OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [mode-switching.c] - Blame information for rev 12

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* CPU mode switching
2
   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3
   Free Software Foundation, Inc.
4
 
5
This file is part of GCC.
6
 
7
GCC is free software; you can redistribute it and/or modify it under
8
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 2, or (at your option) any later
10
version.
11
 
12
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13
WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15
for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING.  If not, write to the Free
19
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20
02110-1301, USA.  */
21
 
22
#include "config.h"
23
#include "system.h"
24
#include "coretypes.h"
25
#include "tm.h"
26
#include "rtl.h"
27
#include "regs.h"
28
#include "hard-reg-set.h"
29
#include "flags.h"
30
#include "real.h"
31
#include "insn-config.h"
32
#include "recog.h"
33
#include "basic-block.h"
34
#include "output.h"
35
#include "tm_p.h"
36
#include "function.h"
37
#include "tree-pass.h"
38
#include "timevar.h"
39
 
40
/* We want target macros for the mode switching code to be able to refer
41
   to instruction attribute values.  */
42
#include "insn-attr.h"
43
 
44
#ifdef OPTIMIZE_MODE_SWITCHING
45
 
46
/* The algorithm for setting the modes consists of scanning the insn list
47
   and finding all the insns which require a specific mode.  Each insn gets
48
   a unique struct seginfo element.  These structures are inserted into a list
49
   for each basic block.  For each entity, there is an array of bb_info over
50
   the flow graph basic blocks (local var 'bb_info'), and contains a list
51
   of all insns within that basic block, in the order they are encountered.
52
 
53
   For each entity, any basic block WITHOUT any insns requiring a specific
54
   mode are given a single entry, without a mode.  (Each basic block
55
   in the flow graph must have at least one entry in the segment table.)
56
 
57
   The LCM algorithm is then run over the flow graph to determine where to
58
   place the sets to the highest-priority value in respect of first the first
59
   insn in any one block.  Any adjustments required to the transparency
60
   vectors are made, then the next iteration starts for the next-lower
61
   priority mode, till for each entity all modes are exhausted.
62
 
63
   More details are located in the code for optimize_mode_switching().  */
64
 
65
/* This structure contains the information for each insn which requires
66
   either single or double mode to be set.
67
   MODE is the mode this insn must be executed in.
68
   INSN_PTR is the insn to be executed (may be the note that marks the
69
   beginning of a basic block).
70
   BBNUM is the flow graph basic block this insn occurs in.
71
   NEXT is the next insn in the same basic block.  */
72
struct seginfo
73
{
74
  int mode;
75
  rtx insn_ptr;
76
  int bbnum;
77
  struct seginfo *next;
78
  HARD_REG_SET regs_live;
79
};
80
 
81
struct bb_info
82
{
83
  struct seginfo *seginfo;
84
  int computing;
85
};
86
 
87
/* These bitmaps are used for the LCM algorithm.  */
88
 
89
static sbitmap *antic;
90
static sbitmap *transp;
91
static sbitmap *comp;
92
 
93
static struct seginfo * new_seginfo (int, rtx, int, HARD_REG_SET);
94
static void add_seginfo (struct bb_info *, struct seginfo *);
95
static void reg_dies (rtx, HARD_REG_SET);
96
static void reg_becomes_live (rtx, rtx, void *);
97
static void make_preds_opaque (basic_block, int);
98
 
99
 
100
/* This function will allocate a new BBINFO structure, initialized
101
   with the MODE, INSN, and basic block BB parameters.  */
102
 
103
static struct seginfo *
104
new_seginfo (int mode, rtx insn, int bb, HARD_REG_SET regs_live)
105
{
106
  struct seginfo *ptr;
107
  ptr = xmalloc (sizeof (struct seginfo));
108
  ptr->mode = mode;
109
  ptr->insn_ptr = insn;
110
  ptr->bbnum = bb;
111
  ptr->next = NULL;
112
  COPY_HARD_REG_SET (ptr->regs_live, regs_live);
113
  return ptr;
114
}
115
 
