OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [explow.c] - Blame information for rev 20

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Subroutines for manipulating rtx's in semantically interesting ways.
2
   Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
 
5
This file is part of GCC.
6
 
7
GCC is free software; you can redistribute it and/or modify it under
8
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 2, or (at your option) any later
10
version.
11
 
12
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13
WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15
for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING.  If not, write to the Free
19
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20
02110-1301, USA.  */
21
 
22
 
23
#include "config.h"
24
#include "system.h"
25
#include "coretypes.h"
26
#include "tm.h"
27
#include "toplev.h"
28
#include "rtl.h"
29
#include "tree.h"
30
#include "tm_p.h"
31
#include "flags.h"
32
#include "function.h"
33
#include "expr.h"
34
#include "optabs.h"
35
#include "hard-reg-set.h"
36
#include "insn-config.h"
37
#include "ggc.h"
38
#include "recog.h"
39
#include "langhooks.h"
40
#include "target.h"
41
 
42
static rtx break_out_memory_refs (rtx);
43
static void emit_stack_probe (rtx);
44
 
45
 
46
/* Truncate and perhaps sign-extend C as appropriate for MODE.  */
47
 
48
HOST_WIDE_INT
49
trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50
{
51
  int width = GET_MODE_BITSIZE (mode);
52
 
53
  /* You want to truncate to a _what_?  */
54
  gcc_assert (SCALAR_INT_MODE_P (mode));
55
 
56
  /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
57
  if (mode == BImode)
58
    return c & 1 ? STORE_FLAG_VALUE : 0;
59
 
60
  /* Sign-extend for the requested mode.  */
61
 
62
  if (width < HOST_BITS_PER_WIDE_INT)
63
    {
64
      HOST_WIDE_INT sign = 1;
65
      sign <<= width - 1;
66
      c &= (sign << 1) - 1;
67
      c ^= sign;
68
      c -= sign;
69
    }
70
 
71
  return c;
72
}
73
 
74
/* Return an rtx for the sum of X and the integer C.  */
75
 
76
rtx
77
plus_constant (rtx x, HOST_WIDE_INT c)
78
{
79
  RTX_CODE code;
80
  rtx y;
81
  enum machine_mode mode;
82
  rtx tem;
83
  int all_constant = 0;
84
 
85
  if (c == 0)
86
    return x;
87
 
88
 restart:
89
 
90
  code = GET_CODE (x);
91
  mode = GET_MODE (x);
92
  y = x;
93
 
94
  switch (code)
95
    {
96
    case CONST_INT:
97
      return GEN_INT (INTVAL (x) + c);
98
 
99
    case CONST_DOUBLE:
100
      {
101
        unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
102
        HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
103
        unsigned HOST_WIDE_INT l2 = c;
104
        HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
105
        unsigned HOST_WIDE_INT lv;
106
        HOST_WIDE_INT hv;
107
 
108
        add_double (l1, h1, l2, h2, &lv, &hv);
109
 
110
        return immed_double_const (lv, hv, VOIDmode);
111
      }
112
 
113
    case MEM:
114
      /* If this is a reference to the constant pool, try replacing it with
115
         a reference to a new constant.  If the resulting address isn't
116
         valid, don't return it because we have no way to validize it.  */
117
      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
118
          && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
119
        {
120
          tem
121
            = force_const_mem (GET_MODE (x),
122
                               plus_constant (get_pool_constant (XEXP (x, 0)),
123
                                              c));
124
          if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
125
            return tem;
126
        }
127
      break;
128
 
129
    case CONST:
130
      /* If adding to something entirely constant, set a flag
131
         so that we can add a CONST around the result.  */
132
      x = XEXP (x, 0);
133
      all_constant = 1;
134
      goto restart;
135
 
136
    case SYMBOL_REF:
137
    case LABEL_REF:
138
      all_constant = 1;
139
      break;
140
 
141
    case PLUS:
142
      /* The interesting case is adding the integer to a sum.
143
         Look for constant term in the sum and combine
144
         with C.  For an integer constant term, we make a combined
145
         integer.  For a constant term that is not an explicit integer,
146
         we cannot really combine, but group them together anyway.
147
 
148
         Restart or use a recursive call in case the remaining operand is
149
         something that we handle specially, such as a SYMBOL_REF.
150
 
151
         We may not immediately return from the recursive call here, lest
152
         all_constant gets lost.  */
153
 
154
      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
155
        {
156
          c += INTVAL (XEXP (x, 1));
157
 
158
          if (GET_MODE (x) != VOIDmode)
159
            c = trunc_int_for_mode (c, GET_MODE (x));
160
 
161
          x = XEXP (x, 0);
162
          goto restart;
163
        }
164
      else if (CONSTANT_P (XEXP (x, 1)))
165
        {
166
          x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
167
          c = 0;
168
        }
169
      else if (find_constant_term_loc (&y))
170
        {
171
          /* We need to be careful since X may be shared and we can't
172
             modify it in place.  */
173
          rtx copy = copy_rtx (x);
174
          rtx *const_loc = find_constant_term_loc (&copy);
175
 
176
          *const_loc = plus_constant (*const_loc, c);
177
          x = copy;
178
          c = 0;
179
        }
180
      break;
181
 
182
    default:
183
      break;
184
    }
185
 
186
  if (c != 0)
187
    x = gen_rtx_PLUS (mode, x, GEN_INT (c));
188
 
189
  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
190
    return x;
191
  else if (all_constant)
192
    return gen_rtx_CONST (mode, x);
193
  else
194
    return x;
195
}
196
 
197
/* If X is a sum, return a new sum like X but lacking any constant terms.
198
   Add all the removed constant terms into *CONSTPTR.
199
   X itself is not altered.  The result != X if and only if
200
   it is not isomorphic to X.  */
201
 
202
rtx
203
eliminate_constant_term (rtx x, rtx *constptr)
204
{
205
  rtx x0, x1;
206
  rtx tem;
207
 
