OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [local-alloc.c] - Blame information for rev 20

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Allocate registers within a basic block, for GNU compiler.
2
   Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
 
5
This file is part of GCC.
6
 
7
GCC is free software; you can redistribute it and/or modify it under
8
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 2, or (at your option) any later
10
version.
11
 
12
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13
WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15
for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING.  If not, write to the Free
19
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20
02110-1301, USA.  */
21
 
22
/* Allocation of hard register numbers to pseudo registers is done in
23
   two passes.  In this pass we consider only regs that are born and
24
   die once within one basic block.  We do this one basic block at a
25
   time.  Then the next pass allocates the registers that remain.
26
   Two passes are used because this pass uses methods that work only
27
   on linear code, but that do a better job than the general methods
28
   used in global_alloc, and more quickly too.
29
 
30
   The assignments made are recorded in the vector reg_renumber
31
   whose space is allocated here.  The rtl code itself is not altered.
32
 
33
   We assign each instruction in the basic block a number
34
   which is its order from the beginning of the block.
35
   Then we can represent the lifetime of a pseudo register with
36
   a pair of numbers, and check for conflicts easily.
37
   We can record the availability of hard registers with a
38
   HARD_REG_SET for each instruction.  The HARD_REG_SET
39
   contains 0 or 1 for each hard reg.
40
 
41
   To avoid register shuffling, we tie registers together when one
42
   dies by being copied into another, or dies in an instruction that
43
   does arithmetic to produce another.  The tied registers are
44
   allocated as one.  Registers with different reg class preferences
45
   can never be tied unless the class preferred by one is a subclass
46
   of the one preferred by the other.
47
 
48
   Tying is represented with "quantity numbers".
49
   A non-tied register is given a new quantity number.
50
   Tied registers have the same quantity number.
51
 
52
   We have provision to exempt registers, even when they are contained
53
   within the block, that can be tied to others that are not contained in it.
54
   This is so that global_alloc could process them both and tie them then.
55
   But this is currently disabled since tying in global_alloc is not
56
   yet implemented.  */
57
 
58
/* Pseudos allocated here can be reallocated by global.c if the hard register
59
   is used as a spill register.  Currently we don't allocate such pseudos
60
   here if their preferred class is likely to be used by spills.  */
61
 
62
#include "config.h"
63
#include "system.h"
64
#include "coretypes.h"
65
#include "tm.h"
66
#include "hard-reg-set.h"
67
#include "rtl.h"
68
#include "tm_p.h"
69
#include "flags.h"
70
#include "regs.h"
71
#include "function.h"
72
#include "insn-config.h"
73
#include "insn-attr.h"
74
#include "recog.h"
75
#include "output.h"
76
#include "toplev.h"
77
#include "except.h"
78
#include "integrate.h"
79
#include "reload.h"
80
#include "ggc.h"
81
#include "timevar.h"
82
#include "tree-pass.h"
83
 
84
/* Next quantity number available for allocation.  */
85
 
86
static int next_qty;
87
 
88
/* Information we maintain about each quantity.  */
89
struct qty
90
{
91
  /* The number of refs to quantity Q.  */
92
 
93
  int n_refs;
94
 
95
  /* The frequency of uses of quantity Q.  */
96
 
97
  int freq;
98
 
99
  /* Insn number (counting from head of basic block)
100
     where quantity Q was born.  -1 if birth has not been recorded.  */
101
 
102
  int birth;
103
 
104
  /* Insn number (counting from head of basic block)
105
     where given quantity died.  Due to the way tying is done,
106
     and the fact that we consider in this pass only regs that die but once,
107
     a quantity can die only once.  Each quantity's life span
108
     is a set of consecutive insns.  -1 if death has not been recorded.  */
109
 
110
  int death;
111
 
112
  /* Number of words needed to hold the data in given quantity.
113
     This depends on its machine mode.  It is used for these purposes:
114
     1. It is used in computing the relative importance of qtys,
115
        which determines the order in which we look for regs for them.
116
     2. It is used in rules that prevent tying several registers of
117
        different sizes in a way that is geometrically impossible
118
        (see combine_regs).  */
119
 
120
  int size;
121
 
122
  /* Number of times a reg tied to given qty lives across a CALL_INSN.  */
123
 
124
  int n_calls_crossed;
125
 
126
  /* Number of times a reg tied to given qty lives across a CALL_INSN
127
     that might throw.  */
128
 
129
  int n_throwing_calls_crossed;
130
 
131
  /* The register number of one pseudo register whose reg_qty value is Q.
132
     This register should be the head of the chain
133
     maintained in reg_next_in_qty.  */
134
 
135
  int first_reg;
136
 
137
  /* Reg class contained in (smaller than) the preferred classes of all
138
     the pseudo regs that are tied in given quantity.
139
     This is the preferred class for allocating that quantity.  */
140
 
141
  enum reg_class min_class;
142
 
143
  /* Register class within which we allocate given qty if we can't get
144
     its preferred class.  */
145
 
146
  enum reg_class alternate_class;
147
 
148
  /* This holds the mode of the registers that are tied to given qty,
149
     or VOIDmode if registers with differing modes are tied together.  */
150
 
151
  enum machine_mode mode;
152
 
153
  /* the hard reg number chosen for given quantity,
154
     or -1 if none was found.  */
155
 
156
  short phys_reg;
157
};
158
 
159
static struct qty *qty;
160
 
161
/* These fields are kept separately to speedup their clearing.  */
162
 
163
/* We maintain two hard register sets that indicate suggested hard registers
164
   for each quantity.  The first, phys_copy_sugg, contains hard registers
165
   that are tied to the quantity by a simple copy.  The second contains all
166
   hard registers that are tied to the quantity via an arithmetic operation.
167
 
168
   The former register set is given priority for allocation.  This tends to
169
   eliminate copy insns.  */
170
 
171
/* Element Q is a set of hard registers that are suggested for quantity Q by
172
   copy insns.  */
173
 
174
static HARD_REG_SET *qty_phys_copy_sugg;
175
 
176
/* Element Q is a set of hard registers that are suggested for quantity Q by
177
   arithmetic insns.  */
178
 
179
static HARD_REG_SET *qty_phys_sugg;
180
 
181
/* Element Q is the number of suggested registers in qty_phys_copy_sugg.  */
182
 
183
static short *qty_phys_num_copy_sugg;
184
 
185
/* Element Q is the number of suggested registers in qty_phys_sugg.  */
186
 
187
static short *qty_phys_num_sugg;
188
 
189
/* If (REG N) has been assigned a quantity number, is a register number
190
   of another register assigned the same quantity number, or -1 for the
191
   end of the chain.  qty->first_reg point to the head of this chain.  */
192
 
193
static int *reg_next_in_qty;
194
 
195
/* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
196
   if it is >= 0,
197
   of -1 if this register cannot be allocated by local-alloc,
198
   or -2 if not known yet.
199
 
200
   Note that if we see a use or death of pseudo register N with
201
   reg_qty[N] == -2, register N must be local to the current block.  If
202
   it were used in more than one block, we would have reg_qty[N] == -1.
203
   This relies on the fact that if reg_basic_block[N] is >= 0, register N
204
   will not appear in any other block.  We save a considerable number of
205
   tests by exploiting this.
206
 
207
   If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
208
   be referenced.  */
209
 
210
static int *reg_qty;
211
 
212
/* The offset (in words) of register N within its quantity.
213
   This can be nonzero if register N is SImode, and has been tied
214
   to a subreg of a DImode register.  */
215
 
216
static char *reg_offset;
217
 
218
/* Vector of substitutions of register numbers,
219
   used to map pseudo regs into hardware regs.
220
   This is set up as a result of register allocation.
221
   Element N is the hard reg assigned to pseudo reg N,
222
   or is -1 if no hard reg was assigned.
223
   If N is a hard reg number, element N is N.  */
224
 
225
short *reg_renumber;
226
 
227
/* Set of hard registers live at the current point in the scan
228
   of the instructions in a basic block.  */
229
 
230
static HARD_REG_SET regs_live;
231
 
232
/* Each set of hard registers indicates registers live at a particular
233
   point in the basic block.  For N even, regs_live_at[N] says which
234
   hard registers are needed *after* insn N/2 (i.e., they may not
235
   conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
236
 
237
   If an object is to conflict with the inputs of insn J but not the
238
   outputs of insn J + 1, we say it is born at index J*2 - 1.  Similarly,
239
   if it is to conflict with the outputs of insn J but not the inputs of
240
   insn J + 1, it is said to die at index J*2 + 1.  */
241
 
242
static HARD_REG_SET *regs_live_at;
243
 
244
/* Communicate local vars `insn_number' and `insn'
245
   from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'.  */
246
static int this_insn_number;
247
static rtx this_insn;
248
 
249
struct equivalence
250
{
251
  /* Set when an attempt should be made to replace a register
252
     with the associated src_p entry.  */
253
 
254
  char replace;
255
 
256
  /* Set when a REG_EQUIV note is found or created.  Use to
257
     keep track of what memory accesses might be created later,
258
     e.g. by reload.  */
259
 
260
  rtx replacement;
261
 
262
  rtx *src_p;
263
 
264
  /* Loop depth is used to recognize equivalences which appear
265
     to be present within the same loop (or in an inner loop).  */
266
 
267
  int loop_depth;
268
 
269
  /* The list of each instruction which initializes this register.  */
270
 
271
  rtx init_insns;
272
 
273
  /* Nonzero if this had a preexisting REG_EQUIV note.  */
274
 
275
  int is_arg_equivalence;
276
};
277
 
278
/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
279
   structure for that register.  */
280
 
281
static struct equivalence *reg_equiv;
282
 
283
/* Nonzero if we recorded an equivalence for a LABEL_REF.  */
284
static int recorded_label_ref;
285
 
286
static void alloc_qty (int, enum machine_mode, int, int);
287
static void validate_equiv_mem_from_store (rtx, rtx, void *);
288
static int validate_equiv_mem (rtx, rtx, rtx);
289
static int equiv_init_varies_p (rtx);
290
static int equiv_init_movable_p (rtx, int);
291
static int contains_replace_regs (rtx);
292
static int memref_referenced_p (rtx, rtx);
293
static int memref_used_between_p (rtx, rtx, rtx);
294
static void update_equiv_regs (void);
295
static void no_equiv (rtx, rtx, void *);
296
static void block_alloc (int);
297
static int qty_sugg_compare (int, int);
298
static int qty_sugg_compare_1 (const void *, const void *);
299
static int qty_compare (int, int);
300
static int qty_compare_1 (const void *, const void *);
301
static int combine_regs (rtx, rtx, int, int, rtx, int);
302
static int reg_meets_class_p (int, enum reg_class);
303
static void update_qty_class (int, int);
304
static void reg_is_set (rtx, rtx, void *);
305
static void reg_is_born (rtx, int);
306
static void wipe_dead_reg (rtx, int);
307
static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
308
                          int, int);
309
static void mark_life (int, enum machine_mode, int);
310
static void post_mark_life (int, enum machine_mode, int, int, int);
311
static int no_conflict_p (rtx, rtx, rtx);
312
static int requires_inout (const char *);
313
 
314
/* Allocate a new quantity (new within current basic block)
315
   for register number REGNO which is born at index BIRTH
316
   within the block.  MODE and SIZE are info on reg REGNO.  */
317
 