116
/* Add a seginfo element to the end of a list.
117
   HEAD is a pointer to the list beginning.
118
   INFO is the structure to be linked in.  */
119
 
120
static void
121
add_seginfo (struct bb_info *head, struct seginfo *info)
122
{
123
  struct seginfo *ptr;
124
 
125
  if (head->seginfo == NULL)
126
    head->seginfo = info;
127
  else
128
    {
129
      ptr = head->seginfo;
130
      while (ptr->next != NULL)
131
        ptr = ptr->next;
132
      ptr->next = info;
133
    }
134
}
135
 
136
/* Make all predecessors of basic block B opaque, recursively, till we hit
137
   some that are already non-transparent, or an edge where aux is set; that
138
   denotes that a mode set is to be done on that edge.
139
   J is the bit number in the bitmaps that corresponds to the entity that
140
   we are currently handling mode-switching for.  */
141
 
142
static void
143
make_preds_opaque (basic_block b, int j)
144
{
145
  edge e;
146
  edge_iterator ei;
147
 
148
  FOR_EACH_EDGE (e, ei, b->preds)
149
    {
150
      basic_block pb = e->src;
151
 
152
      if (e->aux || ! TEST_BIT (transp[pb->index], j))
153
        continue;
154
 
155
      RESET_BIT (transp[pb->index], j);
156
      make_preds_opaque (pb, j);
157
    }
158
}
159
 
160
/* Record in LIVE that register REG died.  */
161
 
162
static void
163
reg_dies (rtx reg, HARD_REG_SET live)
164
{
165
  int regno, nregs;
166
 
167
  if (!REG_P (reg))
168
    return;
169
 
170
  regno = REGNO (reg);
171
  if (regno < FIRST_PSEUDO_REGISTER)
172
    for (nregs = hard_regno_nregs[regno][GET_MODE (reg)] - 1; nregs >= 0;
173
         nregs--)
174
      CLEAR_HARD_REG_BIT (live, regno + nregs);
175
}
176
 
177
/* Record in LIVE that register REG became live.
178
   This is called via note_stores.  */
179
 
180
static void
181
reg_becomes_live (rtx reg, rtx setter ATTRIBUTE_UNUSED, void *live)
182
{
183
  int regno, nregs;
184
 
185
  if (GET_CODE (reg) == SUBREG)
186
    reg = SUBREG_REG (reg);
187
 
188
  if (!REG_P (reg))
189
    return;
190
 
191
  regno = REGNO (reg);
192
  if (regno < FIRST_PSEUDO_REGISTER)
193
    for (nregs = hard_regno_nregs[regno][GET_MODE (reg)] - 1; nregs >= 0;
194
         nregs--)
195
      SET_HARD_REG_BIT (* (HARD_REG_SET *) live, regno + nregs);
196
}
197
 
198
/* Make sure if MODE_ENTRY is defined the MODE_EXIT is defined
199
   and vice versa.  */
200
#if defined (MODE_ENTRY) != defined (MODE_EXIT)
201
 #error "Both MODE_ENTRY and MODE_EXIT must be defined"
202
#endif
203
 
204
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
205
/* Split the fallthrough edge to the exit block, so that we can note
206
   that there NORMAL_MODE is required.  Return the new block if it's
207
   inserted before the exit block.  Otherwise return null.  */
208
 
209
static basic_block
210
create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
211
{
212
  edge eg;
213
  edge_iterator ei;
214
  basic_block pre_exit;
215
 
216
  /* The only non-call predecessor at this stage is a block with a
217
     fallthrough edge; there can be at most one, but there could be
218
     none at all, e.g. when exit is called.  */
219
  pre_exit = 0;
220
  FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR->preds)
221
    if (eg->flags & EDGE_FALLTHRU)
222
      {
223
        basic_block src_bb = eg->src;
224
        regset live_at_end = src_bb->il.rtl->global_live_at_end;
225
        rtx last_insn, ret_reg;
226
 