208
  if (GET_CODE (x) != PLUS)
209
    return x;
210
 
211
  /* First handle constants appearing at this level explicitly.  */
212
  if (GET_CODE (XEXP (x, 1)) == CONST_INT
213
      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
214
                                                XEXP (x, 1)))
215
      && GET_CODE (tem) == CONST_INT)
216
    {
217
      *constptr = tem;
218
      return eliminate_constant_term (XEXP (x, 0), constptr);
219
    }
220
 
221
  tem = const0_rtx;
222
  x0 = eliminate_constant_term (XEXP (x, 0), &tem);
223
  x1 = eliminate_constant_term (XEXP (x, 1), &tem);
224
  if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
225
      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
226
                                                *constptr, tem))
227
      && GET_CODE (tem) == CONST_INT)
228
    {
229
      *constptr = tem;
230
      return gen_rtx_PLUS (GET_MODE (x), x0, x1);
231
    }
232
 
233
  return x;
234
}
235
 
236
/* Return an rtx for the size in bytes of the value of EXP.  */
237
 
238
rtx
239
expr_size (tree exp)
240
{
241
  tree size;
242
 
243
  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
244
    size = TREE_OPERAND (exp, 1);
245
  else
246
    size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
247
 
248
  return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
249
}
250
 
251
/* Return a wide integer for the size in bytes of the value of EXP, or -1
252
   if the size can vary or is larger than an integer.  */
253
 
254
HOST_WIDE_INT
255
int_expr_size (tree exp)
256
{
257
  tree size;
258
 
259
  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
260
    size = TREE_OPERAND (exp, 1);
261
  else
262
    size = lang_hooks.expr_size (exp);
263
 
264
  if (size == 0 || !host_integerp (size, 0))
265
    return -1;
266
 
267
  return tree_low_cst (size, 0);
268
}
269
 
270
/* Return a copy of X in which all memory references
271
   and all constants that involve symbol refs
272
   have been replaced with new temporary registers.
273
   Also emit code to load the memory locations and constants
274
   into those registers.
275
 
276
   If X contains no such constants or memory references,
277
   X itself (not a copy) is returned.
278
 
279
   If a constant is found in the address that is not a legitimate constant
280
   in an insn, it is left alone in the hope that it might be valid in the
281
   address.
282
 
283
   X may contain no arithmetic except addition, subtraction and multiplication.
284
   Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
285
 
286
static rtx
287
break_out_memory_refs (rtx x)
288
{
289
  if (MEM_P (x)
290
      || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
291
          && GET_MODE (x) != VOIDmode))
292
    x = force_reg (GET_MODE (x), x);
293
  else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
294
           || GET_CODE (x) == MULT)
295
    {
296
      rtx op0 = break_out_memory_refs (XEXP (x, 0));
297
      rtx op1 = break_out_memory_refs (XEXP (x, 1));
298
 
299
      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
300
        x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
301
    }
302
 
303
  return x;
304
}
305
 
306
/* Given X, a memory address in ptr_mode, convert it to an address
307
   in Pmode, or vice versa (TO_MODE says which way).  We take advantage of
308
   the fact that pointers are not allowed to overflow by commuting arithmetic
309
   operations over conversions so that address arithmetic insns can be
310
   used.  */
311
 
312
rtx
313
convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
314
                        rtx x)
315
{
316
#ifndef POINTERS_EXTEND_UNSIGNED
317
  gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
318
  return x;
319
#else /* defined(POINTERS_EXTEND_UNSIGNED) */
320
  enum machine_mode from_mode;
321
  rtx temp;
322
  enum rtx_code code;
323
 
324
  /* If X already has the right mode, just return it.  */
325
  if (GET_MODE (x) == to_mode)
326
    return x;
327
 
328
  from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
329
 
330
  /* Here we handle some special cases.  If none of them apply, fall through
331
     to the default case.  */
332
  switch (GET_CODE (x))
333
    {
334
    case CONST_INT:
335
    case CONST_DOUBLE:
336
      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
337
        code = TRUNCATE;
338
      else if (POINTERS_EXTEND_UNSIGNED < 0)
339
        break;
340
      else if (POINTERS_EXTEND_UNSIGNED > 0)
341
        code = ZERO_EXTEND;
342
      else
343
        code = SIGN_EXTEND;
344
      temp = simplify_unary_operation (code, to_mode, x, from_mode);
345
      if (temp)
346
        return temp;
347
      break;
348
 
349
    case SUBREG:
350
      if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
351
          && GET_MODE (SUBREG_REG (x)) == to_mode)
352
        return SUBREG_REG (x);
353
      break;
354
 
355
    case LABEL_REF:
356
      temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
357
      LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
358
      return temp;
359
      break;
360
 
361
    case SYMBOL_REF:
362
      temp = shallow_copy_rtx (x);
363
      PUT_MODE (temp, to_mode);
364
      return temp;
365
      break;
366
 
367
    case CONST:
368
      return gen_rtx_CONST (to_mode,
369
                            convert_memory_address (to_mode, XEXP (x, 0)));
370
      break;
371
 
372
    case PLUS:
373
    case MULT:
374
      /* For addition we can safely permute the conversion and addition
375
         operation if one operand is a constant and converting the constant
376
         does not change it.  We can always safely permute them if we are
377
         making the address narrower.  */
378
      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
379
          || (GET_CODE (x) == PLUS
380
              && GET_CODE (XEXP (x, 1)) == CONST_INT
381
              && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
382
        return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
383
                               convert_memory_address (to_mode, XEXP (x, 0)),
384
                               XEXP (x, 1));
385
      break;
386
 
387
    default:
388
      break;
389
    }
390
 
391
  return convert_modes (to_mode, from_mode,
392
                        x, POINTERS_EXTEND_UNSIGNED);
393
#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
394
}
395
 
396
/* Return something equivalent to X but valid as a memory address
397
   for something of mode MODE.  When X is not itself valid, this
398
   works by copying X or subexpressions of it into registers.  */
399
 
400
rtx
401
memory_address (enum machine_mode mode, rtx x)
402
{
403
  rtx oldx = x;
404
 
