|
cp_build_type_attribute_variant (tree type, tree attributes)
|
1915 |
|
|
{
|
1916 |
|
|
tree new_type;
|
1917 |
|
|
|
1918 |
|
|
new_type = build_type_attribute_variant (type, attributes);
|
1919 |
|
|
if (TREE_CODE (new_type) == FUNCTION_TYPE
|
1920 |
|
|
&& (TYPE_RAISES_EXCEPTIONS (new_type)
|
1921 |
|
|
!= TYPE_RAISES_EXCEPTIONS (type)))
|
1922 |
|
|
new_type = build_exception_variant (new_type,
|
1923 |
|
|
TYPE_RAISES_EXCEPTIONS (type));
|
1924 |
|
|
return new_type;
|
1925 |
|
|
}
|
1926 |
|
|
|
1927 |
|
|
/* Apply FUNC to all language-specific sub-trees of TP in a pre-order
|
1928 |
|
|
traversal. Called from walk_tree. */
|
1929 |
|
|
|
1930 |
|
|
tree
|
1931 |
|
|
cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
|
1932 |
|
|
void *data, struct pointer_set_t *pset)
|
1933 |
|
|
{
|
1934 |
|
|
enum tree_code code = TREE_CODE (*tp);
|
1935 |
|
|
location_t save_locus;
|
1936 |
|
|
tree result;
|
1937 |
|
|
|
1938 |
|
|
#define WALK_SUBTREE(NODE) \
|
1939 |
|
|
do \
|
1940 |
|
|
{ \
|
1941 |
|
|
result = walk_tree (&(NODE), func, data, pset); \
|
1942 |
|
|
if (result) goto out; \
|
1943 |
|
|
} \
|
1944 |
|
|
while (0)
|
1945 |
|
|
|
1946 |
|
|
/* Set input_location here so we get the right instantiation context
|
1947 |
|
|
if we call instantiate_decl from inlinable_function_p. */
|
1948 |
|
|
save_locus = input_location;
|
1949 |
|
|
if (EXPR_HAS_LOCATION (*tp))
|
1950 |
|
|
input_location = EXPR_LOCATION (*tp);
|
1951 |
|
|
|
1952 |
|
|
/* Not one of the easy cases. We must explicitly go through the
|
1953 |
|
|
children. */
|
1954 |
|
|
result = NULL_TREE;
|
1955 |
|
|
switch (code)
|
1956 |
|
|
{
|
1957 |
|
|
case DEFAULT_ARG:
|
1958 |
|
|
case TEMPLATE_TEMPLATE_PARM:
|
1959 |
|
|
case BOUND_TEMPLATE_TEMPLATE_PARM:
|
1960 |
|
|
case UNBOUND_CLASS_TEMPLATE:
|
1961 |
|
|
case TEMPLATE_PARM_INDEX:
|
1962 |
|
|
case TEMPLATE_TYPE_PARM:
|
1963 |
|
|
case TYPENAME_TYPE:
|
1964 |
|
|
case TYPEOF_TYPE:
|
1965 |
|
|
case BASELINK:
|
1966 |
|
|
/* None of these have subtrees other than those already walked
|
1967 |
|
|
above. */
|
1968 |
|
|
*walk_subtrees_p = 0;
|
1969 |
|
|
break;
|
1970 |
|
|
|
1971 |
|
|
case TINST_LEVEL:
|
1972 |
|
|
WALK_SUBTREE (TINST_DECL (*tp));
|
1973 |
|