227
        gcc_assert (!pre_exit);
228
        /* If this function returns a value at the end, we have to
229
           insert the final mode switch before the return value copy
230
           to its hard register.  */
231
        if (EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 1
232
            && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
233
            && GET_CODE (PATTERN (last_insn)) == USE
234
            && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
235
          {
236
            int ret_start = REGNO (ret_reg);
237
            int nregs = hard_regno_nregs[ret_start][GET_MODE (ret_reg)];
238
            int ret_end = ret_start + nregs;
239
            int short_block = 0;
240
            int maybe_builtin_apply = 0;
241
            int forced_late_switch = 0;
242
            rtx before_return_copy;
243
 
244
            do
245
              {
246
                rtx return_copy = PREV_INSN (last_insn);
247
                rtx return_copy_pat, copy_reg;
248
                int copy_start, copy_num;
249
                int j;
250
 
251
                if (INSN_P (return_copy))
252
                  {
253
                    if (GET_CODE (PATTERN (return_copy)) == USE
254
                        && GET_CODE (XEXP (PATTERN (return_copy), 0)) == REG
255
                        && (FUNCTION_VALUE_REGNO_P
256
                            (REGNO (XEXP (PATTERN (return_copy), 0)))))
257
                      {
258
                        maybe_builtin_apply = 1;
259
                        last_insn = return_copy;
260
                        continue;
261
                      }
262
                    /* If the return register is not (in its entirety)
263
                       likely spilled, the return copy might be
264
                       partially or completely optimized away.  */
265
                    return_copy_pat = single_set (return_copy);
266
                    if (!return_copy_pat)
267
                      {
268
                        return_copy_pat = PATTERN (return_copy);
269
                        if (GET_CODE (return_copy_pat) != CLOBBER)
270
                          break;
271
                      }
272
                    copy_reg = SET_DEST (return_copy_pat);
273
                    if (GET_CODE (copy_reg) == REG)
274
                      copy_start = REGNO (copy_reg);
275
                    else if (GET_CODE (copy_reg) == SUBREG
276
                             && GET_CODE (SUBREG_REG (copy_reg)) == REG)
277
                      copy_start = REGNO (SUBREG_REG (copy_reg));
278
                    else
279
                      break;
280
                    if (copy_start >= FIRST_PSEUDO_REGISTER)
281
                      break;
282
                    copy_num
283
                      = hard_regno_nregs[copy_start][GET_MODE (copy_reg)];
284
 
285
                    /* If the return register is not likely spilled, - as is
286
                       the case for floating point on SH4 - then it might
287
                       be set by an arithmetic operation that needs a
288
                       different mode than the exit block.  */
289
                    for (j = n_entities - 1; j >= 0; j--)
290
                      {
291
                        int e = entity_map[j];
292
                        int mode = MODE_NEEDED (e, return_copy);
293
 
294
                        if (mode != num_modes[e] && mode != MODE_EXIT (e))
295
                          break;
296
                      }
297
                    if (j >= 0)
298
                      {
299
                        /* For the SH4, floating point loads depend on fpscr,
300
                           thus we might need to put the final mode switch
301
                           after the return value copy.  That is still OK,
302
                           because a floating point return value does not
303
                           conflict with address reloads.  */
304
                        if (copy_start >= ret_start
305
                            && copy_start + copy_num <= ret_end
306
                            && OBJECT_P (SET_SRC (return_copy_pat)))
307
                          forced_late_switch = 1;
308
                        break;
309
                      }
310
 
311
                    if (copy_start >= ret_start
312
                        && copy_start + copy_num <= ret_end)
313
                      nregs -= copy_num;
314
                    else if (!maybe_builtin_apply
315
                             || !FUNCTION_VALUE_REGNO_P (copy_start))
316
                      break;
317
                    last_insn = return_copy;
318
                  }
319
                /* ??? Exception handling can lead to the return value
320
                   copy being already separated from the return value use,
321
                   as in  unwind-dw2.c .
322
                   Similarly, conditionally returning without a value,
323
                   and conditionally using builtin_return can lead to an
324
                   isolated use.  */
325
                if (return_copy == BB_HEAD (src_bb))
326
                  {
327
                    short_block = 1;
328
                    break;
329
                  }
330
                last_insn = return_copy;
331
              }
332
            while (nregs);
333
 