405
  x = convert_memory_address (Pmode, x);
406
 
407
  /* By passing constant addresses through registers
408
     we get a chance to cse them.  */
409
  if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
410
    x = force_reg (Pmode, x);
411
 
412
  /* We get better cse by rejecting indirect addressing at this stage.
413
     Let the combiner create indirect addresses where appropriate.
414
     For now, generate the code so that the subexpressions useful to share
415
     are visible.  But not if cse won't be done!  */
416
  else
417
    {
418
      if (! cse_not_expected && !REG_P (x))
419
        x = break_out_memory_refs (x);
420
 
421
      /* At this point, any valid address is accepted.  */
422
      if (memory_address_p (mode, x))
423
        goto win;
424
 
425
      /* If it was valid before but breaking out memory refs invalidated it,
426
         use it the old way.  */
427
      if (memory_address_p (mode, oldx))
428
        goto win2;
429
 
430
      /* Perform machine-dependent transformations on X
431
         in certain cases.  This is not necessary since the code
432
         below can handle all possible cases, but machine-dependent
433
         transformations can make better code.  */
434
      LEGITIMIZE_ADDRESS (x, oldx, mode, win);
435
 
436
      /* PLUS and MULT can appear in special ways
437
         as the result of attempts to make an address usable for indexing.
438
         Usually they are dealt with by calling force_operand, below.
439
         But a sum containing constant terms is special
440
         if removing them makes the sum a valid address:
441
         then we generate that address in a register
442
         and index off of it.  We do this because it often makes
443
         shorter code, and because the addresses thus generated
444
         in registers often become common subexpressions.  */
445
      if (GET_CODE (x) == PLUS)
446
        {
447
          rtx constant_term = const0_rtx;
448
          rtx y = eliminate_constant_term (x, &constant_term);
449
          if (constant_term == const0_rtx
450
              || ! memory_address_p (mode, y))
451
            x = force_operand (x, NULL_RTX);
452
          else
453
            {
454
              y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
455
              if (! memory_address_p (mode, y))
456
                x = force_operand (x, NULL_RTX);
457
              else
458
                x = y;
459
            }
460
        }
461
 
462
      else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
463
        x = force_operand (x, NULL_RTX);
464
 
465
      /* If we have a register that's an invalid address,
466
         it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
467
      else if (REG_P (x))
468
        x = copy_to_reg (x);
469
 
470
      /* Last resort: copy the value to a register, since
471
         the register is a valid address.  */
472
      else
473
        x = force_reg (Pmode, x);
474
 
475
      goto done;
476
 
477
    win2:
478
      x = oldx;
479
    win:
480
      if (flag_force_addr && ! cse_not_expected && !REG_P (x))
481
        {
482
          x = force_operand (x, NULL_RTX);
483
          x = force_reg (Pmode, x);
484
        }
485
    }
486
 
487
 done:
488
 
489
  /* If we didn't change the address, we are done.  Otherwise, mark
490
     a reg as a pointer if we have REG or REG + CONST_INT.  */
491
  if (oldx == x)
492
    return x;
493
  else if (REG_P (x))
494
    mark_reg_pointer (x, BITS_PER_UNIT);
495
  else if (GET_CODE (x) == PLUS
496
           && REG_P (XEXP (x, 0))
497
           && GET_CODE (XEXP (x, 1)) == CONST_INT)
498
    mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
499
 
500
  /* OLDX may have been the address on a temporary.  Update the address
501
     to indicate that X is now used.  */
502
  update_temp_slot_address (oldx, x);
503
 
504
  return x;
505
}
506
 
507
/* Like `memory_address' but pretend `flag_force_addr' is 0.  */
508
 
509
rtx
510
memory_address_noforce (enum machine_mode mode, rtx x)
511
{
512
  int ambient_force_addr = flag_force_addr;
513
  rtx val;
514
 
515
  flag_force_addr = 0;
516
  val = memory_address (mode, x);
517
  flag_force_addr = ambient_force_addr;
518
  return val;
519
}
520
 
521
/* Convert a mem ref into one with a valid memory address.
522
   Pass through anything else unchanged.  */
523
 
524
rtx
525
validize_mem (rtx ref)
526
{
527
  if (!MEM_P (ref))
528
    return ref;
529
  if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
530
      && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
531
    return ref;
532
 
533
  /* Don't alter REF itself, since that is probably a stack slot.  */
534
  return replace_equiv_address (ref, XEXP (ref, 0));
535
}
536
 
537
/* Copy the value or contents of X to a new temp reg and return that reg.  */
538
 
539
rtx
540
copy_to_reg (rtx x)
541
{
542
  rtx temp = gen_reg_rtx (GET_MODE (x));
543
 
544
  /* If not an operand, must be an address with PLUS and MULT so
545
     do the computation.  */
546
  if (! general_operand (x, VOIDmode))
547
    x = force_operand (x, temp);
548
 
549
  if (x != temp)
550
    emit_move_insn (temp, x);
551
 
552
  return temp;
553
}
554
 
555
/* Like copy_to_reg but always give the new register mode Pmode
556
   in case X is a constant.  */
557
 
558
rtx
559
copy_addr_to_reg (rtx x)
560
{
561
  return copy_to_mode_reg (Pmode, x);
562
}
563
 
564
/* Like copy_to_reg but always give the new register mode MODE
565
   in case X is a constant.  */
566
 
567
rtx
568
copy_to_mode_reg (enum machine_mode mode, rtx x)
569
{
570
  rtx temp = gen_reg_rtx (mode);
571
 
572
  /* If not an operand, must be an address with PLUS and MULT so
573
     do the computation.  */
574
  if (! general_operand (x, VOIDmode))
575
    x = force_operand (x, temp);
576
 
577
  gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
578
  if (x != temp)
579
    emit_move_insn (temp, x);
580
  return temp;
581
}
582
 
583
/* Load X into a register if it is not already one.
584
   Use mode MODE for the register.
585
   X should be valid for mode MODE, but it may be a constant which
586
   is valid for all integer modes; that's why caller must specify MODE.
587
 
588
   The caller must not alter the value in the register we return,
589
   since we mark it as a "constant" register.  */
590
 