|
*walk_subtrees_p = 0;
|
1974 |
|
|
break;
|
1975 |
|
|
|
1976 |
|
|
case PTRMEM_CST:
|
1977 |
|
|
WALK_SUBTREE (TREE_TYPE (*tp));
|
1978 |
|
|
*walk_subtrees_p = 0;
|
1979 |
|
|
break;
|
1980 |
|
|
|
1981 |
|
|
case TREE_LIST:
|
1982 |
|
|
WALK_SUBTREE (TREE_PURPOSE (*tp));
|
1983 |
|
|
break;
|
1984 |
|
|
|
1985 |
|
|
case OVERLOAD:
|
1986 |
|
|
WALK_SUBTREE (OVL_FUNCTION (*tp));
|
1987 |
|
|
WALK_SUBTREE (OVL_CHAIN (*tp));
|
1988 |
|
|
*walk_subtrees_p = 0;
|
1989 |
|
|
break;
|
1990 |
|
|
|
1991 |
|
|
case RECORD_TYPE:
|
1992 |
|
|
if (TYPE_PTRMEMFUNC_P (*tp))
|
1993 |
|
|
WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp));
|
1994 |
|
|
break;
|
1995 |
|
|
|
1996 |
|
|
default:
|
1997 |
|
|
input_location = save_locus;
|
1998 |
|
|
return NULL_TREE;
|
1999 |
|
|
}
|
2000 |
|
|
|
2001 |
|
|
/* We didn't find what we were looking for. */
|
2002 |
|
|
out:
|
2003 |
|
|
input_location = save_locus;
|
2004 |
|
|
return result;
|
2005 |
|
|
|
2006 |
|
|
#undef WALK_SUBTREE
|
2007 |
|
|
}
|
2008 |
|
|
|
2009 |
|
|
/* Decide whether there are language-specific reasons to not inline a
|
2010 |
|
|
function as a tree. */
|
2011 |
|
|
|
2012 |
|
|
int
|
2013 |
|
|
cp_cannot_inline_tree_fn (tree* fnp)
|
2014 |
|
|
{
|
2015 |
|
|
tree fn = *fnp;
|
2016 |
|
|
|
2017 |
|
|
/* We can inline a template instantiation only if it's fully
|
2018 |
|
|
instantiated. */
|
2019 |
|
|
if (DECL_TEMPLATE_INFO (fn)
|
2020 |
|
|
&& TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
|
2021 |
|
|
{
|
2022 |
|
|
/* Don't instantiate functions that are not going to be
|
2023 |
|
|
inlined. */
|
2024 |
|
|
if (!DECL_INLINE (DECL_TEMPLATE_RESULT
|
2025 |
|
|
(template_for_substitution (fn))))
|
2026 |
|
|
return 1;
|
2027 |
|
|
|
2028 |
|
|
fn = *fnp = instantiate_decl (fn, /*defer_ok=*/0, /*undefined_ok=*/0);
|
2029 |
|
|
|
2030 |
|
|
if (TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
|
2031 |
|
|
return 1;
|
2032 |
|
|
}
|
2033 |
|
|
|
2034 |
|
|
if (flag_really_no_inline
|
2035 |
|
|
&& lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn)) == NULL)
|
2036 |
|
|
return 1;
|
2037 |
|
|
|
2038 |
|
|
/* Don't auto-inline anything that might not be bound within
|
2039 |
|
|
this unit of translation.