318
static void
319
alloc_qty (int regno, enum machine_mode mode, int size, int birth)
320
{
321
  int qtyno = next_qty++;
322
 
323
  reg_qty[regno] = qtyno;
324
  reg_offset[regno] = 0;
325
  reg_next_in_qty[regno] = -1;
326
 
327
  qty[qtyno].first_reg = regno;
328
  qty[qtyno].size = size;
329
  qty[qtyno].mode = mode;
330
  qty[qtyno].birth = birth;
331
  qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
332
  qty[qtyno].n_throwing_calls_crossed = REG_N_THROWING_CALLS_CROSSED (regno);
333
  qty[qtyno].min_class = reg_preferred_class (regno);
334
  qty[qtyno].alternate_class = reg_alternate_class (regno);
335
  qty[qtyno].n_refs = REG_N_REFS (regno);
336
  qty[qtyno].freq = REG_FREQ (regno);
337
}
338
 
339
/* Main entry point of this file.  */
340
 
341
int
342
local_alloc (void)
343
{
344
  int i;
345
  int max_qty;
346
  basic_block b;
347
 
348
  /* We need to keep track of whether or not we recorded a LABEL_REF so
349
     that we know if the jump optimizer needs to be rerun.  */
350
  recorded_label_ref = 0;
351
 
352
  /* Leaf functions and non-leaf functions have different needs.
353
     If defined, let the machine say what kind of ordering we
354
     should use.  */
355
#ifdef ORDER_REGS_FOR_LOCAL_ALLOC
356
  ORDER_REGS_FOR_LOCAL_ALLOC;
357
#endif
358
 
359
  /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
360
     registers.  */
361
  update_equiv_regs ();
362
 
363
  /* This sets the maximum number of quantities we can have.  Quantity
364
     numbers start at zero and we can have one for each pseudo.  */
365
  max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
366
 
367
  /* Allocate vectors of temporary data.
368
     See the declarations of these variables, above,
369
     for what they mean.  */
370
 
371
  qty = xmalloc (max_qty * sizeof (struct qty));
372
  qty_phys_copy_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
373
  qty_phys_num_copy_sugg = xmalloc (max_qty * sizeof (short));
374
  qty_phys_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
375
  qty_phys_num_sugg = xmalloc (max_qty * sizeof (short));
376
 
377
  reg_qty = xmalloc (max_regno * sizeof (int));
378
  reg_offset = xmalloc (max_regno * sizeof (char));
379
  reg_next_in_qty = xmalloc (max_regno * sizeof (int));
380
 
381
  /* Determine which pseudo-registers can be allocated by local-alloc.
382
     In general, these are the registers used only in a single block and
383
     which only die once.
384
 
385
     We need not be concerned with which block actually uses the register
386
     since we will never see it outside that block.  */
387
 
388
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
389
    {
390
      if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
391
        reg_qty[i] = -2;
392
      else
393
        reg_qty[i] = -1;
394
    }
395
 
396
  /* Force loop below to initialize entire quantity array.  */
397
  next_qty = max_qty;
398
 
399
  /* Allocate each block's local registers, block by block.  */
400
 
401
  FOR_EACH_BB (b)
402
    {
403
      /* NEXT_QTY indicates which elements of the `qty_...'
404
         vectors might need to be initialized because they were used
405
         for the previous block; it is set to the entire array before
406
         block 0.  Initialize those, with explicit loop if there are few,
407
         else with bzero and bcopy.  Do not initialize vectors that are
408
         explicit set by `alloc_qty'.  */
409
 
410
      if (next_qty < 6)
411
        {
412
          for (i = 0; i < next_qty; i++)
413
            {
414
              CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
415
              qty_phys_num_copy_sugg[i] = 0;
416
              CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
417
              qty_phys_num_sugg[i] = 0;
418
            }
419
        }
420
      else
421
        {
422
#define CLEAR(vector)  \
423
          memset ((vector), 0, (sizeof (*(vector))) * next_qty);
424
 
425
          CLEAR (qty_phys_copy_sugg);
426
          CLEAR (qty_phys_num_copy_sugg);
427
          CLEAR (qty_phys_sugg);
428
          CLEAR (qty_phys_num_sugg);
429
        }
430
 
431
      next_qty = 0;
432
 
433
      block_alloc (b->index);
434
    }
435
 
436
  free (qty);
437
  free (qty_phys_copy_sugg);
438
  free (qty_phys_num_copy_sugg);
439
  free (qty_phys_sugg);
440
  free (qty_phys_num_sugg);
441
 
442
  free (reg_qty);
443
  free (reg_offset);
444
  free (reg_next_in_qty);
445
 
446
  return recorded_label_ref;
447
}
448
 
449
/* Used for communication between the following two functions: contains
450
   a MEM that we wish to ensure remains unchanged.  */
451
static rtx equiv_mem;
452
 
453
/* Set nonzero if EQUIV_MEM is modified.  */
454
static int equiv_mem_modified;
455
 
456
/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
457
   Called via note_stores.  */
458
 
459
static void
460
validate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
461
                               void *data ATTRIBUTE_UNUSED)
462
{
463
  if ((REG_P (dest)
464
       && reg_overlap_mentioned_p (dest, equiv_mem))
465
      || (MEM_P (dest)
466
          && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
467
    equiv_mem_modified = 1;
468
}
469
 
470
/* Verify that no store between START and the death of REG invalidates
471
   MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
472
   by storing into an overlapping memory location, or with a non-const
473
   CALL_INSN.
474
 
475
   Return 1 if MEMREF remains valid.  */
476
 
477
static int
478
validate_equiv_mem (rtx start, rtx reg, rtx memref)
479
{
480
  rtx insn;
481
  rtx note;
482
 
483
  equiv_mem = memref;
484
  equiv_mem_modified = 0;
485
 
486
  /* If the memory reference has side effects or is volatile, it isn't a
487
     valid equivalence.  */
488
  if (side_effects_p (memref))
489
    return 0;
490
 
491
  for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
492
    {
493
      if (! INSN_P (insn))
494
        continue;
495
 
496
      if (find_reg_note (insn, REG_DEAD, reg))
497
        return 1;
498
 
499
      if (CALL_P (insn) && ! MEM_READONLY_P (memref)
500
          && ! CONST_OR_PURE_CALL_P (insn))
501
        return 0;
502
 
503
      note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
504
 
505
      /* If a register mentioned in MEMREF is modified via an
506
         auto-increment, we lose the equivalence.  Do the same if one
507
         dies; although we could extend the life, it doesn't seem worth
508
         the trouble.  */
509
 
510
      for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
511
        if ((REG_NOTE_KIND (note) == REG_INC
512
             || REG_NOTE_KIND (note) == REG_DEAD)
513
            && REG_P (XEXP (note, 0))
514
            && reg_overlap_mentioned_p (XEXP (note, 0), memref))
515
          return 0;
516
    }
517
 
518
  return 0;
519
}
520
 
521
/* Returns zero if X is known to be invariant.  */
522
 
523
static int
524
equiv_init_varies_p (rtx x)
525
{
526
  RTX_CODE code = GET_CODE (x);
527
  int i;
528
  const char *fmt;
529
 
530
  switch (code)
531
    {
532
    case MEM:
533
      return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
534
 
535
    case CONST:
536
    case CONST_INT:
537
    case CONST_DOUBLE:
538
    case CONST_VECTOR:
539
    case SYMBOL_REF:
540
    case LABEL_REF:
541
      return 0;
542
 
543
    case REG:
544
      return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
545
 
546
    case ASM_OPERANDS:
547
      if (MEM_VOLATILE_P (x))
548
        return 1;
549
 
550
      /* Fall through.  */
551
 
552
    default:
553
      break;
554
    }
555
 
556
  fmt = GET_RTX_FORMAT (code);
557
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
558
    if (fmt[i] == 'e')
559
      {
560
        if (equiv_init_varies_p (XEXP (x, i)))
561
          return 1;
562
      }
563
    else if (fmt[i] == 'E')
564
      {
565
        int j;
566
        for (j = 0; j < XVECLEN (x, i); j++)
567
          if (equiv_init_varies_p (XVECEXP (x, i, j)))
568
            return 1;
569
      }
570
 
571
  return 0;
572
}
573
 
574
/* Returns nonzero if X (used to initialize register REGNO) is movable.
575
   X is only movable if the registers it uses have equivalent initializations
576
   which appear to be within the same loop (or in an inner loop) and movable
577
   or if they are not candidates for local_alloc and don't vary.  */
578
 
579
static int
580
equiv_init_movable_p (rtx x, int regno)
581
{
582
  int i, j;
583
  const char *fmt;
584
  enum rtx_code code = GET_CODE (x);
585
 
586
  switch (code)
587
    {
588
    case SET:
589
      return equiv_init_movable_p (SET_SRC (x), regno);
590
 
591
    case CC0:
592
    case CLOBBER:
593
      return 0;
594
 
595
    case PRE_INC:
596
    case PRE_DEC:
597
    case POST_INC:
598
    case POST_DEC:
599
    case PRE_MODIFY:
600
    case POST_MODIFY:
601
      return 0;
602
 
603
    case REG:
604
      return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
605
              && reg_equiv[REGNO (x)].replace)
606
             || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
607
 
608
    case UNSPEC_VOLATILE:
609
      return 0;
610
 
611
    case ASM_OPERANDS:
612
      if (MEM_VOLATILE_P (x))
613
        return 0;
614
 
615
      /* Fall through.  */
616
 
617
    default:
618
      break;
619
    }
620
 
621
  fmt = GET_RTX_FORMAT (code);
622
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
623
    switch (fmt[i])
624
      {
625
      case 'e':
626
        if (! equiv_init_movable_p (XEXP (x, i), regno))
627
          return 0;
628
        break;
629
      case 'E':
630
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
631
          if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
632
            return 0;
633
        break;
634
      }
635
 
636
  return 1;
637
}
638
 
639
/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true.  */
640
 
641
static int
642
contains_replace_regs (rtx x)
643
{
644
  int i, j;
645
  const char *fmt;
646
  enum rtx_code code = GET_CODE (x);
647
 
648
  switch (code)
649
    {
650
    case CONST_INT:
651
    case CONST:
652
    case LABEL_REF:
653
    case SYMBOL_REF:
654
    case CONST_DOUBLE:
655
    case CONST_VECTOR:
656
    case PC:
657
    case CC0:
658
    case HIGH:
659
      return 0;
660
 
661
    case REG:
662
      return reg_equiv[REGNO (x)].replace;
663
 
664
    default:
665
      break;
666
    }
667
 
668
  fmt = GET_RTX_FORMAT (code);
669
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
670
    switch (fmt[i])
671
      {
672
      case 'e':
673
        if (contains_replace_regs (XEXP (x, i)))
674
          return 1;
675
        break;
676
      case 'E':
677
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
678
          if (contains_replace_regs (XVECEXP (x, i, j)))
679
            return 1;
680
        break;
681
      }
682
 
683
  return 0;
684
}
685
 
686
/* TRUE if X references a memory location that would be affected by a store
687
   to MEMREF.  */
688
 
689
static int
690
memref_referenced_p (rtx memref, rtx x)
691
{
692
  int i, j;
693
  const char *fmt;
694
  enum rtx_code code = GET_CODE (x);
695
 