591
rtx
592
force_reg (enum machine_mode mode, rtx x)
593
{
594
  rtx temp, insn, set;
595
 
596
  if (REG_P (x))
597
    return x;
598
 
599
  if (general_operand (x, mode))
600
    {
601
      temp = gen_reg_rtx (mode);
602
      insn = emit_move_insn (temp, x);
603
    }
604
  else
605
    {
606
      temp = force_operand (x, NULL_RTX);
607
      if (REG_P (temp))
608
        insn = get_last_insn ();
609
      else
610
        {
611
          rtx temp2 = gen_reg_rtx (mode);
612
          insn = emit_move_insn (temp2, temp);
613
          temp = temp2;
614
        }
615
    }
616
 
617
  /* Let optimizers know that TEMP's value never changes
618
     and that X can be substituted for it.  Don't get confused
619
     if INSN set something else (such as a SUBREG of TEMP).  */
620
  if (CONSTANT_P (x)
621
      && (set = single_set (insn)) != 0
622
      && SET_DEST (set) == temp
623
      && ! rtx_equal_p (x, SET_SRC (set)))
624
    set_unique_reg_note (insn, REG_EQUAL, x);
625
 
626
  /* Let optimizers know that TEMP is a pointer, and if so, the
627
     known alignment of that pointer.  */
628
  {
629
    unsigned align = 0;
630
    if (GET_CODE (x) == SYMBOL_REF)
631
      {
632
        align = BITS_PER_UNIT;
633
        if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
634
          align = DECL_ALIGN (SYMBOL_REF_DECL (x));
635
      }
636
    else if (GET_CODE (x) == LABEL_REF)
637
      align = BITS_PER_UNIT;
638
    else if (GET_CODE (x) == CONST
639
             && GET_CODE (XEXP (x, 0)) == PLUS
640
             && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
641
             && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
642
      {
643
        rtx s = XEXP (XEXP (x, 0), 0);
644
        rtx c = XEXP (XEXP (x, 0), 1);
645
        unsigned sa, ca;
646
 
647
        sa = BITS_PER_UNIT;
648
        if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
649
          sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
650
 
651
        ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
652
 
653
        align = MIN (sa, ca);
654
      }
655
 
656
    if (align)
657
      mark_reg_pointer (temp, align);
658
  }
659
 
660
  return temp;
661
}
662
 
663
/* If X is a memory ref, copy its contents to a new temp reg and return
664
   that reg.  Otherwise, return X.  */
665
 
666
rtx
667
force_not_mem (rtx x)
668
{
669
  rtx temp;
670
 
671
  if (!MEM_P (x) || GET_MODE (x) == BLKmode)
672
    return x;
673
 
674
  temp = gen_reg_rtx (GET_MODE (x));
675
 
676
  if (MEM_POINTER (x))
677
    REG_POINTER (temp) = 1;
678
 
679
  emit_move_insn (temp, x);
680
  return temp;
681
}
682
 
683
/* Copy X to TARGET (if it's nonzero and a reg)
684
   or to a new temp reg and return that reg.
685
   MODE is the mode to use for X in case it is a constant.  */
686
 
687
rtx
688
copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
689
{
690
  rtx temp;
691
 
692
  if (target && REG_P (target))
693
    temp = target;
694
  else
695
    temp = gen_reg_rtx (mode);
696
 
697
  emit_move_insn (temp, x);
698
  return temp;
699
}
700
 
701
/* Return the mode to use to store a scalar of TYPE and MODE.
702
   PUNSIGNEDP points to the signedness of the type and may be adjusted
703
   to show what signedness to use on extension operations.
704
 
705
   FOR_CALL is nonzero if this call is promoting args for a call.  */
706
 
707
#if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
708
#define PROMOTE_FUNCTION_MODE PROMOTE_MODE
709
#endif
710
 
711
enum machine_mode
712
promote_mode (tree type, enum machine_mode mode, int *punsignedp,
713
              int for_call ATTRIBUTE_UNUSED)
714
{
715
  enum tree_code code = TREE_CODE (type);
716
  int unsignedp = *punsignedp;
717
 
718
#ifndef PROMOTE_MODE
719
  if (! for_call)
720
    return mode;
721
#endif
722
 
723
  switch (code)
724
    {
725
#ifdef PROMOTE_FUNCTION_MODE
726
    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
727
    case CHAR_TYPE:      case REAL_TYPE:       case OFFSET_TYPE:
728
#ifdef PROMOTE_MODE
729
      if (for_call)
730
        {
731
#endif
732
          PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
733
#ifdef PROMOTE_MODE
734
        }
735
      else
736
        {
737
          PROMOTE_MODE (mode, unsignedp, type);
738
        }
739
#endif
740
      break;
741
#endif
742
 
743
#ifdef POINTERS_EXTEND_UNSIGNED
744
    case REFERENCE_TYPE:
745
    case POINTER_TYPE:
746
      mode = Pmode;
747
      unsignedp = POINTERS_EXTEND_UNSIGNED;
748
      break;
749
#endif
750
 
751
    default:
752
      break;
753
    }
754
 
755
  *punsignedp = unsignedp;
756
  return mode;
757
}
758
 
759
/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
760
   This pops when ADJUST is positive.  ADJUST need not be constant.  */
761
 
762
void
763
adjust_stack (rtx adjust)
764
{
765
  rtx temp;
766
 
767
  if (adjust == const0_rtx)
768
    return;
769
 
770
  /* We expect all variable sized adjustments to be multiple of
771
     PREFERRED_STACK_BOUNDARY.  */
772
  if (GET_CODE (adjust) == CONST_INT)
773
    stack_pointer_delta -= INTVAL (adjust);
774
 
775
  temp = expand_binop (Pmode,
776
#ifdef STACK_GROWS_DOWNWARD
777
                       add_optab,
778
#else
779
                       sub_optab,
780
#endif
781
                       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
782
                       OPTAB_LIB_WIDEN);
783
 
784
  if (temp != stack_pointer_rtx)
785
    emit_move_insn (stack_pointer_rtx, temp);
786
}
787
 