|
2040 |
|
|
Exclude comdat functions from this rule. While they can be bound
|
2041 |
|
|
to the other unit, they all must be the same. This is especially
|
2042 |
|
|
important so templates can inline. */
|
2043 |
|
|
if (!DECL_DECLARED_INLINE_P (fn) && !(*targetm.binds_local_p) (fn)
|
2044 |
|
|
&& !DECL_COMDAT (fn))
|
2045 |
|
|
{
|
2046 |
|
|
DECL_UNINLINABLE (fn) = 1;
|
2047 |
|
|
return 1;
|
2048 |
|
|
}
|
2049 |
|
|
|
2050 |
|
|
if (varargs_function_p (fn))
|
2051 |
|
|
{
|
2052 |
|
|
DECL_UNINLINABLE (fn) = 1;
|
2053 |
|
|
return 1;
|
2054 |
|
|
}
|
2055 |
|
|
|
2056 |
|
|
if (! function_attribute_inlinable_p (fn))
|
2057 |
|
|
{
|
2058 |
|
|
DECL_UNINLINABLE (fn) = 1;
|
2059 |
|
|
return 1;
|
2060 |
|
|
}
|
2061 |
|
|
|
2062 |
|
|
return 0;
|
2063 |
|
|
}
|
2064 |
|
|
|
2065 |
|
|
/* Add any pending functions other than the current function (already
|
2066 |
|
|
handled by the caller), that thus cannot be inlined, to FNS_P, then
|
2067 |
|
|
return the latest function added to the array, PREV_FN. */
|
2068 |
|
|
|
2069 |
|
|
tree
|
2070 |
|
|
cp_add_pending_fn_decls (void* fns_p, tree prev_fn)
|
2071 |
|
|
{
|
2072 |
|
|
varray_type *fnsp = (varray_type *)fns_p;
|
2073 |
|
|
struct saved_scope *s;
|
2074 |
|
|
|
2075 |
|
|
for (s = scope_chain; s; s = s->prev)
|
2076 |
|
|
if (s->function_decl && s->function_decl != prev_fn)
|
2077 |
|
|
{
|
2078 |
|
|
VARRAY_PUSH_TREE (*fnsp, s->function_decl);
|
2079 |
|
|
prev_fn = s->function_decl;
|
2080 |
|
|
}
|
2081 |
|
|
|
2082 |
|
|
return prev_fn;
|
2083 |
|
|
}
|
2084 |
|
|
|
2085 |
|
|
/* Determine whether VAR is a declaration of an automatic variable in
|
2086 |
|
|
function FN. */
|
2087 |
|
|
|
2088 |
|
|
int
|
2089 |
|
|
cp_auto_var_in_fn_p (tree var, tree fn)
|
2090 |
|
|
{
|
2091 |
|
|
return (DECL_P (var) && DECL_CONTEXT (var) == fn
|
2092 |
|
|
&& nonstatic_local_decl_p (var));
|
2093 |
|
|
}
|
2094 |
|
|
|
2095 |
|
|
/* Initialize tree.c. */
|
2096 |
|
|
|
2097 |
|
|
void
|
2098 |
|
|
init_tree (void)
|
2099 |
|
|
{
|
2100 |
|
|
list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL);
|
2101 |
|
|
}
|
2102 |
|
|
|
2103 |
|
|
/* Returns the kind of special function that DECL (a FUNCTION_DECL)
|
2104 |
|
|
is. Note that sfk_none is zero, so this function can be used as a
|
2105 |
|
|
predicate to test whether or not DECL is a special function. */
|
2106 |
|
|
|
2107 |
|
|
special_function_kind
|
2108 |
|
|
special_function_p (tree decl)
|
2109 |
|
|
{
|
2110 |
|
|
/* Rather than doing all this stuff with magic names, we should
|
2111 |
|
|
probably have a field of type `special_function_kind' in
|
2112 |
|
|
DECL_LANG_SPECIFIC. */
|
2113 |
|
|
if (DECL_COPY_CONSTRUCTOR_P (decl))
|
2114 |
|
|
return sfk_copy_constructor;
|
2115 |
|
|
if (DECL_CONSTRUCTOR_P (decl))
|
2116 |
|
|
return sfk_constructor;
|
2117 |
|
|
if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
|
2118 |
|
|
return sfk_assignment_operator;
|
2119 |