696
  switch (code)
697
    {
698
    case CONST_INT:
699
    case CONST:
700
    case LABEL_REF:
701
    case SYMBOL_REF:
702
    case CONST_DOUBLE:
703
    case CONST_VECTOR:
704
    case PC:
705
    case CC0:
706
    case HIGH:
707
    case LO_SUM:
708
      return 0;
709
 
710
    case REG:
711
      return (reg_equiv[REGNO (x)].replacement
712
              && memref_referenced_p (memref,
713
                                      reg_equiv[REGNO (x)].replacement));
714
 
715
    case MEM:
716
      if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
717
        return 1;
718
      break;
719
 
720
    case SET:
721
      /* If we are setting a MEM, it doesn't count (its address does), but any
722
         other SET_DEST that has a MEM in it is referencing the MEM.  */
723
      if (MEM_P (SET_DEST (x)))
724
        {
725
          if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
726
            return 1;
727
        }
728
      else if (memref_referenced_p (memref, SET_DEST (x)))
729
        return 1;
730
 
731
      return memref_referenced_p (memref, SET_SRC (x));
732
 
733
    default:
734
      break;
735
    }
736
 
737
  fmt = GET_RTX_FORMAT (code);
738
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
739
    switch (fmt[i])
740
      {
741
      case 'e':
742
        if (memref_referenced_p (memref, XEXP (x, i)))
743
          return 1;
744
        break;
745
      case 'E':
746
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
747
          if (memref_referenced_p (memref, XVECEXP (x, i, j)))
748
            return 1;
749
        break;
750
      }
751
 
752
  return 0;
753
}
754
 
755
/* TRUE if some insn in the range (START, END] references a memory location
756
   that would be affected by a store to MEMREF.  */
757
 
758
static int
759
memref_used_between_p (rtx memref, rtx start, rtx end)
760
{
761
  rtx insn;
762
 
763
  for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
764
       insn = NEXT_INSN (insn))
765
    {
766
      if (!INSN_P (insn))
767
        continue;
768
 
769
      if (memref_referenced_p (memref, PATTERN (insn)))
770
        return 1;
771
 
772
      /* Nonconst functions may access memory.  */
773
      if (CALL_P (insn)
774
          && (! CONST_OR_PURE_CALL_P (insn)
775
              || pure_call_p (insn)))
776
        return 1;
777
    }
778
 
779
  return 0;
780
}
781
 
782
/* Find registers that are equivalent to a single value throughout the
783
   compilation (either because they can be referenced in memory or are set once
784
   from a single constant).  Lower their priority for a register.
785
 
786
   If such a register is only referenced once, try substituting its value
787
   into the using insn.  If it succeeds, we can eliminate the register
788
   completely.
789
 
790
   Initialize the REG_EQUIV_INIT array of initializing insns.  */
791
 
792
static void
793
update_equiv_regs (void)
794
{
795
  rtx insn;
796
  basic_block bb;
797
  int loop_depth;
798
  regset_head cleared_regs;
799
  int clear_regnos = 0;
800
 
801
  reg_equiv = xcalloc (max_regno, sizeof *reg_equiv);
802
  INIT_REG_SET (&cleared_regs);
803
  reg_equiv_init = ggc_alloc_cleared (max_regno * sizeof (rtx));
804
  reg_equiv_init_size = max_regno;
805
 
806
  init_alias_analysis ();
807
 
808
  /* Scan the insns and find which registers have equivalences.  Do this
809
     in a separate scan of the insns because (due to -fcse-follow-jumps)
810
     a register can be set below its use.  */
811
  FOR_EACH_BB (bb)
812
    {
813
      loop_depth = bb->loop_depth;
814
 
815
      for (insn = BB_HEAD (bb);
816
           insn != NEXT_INSN (BB_END (bb));
817
           insn = NEXT_INSN (insn))
818
        {
819
          rtx note;
820
          rtx set;
821
          rtx dest, src;
822
          int regno;
823
 
824
          if (! INSN_P (insn))
825
            continue;
826
 
827
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
828
            if (REG_NOTE_KIND (note) == REG_INC)
829
              no_equiv (XEXP (note, 0), note, NULL);
830
 
831
          set = single_set (insn);
832
 
833
          /* If this insn contains more (or less) than a single SET,
834
             only mark all destinations as having no known equivalence.  */
835
          if (set == 0)
836
            {
837
              note_stores (PATTERN (insn), no_equiv, NULL);
838
              continue;
839
            }
840
          else if (GET_CODE (PATTERN (insn)) == PARALLEL)
841
            {
842
              int i;
843
 
844
              for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
845
                {
846
                  rtx part = XVECEXP (PATTERN (insn), 0, i);
847
                  if (part != set)
848
                    note_stores (part, no_equiv, NULL);
849
                }
850
            }
851
 
852
          dest = SET_DEST (set);
853
          src = SET_SRC (set);
854
 
855
          /* See if this is setting up the equivalence between an argument
856
             register and its stack slot.  */
857
          note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
858
          if (note)
859
            {
860
              gcc_assert (REG_P (dest));
861
              regno = REGNO (dest);
862
 
863
              /* Note that we don't want to clear reg_equiv_init even if there
864
                 are multiple sets of this register.  */
865
              reg_equiv[regno].is_arg_equivalence = 1;
866
 
867
              /* Record for reload that this is an equivalencing insn.  */
868
              if (rtx_equal_p (src, XEXP (note, 0)))
869
                reg_equiv_init[regno]
870
                  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
871
 
872
              /* Continue normally in case this is a candidate for
873
                 replacements.  */
874
            }
875
 
876
          if (!optimize)
877
            continue;
878
 
879
          /* We only handle the case of a pseudo register being set
880
             once, or always to the same value.  */
881
          /* ??? The mn10200 port breaks if we add equivalences for
882
             values that need an ADDRESS_REGS register and set them equivalent
883
             to a MEM of a pseudo.  The actual problem is in the over-conservative
884
             handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
885
             calculate_needs, but we traditionally work around this problem
886
             here by rejecting equivalences when the destination is in a register
887
             that's likely spilled.  This is fragile, of course, since the
888
             preferred class of a pseudo depends on all instructions that set
889
             or use it.  */
890
 
891
          if (!REG_P (dest)
892
              || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
893
              || reg_equiv[regno].init_insns == const0_rtx
894
              || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
895
                  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
896
            {
897
              /* This might be setting a SUBREG of a pseudo, a pseudo that is
898
                 also set somewhere else to a constant.  */
899
              note_stores (set, no_equiv, NULL);
900
              continue;
901
            }
902
 
903
          note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
904
 
905
          /* cse sometimes generates function invariants, but doesn't put a
906
             REG_EQUAL note on the insn.  Since this note would be redundant,
907
             there's no point creating it earlier than here.  */
908
          if (! note && ! rtx_varies_p (src, 0))
909
            note = set_unique_reg_note (insn, REG_EQUAL, src);
910
 
911
          /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
912
             since it represents a function call */
913
          if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
914
            note = NULL_RTX;
915
 
916
          if (REG_N_SETS (regno) != 1
917
              && (! note
918
                  || rtx_varies_p (XEXP (note, 0), 0)
919
                  || (reg_equiv[regno].replacement
920
                      && ! rtx_equal_p (XEXP (note, 0),
921
                                        reg_equiv[regno].replacement))))
922
            {
923
              no_equiv (dest, set, NULL);
924
              continue;
925
            }
926
          /* Record this insn as initializing this register.  */
927
          reg_equiv[regno].init_insns
928
            = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
929
 
930
          /* If this register is known to be equal to a constant, record that
931
             it is always equivalent to the constant.  */
932
          if (note && ! rtx_varies_p (XEXP (note, 0), 0))
933
            PUT_MODE (note, (enum machine_mode) REG_EQUIV);
934
 
935
          /* If this insn introduces a "constant" register, decrease the priority
936
             of that register.  Record this insn if the register is only used once
937
             more and the equivalence value is the same as our source.
938
 
939
             The latter condition is checked for two reasons:  First, it is an
940
             indication that it may be more efficient to actually emit the insn
941
             as written (if no registers are available, reload will substitute
942
             the equivalence).  Secondly, it avoids problems with any registers
943
             dying in this insn whose death notes would be missed.
944
 
945
             If we don't have a REG_EQUIV note, see if this insn is loading
946
             a register used only in one basic block from a MEM.  If so, and the
947
             MEM remains unchanged for the life of the register, add a REG_EQUIV
948
             note.  */
949
 
950
          note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
951
 
952
          if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
953
              && MEM_P (SET_SRC (set))
954
              && validate_equiv_mem (insn, dest, SET_SRC (set)))
955
            REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
956
                                                         REG_NOTES (insn));
957
 
958
          if (note)
959
            {
960
              int regno = REGNO (dest);
961
              rtx x = XEXP (note, 0);
962
 
963
              /* If we haven't done so, record for reload that this is an
964
                 equivalencing insn.  */
965
              if (!reg_equiv[regno].is_arg_equivalence
966
                  && (!MEM_P (x) || rtx_equal_p (src, x)))
967
                reg_equiv_init[regno]
968
                  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
969
 
970
              /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
971
                 We might end up substituting the LABEL_REF for uses of the
972
                 pseudo here or later.  That kind of transformation may turn an
973
                 indirect jump into a direct jump, in which case we must rerun the
974
                 jump optimizer to ensure that the JUMP_LABEL fields are valid.  */
975
              if (GET_CODE (x) == LABEL_REF
976
                  || (GET_CODE (x) == CONST
977
                      && GET_CODE (XEXP (x, 0)) == PLUS
978
                      && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
979
                recorded_label_ref = 1;
980
 
981
              reg_equiv[regno].replacement = x;
982
              reg_equiv[regno].src_p = &SET_SRC (set);
983
              reg_equiv[regno].loop_depth = loop_depth;
984
 
985
              /* Don't mess with things live during setjmp.  */
986
              if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
987
                {
988
                  /* Note that the statement below does not affect the priority
989
                     in local-alloc!  */
990
                  REG_LIVE_LENGTH (regno) *= 2;
991
 
992
                  /* If the register is referenced exactly twice, meaning it is
993
                     set once and used once, indicate that the reference may be
994
                     replaced by the equivalence we computed above.  Do this
995
                     even if the register is only used in one block so that
996
                     dependencies can be handled where the last register is
997
                     used in a different block (i.e. HIGH / LO_SUM sequences)
998
                     and to reduce the number of registers alive across
999
                     calls.  */
1000
 
1001
                  if (REG_N_REFS (regno) == 2
1002
                      && (rtx_equal_p (x, src)
1003
                          || ! equiv_init_varies_p (src))
1004
                      && NONJUMP_INSN_P (insn)
1005
                      && equiv_init_movable_p (PATTERN (insn), regno))
1006
                    reg_equiv[regno].replace = 1;
1007
                }
1008
            }
1009
        }
1010
    }
1011
 
1012
  if (!optimize)
1013
    goto out;
1014
 
1015
  /* A second pass, to gather additional equivalences with memory.  This needs
1016
     to be done after we know which registers we are going to replace.  */
1017
 
1018
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1019
    {
1020
      rtx set, src, dest;
1021
      unsigned regno;
1022
 
1023
      if (! INSN_P (insn))
1024
        continue;
1025
 
1026
      set = single_set (insn);
1027
      if (! set)
1028
        continue;
1029
 