788
/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
789
   This pushes when ADJUST is positive.  ADJUST need not be constant.  */
790
 
791
void
792
anti_adjust_stack (rtx adjust)
793
{
794
  rtx temp;
795
 
796
  if (adjust == const0_rtx)
797
    return;
798
 
799
  /* We expect all variable sized adjustments to be multiple of
800
     PREFERRED_STACK_BOUNDARY.  */
801
  if (GET_CODE (adjust) == CONST_INT)
802
    stack_pointer_delta += INTVAL (adjust);
803
 
804
  temp = expand_binop (Pmode,
805
#ifdef STACK_GROWS_DOWNWARD
806
                       sub_optab,
807
#else
808
                       add_optab,
809
#endif
810
                       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
811
                       OPTAB_LIB_WIDEN);
812
 
813
  if (temp != stack_pointer_rtx)
814
    emit_move_insn (stack_pointer_rtx, temp);
815
}
816
 
817
/* Round the size of a block to be pushed up to the boundary required
818
   by this machine.  SIZE is the desired size, which need not be constant.  */
819
 
820
static rtx
821
round_push (rtx size)
822
{
823
  int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
824
 
825
  if (align == 1)
826
    return size;
827
 
828
  if (GET_CODE (size) == CONST_INT)
829
    {
830
      HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
831
 
832
      if (INTVAL (size) != new)
833
        size = GEN_INT (new);
834
    }
835
  else
836
    {
837
      /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
838
         but we know it can't.  So add ourselves and then do
839
         TRUNC_DIV_EXPR.  */
840
      size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
841
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
842
      size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
843
                            NULL_RTX, 1);
844
      size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
845
    }
846
 
847
  return size;
848
}
849
 
850
/* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
851
   to a previously-created save area.  If no save area has been allocated,
852
   this function will allocate one.  If a save area is specified, it
853
   must be of the proper mode.
854
 
855
   The insns are emitted after insn AFTER, if nonzero, otherwise the insns
856
   are emitted at the current position.  */
857
 
858
void
859
emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
860
{
861
  rtx sa = *psave;
862
  /* The default is that we use a move insn and save in a Pmode object.  */
863
  rtx (*fcn) (rtx, rtx) = gen_move_insn;
864
  enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
865
 
866
  /* See if this machine has anything special to do for this kind of save.  */
867
  switch (save_level)
868
    {
869
#ifdef HAVE_save_stack_block
870
    case SAVE_BLOCK:
871
      if (HAVE_save_stack_block)
872
        fcn = gen_save_stack_block;
873
      break;
874
#endif
875
#ifdef HAVE_save_stack_function
876
    case SAVE_FUNCTION:
877
      if (HAVE_save_stack_function)
878
        fcn = gen_save_stack_function;
879
      break;
880
#endif
881
#ifdef HAVE_save_stack_nonlocal
882
    case SAVE_NONLOCAL:
883
      if (HAVE_save_stack_nonlocal)
884
        fcn = gen_save_stack_nonlocal;
885
      break;
886
#endif
887
    default:
888
      break;
889
    }
890
 
891
  /* If there is no save area and we have to allocate one, do so.  Otherwise
892
     verify the save area is the proper mode.  */
893
 
894
  if (sa == 0)
895
    {
896
      if (mode != VOIDmode)
897
        {
898
          if (save_level == SAVE_NONLOCAL)
899
            *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
900
          else
901
            *psave = sa = gen_reg_rtx (mode);
902
        }
903
    }
904
 
905
  if (after)
906
    {
907
      rtx seq;
908
 
909
      start_sequence ();
910
      do_pending_stack_adjust ();
911
      /* We must validize inside the sequence, to ensure that any instructions
912
         created by the validize call also get moved to the right place.  */
913
      if (sa != 0)
914
        sa = validize_mem (sa);
915
      emit_insn (fcn (sa, stack_pointer_rtx));
916
      seq = get_insns ();
917
      end_sequence ();
918
      emit_insn_after (seq, after);
919
    }
920
  else
921
    {
922
      do_pending_stack_adjust ();
923
      if (sa != 0)
924
        sa = validize_mem (sa);
925
      emit_insn (fcn (sa, stack_pointer_rtx));
926
    }
927
}
928
 
929
/* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
930
   area made by emit_stack_save.  If it is zero, we have nothing to do.
931
 
932
   Put any emitted insns after insn AFTER, if nonzero, otherwise at
933
   current position.  */
934
 
935
void
936
emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
937
{
938
  /* The default is that we use a move insn.  */
939
  rtx (*fcn) (rtx, rtx) = gen_move_insn;
940
 
941
  /* See if this machine has anything special to do for this kind of save.  */
942
  switch (save_level)
943
    {
944
#ifdef HAVE_restore_stack_block
945
    case SAVE_BLOCK:
946
      if (HAVE_restore_stack_block)
947
        fcn = gen_restore_stack_block;
948
      break;
949
#endif
950
#ifdef HAVE_restore_stack_function
951
    case SAVE_FUNCTION:
952
      if (HAVE_restore_stack_function)
953
        fcn = gen_restore_stack_function;
954
      break;
955
#endif
956
#ifdef HAVE_restore_stack_nonlocal
957
    case SAVE_NONLOCAL:
958
      if (HAVE_restore_stack_nonlocal)
959
        fcn = gen_restore_stack_nonlocal;
960
      break;
961
#endif
962
    default:
963
      break;
964
    }
965
 
966
  if (sa != 0)
967
    {
968
      sa = validize_mem (sa);
969
      /* These clobbers prevent the scheduler from moving
970
         references to variable arrays below the code
971
         that deletes (pops) the arrays.  */
972
      emit_insn (gen_rtx_CLOBBER (VOIDmode,
973
                    gen_rtx_MEM (BLKmode,
974
                        gen_rtx_SCRATCH (VOIDmode))));
975
      emit_insn (gen_rtx_CLOBBER (VOIDmode,
976
                    gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
977
    }
978
 