|
|
if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
|
2120 |
|
|
return sfk_destructor;
|
2121 |
|
|
if (DECL_COMPLETE_DESTRUCTOR_P (decl))
|
2122 |
|
|
return sfk_complete_destructor;
|
2123 |
|
|
if (DECL_BASE_DESTRUCTOR_P (decl))
|
2124 |
|
|
return sfk_base_destructor;
|
2125 |
|
|
if (DECL_DELETING_DESTRUCTOR_P (decl))
|
2126 |
|
|
return sfk_deleting_destructor;
|
2127 |
|
|
if (DECL_CONV_FN_P (decl))
|
2128 |
|
|
return sfk_conversion;
|
2129 |
|
|
|
2130 |
|
|
return sfk_none;
|
2131 |
|
|
}
|
2132 |
|
|
|
2133 |
|
|
/* Returns nonzero if TYPE is a character type, including wchar_t. */
|
2134 |
|
|
|
2135 |
|
|
int
|
2136 |
|
|
char_type_p (tree type)
|
2137 |
|
|
{
|
2138 |
|
|
return (same_type_p (type, char_type_node)
|
2139 |
|
|
|| same_type_p (type, unsigned_char_type_node)
|
2140 |
|
|
|| same_type_p (type, signed_char_type_node)
|
2141 |
|
|
|| same_type_p (type, wchar_type_node));
|
2142 |
|
|
}
|
2143 |
|
|
|
2144 |
|
|
/* Returns the kind of linkage associated with the indicated DECL. Th
|
2145 |
|
|
value returned is as specified by the language standard; it is
|
2146 |
|
|
independent of implementation details regarding template
|
2147 |
|
|
instantiation, etc. For example, it is possible that a declaration
|
2148 |
|
|
to which this function assigns external linkage would not show up
|
2149 |
|
|
as a global symbol when you run `nm' on the resulting object file. */
|
2150 |
|
|
|
2151 |
|
|
linkage_kind
|
2152 |
|
|
decl_linkage (tree decl)
|
2153 |
|
|
{
|
2154 |
|
|
/* This function doesn't attempt to calculate the linkage from first
|
2155 |
|
|
principles as given in [basic.link]. Instead, it makes use of
|
2156 |
|
|
the fact that we have already set TREE_PUBLIC appropriately, and
|
2157 |
|
|
then handles a few special cases. Ideally, we would calculate
|
2158 |
|
|
linkage first, and then transform that into a concrete
|
2159 |
|
|
implementation. */
|
2160 |
|
|
|
2161 |
|
|
/* Things that don't have names have no linkage. */
|
2162 |
|
|
if (!DECL_NAME (decl))
|
2163 |
|
|
return lk_none;
|
2164 |
|
|
|
2165 |
|
|
/* Things that are TREE_PUBLIC have external linkage. */
|
2166 |
|
|
if (TREE_PUBLIC (decl))
|
2167 |
|
|
return lk_external;
|
2168 |
|
|
|
2169 |
|
|
/* Linkage of a CONST_DECL depends on the linkage of the enumeration
|
2170 |
|
|
type. */
|
2171 |
|
|
if (TREE_CODE (decl) == CONST_DECL)
|
2172 |
|
|
return decl_linkage (TYPE_NAME (TREE_TYPE (decl)));
|
2173 |
|
|
|
2174 |
|
|
/* Some things that are not TREE_PUBLIC have external linkage, too.
|
2175 |
|
|
For example, on targets that don't have weak symbols, we make all
|
2176 |
|
|
template instantiations have internal linkage (in the object
|
2177 |
|
|
file), but the symbols should still be treated as having external
|
2178 |
|
|
linkage from the point of view of the language. */
|
2179 |
|
|
if (TREE_CODE (decl) != TYPE_DECL && DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl))