1030
      dest = SET_DEST (set);
1031
      src = SET_SRC (set);
1032
 
1033
      /* If this sets a MEM to the contents of a REG that is only used
1034
         in a single basic block, see if the register is always equivalent
1035
         to that memory location and if moving the store from INSN to the
1036
         insn that set REG is safe.  If so, put a REG_EQUIV note on the
1037
         initializing insn.
1038
 
1039
         Don't add a REG_EQUIV note if the insn already has one.  The existing
1040
         REG_EQUIV is likely more useful than the one we are adding.
1041
 
1042
         If one of the regs in the address has reg_equiv[REGNO].replace set,
1043
         then we can't add this REG_EQUIV note.  The reg_equiv[REGNO].replace
1044
         optimization may move the set of this register immediately before
1045
         insn, which puts it after reg_equiv[REGNO].init_insns, and hence
1046
         the mention in the REG_EQUIV note would be to an uninitialized
1047
         pseudo.  */
1048
 
1049
      if (MEM_P (dest) && REG_P (src)
1050
          && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1051
          && REG_BASIC_BLOCK (regno) >= 0
1052
          && REG_N_SETS (regno) == 1
1053
          && reg_equiv[regno].init_insns != 0
1054
          && reg_equiv[regno].init_insns != const0_rtx
1055
          && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
1056
                              REG_EQUIV, NULL_RTX)
1057
          && ! contains_replace_regs (XEXP (dest, 0)))
1058
        {
1059
          rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
1060
          if (validate_equiv_mem (init_insn, src, dest)
1061
              && ! memref_used_between_p (dest, init_insn, insn))
1062
            {
1063
              REG_NOTES (init_insn)
1064
                = gen_rtx_EXPR_LIST (REG_EQUIV, dest,
1065
                                     REG_NOTES (init_insn));
1066
              /* This insn makes the equivalence, not the one initializing
1067
                 the register.  */
1068
              reg_equiv_init[regno]
1069
                = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
1070
            }
1071
        }
1072
    }
1073
 
1074
  /* Now scan all regs killed in an insn to see if any of them are
1075
     registers only used that once.  If so, see if we can replace the
1076
     reference with the equivalent form.  If we can, delete the
1077
     initializing reference and this register will go away.  If we
1078
     can't replace the reference, and the initializing reference is
1079
     within the same loop (or in an inner loop), then move the register
1080
     initialization just before the use, so that they are in the same
1081
     basic block.  */
1082
  FOR_EACH_BB_REVERSE (bb)
1083
    {
1084
      loop_depth = bb->loop_depth;
1085
      for (insn = BB_END (bb);
1086
           insn != PREV_INSN (BB_HEAD (bb));
1087
           insn = PREV_INSN (insn))
1088
        {
1089
          rtx link;
1090
 
1091
          if (! INSN_P (insn))
1092
            continue;
1093
 
1094
          /* Don't substitute into a non-local goto, this confuses CFG.  */
1095
          if (JUMP_P (insn)
1096
              && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1097
            continue;
1098
 
1099
          for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1100
            {
1101
              if (REG_NOTE_KIND (link) == REG_DEAD
1102
                  /* Make sure this insn still refers to the register.  */
1103
                  && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1104
                {
1105
                  int regno = REGNO (XEXP (link, 0));
1106
                  rtx equiv_insn;
1107
 
1108
                  if (! reg_equiv[regno].replace
1109
                      || reg_equiv[regno].loop_depth < loop_depth)
1110
                    continue;
1111
 
1112
                  /* reg_equiv[REGNO].replace gets set only when
1113
                     REG_N_REFS[REGNO] is 2, i.e. the register is set
1114
                     once and used once.  (If it were only set, but not used,
1115
                     flow would have deleted the setting insns.)  Hence
1116
                     there can only be one insn in reg_equiv[REGNO].init_insns.  */
1117
                  gcc_assert (reg_equiv[regno].init_insns
1118
                              && !XEXP (reg_equiv[regno].init_insns, 1));
1119
                  equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1120
 
1121
                  /* We may not move instructions that can throw, since
1122
                     that changes basic block boundaries and we are not
1123
                     prepared to adjust the CFG to match.  */
1124
                  if (can_throw_internal (equiv_insn))
1125
                    continue;
1126
 
1127
                  if (asm_noperands (PATTERN (equiv_insn)) < 0
1128
                      && validate_replace_rtx (regno_reg_rtx[regno],
1129
                                               *(reg_equiv[regno].src_p), insn))
1130
                    {
1131
                      rtx equiv_link;
1132
                      rtx last_link;
1133
                      rtx note;
1134
 
1135
                      /* Find the last note.  */
1136
                      for (last_link = link; XEXP (last_link, 1);
1137
                           last_link = XEXP (last_link, 1))
1138
                        ;
1139
 
1140
                      /* Append the REG_DEAD notes from equiv_insn.  */
1141
                      equiv_link = REG_NOTES (equiv_insn);
1142
                      while (equiv_link)
1143
                        {
1144
                          note = equiv_link;
1145
                          equiv_link = XEXP (equiv_link, 1);
1146
                          if (REG_NOTE_KIND (note) == REG_DEAD)
1147
                            {
1148
                              remove_note (equiv_insn, note);
1149
                              XEXP (last_link, 1) = note;
1150
                              XEXP (note, 1) = NULL_RTX;
1151
                              last_link = note;
1152
                            }
1153
                        }
1154
 
1155
                      remove_death (regno, insn);
1156
                      REG_N_REFS (regno) = 0;
1157
                      REG_FREQ (regno) = 0;
1158
                      delete_insn (equiv_insn);
1159
 
1160
                      reg_equiv[regno].init_insns
1161
                        = XEXP (reg_equiv[regno].init_insns, 1);
1162
 
1163
                      /* Remember to clear REGNO from all basic block's live
1164
                         info.  */
1165
                      SET_REGNO_REG_SET (&cleared_regs, regno);
1166
                      clear_regnos++;
1167
                      reg_equiv_init[regno] = NULL_RTX;
1168
                    }
1169
                  /* Move the initialization of the register to just before
1170
                     INSN.  Update the flow information.  */
1171
                  else if (PREV_INSN (insn) != equiv_insn)
1172
                    {
1173
                      rtx new_insn;
1174
 
1175
                      new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1176
                      REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1177
                      REG_NOTES (equiv_insn) = 0;
1178
 
1179
                      /* Make sure this insn is recognized before
1180
                         reload begins, otherwise
1181
                         eliminate_regs_in_insn will die.  */
1182
                      INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1183
 
1184
                      delete_insn (equiv_insn);
1185
 
1186
                      XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1187
 
1188
                      REG_BASIC_BLOCK (regno) = bb->index;
1189
                      REG_N_CALLS_CROSSED (regno) = 0;
1190
                      REG_N_THROWING_CALLS_CROSSED (regno) = 0;
1191
                      REG_LIVE_LENGTH (regno) = 2;
1192
 
1193
                      if (insn == BB_HEAD (bb))
1194
                        BB_HEAD (bb) = PREV_INSN (insn);
1195
 
1196
                      /* Remember to clear REGNO from all basic block's live
1197
                         info.  */
1198
                      SET_REGNO_REG_SET (&cleared_regs, regno);
1199
                      clear_regnos++;
1200
                      reg_equiv_init[regno]
1201
                        = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
1202
                    }
1203
                }
1204
            }
1205
        }
1206
    }
1207
 
1208
  /* Clear all dead REGNOs from all basic block's live info.  */
1209
  if (clear_regnos)
1210
    {
1211
      unsigned j;
1212
 
1213
      if (clear_regnos > 8)
1214
        {
1215
          FOR_EACH_BB (bb)
1216
            {
1217
              AND_COMPL_REG_SET (bb->il.rtl->global_live_at_start,
1218
                                 &cleared_regs);
1219
              AND_COMPL_REG_SET (bb->il.rtl->global_live_at_end,
1220
                                 &cleared_regs);
1221
            }
1222
        }
1223
      else
1224
        {
1225
          reg_set_iterator rsi;
1226
          EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j, rsi)
1227
            {
1228
              FOR_EACH_BB (bb)
1229
                {
1230
                  CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start, j);
1231
                  CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_end, j);
1232
                }
1233
            }
1234
        }
1235
    }
1236
 
1237
  out:
1238
  /* Clean up.  */
1239
  end_alias_analysis ();
1240
  CLEAR_REG_SET (&cleared_regs);
1241
  free (reg_equiv);
1242
}
1243
 
1244
/* Mark REG as having no known equivalence.
1245
   Some instructions might have been processed before and furnished
1246
   with REG_EQUIV notes for this register; these notes will have to be
1247
   removed.
1248
   STORE is the piece of RTL that does the non-constant / conflicting
1249
   assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
1250
   but needs to be there because this function is called from note_stores.  */
1251
static void
1252
no_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1253
{
1254
  int regno;
1255
  rtx list;
1256
 
1257
  if (!REG_P (reg))
1258
    return;
1259
  regno = REGNO (reg);
1260
  list = reg_equiv[regno].init_insns;
1261
  if (list == const0_rtx)
1262
    return;
1263
  reg_equiv[regno].init_insns = const0_rtx;
1264
  reg_equiv[regno].replacement = NULL_RTX;
1265
  /* This doesn't matter for equivalences made for argument registers, we
1266
     should keep their initialization insns.  */
1267
  if (reg_equiv[regno].is_arg_equivalence)
1268
    return;
1269
  reg_equiv_init[regno] = NULL_RTX;
1270
  for (; list; list =  XEXP (list, 1))
1271
    {
1272
      rtx insn = XEXP (list, 0);
1273
      remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1274
    }
1275
}
1276
 
1277
/* Allocate hard regs to the pseudo regs used only within block number B.
1278
   Only the pseudos that die but once can be handled.  */
1279
 
1280
static void
1281
block_alloc (int b)
1282
{
1283
  int i, q;
1284
  rtx insn;
1285
  rtx note, hard_reg;
1286
  int insn_number = 0;
1287
  int insn_count = 0;
1288
  int max_uid = get_max_uid ();
1289
  int *qty_order;
1290
  int no_conflict_combined_regno = -1;
1291
 
1292
  /* Count the instructions in the basic block.  */
1293
 
1294
  insn = BB_END (BASIC_BLOCK (b));
1295
  while (1)
1296
    {
1297
      if (!NOTE_P (insn))
1298
        {
1299
          ++insn_count;
1300
          gcc_assert (insn_count <= max_uid);
1301
        }
1302
      if (insn == BB_HEAD (BASIC_BLOCK (b)))
1303
        break;
1304
      insn = PREV_INSN (insn);
1305
    }
1306
 
1307
  /* +2 to leave room for a post_mark_life at the last insn and for
1308
     the birth of a CLOBBER in the first insn.  */
1309
  regs_live_at = xcalloc ((2 * insn_count + 2), sizeof (HARD_REG_SET));
1310
 
1311
  /* Initialize table of hardware registers currently live.  */
1312
 
1313
  REG_SET_TO_HARD_REG_SET (regs_live,
1314
                           BASIC_BLOCK (b)->il.rtl->global_live_at_start);
1315
 
1316
  /* This loop scans the instructions of the basic block
1317
     and assigns quantities to registers.
1318
     It computes which registers to tie.  */
1319
 