979
  discard_pending_stack_adjust ();
980
 
981
  if (after)
982
    {
983
      rtx seq;
984
 
985
      start_sequence ();
986
      emit_insn (fcn (stack_pointer_rtx, sa));
987
      seq = get_insns ();
988
      end_sequence ();
989
      emit_insn_after (seq, after);
990
    }
991
  else
992
    emit_insn (fcn (stack_pointer_rtx, sa));
993
}
994
 
995
/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
996
   function.  This function should be called whenever we allocate or
997
   deallocate dynamic stack space.  */
998
 
999
void
1000
update_nonlocal_goto_save_area (void)
1001
{
1002
  tree t_save;
1003
  rtx r_save;
1004
 
1005
  /* The nonlocal_goto_save_area object is an array of N pointers.  The
1006
     first one is used for the frame pointer save; the rest are sized by
1007
     STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
1008
     of the stack save area slots.  */
1009
  t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1010
                   integer_one_node, NULL_TREE, NULL_TREE);
1011
  r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1012
 
1013
  emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1014
}
1015
 
1016
/* Return an rtx representing the address of an area of memory dynamically
1017
   pushed on the stack.  This region of memory is always aligned to
1018
   a multiple of BIGGEST_ALIGNMENT.
1019
 
1020
   Any required stack pointer alignment is preserved.
1021
 
1022
   SIZE is an rtx representing the size of the area.
1023
   TARGET is a place in which the address can be placed.
1024
 
1025
   KNOWN_ALIGN is the alignment (in bits) that we know SIZE has.  */
1026
 
1027
rtx
1028
allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1029
{
1030
  /* If we're asking for zero bytes, it doesn't matter what we point
1031
     to since we can't dereference it.  But return a reasonable
1032
     address anyway.  */
1033
  if (size == const0_rtx)
1034
    return virtual_stack_dynamic_rtx;
1035
 
1036
  /* Otherwise, show we're calling alloca or equivalent.  */
1037
  current_function_calls_alloca = 1;
1038
 
1039
  /* Ensure the size is in the proper mode.  */
1040
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1041
    size = convert_to_mode (Pmode, size, 1);
1042
 
1043
  /* We can't attempt to minimize alignment necessary, because we don't
1044
     know the final value of preferred_stack_boundary yet while executing
1045
     this code.  */
1046
  cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1047
 
1048
  /* We will need to ensure that the address we return is aligned to
1049
     BIGGEST_ALIGNMENT.  If STACK_DYNAMIC_OFFSET is defined, we don't
1050
     always know its final value at this point in the compilation (it
1051
     might depend on the size of the outgoing parameter lists, for
1052
     example), so we must align the value to be returned in that case.
1053
     (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1054
     STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1055
     We must also do an alignment operation on the returned value if
1056
     the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1057
 
1058
     If we have to align, we must leave space in SIZE for the hole
1059
     that might result from the alignment operation.  */
1060
 
1061
#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1062
#define MUST_ALIGN 1
1063
#else
1064
#define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1065
#endif
1066
 
1067
  if (MUST_ALIGN)
1068
    size
1069
      = force_operand (plus_constant (size,
1070
                                      BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1071
                       NULL_RTX);
1072
 
1073
#ifdef SETJMP_VIA_SAVE_AREA
1074
  /* If setjmp restores regs from a save area in the stack frame,
1075
     avoid clobbering the reg save area.  Note that the offset of
1076
     virtual_incoming_args_rtx includes the preallocated stack args space.
1077
     It would be no problem to clobber that, but it's on the wrong side
1078
     of the old save area.
1079
 
1080
     What used to happen is that, since we did not know for sure
1081
     whether setjmp() was invoked until after RTL generation, we
1082
     would use reg notes to store the "optimized" size and fix things
1083
     up later.  These days we know this information before we ever
1084
     start building RTL so the reg notes are unnecessary.  */
1085
  if (!current_function_calls_setjmp)
1086
    {
1087
      int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1088
 
1089
      /* ??? Code below assumes that the save area needs maximal
1090
         alignment.  This constraint may be too strong.  */
1091
      gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1092
 
1093
      if (GET_CODE (size) == CONST_INT)
1094
        {
1095
          HOST_WIDE_INT new = INTVAL (size) / align * align;
1096
 
1097
          if (INTVAL (size) != new)
1098
            size = GEN_INT (new);
1099
        }
1100
      else
1101
        {
1102
          /* Since we know overflow is not possible, we avoid using
1103
             CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead.  */
1104
          size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1105
                                GEN_INT (align), NULL_RTX, 1);
1106
          size = expand_mult (Pmode, size,
1107
                              GEN_INT (align), NULL_RTX, 1);
1108
        }
1109
    }
1110
  else
1111
    {
1112
      rtx dynamic_offset
1113
        = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1114
                        stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1115
 
1116
      size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1117
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
1118
    }
1119
#endif /* SETJMP_VIA_SAVE_AREA */
1120
 
1121
  /* Round the size to a multiple of the required stack alignment.
1122
     Since the stack if presumed to be rounded before this allocation,
1123
     this will maintain the required alignment.
1124
 
1125
     If the stack grows downward, we could save an insn by subtracting
1126
     SIZE from the stack pointer and then aligning the stack pointer.
1127
     The problem with this is that the stack pointer may be unaligned
1128
     between the execution of the subtraction and alignment insns and
1129
     some machines do not allow this.  Even on those that do, some
1130
     signal handlers malfunction if a signal should occur between those
1131
     insns.  Since this is an extremely rare event, we have no reliable
1132
     way of knowing which systems have this problem.  So we avoid even
1133
     momentarily mis-aligning the stack.  */
1134
 
1135
  /* If we added a variable amount to SIZE,
1136
     we can no longer assume it is aligned.  */
1137
#if !defined (SETJMP_VIA_SAVE_AREA)
1138
  if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1139
#endif
1140
    size = round_push (size);
1141
 
1142
  do_pending_stack_adjust ();
1143
 
1144
 /* We ought to be called always on the toplevel and stack ought to be aligned
1145
    properly.  */
1146
  gcc_assert (!(stack_pointer_delta
1147
                % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1148
 