|
2180 |
|
|
return lk_external;
|
2181 |
|
|
|
2182 |
|
|
/* Things in local scope do not have linkage, if they don't have
|
2183 |
|
|
TREE_PUBLIC set. */
|
2184 |
|
|
if (decl_function_context (decl))
|
2185 |
|
|
return lk_none;
|
2186 |
|
|
|
2187 |
|
|
/* Everything else has internal linkage. */
|
2188 |
|
|
return lk_internal;
|
2189 |
|
|
}
|
2190 |
|
|
|
2191 |
|
|
/* EXP is an expression that we want to pre-evaluate. Returns via INITP an
|
2192 |
|
|
expression to perform the pre-evaluation, and returns directly an
|
2193 |
|
|
expression to use the precalculated result. */
|
2194 |
|
|
|
2195 |
|
|
tree
|
2196 |
|
|
stabilize_expr (tree exp, tree* initp)
|
2197 |
|
|
{
|
2198 |
|
|
tree init_expr;
|
2199 |
|
|
|
2200 |
|
|
if (!TREE_SIDE_EFFECTS (exp))
|
2201 |
|
|
{
|
2202 |
|
|
init_expr = NULL_TREE;
|
2203 |
|
|
}
|
2204 |
|
|
else if (!real_lvalue_p (exp)
|
2205 |
|
|
|| !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (exp)))
|
2206 |
|
|
{
|
2207 |
|
|
init_expr = get_target_expr (exp);
|
2208 |
|
|
exp = TARGET_EXPR_SLOT (init_expr);
|
2209 |
|
|
}
|
2210 |
|
|
else
|
2211 |
|
|
{
|
2212 |
|
|
exp = build_unary_op (ADDR_EXPR, exp, 1);
|
2213 |
|
|
init_expr = get_target_expr (exp);
|
2214 |
|
|
exp = TARGET_EXPR_SLOT (init_expr);
|
2215 |
|
|
exp = build_indirect_ref (exp, 0);
|
2216 |
|
|
}
|
2217 |
|
|
|
2218 |
|
|
*initp = init_expr;
|
2219 |
|
|
return exp;
|
2220 |
|
|
}
|
2221 |
|
|
|
2222 |
|
|
/* Add NEW, an expression whose value we don't care about, after the
|
2223 |
|
|
similar expression ORIG. */
|
2224 |
|
|
|
2225 |
|
|
tree
|
2226 |
|
|
add_stmt_to_compound (tree orig, tree new)
|
2227 |
|
|
{
|
2228 |
|
|
if (!new || !TREE_SIDE_EFFECTS (new))
|
2229 |
|
|
return orig;
|
2230 |
|
|
if (!orig || !TREE_SIDE_EFFECTS (orig))
|
2231 |
|
|
return new;
|
2232 |
|
|
return build2 (COMPOUND_EXPR, void_type_node, orig, new);
|
2233 |
|
|
}
|
2234 |
|
|
|
2235 |
|
|
/* Like stabilize_expr, but for a call whose args we want to
|
2236 |
|
|
pre-evaluate. */
|
2237 |
|
|
|
2238 |
|
|
void
|
2239 |
|
|
stabilize_call (tree call, tree *initp)
|
2240 |
|
|
{
|
2241 |
|
|
tree inits = NULL_TREE;
|
2242 |
|
|
tree t;
|
2243 |
|
|
|
2244 |
|
|
if (call == error_mark_node)
|
2245 |
|
|
return;
|
2246 |
|
|
|
2247 |
|
|
gcc_assert (TREE_CODE (call) == CALL_EXPR
|
2248 |
|
|
|| TREE_CODE (call) == AGGR_INIT_EXPR);
|
2249 |
|
|
|
2250 |
|
|
for (t = TREE_OPERAND (call, 1); t; t = TREE_CHAIN (t))
|
2251 |
|
|
if (TREE_SIDE_EFFECTS (TREE_VALUE (t)))
|
2252 |
|
|
{
|
2253 |
|
|
tree init;
|
2254 |
|
|
TREE_VALUE (t) = stabilize_expr (TREE_VALUE (t), &init);
|
2255 |
|
|
inits = add_stmt_to_compound (inits, init);
|
2256 |
|
|
}
|
2257 |
|
|
|
2258 |
|
|
*initp = inits;
|
2259 |
|
|
}
|
2260 |
|
|
|
2261 |
|
|
/* Like stabilize_expr, but for an initialization. If we are initializing
|
2262 |
|
|
an object of class type, we don't want to introduce an extra temporary,