1320
  insn = BB_HEAD (BASIC_BLOCK (b));
1321
  while (1)
1322
    {
1323
      if (!NOTE_P (insn))
1324
        insn_number++;
1325
 
1326
      if (INSN_P (insn))
1327
        {
1328
          rtx link, set;
1329
          int win = 0;
1330
          rtx r0, r1 = NULL_RTX;
1331
          int combined_regno = -1;
1332
          int i;
1333
 
1334
          this_insn_number = insn_number;
1335
          this_insn = insn;
1336
 
1337
          extract_insn (insn);
1338
          which_alternative = -1;
1339
 
1340
          /* Is this insn suitable for tying two registers?
1341
             If so, try doing that.
1342
             Suitable insns are those with at least two operands and where
1343
             operand 0 is an output that is a register that is not
1344
             earlyclobber.
1345
 
1346
             We can tie operand 0 with some operand that dies in this insn.
1347
             First look for operands that are required to be in the same
1348
             register as operand 0.  If we find such, only try tying that
1349
             operand or one that can be put into that operand if the
1350
             operation is commutative.  If we don't find an operand
1351
             that is required to be in the same register as operand 0,
1352
             we can tie with any operand.
1353
 
1354
             Subregs in place of regs are also ok.
1355
 
1356
             If tying is done, WIN is set nonzero.  */
1357
 
1358
          if (optimize
1359
              && recog_data.n_operands > 1
1360
              && recog_data.constraints[0][0] == '='
1361
              && recog_data.constraints[0][1] != '&')
1362
            {
1363
              /* If non-negative, is an operand that must match operand 0.  */
1364
              int must_match_0 = -1;
1365
              /* Counts number of alternatives that require a match with
1366
                 operand 0.  */
1367
              int n_matching_alts = 0;
1368
 
1369
              for (i = 1; i < recog_data.n_operands; i++)
1370
                {
1371
                  const char *p = recog_data.constraints[i];
1372
                  int this_match = requires_inout (p);
1373
 
1374
                  n_matching_alts += this_match;
1375
                  if (this_match == recog_data.n_alternatives)
1376
                    must_match_0 = i;
1377
                }
1378
 
1379
              r0 = recog_data.operand[0];
1380
              for (i = 1; i < recog_data.n_operands; i++)
1381
                {
1382
                  /* Skip this operand if we found an operand that
1383
                     must match operand 0 and this operand isn't it
1384
                     and can't be made to be it by commutativity.  */
1385
 
1386
                  if (must_match_0 >= 0 && i != must_match_0
1387
                      && ! (i == must_match_0 + 1
1388
                            && recog_data.constraints[i-1][0] == '%')
1389
                      && ! (i == must_match_0 - 1
1390
                            && recog_data.constraints[i][0] == '%'))
1391
                    continue;
1392
 
1393
                  /* Likewise if each alternative has some operand that
1394
                     must match operand zero.  In that case, skip any
1395
                     operand that doesn't list operand 0 since we know that
1396
                     the operand always conflicts with operand 0.  We
1397
                     ignore commutativity in this case to keep things simple.  */
1398
                  if (n_matching_alts == recog_data.n_alternatives
1399
                      && 0 == requires_inout (recog_data.constraints[i]))
1400
                    continue;
1401
 
1402
                  r1 = recog_data.operand[i];
1403
 
1404
                  /* If the operand is an address, find a register in it.
1405
                     There may be more than one register, but we only try one
1406
                     of them.  */
1407
                  if (recog_data.constraints[i][0] == 'p'
1408
                      || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1409
                                                   recog_data.constraints[i]))
1410
                    while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1411
                      r1 = XEXP (r1, 0);
1412
 
1413
                  /* Avoid making a call-saved register unnecessarily
1414
                     clobbered.  */
1415
                  hard_reg = get_hard_reg_initial_reg (cfun, r1);
1416
                  if (hard_reg != NULL_RTX)
1417
                    {
1418
                      if (REG_P (hard_reg)
1419
                          && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1420
                          && !call_used_regs[REGNO (hard_reg)])
1421
                        continue;
1422
                    }
1423
 
1424
                  if (REG_P (r0) || GET_CODE (r0) == SUBREG)
1425
                    {
1426
                      /* We have two priorities for hard register preferences.
1427
                         If we have a move insn or an insn whose first input
1428
                         can only be in the same register as the output, give
1429
                         priority to an equivalence found from that insn.  */
1430
                      int may_save_copy
1431
                        = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1432
 
1433
                      if (REG_P (r1) || GET_CODE (r1) == SUBREG)
1434
                        win = combine_regs (r1, r0, may_save_copy,
1435
                                            insn_number, insn, 0);
1436
                    }
1437
                  if (win)
1438
                    break;
1439
                }
1440
            }
1441
 
1442
          /* Recognize an insn sequence with an ultimate result
1443
             which can safely overlap one of the inputs.
1444
             The sequence begins with a CLOBBER of its result,
1445
             and ends with an insn that copies the result to itself
1446
             and has a REG_EQUAL note for an equivalent formula.
1447
             That note indicates what the inputs are.
1448
             The result and the input can overlap if each insn in
1449
             the sequence either doesn't mention the input
1450
             or has a REG_NO_CONFLICT note to inhibit the conflict.
1451
 
1452
             We do the combining test at the CLOBBER so that the
1453
             destination register won't have had a quantity number
1454
             assigned, since that would prevent combining.  */
1455
 
1456
          if (optimize
1457
              && GET_CODE (PATTERN (insn)) == CLOBBER
1458
              && (r0 = XEXP (PATTERN (insn), 0),
1459
                  REG_P (r0))
1460
              && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1461
              && XEXP (link, 0) != 0
1462
              && NONJUMP_INSN_P (XEXP (link, 0))
1463
              && (set = single_set (XEXP (link, 0))) != 0
1464
              && SET_DEST (set) == r0 && SET_SRC (set) == r0
1465
              && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1466
                                        NULL_RTX)) != 0)
1467
            {
1468
              if (r1 = XEXP (note, 0), REG_P (r1)
1469
                  /* Check that we have such a sequence.  */
1470
                  && no_conflict_p (insn, r0, r1))
1471
                win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1472
              else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1473
                       && (r1 = XEXP (XEXP (note, 0), 0),
1474
                           REG_P (r1) || GET_CODE (r1) == SUBREG)
1475
                       && no_conflict_p (insn, r0, r1))
1476
                win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1477
 
1478
              /* Here we care if the operation to be computed is
1479
                 commutative.  */
1480
              else if (COMMUTATIVE_P (XEXP (note, 0))
1481
                       && (r1 = XEXP (XEXP (note, 0), 1),
1482
                           (REG_P (r1) || GET_CODE (r1) == SUBREG))
1483
                       && no_conflict_p (insn, r0, r1))
1484
                win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1485
 
1486
              /* If we did combine something, show the register number
1487
                 in question so that we know to ignore its death.  */
1488
              if (win)
1489
                no_conflict_combined_regno = REGNO (r1);
1490
            }
1491
 
1492
          /* If registers were just tied, set COMBINED_REGNO
1493
             to the number of the register used in this insn
1494
             that was tied to the register set in this insn.
1495
             This register's qty should not be "killed".  */
1496
 
1497
          if (win)
1498
            {
1499
              while (GET_CODE (r1) == SUBREG)
1500
                r1 = SUBREG_REG (r1);
1501
              combined_regno = REGNO (r1);
1502
            }
1503
 
1504
          /* Mark the death of everything that dies in this instruction,
1505
             except for anything that was just combined.  */
1506
 
1507
          for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1508
            if (REG_NOTE_KIND (link) == REG_DEAD
1509
                && REG_P (XEXP (link, 0))
1510
                && combined_regno != (int) REGNO (XEXP (link, 0))
1511
                && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1512
                    || ! find_reg_note (insn, REG_NO_CONFLICT,
1513
                                        XEXP (link, 0))))
1514
              wipe_dead_reg (XEXP (link, 0), 0);
1515
 
1516
          /* Allocate qty numbers for all registers local to this block
1517
             that are born (set) in this instruction.
1518
             A pseudo that already has a qty is not changed.  */
1519
 
1520
          note_stores (PATTERN (insn), reg_is_set, NULL);
1521
 
1522
          /* If anything is set in this insn and then unused, mark it as dying
1523
             after this insn, so it will conflict with our outputs.  This
1524
             can't match with something that combined, and it doesn't matter
1525
             if it did.  Do this after the calls to reg_is_set since these
1526
             die after, not during, the current insn.  */
1527
 
1528
          for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1529
            if (REG_NOTE_KIND (link) == REG_UNUSED
1530
                && REG_P (XEXP (link, 0)))
1531
              wipe_dead_reg (XEXP (link, 0), 1);
1532
 
1533
          /* If this is an insn that has a REG_RETVAL note pointing at a
1534
             CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1535
             block, so clear any register number that combined within it.  */
1536
          if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1537
              && NONJUMP_INSN_P (XEXP (note, 0))
1538
              && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1539
            no_conflict_combined_regno = -1;
1540
        }
1541
 
1542
      /* Set the registers live after INSN_NUMBER.  Note that we never
1543
         record the registers live before the block's first insn, since no
1544
         pseudos we care about are live before that insn.  */
1545
 
1546
      IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1547
      IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1548
 
1549
      if (insn == BB_END (BASIC_BLOCK (b)))
1550
        break;
1551
 
1552
      insn = NEXT_INSN (insn);
1553
    }
1554
 
1555
  /* Now every register that is local to this basic block
1556
     should have been given a quantity, or else -1 meaning ignore it.
1557
     Every quantity should have a known birth and death.
1558
 
1559
     Order the qtys so we assign them registers in order of the
1560
     number of suggested registers they need so we allocate those with
1561
     the most restrictive needs first.  */
1562
 
1563
  qty_order = xmalloc (next_qty * sizeof (int));
1564
  for (i = 0; i < next_qty; i++)
1565
    qty_order[i] = i;
1566
 
1567
#define EXCHANGE(I1, I2)  \
1568
  { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1569
 
1570
  switch (next_qty)
1571
    {
1572
    case 3:
1573
      /* Make qty_order[2] be the one to allocate last.  */
1574
      if (qty_sugg_compare (0, 1) > 0)
1575
        EXCHANGE (0, 1);
1576
      if (qty_sugg_compare (1, 2) > 0)
1577
        EXCHANGE (2, 1);
1578
 
1579
      /* ... Fall through ...  */
1580
    case 2:
1581
      /* Put the best one to allocate in qty_order[0].  */
1582
      if (qty_sugg_compare (0, 1) > 0)
1583
        EXCHANGE (0, 1);
1584
 
1585
      /* ... Fall through ...  */
1586
 
1587
    case 1:
1588
    case 0:
1589
      /* Nothing to do here.  */
1590
      break;
1591
 
1592
    default:
1593
      qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1594
    }
1595
 
1596
  /* Try to put each quantity in a suggested physical register, if it has one.
1597
     This may cause registers to be allocated that otherwise wouldn't be, but
1598
     this seems acceptable in local allocation (unlike global allocation).  */
1599
  for (i = 0; i < next_qty; i++)
1600
    {
1601
      q = qty_order[i];
1602
      if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1603
        qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1604
                                         0, 1, qty[q].birth, qty[q].death);
1605
      else
1606
        qty[q].phys_reg = -1;
1607
    }
1608
 