1149
  /* If needed, check that we have the required amount of stack.  Take into
1150
     account what has already been checked.  */
1151
  if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1152
    probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1153
 
1154
  /* Don't use a TARGET that isn't a pseudo or is the wrong mode.  */
1155
  if (target == 0 || !REG_P (target)
1156
      || REGNO (target) < FIRST_PSEUDO_REGISTER
1157
      || GET_MODE (target) != Pmode)
1158
    target = gen_reg_rtx (Pmode);
1159
 
1160
  mark_reg_pointer (target, known_align);
1161
 
1162
  /* Perform the required allocation from the stack.  Some systems do
1163
     this differently than simply incrementing/decrementing from the
1164
     stack pointer, such as acquiring the space by calling malloc().  */
1165
#ifdef HAVE_allocate_stack
1166
  if (HAVE_allocate_stack)
1167
    {
1168
      enum machine_mode mode = STACK_SIZE_MODE;
1169
      insn_operand_predicate_fn pred;
1170
 
1171
      /* We don't have to check against the predicate for operand 0 since
1172
         TARGET is known to be a pseudo of the proper mode, which must
1173
         be valid for the operand.  For operand 1, convert to the
1174
         proper mode and validate.  */
1175
      if (mode == VOIDmode)
1176
        mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1177
 
1178
      pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1179
      if (pred && ! ((*pred) (size, mode)))
1180
        size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1181
 
1182
      emit_insn (gen_allocate_stack (target, size));
1183
    }
1184
  else
1185
#endif
1186
    {
1187
#ifndef STACK_GROWS_DOWNWARD
1188
      emit_move_insn (target, virtual_stack_dynamic_rtx);
1189
#endif
1190
 
1191
      /* Check stack bounds if necessary.  */
1192
      if (current_function_limit_stack)
1193
        {
1194
          rtx available;
1195
          rtx space_available = gen_label_rtx ();
1196
#ifdef STACK_GROWS_DOWNWARD
1197
          available = expand_binop (Pmode, sub_optab,
1198
                                    stack_pointer_rtx, stack_limit_rtx,
1199
                                    NULL_RTX, 1, OPTAB_WIDEN);
1200
#else
1201
          available = expand_binop (Pmode, sub_optab,
1202
                                    stack_limit_rtx, stack_pointer_rtx,
1203
                                    NULL_RTX, 1, OPTAB_WIDEN);
1204
#endif
1205
          emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1206
                                   space_available);
1207
#ifdef HAVE_trap
1208
          if (HAVE_trap)
1209
            emit_insn (gen_trap ());
1210
          else
1211
#endif
1212
            error ("stack limits not supported on this target");
1213
          emit_barrier ();
1214
          emit_label (space_available);
1215
        }
1216
 
1217
      anti_adjust_stack (size);
1218
 
1219
#ifdef STACK_GROWS_DOWNWARD
1220
      emit_move_insn (target, virtual_stack_dynamic_rtx);
1221
#endif
1222
    }
1223
 
1224
  if (MUST_ALIGN)
1225
    {
1226
      /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1227
         but we know it can't.  So add ourselves and then do
1228
         TRUNC_DIV_EXPR.  */
1229
      target = expand_binop (Pmode, add_optab, target,
1230
                             GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1231
                             NULL_RTX, 1, OPTAB_LIB_WIDEN);
1232
      target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1233
                              GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1234
                              NULL_RTX, 1);
1235
      target = expand_mult (Pmode, target,
1236
                            GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1237
                            NULL_RTX, 1);
1238
    }
1239
 
1240
  /* Record the new stack level for nonlocal gotos.  */
1241
  if (cfun->nonlocal_goto_save_area != 0)
1242
    update_nonlocal_goto_save_area ();
1243
 
1244
  return target;
1245
}
1246
 
1247
/* A front end may want to override GCC's stack checking by providing a
1248
   run-time routine to call to check the stack, so provide a mechanism for
1249
   calling that routine.  */
1250
 
1251
static GTY(()) rtx stack_check_libfunc;
1252
 
1253
void
1254
set_stack_check_libfunc (rtx libfunc)
1255
{
1256
  stack_check_libfunc = libfunc;
1257
}
1258
 
1259
/* Emit one stack probe at ADDRESS, an address within the stack.  */
1260
 
1261
static void
1262
emit_stack_probe (rtx address)
1263
{
1264
  rtx memref = gen_rtx_MEM (word_mode, address);
1265
 
1266
  MEM_VOLATILE_P (memref) = 1;
1267
 
1268
  if (STACK_CHECK_PROBE_LOAD)
1269
    emit_move_insn (gen_reg_rtx (word_mode), memref);
1270
  else
1271
    emit_move_insn (memref, const0_rtx);
1272
}
1273
 
1274
/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1275
   FIRST is a constant and size is a Pmode RTX.  These are offsets from the
1276
   current stack pointer.  STACK_GROWS_DOWNWARD says whether to add or
1277
   subtract from the stack.  If SIZE is constant, this is done
1278
   with a fixed number of probes.  Otherwise, we must make a loop.  */
1279
 
1280
#ifdef STACK_GROWS_DOWNWARD
1281
#define STACK_GROW_OP MINUS
1282
#else
1283
#define STACK_GROW_OP PLUS
1284
#endif
1285
 
1286
void
1287
probe_stack_range (HOST_WIDE_INT first, rtx size)
1288
{
1289
  /* First ensure SIZE is Pmode.  */
1290
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1291
    size = convert_to_mode (Pmode, size, 1);
1292
 
1293
  /* Next see if the front end has set up a function for us to call to
1294
     check the stack.  */
1295
  if (stack_check_libfunc != 0)
1296
    {
1297
      rtx addr = memory_address (QImode,
1298
                                 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1299
                                                 stack_pointer_rtx,
1300
                                                 plus_constant (size, first)));
1301
 
1302
      addr = convert_memory_address (ptr_mode, addr);
1303
      emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1304
                         ptr_mode);
1305
    }
1306
 