334
            /* If we didn't see a full return value copy, verify that there
335
               is a plausible reason for this.  If some, but not all of the
336
               return register is likely spilled, we can expect that there
337
               is a copy for the likely spilled part.  */
338
            gcc_assert (!nregs
339
                        || forced_late_switch
340
                        || short_block
341
                        || !(CLASS_LIKELY_SPILLED_P
342
                             (REGNO_REG_CLASS (ret_start)))
343
                        || (nregs
344
                            != hard_regno_nregs[ret_start][GET_MODE (ret_reg)])
345
                        /* For multi-hard-register floating point
346
                           values, sometimes the likely-spilled part
347
                           is ordinarily copied first, then the other
348
                           part is set with an arithmetic operation.
349
                           This doesn't actually cause reload
350
                           failures, so let it pass.  */
351
                        || (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
352
                            && nregs != 1));
353
 
354
            if (INSN_P (last_insn))
355
              {
356
                before_return_copy
357
                  = emit_note_before (NOTE_INSN_DELETED, last_insn);
358
                /* Instructions preceding LAST_INSN in the same block might
359
                   require a different mode than MODE_EXIT, so if we might
360
                   have such instructions, keep them in a separate block
361
                   from pre_exit.  */
362
                if (last_insn != BB_HEAD (src_bb))
363
                  src_bb = split_block (src_bb,
364
                                        PREV_INSN (before_return_copy))->dest;
365
              }
366
            else
367
              before_return_copy = last_insn;
368
            pre_exit = split_block (src_bb, before_return_copy)->src;
369
          }
370
        else
371
          {
372
            pre_exit = split_edge (eg);
373
            COPY_REG_SET (pre_exit->il.rtl->global_live_at_start, live_at_end);
374
            COPY_REG_SET (pre_exit->il.rtl->global_live_at_end, live_at_end);
375
          }
376
      }
377
 
378
  return pre_exit;
379
}
380
#endif
381
 
382
/* Find all insns that need a particular mode setting, and insert the
383
   necessary mode switches.  Return true if we did work.  */
384
 
385
int
386
optimize_mode_switching (FILE *file)
387
{
388
  rtx insn;
389
  int e;
390
  basic_block bb;
391
  int need_commit = 0;
392
  sbitmap *kill;
393
  struct edge_list *edge_list;
394
  static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
395
#define N_ENTITIES ARRAY_SIZE (num_modes)
396
  int entity_map[N_ENTITIES];
397
  struct bb_info *bb_info[N_ENTITIES];
398
  int i, j;
399
  int n_entities;
400
  int max_num_modes = 0;
401
  bool emited = false;
402
  basic_block post_entry ATTRIBUTE_UNUSED, pre_exit ATTRIBUTE_UNUSED;
403
 
404
  clear_bb_flags ();
405
 
406
  for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
407
    if (OPTIMIZE_MODE_SWITCHING (e))
408
      {
409
        int entry_exit_extra = 0;
410
 
411
        /* Create the list of segments within each basic block.
412
           If NORMAL_MODE is defined, allow for two extra
413
           blocks split from the entry and exit block.  */
414
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
415
        entry_exit_extra = 3;
416
#endif
417
        bb_info[n_entities]
418
          = xcalloc (last_basic_block + entry_exit_extra, sizeof **bb_info);
419
        entity_map[n_entities++] = e;
420
        if (num_modes[e] > max_num_modes)
421
          max_num_modes = num_modes[e];
422
      }
423
 
424
  if (! n_entities)
425
    return 0;
426
 
427
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
428
  /* Split the edge from the entry block, so that we can note that
429
     there NORMAL_MODE is supplied.  */
430
  post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
431
  pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
432
#endif
433
 