1609
  /* Order the qtys so we assign them registers in order of
1610
     decreasing length of life.  Normally call qsort, but if we
1611
     have only a very small number of quantities, sort them ourselves.  */
1612
 
1613
  for (i = 0; i < next_qty; i++)
1614
    qty_order[i] = i;
1615
 
1616
#define EXCHANGE(I1, I2)  \
1617
  { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1618
 
1619
  switch (next_qty)
1620
    {
1621
    case 3:
1622
      /* Make qty_order[2] be the one to allocate last.  */
1623
      if (qty_compare (0, 1) > 0)
1624
        EXCHANGE (0, 1);
1625
      if (qty_compare (1, 2) > 0)
1626
        EXCHANGE (2, 1);
1627
 
1628
      /* ... Fall through ...  */
1629
    case 2:
1630
      /* Put the best one to allocate in qty_order[0].  */
1631
      if (qty_compare (0, 1) > 0)
1632
        EXCHANGE (0, 1);
1633
 
1634
      /* ... Fall through ...  */
1635
 
1636
    case 1:
1637
    case 0:
1638
      /* Nothing to do here.  */
1639
      break;
1640
 
1641
    default:
1642
      qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1643
    }
1644
 
1645
  /* Now for each qty that is not a hardware register,
1646
     look for a hardware register to put it in.
1647
     First try the register class that is cheapest for this qty,
1648
     if there is more than one class.  */
1649
 
1650
  for (i = 0; i < next_qty; i++)
1651
    {
1652
      q = qty_order[i];
1653
      if (qty[q].phys_reg < 0)
1654
        {
1655
#ifdef INSN_SCHEDULING
1656
          /* These values represent the adjusted lifetime of a qty so
1657
             that it conflicts with qtys which appear near the start/end
1658
             of this qty's lifetime.
1659
 
1660
             The purpose behind extending the lifetime of this qty is to
1661
             discourage the register allocator from creating false
1662
             dependencies.
1663
 
1664
             The adjustment value is chosen to indicate that this qty
1665
             conflicts with all the qtys in the instructions immediately
1666
             before and after the lifetime of this qty.
1667
 
1668
             Experiments have shown that higher values tend to hurt
1669
             overall code performance.
1670
 
1671
             If allocation using the extended lifetime fails we will try
1672
             again with the qty's unadjusted lifetime.  */
1673
          int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1674
          int fake_death = MIN (insn_number * 2 + 1,
1675
                                qty[q].death + 2 - qty[q].death % 2);
1676
#endif
1677
 
1678
          if (N_REG_CLASSES > 1)
1679
            {
1680
#ifdef INSN_SCHEDULING
1681
              /* We try to avoid using hard registers allocated to qtys which
1682
                 are born immediately after this qty or die immediately before
1683
                 this qty.
1684
 
1685
                 This optimization is only appropriate when we will run
1686
                 a scheduling pass after reload and we are not optimizing
1687
                 for code size.  */
1688
              if (flag_schedule_insns_after_reload
1689
                  && !optimize_size
1690
                  && !SMALL_REGISTER_CLASSES)
1691
                {
1692
                  qty[q].phys_reg = find_free_reg (qty[q].min_class,
1693
                                                   qty[q].mode, q, 0, 0,
1694
                                                   fake_birth, fake_death);
1695
                  if (qty[q].phys_reg >= 0)
1696
                    continue;
1697
                }
1698
#endif
1699
              qty[q].phys_reg = find_free_reg (qty[q].min_class,
1700
                                               qty[q].mode, q, 0, 0,
1701
                                               qty[q].birth, qty[q].death);
1702
              if (qty[q].phys_reg >= 0)
1703
                continue;
1704
            }
1705
 
1706
#ifdef INSN_SCHEDULING
1707
          /* Similarly, avoid false dependencies.  */
1708
          if (flag_schedule_insns_after_reload
1709
              && !optimize_size
1710
              && !SMALL_REGISTER_CLASSES
1711
              && qty[q].alternate_class != NO_REGS)
1712
            qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1713
                                             qty[q].mode, q, 0, 0,
1714
                                             fake_birth, fake_death);
1715
#endif
1716
          if (qty[q].alternate_class != NO_REGS)
1717
            qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1718
                                             qty[q].mode, q, 0, 0,
1719
                                             qty[q].birth, qty[q].death);
1720
        }
1721
    }
1722
 
1723
  /* Now propagate the register assignments
1724
     to the pseudo regs belonging to the qtys.  */
1725
 
1726
  for (q = 0; q < next_qty; q++)
1727
    if (qty[q].phys_reg >= 0)
1728
      {
1729
        for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1730
          reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1731
      }
1732
 
1733
  /* Clean up.  */
1734
  free (regs_live_at);
1735
  free (qty_order);
1736
}
1737
 
1738
/* Compare two quantities' priority for getting real registers.
1739
   We give shorter-lived quantities higher priority.
1740
   Quantities with more references are also preferred, as are quantities that
1741
   require multiple registers.  This is the identical prioritization as
1742
   done by global-alloc.
1743
 
1744
   We used to give preference to registers with *longer* lives, but using
1745
   the same algorithm in both local- and global-alloc can speed up execution
1746
   of some programs by as much as a factor of three!  */
1747
 
1748
/* Note that the quotient will never be bigger than
1749
   the value of floor_log2 times the maximum number of
1750
   times a register can occur in one insn (surely less than 100)
1751
   weighted by frequency (max REG_FREQ_MAX).
1752
   Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1753
   QTY_CMP_PRI is also used by qty_sugg_compare.  */
1754
 
1755
#define QTY_CMP_PRI(q)          \
1756
  ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1757
          / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1758
 
1759
static int
1760
qty_compare (int q1, int q2)
1761
{
1762
  return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1763
}
1764
 
1765
static int
1766
qty_compare_1 (const void *q1p, const void *q2p)
1767
{
1768
  int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1769
  int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1770
 
1771
  if (tem != 0)
1772
    return tem;
1773
 
1774
  /* If qtys are equally good, sort by qty number,
1775
     so that the results of qsort leave nothing to chance.  */
1776
  return q1 - q2;
1777
}
1778
 
1779
/* Compare two quantities' priority for getting real registers.  This version
1780
   is called for quantities that have suggested hard registers.  First priority
1781
   goes to quantities that have copy preferences, then to those that have
1782
   normal preferences.  Within those groups, quantities with the lower
1783
   number of preferences have the highest priority.  Of those, we use the same
1784
   algorithm as above.  */
1785
 
1786
#define QTY_CMP_SUGG(q)         \
1787
  (qty_phys_num_copy_sugg[q]            \
1788
    ? qty_phys_num_copy_sugg[q] \
1789
    : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1790
 
1791
static int
1792
qty_sugg_compare (int q1, int q2)
1793
{
1794
  int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1795
 
1796
  if (tem != 0)
1797
    return tem;
1798
 
1799
  return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1800
}
1801
 
1802
static int
1803
qty_sugg_compare_1 (const void *q1p, const void *q2p)
1804
{
1805
  int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1806
  int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1807
 
1808
  if (tem != 0)
1809
    return tem;
1810
 
1811
  tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1812
  if (tem != 0)
1813
    return tem;
1814
 
1815
  /* If qtys are equally good, sort by qty number,
1816
     so that the results of qsort leave nothing to chance.  */
1817
  return q1 - q2;
1818
}
1819
 
1820
#undef QTY_CMP_SUGG
1821
#undef QTY_CMP_PRI
1822
 
1823
/* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1824
   Returns 1 if have done so, or 0 if cannot.
1825
 
1826
   Combining registers means marking them as having the same quantity
1827
   and adjusting the offsets within the quantity if either of
1828
   them is a SUBREG.
1829
 
1830
   We don't actually combine a hard reg with a pseudo; instead
1831
   we just record the hard reg as the suggestion for the pseudo's quantity.
1832
   If we really combined them, we could lose if the pseudo lives
1833
   across an insn that clobbers the hard reg (eg, movmem).
1834
 
1835
   ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1836
   there is no REG_DEAD note on INSN.  This occurs during the processing
1837
   of REG_NO_CONFLICT blocks.
1838
 
1839
   MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1840
   SETREG or if the input and output must share a register.
1841
   In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1842
 
1843
   There are elaborate checks for the validity of combining.  */
1844
 
1845
static int
1846
combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1847
              rtx insn, int already_dead)
1848
{
1849
  int ureg, sreg;
1850
  int offset = 0;
1851
  int usize, ssize;
1852
  int sqty;
1853
 
1854
  /* Determine the numbers and sizes of registers being used.  If a subreg
1855
     is present that does not change the entire register, don't consider
1856
     this a copy insn.  */
1857
 
1858
  while (GET_CODE (usedreg) == SUBREG)
1859
    {
1860
      rtx subreg = SUBREG_REG (usedreg);
1861
 
1862
      if (REG_P (subreg))
1863
        {
1864
          if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1865
            may_save_copy = 0;
1866
 
1867
          if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1868
            offset += subreg_regno_offset (REGNO (subreg),
1869
                                           GET_MODE (subreg),
1870
                                           SUBREG_BYTE (usedreg),
1871
                                           GET_MODE (usedreg));
1872
          else
1873
            offset += (SUBREG_BYTE (usedreg)
1874
                      / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1875
        }
1876
 
1877
      usedreg = subreg;
1878
    }
1879
 
1880
  if (!REG_P (usedreg))
1881
    return 0;
1882
 
1883
  ureg = REGNO (usedreg);
1884
  if (ureg < FIRST_PSEUDO_REGISTER)
1885
    usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
1886
  else
1887
    usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1888
              + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1889
             / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1890
 
1891
  while (GET_CODE (setreg) == SUBREG)
1892
    {
1893
      rtx subreg = SUBREG_REG (setreg);
1894
 
1895
      if (REG_P (subreg))
1896
        {
1897
          if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1898
            may_save_copy = 0;
1899
 
1900
          if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1901
            offset -= subreg_regno_offset (REGNO (subreg),
1902
                                           GET_MODE (subreg),
1903
                                           SUBREG_BYTE (setreg),
1904
                                           GET_MODE (setreg));
1905
          else
1906
            offset -= (SUBREG_BYTE (setreg)
1907
                      / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1908
        }
1909
 
1910
      setreg = subreg;
1911
    }
1912
 
1913
  if (!REG_P (setreg))
1914
    return 0;
1915
 
1916
  sreg = REGNO (setreg);
1917
  if (sreg < FIRST_PSEUDO_REGISTER)
1918
    ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
1919
  else
1920
    ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1921
              + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1922
             / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1923
 