1307
  /* Next see if we have an insn to check the stack.  Use it if so.  */
1308
#ifdef HAVE_check_stack
1309
  else if (HAVE_check_stack)
1310
    {
1311
      insn_operand_predicate_fn pred;
1312
      rtx last_addr
1313
        = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1314
                                         stack_pointer_rtx,
1315
                                         plus_constant (size, first)),
1316
                         NULL_RTX);
1317
 
1318
      pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1319
      if (pred && ! ((*pred) (last_addr, Pmode)))
1320
        last_addr = copy_to_mode_reg (Pmode, last_addr);
1321
 
1322
      emit_insn (gen_check_stack (last_addr));
1323
    }
1324
#endif
1325
 
1326
  /* If we have to generate explicit probes, see if we have a constant
1327
     small number of them to generate.  If so, that's the easy case.  */
1328
  else if (GET_CODE (size) == CONST_INT
1329
           && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1330
    {
1331
      HOST_WIDE_INT offset;
1332
 
1333
      /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1334
         for values of N from 1 until it exceeds LAST.  If only one
1335
         probe is needed, this will not generate any code.  Then probe
1336
         at LAST.  */
1337
      for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1338
           offset < INTVAL (size);
1339
           offset = offset + STACK_CHECK_PROBE_INTERVAL)
1340
        emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1341
                                          stack_pointer_rtx,
1342
                                          GEN_INT (offset)));
1343
 
1344
      emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1345
                                        stack_pointer_rtx,
1346
                                        plus_constant (size, first)));
1347
    }
1348
 
1349
  /* In the variable case, do the same as above, but in a loop.  We emit loop
1350
     notes so that loop optimization can be done.  */
1351
  else
1352
    {
1353
      rtx test_addr
1354
        = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1355
                                         stack_pointer_rtx,
1356
                                         GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1357
                         NULL_RTX);
1358
      rtx last_addr
1359
        = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1360
                                         stack_pointer_rtx,
1361
                                         plus_constant (size, first)),
1362
                         NULL_RTX);
1363
      rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1364
      rtx loop_lab = gen_label_rtx ();
1365
      rtx test_lab = gen_label_rtx ();
1366
      rtx end_lab = gen_label_rtx ();
1367
      rtx temp;
1368
 
1369
      if (!REG_P (test_addr)
1370
          || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1371
        test_addr = force_reg (Pmode, test_addr);
1372
 
1373
      emit_jump (test_lab);
1374
 
1375
      emit_label (loop_lab);
1376
      emit_stack_probe (test_addr);
1377
 
1378
#ifdef STACK_GROWS_DOWNWARD
1379
#define CMP_OPCODE GTU
1380
      temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1381
                           1, OPTAB_WIDEN);
1382
#else
1383
#define CMP_OPCODE LTU
1384
      temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1385
                           1, OPTAB_WIDEN);
1386
#endif
1387
 
1388
      gcc_assert (temp == test_addr);
1389
 
1390
      emit_label (test_lab);
1391
      emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1392
                               NULL_RTX, Pmode, 1, loop_lab);
1393
      emit_jump (end_lab);
1394
      emit_label (end_lab);
1395
 
1396
      emit_stack_probe (last_addr);
1397
    }
1398
}
1399
 
1400
/* Return an rtx representing the register or memory location
1401
   in which a scalar value of data type VALTYPE
1402
   was returned by a function call to function FUNC.
1403
   FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1404
   function is known, otherwise 0.
1405
   OUTGOING is 1 if on a machine with register windows this function
1406
   should return the register in which the function will put its result
1407
   and 0 otherwise.  */
1408
 
1409
rtx
1410
hard_function_value (tree valtype, tree func, tree fntype,
1411
                     int outgoing ATTRIBUTE_UNUSED)
1412
{
1413
  rtx val;
1414
 
1415
  val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1416
 
1417
  if (REG_P (val)
1418
      && GET_MODE (val) == BLKmode)
1419
    {
1420
      unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1421
      enum machine_mode tmpmode;
1422
 
1423
      /* int_size_in_bytes can return -1.  We don't need a check here
1424
         since the value of bytes will then be large enough that no
1425
         mode will match anyway.  */
1426
 
1427
      for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1428
           tmpmode != VOIDmode;
1429
           tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1430
        {
1431
          /* Have we found a large enough mode?  */
1432
          if (GET_MODE_SIZE (tmpmode) >= bytes)
1433
            break;
1434
        }
1435
 
1436
      /* No suitable mode found.  */
1437
      gcc_assert (tmpmode != VOIDmode);
1438
 
1439
      PUT_MODE (val, tmpmode);
1440
    }
1441
  return val;
1442
}
1443
 
1444
/* Return an rtx representing the register or memory location
1445
   in which a scalar value of mode MODE was returned by a library call.  */
1446
 
1447
rtx
1448
hard_libcall_value (enum machine_mode mode)
1449
{
1450
  return LIBCALL_VALUE (mode);
1451
}
1452
 
1453
/* Look up the tree code for a given rtx code
1454
   to provide the arithmetic operation for REAL_ARITHMETIC.
1455
   The function returns an int because the caller may not know
1456
   what `enum tree_code' means.  */
1457
 
1458
int
1459
rtx_to_tree_code (enum rtx_code code)
1460
{
1461
  enum tree_code tcode;
1462
 
1463
  switch (code)
1464
    {
1465
    case PLUS:
1466
      tcode = PLUS_EXPR;
1467
      break;
1468
    case MINUS:
1469
      tcode = MINUS_EXPR;
1470
      break;
1471
    case MULT:
1472
      tcode = MULT_EXPR;
1473
      break;
1474
    case DIV:
1475
      tcode = RDIV_EXPR;
1476
      break;
1477
    case SMIN:
1478
      tcode = MIN_EXPR;
1479
      break;
1480
    case SMAX:
1481
      tcode = MAX_EXPR;
1482
      break;
1483
    default:
1484
      tcode = LAST_AND_UNUSED_TREE_CODE;
1485
      break;
1486
    }
1487
  return ((int) tcode);
1488
}
1489
 
1490
#include "gt-explow.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.