|
2263 |
|
|
so we look past the TARGET_EXPR and stabilize the arguments of the call
|
2264 |
|
|
instead. */
|
2265 |
|
|
|
2266 |
|
|
bool
|
2267 |
|
|
stabilize_init (tree init, tree *initp)
|
2268 |
|
|
{
|
2269 |
|
|
tree t = init;
|
2270 |
|
|
|
2271 |
|
|
if (t == error_mark_node)
|
2272 |
|
|
return true;
|
2273 |
|
|
|
2274 |
|
|
if (TREE_CODE (t) == INIT_EXPR
|
2275 |
|
|
&& TREE_CODE (TREE_OPERAND (t, 1)) != TARGET_EXPR)
|
2276 |
|
|
TREE_OPERAND (t, 1) = stabilize_expr (TREE_OPERAND (t, 1), initp);
|
2277 |
|
|
else
|
2278 |
|
|
{
|
2279 |
|
|
if (TREE_CODE (t) == INIT_EXPR)
|
2280 |
|
|
t = TREE_OPERAND (t, 1);
|
2281 |
|
|
if (TREE_CODE (t) == TARGET_EXPR)
|
2282 |
|
|
t = TARGET_EXPR_INITIAL (t);
|
2283 |
|
|
if (TREE_CODE (t) == COMPOUND_EXPR)
|
2284 |
|
|
t = expr_last (t);
|
2285 |
|
|
if (TREE_CODE (t) == CONSTRUCTOR
|
2286 |
|
|
&& EMPTY_CONSTRUCTOR_P (t))
|
2287 |
|
|
{
|
2288 |
|
|
/* Default-initialization. */
|
2289 |
|
|
*initp = NULL_TREE;
|
2290 |
|
|
return true;
|
2291 |
|
|
}
|
2292 |
|
|
|
2293 |
|
|
/* If the initializer is a COND_EXPR, we can't preevaluate
|
2294 |
|
|
anything. */
|
2295 |
|
|
if (TREE_CODE (t) == COND_EXPR)
|
2296 |
|
|
return false;
|
2297 |
|
|
|
2298 |
|
|
/* The TARGET_EXPR might be initializing via bitwise copy from
|
2299 |
|
|
another variable; leave that alone. */
|
2300 |
|
|
if (TREE_SIDE_EFFECTS (t))
|
2301 |
|
|
stabilize_call (t, initp);
|
2302 |
|
|
}
|
2303 |
|
|
|
2304 |
|
|
return true;
|
2305 |
|
|
}
|
2306 |
|
|
|
2307 |
|
|
/* Like "fold", but should be used whenever we might be processing the
|
2308 |
|
|
body of a template. */
|
2309 |
|
|
|
2310 |
|
|
tree
|
2311 |
|
|
fold_if_not_in_template (tree expr)
|
2312 |
|
|
{
|
2313 |
|
|
/* In the body of a template, there is never any need to call
|
2314 |
|
|
"fold". We will call fold later when actually instantiating the
|
2315 |
|
|
template. Integral constant expressions in templates will be
|
2316 |
|
|
evaluated via fold_non_dependent_expr, as necessary. */
|
2317 |
|
|
if (processing_template_decl)
|
2318 |
|
|
return expr;
|
2319 |
|
|
|
2320 |
|
|
/* Fold C++ front-end specific tree codes. */
|
2321 |
|
|
if (TREE_CODE (expr) == UNARY_PLUS_EXPR)
|
2322 |
|
|
return fold_convert (TREE_TYPE (expr), TREE_OPERAND (expr, 0));
|
2323 |
|
|
|
2324 |
|
|
return fold (expr);
|
2325 |
|
|
}
|
2326 |
|
|
|
2327 |
|
|
|
2328 |
|
|
#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
|
2329 |
|
|
/* Complain that some language-specific thing hanging off a tree
|
2330 |
|
|
node has been accessed improperly. */
|
2331 |
|
|
|
2332 |
|
|
void
|
2333 |
|
|
lang_check_failed (const char* file, int line, const char* function)
|
2334 |
|
|
{
|
2335 |
|
|
internal_error ("lang_* check: failed in %s, at %s:%d",
|
2336 |
|
|
function, trim_filename (file), line);
|
2337 |
|
|
}
|
2338 |
|
|
#endif /* ENABLE_TREE_CHECKING */
|
2339 |
|
|
|
2340 |
|
|
#include "gt-cp-tree.h"
|