434
  /* Create the bitmap vectors.  */
435
 
436
  antic = sbitmap_vector_alloc (last_basic_block, n_entities);
437
  transp = sbitmap_vector_alloc (last_basic_block, n_entities);
438
  comp = sbitmap_vector_alloc (last_basic_block, n_entities);
439
 
440
  sbitmap_vector_ones (transp, last_basic_block);
441
 
442
  for (j = n_entities - 1; j >= 0; j--)
443
    {
444
      int e = entity_map[j];
445
      int no_mode = num_modes[e];
446
      struct bb_info *info = bb_info[j];
447
 
448
      /* Determine what the first use (if any) need for a mode of entity E is.
449
         This will be the mode that is anticipatable for this block.
450
         Also compute the initial transparency settings.  */
451
      FOR_EACH_BB (bb)
452
        {
453
          struct seginfo *ptr;
454
          int last_mode = no_mode;
455
          HARD_REG_SET live_now;
456
 
457
          REG_SET_TO_HARD_REG_SET (live_now,
458
                                   bb->il.rtl->global_live_at_start);
459
 
460
          /* Pretend the mode is clobbered across abnormal edges.  */
461
          {
462
            edge_iterator ei;
463
            edge e;
464
            FOR_EACH_EDGE (e, ei, bb->preds)
465
              if (e->flags & EDGE_COMPLEX)
466
                break;
467
            if (e)
468
              RESET_BIT (transp[bb->index], j);
469
          }
470
 
471
          for (insn = BB_HEAD (bb);
472
               insn != NULL && insn != NEXT_INSN (BB_END (bb));
473
               insn = NEXT_INSN (insn))
474
            {
475
              if (INSN_P (insn))
476
                {
477
                  int mode = MODE_NEEDED (e, insn);
478
                  rtx link;
479
 
480
                  if (mode != no_mode && mode != last_mode)
481
                    {
482
                      last_mode = mode;
483
                      ptr = new_seginfo (mode, insn, bb->index, live_now);
484
                      add_seginfo (info + bb->index, ptr);
485
                      RESET_BIT (transp[bb->index], j);
486
                    }
487
#ifdef MODE_AFTER
488
                  last_mode = MODE_AFTER (last_mode, insn);
489
#endif
490
                  /* Update LIVE_NOW.  */
491
                  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
492
                    if (REG_NOTE_KIND (link) == REG_DEAD)
493
                      reg_dies (XEXP (link, 0), live_now);
494
 
495
                  note_stores (PATTERN (insn), reg_becomes_live, &live_now);
496
                  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
497
                    if (REG_NOTE_KIND (link) == REG_UNUSED)
498
                      reg_dies (XEXP (link, 0), live_now);
499
                }
500
            }
501
 
502
          info[bb->index].computing = last_mode;
503
          /* Check for blocks without ANY mode requirements.  */
504
          if (last_mode == no_mode)
505
            {
506
              ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
507
              add_seginfo (info + bb->index, ptr);
508
            }
509
        }
510
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
511
      {
512
        int mode = MODE_ENTRY (e);
513
 
514
        if (mode != no_mode)
515
          {
516
            bb = post_entry;
517
 
518
            /* By always making this nontransparent, we save
519
               an extra check in make_preds_opaque.  We also
520
               need this to avoid confusing pre_edge_lcm when
521
               antic is cleared but transp and comp are set.  */
522
            RESET_BIT (transp[bb->index], j);
523
 
524
            /* Insert a fake computing definition of MODE into entry
525
               blocks which compute no mode. This represents the mode on
526
               entry.  */
527
            info[bb->index].computing = mode;
528
 
529
            if (pre_exit)
530
              info[pre_exit->index].seginfo->mode = MODE_EXIT (e);
531
          }
532
      }
533
#endif /* NORMAL_MODE */
534
    }
535
 