1924
  /* If UREG is a pseudo-register that hasn't already been assigned a
1925
     quantity number, it means that it is not local to this block or dies
1926
     more than once.  In either event, we can't do anything with it.  */
1927
  if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1928
      /* Do not combine registers unless one fits within the other.  */
1929
      || (offset > 0 && usize + offset > ssize)
1930
      || (offset < 0 && usize + offset < ssize)
1931
      /* Do not combine with a smaller already-assigned object
1932
         if that smaller object is already combined with something bigger.  */
1933
      || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1934
          && usize < qty[reg_qty[ureg]].size)
1935
      /* Can't combine if SREG is not a register we can allocate.  */
1936
      || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1937
      /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1938
         These have already been taken care of.  This probably wouldn't
1939
         combine anyway, but don't take any chances.  */
1940
      || (ureg >= FIRST_PSEUDO_REGISTER
1941
          && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1942
      /* Don't tie something to itself.  In most cases it would make no
1943
         difference, but it would screw up if the reg being tied to itself
1944
         also dies in this insn.  */
1945
      || ureg == sreg
1946
      /* Don't try to connect two different hardware registers.  */
1947
      || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1948
      /* Don't connect two different machine modes if they have different
1949
         implications as to which registers may be used.  */
1950
      || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1951
    return 0;
1952
 
1953
  /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1954
     qty_phys_sugg for the pseudo instead of tying them.
1955
 
1956
     Return "failure" so that the lifespan of UREG is terminated here;
1957
     that way the two lifespans will be disjoint and nothing will prevent
1958
     the pseudo reg from being given this hard reg.  */
1959
 
1960
  if (ureg < FIRST_PSEUDO_REGISTER)
1961
    {
1962
      /* Allocate a quantity number so we have a place to put our
1963
         suggestions.  */
1964
      if (reg_qty[sreg] == -2)
1965
        reg_is_born (setreg, 2 * insn_number);
1966
 
1967
      if (reg_qty[sreg] >= 0)
1968
        {
1969
          if (may_save_copy
1970
              && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1971
            {
1972
              SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1973
              qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1974
            }
1975
          else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1976
            {
1977
              SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1978
              qty_phys_num_sugg[reg_qty[sreg]]++;
1979
            }
1980
        }
1981
      return 0;
1982
    }
1983
 
1984
  /* Similarly for SREG a hard register and UREG a pseudo register.  */
1985
 
1986
  if (sreg < FIRST_PSEUDO_REGISTER)
1987
    {
1988
      if (may_save_copy
1989
          && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1990
        {
1991
          SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1992
          qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1993
        }
1994
      else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1995
        {
1996
          SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1997
          qty_phys_num_sugg[reg_qty[ureg]]++;
1998
        }
1999
      return 0;
2000
    }
2001
 
2002
  /* At this point we know that SREG and UREG are both pseudos.
2003
     Do nothing if SREG already has a quantity or is a register that we
2004
     don't allocate.  */
2005
  if (reg_qty[sreg] >= -1
2006
      /* If we are not going to let any regs live across calls,
2007
         don't tie a call-crossing reg to a non-call-crossing reg.  */
2008
      || (current_function_has_nonlocal_label
2009
          && ((REG_N_CALLS_CROSSED (ureg) > 0)
2010
              != (REG_N_CALLS_CROSSED (sreg) > 0))))
2011
    return 0;
2012
 
2013
  /* We don't already know about SREG, so tie it to UREG
2014
     if this is the last use of UREG, provided the classes they want
2015
     are compatible.  */
2016
 
2017
  if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
2018
      && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
2019
    {
2020
      /* Add SREG to UREG's quantity.  */
2021
      sqty = reg_qty[ureg];
2022
      reg_qty[sreg] = sqty;
2023
      reg_offset[sreg] = reg_offset[ureg] + offset;
2024
      reg_next_in_qty[sreg] = qty[sqty].first_reg;
2025
      qty[sqty].first_reg = sreg;
2026
 
2027
      /* If SREG's reg class is smaller, set qty[SQTY].min_class.  */
2028
      update_qty_class (sqty, sreg);
2029
 
2030
      /* Update info about quantity SQTY.  */
2031
      qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
2032
      qty[sqty].n_throwing_calls_crossed
2033
        += REG_N_THROWING_CALLS_CROSSED (sreg);
2034
      qty[sqty].n_refs += REG_N_REFS (sreg);
2035
      qty[sqty].freq += REG_FREQ (sreg);
2036
      if (usize < ssize)
2037
        {
2038
          int i;
2039
 
2040
          for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
2041
            reg_offset[i] -= offset;
2042
 
2043
          qty[sqty].size = ssize;
2044
          qty[sqty].mode = GET_MODE (setreg);
2045
        }
2046
    }
2047
  else
2048
    return 0;
2049
 
2050
  return 1;
2051
}
2052
 
2053
/* Return 1 if the preferred class of REG allows it to be tied
2054
   to a quantity or register whose class is CLASS.
2055
   True if REG's reg class either contains or is contained in CLASS.  */
2056
 
2057
static int
2058
reg_meets_class_p (int reg, enum reg_class class)
2059
{
2060
  enum reg_class rclass = reg_preferred_class (reg);
2061
  return (reg_class_subset_p (rclass, class)
2062
          || reg_class_subset_p (class, rclass));
2063
}
2064
 
2065
/* Update the class of QTYNO assuming that REG is being tied to it.  */
2066
 
2067
static void
2068
update_qty_class (int qtyno, int reg)
2069
{
2070
  enum reg_class rclass = reg_preferred_class (reg);
2071
  if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2072
    qty[qtyno].min_class = rclass;
2073
 
2074
  rclass = reg_alternate_class (reg);
2075
  if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2076
    qty[qtyno].alternate_class = rclass;
2077
}
2078
 
2079
/* Handle something which alters the value of an rtx REG.
2080
 
2081
   REG is whatever is set or clobbered.  SETTER is the rtx that
2082
   is modifying the register.
2083
 
2084
   If it is not really a register, we do nothing.
2085
   The file-global variables `this_insn' and `this_insn_number'
2086
   carry info from `block_alloc'.  */
2087
 
2088
static void
2089
reg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
2090
{
2091
  /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2092
     a hard register.  These may actually not exist any more.  */
2093
 
2094
  if (GET_CODE (reg) != SUBREG
2095
      && !REG_P (reg))
2096
    return;
2097
 
2098
  /* Mark this register as being born.  If it is used in a CLOBBER, mark
2099
     it as being born halfway between the previous insn and this insn so that
2100
     it conflicts with our inputs but not the outputs of the previous insn.  */
2101
 
2102
  reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2103
}
2104
 
2105
/* Handle beginning of the life of register REG.
2106
   BIRTH is the index at which this is happening.  */
2107
 
2108
static void
2109
reg_is_born (rtx reg, int birth)
2110
{
2111
  int regno;
2112
 
2113
  if (GET_CODE (reg) == SUBREG)
2114
    {
2115
      regno = REGNO (SUBREG_REG (reg));
2116
      if (regno < FIRST_PSEUDO_REGISTER)
2117
        regno = subreg_regno (reg);
2118
    }
2119
  else
2120
    regno = REGNO (reg);
2121
 
2122
  if (regno < FIRST_PSEUDO_REGISTER)
2123
    {
2124
      mark_life (regno, GET_MODE (reg), 1);
2125
 
2126
      /* If the register was to have been born earlier that the present
2127
         insn, mark it as live where it is actually born.  */
2128
      if (birth < 2 * this_insn_number)
2129
        post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2130
    }
2131
  else
2132
    {
2133
      if (reg_qty[regno] == -2)
2134
        alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2135
 
2136
      /* If this register has a quantity number, show that it isn't dead.  */
2137
      if (reg_qty[regno] >= 0)
2138
        qty[reg_qty[regno]].death = -1;
2139
    }
2140
}
2141
 
2142
/* Record the death of REG in the current insn.  If OUTPUT_P is nonzero,
2143
   REG is an output that is dying (i.e., it is never used), otherwise it
2144
   is an input (the normal case).
2145
   If OUTPUT_P is 1, then we extend the life past the end of this insn.  */
2146
 
2147
static void
2148
wipe_dead_reg (rtx reg, int output_p)
2149
{
2150
  int regno = REGNO (reg);
2151
 
2152
  /* If this insn has multiple results,
2153
     and the dead reg is used in one of the results,
2154
     extend its life to after this insn,
2155
     so it won't get allocated together with any other result of this insn.
2156
 
2157
     It is unsafe to use !single_set here since it will ignore an unused
2158
     output.  Just because an output is unused does not mean the compiler
2159
     can assume the side effect will not occur.   Consider if REG appears
2160
     in the address of an output and we reload the output.  If we allocate
2161
     REG to the same hard register as an unused output we could set the hard
2162
     register before the output reload insn.  */
2163
  if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2164
      && multiple_sets (this_insn))
2165
    {
2166
      int i;
2167
      for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2168
        {
2169
          rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2170
          if (GET_CODE (set) == SET
2171
              && !REG_P (SET_DEST (set))
2172
              && !rtx_equal_p (reg, SET_DEST (set))
2173
              && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2174
            output_p = 1;
2175
        }
2176
    }
2177
 
2178
  /* If this register is used in an auto-increment address, then extend its
2179
     life to after this insn, so that it won't get allocated together with
2180
     the result of this insn.  */
2181
  if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2182
    output_p = 1;
2183
 
2184
  if (regno < FIRST_PSEUDO_REGISTER)
2185
    {
2186
      mark_life (regno, GET_MODE (reg), 0);
2187
 
2188
      /* If a hard register is dying as an output, mark it as in use at
2189
         the beginning of this insn (the above statement would cause this
2190
         not to happen).  */
2191
      if (output_p)
2192
        post_mark_life (regno, GET_MODE (reg), 1,
2193
                        2 * this_insn_number, 2 * this_insn_number + 1);
2194
    }
2195
 
2196
  else if (reg_qty[regno] >= 0)
2197
    qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2198
}
2199
 
2200
/* Find a block of SIZE words of hard regs in reg_class CLASS
2201
   that can hold something of machine-mode MODE
2202
     (but actually we test only the first of the block for holding MODE)
2203
   and still free between insn BORN_INDEX and insn DEAD_INDEX,
2204
   and return the number of the first of them.
2205
   Return -1 if such a block cannot be found.
2206
   If QTYNO crosses calls, insist on a register preserved by calls,
2207
   unless ACCEPT_CALL_CLOBBERED is nonzero.
2208
 
2209
   If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2210
   register is available.  If not, return -1.  */
2211
 
2212
static int
2213
find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2214
               int accept_call_clobbered, int just_try_suggested,
2215
               int born_index, int dead_index)
2216
{
2217
  int i, ins;
2218
  HARD_REG_SET first_used, used;
2219
#ifdef ELIMINABLE_REGS
2220
  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2221
#endif
2222
 
2223
  /* Validate our parameters.  */
2224
  gcc_assert (born_index >= 0 && born_index <= dead_index);
2225
 
2226
  /* Don't let a pseudo live in a reg across a function call
2227
     if we might get a nonlocal goto.  */
2228
  if (current_function_has_nonlocal_label
2229
      && qty[qtyno].n_calls_crossed > 0)
2230
    return -1;
2231
 
2232
  if (accept_call_clobbered)
2233
    COPY_HARD_REG_SET (used, call_fixed_reg_set);
2234
  else if (qty[qtyno].n_calls_crossed == 0)
2235
    COPY_HARD_REG_SET (used, fixed_reg_set);
2236
  else
2237
    COPY_HARD_REG_SET (used, call_used_reg_set);
2238
 
2239
  if (accept_call_clobbered)
2240
    IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2241
 
2242
  for (ins = born_index; ins < dead_index; ins++)
2243
    IOR_HARD_REG_SET (used, regs_live_at[ins]);
2244
 