536
  kill = sbitmap_vector_alloc (last_basic_block, n_entities);
537
  for (i = 0; i < max_num_modes; i++)
538
    {
539
      int current_mode[N_ENTITIES];
540
      sbitmap *delete;
541
      sbitmap *insert;
542
 
543
      /* Set the anticipatable and computing arrays.  */
544
      sbitmap_vector_zero (antic, last_basic_block);
545
      sbitmap_vector_zero (comp, last_basic_block);
546
      for (j = n_entities - 1; j >= 0; j--)
547
        {
548
          int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i);
549
          struct bb_info *info = bb_info[j];
550
 
551
          FOR_EACH_BB (bb)
552
            {
553
              if (info[bb->index].seginfo->mode == m)
554
                SET_BIT (antic[bb->index], j);
555
 
556
              if (info[bb->index].computing == m)
557
                SET_BIT (comp[bb->index], j);
558
            }
559
        }
560
 
561
      /* Calculate the optimal locations for the
562
         placement mode switches to modes with priority I.  */
563
 
564
      FOR_EACH_BB (bb)
565
        sbitmap_not (kill[bb->index], transp[bb->index]);
566
      edge_list = pre_edge_lcm (file, n_entities, transp, comp, antic,
567
                                kill, &insert, &delete);
568
 
569
      for (j = n_entities - 1; j >= 0; j--)
570
        {
571
          /* Insert all mode sets that have been inserted by lcm.  */
572
          int no_mode = num_modes[entity_map[j]];
573
 
574
          /* Wherever we have moved a mode setting upwards in the flow graph,
575
             the blocks between the new setting site and the now redundant
576
             computation ceases to be transparent for any lower-priority
577
             mode of the same entity.  First set the aux field of each
578
             insertion site edge non-transparent, then propagate the new
579
             non-transparency from the redundant computation upwards till
580
             we hit an insertion site or an already non-transparent block.  */
581
          for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
582
            {
583
              edge eg = INDEX_EDGE (edge_list, e);
584
              int mode;
585
              basic_block src_bb;
586
              HARD_REG_SET live_at_edge;
587
              rtx mode_set;
588
 
589
              eg->aux = 0;
590
 
591
              if (! TEST_BIT (insert[e], j))
592
                continue;
593
 
594
              eg->aux = (void *)1;
595
 
596
              mode = current_mode[j];
597
              src_bb = eg->src;
598
 
599
              REG_SET_TO_HARD_REG_SET (live_at_edge,
600
                                       src_bb->il.rtl->global_live_at_end);
601
 
602
              start_sequence ();
603
              EMIT_MODE_SET (entity_map[j], mode, live_at_edge);
604
              mode_set = get_insns ();
605
              end_sequence ();
606
 
607
              /* Do not bother to insert empty sequence.  */
608
              if (mode_set == NULL_RTX)
609
                continue;
610
 
611
              /* If this is an abnormal edge, we'll insert at the end
612
                 of the previous block.  */
613
              if (eg->flags & EDGE_ABNORMAL)
614
                {
615
                  emited = true;
616
                  if (JUMP_P (BB_END (src_bb)))
617
                    emit_insn_before (mode_set, BB_END (src_bb));
618
                  else
619
                    {
620
                      /* It doesn't make sense to switch to normal
621
                         mode after a CALL_INSN.  The cases in which a
622
                         CALL_INSN may have an abnormal edge are
623
                         sibcalls and EH edges.  In the case of
624
                         sibcalls, the dest basic-block is the
625
                         EXIT_BLOCK, that runs in normal mode; it is
626
                         assumed that a sibcall insn requires normal
627
                         mode itself, so no mode switch would be
628
                         required after the call (it wouldn't make
629
                         sense, anyway).  In the case of EH edges, EH
630
                         entry points also start in normal mode, so a
631
                         similar reasoning applies.  */
632
                      gcc_assert (NONJUMP_INSN_P (BB_END (src_bb)));
633
                      emit_insn_after (mode_set, BB_END (src_bb));
634
                    }
635
                  bb_info[j][src_bb->index].computing = mode;
636
                  RESET_BIT (transp[src_bb->index], j);
637
                }
638
              else
639
                {
640
                  need_commit = 1;
641
                  insert_insn_on_edge (mode_set, eg);
642
                }
643
            }
644
 