2245
  IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2246
 
2247
  /* Don't use the frame pointer reg in local-alloc even if
2248
     we may omit the frame pointer, because if we do that and then we
2249
     need a frame pointer, reload won't know how to move the pseudo
2250
     to another hard reg.  It can move only regs made by global-alloc.
2251
 
2252
     This is true of any register that can be eliminated.  */
2253
#ifdef ELIMINABLE_REGS
2254
  for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2255
    SET_HARD_REG_BIT (used, eliminables[i].from);
2256
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2257
  /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2258
     that it might be eliminated into.  */
2259
  SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2260
#endif
2261
#else
2262
  SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2263
#endif
2264
 
2265
#ifdef CANNOT_CHANGE_MODE_CLASS
2266
  cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2267
#endif
2268
 
2269
  /* Normally, the registers that can be used for the first register in
2270
     a multi-register quantity are the same as those that can be used for
2271
     subsequent registers.  However, if just trying suggested registers,
2272
     restrict our consideration to them.  If there are copy-suggested
2273
     register, try them.  Otherwise, try the arithmetic-suggested
2274
     registers.  */
2275
  COPY_HARD_REG_SET (first_used, used);
2276
 
2277
  if (just_try_suggested)
2278
    {
2279
      if (qty_phys_num_copy_sugg[qtyno] != 0)
2280
        IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2281
      else
2282
        IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2283
    }
2284
 
2285
  /* If all registers are excluded, we can't do anything.  */
2286
  GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2287
 
2288
  /* If at least one would be suitable, test each hard reg.  */
2289
 
2290
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2291
    {
2292
#ifdef REG_ALLOC_ORDER
2293
      int regno = reg_alloc_order[i];
2294
#else
2295
      int regno = i;
2296
#endif
2297
      if (! TEST_HARD_REG_BIT (first_used, regno)
2298
          && HARD_REGNO_MODE_OK (regno, mode)
2299
          && (qty[qtyno].n_calls_crossed == 0
2300
              || accept_call_clobbered
2301
              || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2302
        {
2303
          int j;
2304
          int size1 = hard_regno_nregs[regno][mode];
2305
          for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2306
          if (j == size1)
2307
            {
2308
              /* Mark that this register is in use between its birth and death
2309
                 insns.  */
2310
              post_mark_life (regno, mode, 1, born_index, dead_index);
2311
              return regno;
2312
            }
2313
#ifndef REG_ALLOC_ORDER
2314
          /* Skip starting points we know will lose.  */
2315
          i += j;
2316
#endif
2317
        }
2318
    }
2319
 
2320
 fail:
2321
  /* If we are just trying suggested register, we have just tried copy-
2322
     suggested registers, and there are arithmetic-suggested registers,
2323
     try them.  */
2324
 
2325
  /* If it would be profitable to allocate a call-clobbered register
2326
     and save and restore it around calls, do that.  */
2327
  if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2328
      && qty_phys_num_sugg[qtyno] != 0)
2329
    {
2330
      /* Don't try the copy-suggested regs again.  */
2331
      qty_phys_num_copy_sugg[qtyno] = 0;
2332
      return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2333
                            born_index, dead_index);
2334
    }
2335
 
2336
  /* We need not check to see if the current function has nonlocal
2337
     labels because we don't put any pseudos that are live over calls in
2338
     registers in that case.  Avoid putting pseudos crossing calls that
2339
     might throw into call used registers.  */
2340
 
2341
  if (! accept_call_clobbered
2342
      && flag_caller_saves
2343
      && ! just_try_suggested
2344
      && qty[qtyno].n_calls_crossed != 0
2345
      && qty[qtyno].n_throwing_calls_crossed == 0
2346
      && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2347
                                 qty[qtyno].n_calls_crossed))
2348
    {
2349
      i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2350
      if (i >= 0)
2351
        caller_save_needed = 1;
2352
      return i;
2353
    }
2354
  return -1;
2355
}
2356
 
2357
/* Mark that REGNO with machine-mode MODE is live starting from the current
2358
   insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2359
   is zero).  */
2360
 
2361
static void
2362
mark_life (int regno, enum machine_mode mode, int life)
2363
{
2364
  int j = hard_regno_nregs[regno][mode];
2365
  if (life)
2366
    while (--j >= 0)
2367
      SET_HARD_REG_BIT (regs_live, regno + j);
2368
  else
2369
    while (--j >= 0)
2370
      CLEAR_HARD_REG_BIT (regs_live, regno + j);
2371
}
2372
 
2373
/* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2374
   is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2375
   to insn number DEATH (exclusive).  */
2376
 
2377
static void
2378
post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2379
                int death)
2380
{
2381
  int j = hard_regno_nregs[regno][mode];
2382
  HARD_REG_SET this_reg;
2383
 
2384
  CLEAR_HARD_REG_SET (this_reg);
2385
  while (--j >= 0)
2386
    SET_HARD_REG_BIT (this_reg, regno + j);
2387
 
2388
  if (life)
2389
    while (birth < death)
2390
      {
2391
        IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2392
        birth++;
2393
      }
2394
  else
2395
    while (birth < death)
2396
      {
2397
        AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2398
        birth++;
2399
      }
2400
}
2401
 
2402
/* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2403
   is the register being clobbered, and R1 is a register being used in
2404
   the equivalent expression.
2405
 
2406
   If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2407
   in which it is used, return 1.
2408
 
2409
   Otherwise, return 0.  */
2410
 
2411
static int
2412
no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2413
{
2414
  int ok = 0;
2415
  rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2416
  rtx p, last;
2417
 
2418
  /* If R1 is a hard register, return 0 since we handle this case
2419
     when we scan the insns that actually use it.  */
2420
 
2421
  if (note == 0
2422
      || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2423
      || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2424
          && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2425
    return 0;
2426
 
2427
  last = XEXP (note, 0);
2428
 
2429
  for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2430
    if (INSN_P (p))
2431
      {
2432
        if (find_reg_note (p, REG_DEAD, r1))
2433
          ok = 1;
2434
 
2435
        /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2436
           some earlier optimization pass has inserted instructions into
2437
           the sequence, and it is not safe to perform this optimization.
2438
           Note that emit_no_conflict_block always ensures that this is
2439
           true when these sequences are created.  */
2440
        if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2441
          return 0;
2442
      }
2443
 
2444
  return ok;
2445
}
2446
 
2447
/* Return the number of alternatives for which the constraint string P
2448
   indicates that the operand must be equal to operand 0 and that no register
2449
   is acceptable.  */
2450
 
2451
static int
2452
requires_inout (const char *p)
2453
{
2454
  char c;
2455
  int found_zero = 0;
2456
  int reg_allowed = 0;
2457
  int num_matching_alts = 0;
2458
  int len;
2459
 
2460
  for ( ; (c = *p); p += len)
2461
    {
2462
      len = CONSTRAINT_LEN (c, p);
2463
      switch (c)
2464
        {
2465
        case '=':  case '+':  case '?':
2466
        case '#':  case '&':  case '!':
2467
        case '*':  case '%':
2468
        case 'm':  case '<':  case '>':  case 'V':  case 'o':
2469
        case 'E':  case 'F':  case 'G':  case 'H':
2470
        case 's':  case 'i':  case 'n':
2471
        case 'I':  case 'J':  case 'K':  case 'L':
2472
        case 'M':  case 'N':  case 'O':  case 'P':
2473
        case 'X':
2474
          /* These don't say anything we care about.  */
2475
          break;
2476
 
2477
        case ',':
2478
          if (found_zero && ! reg_allowed)
2479
            num_matching_alts++;
2480
 
2481
          found_zero = reg_allowed = 0;
2482
          break;
2483
 
2484
        case '0':
2485
          found_zero = 1;
2486
          break;
2487
 
2488
        case '1':  case '2':  case '3':  case '4': case '5':
2489
        case '6':  case '7':  case '8':  case '9':
2490
          /* Skip the balance of the matching constraint.  */
2491
          do
2492
            p++;
2493
          while (ISDIGIT (*p));
2494
          len = 0;
2495
          break;
2496
 
2497
        default:
2498
          if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2499
              && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2500
            break;
2501
          /* Fall through.  */
2502
        case 'p':
2503
        case 'g': case 'r':
2504
          reg_allowed = 1;
2505
          break;
2506
        }
2507
    }
2508
 
2509
  if (found_zero && ! reg_allowed)
2510
    num_matching_alts++;
2511
 
2512
  return num_matching_alts;
2513
}
2514
 
2515
void
2516
dump_local_alloc (FILE *file)
2517
{
2518
  int i;
2519
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2520
    if (reg_renumber[i] != -1)
2521
      fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2522
}
2523
 
2524
/* Run old register allocator.  Return TRUE if we must exit
2525
   rest_of_compilation upon return.  */
2526
static void
2527
rest_of_handle_local_alloc (void)
2528
{
2529
  int rebuild_notes;
2530
 
2531
  /* Determine if the current function is a leaf before running reload
2532
     since this can impact optimizations done by the prologue and
2533
     epilogue thus changing register elimination offsets.  */
2534
  current_function_is_leaf = leaf_function_p ();
2535
 
2536
  /* Allocate the reg_renumber array.  */
2537
  allocate_reg_info (max_regno, FALSE, TRUE);
2538
 
2539
  /* And the reg_equiv_memory_loc array.  */
2540
  VARRAY_GROW (reg_equiv_memory_loc_varray, max_regno);
2541
  reg_equiv_memory_loc = &VARRAY_RTX (reg_equiv_memory_loc_varray, 0);
2542
 
2543
  allocate_initial_values (reg_equiv_memory_loc);
2544
 
2545
  regclass (get_insns (), max_reg_num (), dump_file);
2546
  rebuild_notes = local_alloc ();
2547
 
2548
  /* Local allocation may have turned an indirect jump into a direct
2549
     jump.  If so, we must rebuild the JUMP_LABEL fields of jumping
2550
     instructions.  */
2551
  if (rebuild_notes)
2552
    {
2553
      timevar_push (TV_JUMP);
2554
 
2555
      rebuild_jump_labels (get_insns ());
2556
      purge_all_dead_edges ();
2557
      delete_unreachable_blocks ();
2558
 
2559
      timevar_pop (TV_JUMP);
2560
    }
2561
 
2562
  if (dump_enabled_p (pass_local_alloc.static_pass_number))
2563
    {
2564
      timevar_push (TV_DUMP);
2565
      dump_flow_info (dump_file);
2566
      dump_local_alloc (dump_file);
2567
      timevar_pop (TV_DUMP);
2568
    }
2569
}
2570
 
2571
struct tree_opt_pass pass_local_alloc =
2572
{
2573
  "lreg",                               /* name */
2574
  NULL,                                 /* gate */
2575
  rest_of_handle_local_alloc,           /* execute */
2576
  NULL,                                 /* sub */
2577
  NULL,                                 /* next */
2578
  0,                                    /* static_pass_number */
2579
  TV_LOCAL_ALLOC,                       /* tv_id */
2580
  0,                                    /* properties_required */
2581
  0,                                    /* properties_provided */
2582
  0,                                    /* properties_destroyed */
2583
  0,                                    /* todo_flags_start */
2584
  TODO_dump_func |
2585
  TODO_ggc_collect,                     /* todo_flags_finish */
2586
  'l'                                   /* letter */
2587
};
2588
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.