645
          FOR_EACH_BB_REVERSE (bb)
646
            if (TEST_BIT (delete[bb->index], j))
647
              {
648
                make_preds_opaque (bb, j);
649
                /* Cancel the 'deleted' mode set.  */
650
                bb_info[j][bb->index].seginfo->mode = no_mode;
651
              }
652
        }
653
 
654
      sbitmap_vector_free (delete);
655
      sbitmap_vector_free (insert);
656
      clear_aux_for_edges ();
657
      free_edge_list (edge_list);
658
    }
659
 
660
  /* Now output the remaining mode sets in all the segments.  */
661
  for (j = n_entities - 1; j >= 0; j--)
662
    {
663
      int no_mode = num_modes[entity_map[j]];
664
 
665
      FOR_EACH_BB_REVERSE (bb)
666
        {
667
          struct seginfo *ptr, *next;
668
          for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
669
            {
670
              next = ptr->next;
671
              if (ptr->mode != no_mode)
672
                {
673
                  rtx mode_set;
674
 
675
                  start_sequence ();
676
                  EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
677
                  mode_set = get_insns ();
678
                  end_sequence ();
679
 
680
                  /* Insert MODE_SET only if it is nonempty.  */
681
                  if (mode_set != NULL_RTX)
682
                    {
683
                      emited = true;
684
                      if (NOTE_P (ptr->insn_ptr)
685
                          && (NOTE_LINE_NUMBER (ptr->insn_ptr)
686
                              == NOTE_INSN_BASIC_BLOCK))
687
                        emit_insn_after (mode_set, ptr->insn_ptr);
688
                      else
689
                        emit_insn_before (mode_set, ptr->insn_ptr);
690
                    }
691
                }
692
 
693
              free (ptr);
694
            }
695
        }
696
 
697
      free (bb_info[j]);
698
    }
699
 
700
  /* Finished. Free up all the things we've allocated.  */
701
 
702
  sbitmap_vector_free (kill);
703
  sbitmap_vector_free (antic);
704
  sbitmap_vector_free (transp);
705
  sbitmap_vector_free (comp);
706
 
707
  if (need_commit)
708
    commit_edge_insertions ();
709
 
710
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
711
  cleanup_cfg (CLEANUP_NO_INSN_DEL);
712
#else
713
  if (!need_commit && !emited)
714
    return 0;
715
#endif
716
 
717
  max_regno = max_reg_num ();
718
  allocate_reg_info (max_regno, FALSE, FALSE);
719
  update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
720
                                    (PROP_DEATH_NOTES | PROP_KILL_DEAD_CODE
721
                                     | PROP_SCAN_DEAD_CODE));
722
 
723
  return 1;
724
}
725
 
726
#endif /* OPTIMIZE_MODE_SWITCHING */
727
 
728
static bool
729
gate_mode_switching (void)
730
{
731
#ifdef OPTIMIZE_MODE_SWITCHING
732
  return true;
733
#else
734
  return false;
735
#endif
736
}
737
 
738
static void
739
rest_of_handle_mode_switching (void)
740
{
741
#ifdef OPTIMIZE_MODE_SWITCHING
742
  no_new_pseudos = 0;
743
  optimize_mode_switching (NULL);
744
  no_new_pseudos = 1;
745
#endif /* OPTIMIZE_MODE_SWITCHING */
746
}
747
 
748
 
749
struct tree_opt_pass pass_mode_switching =
750
{
751
  "mode-sw",                            /* name */
752
  gate_mode_switching,                  /* gate */
753
  rest_of_handle_mode_switching,        /* execute */
754
  NULL,                                 /* sub */
755
  NULL,                                 /* next */
756
  0,                                    /* static_pass_number */
757
  TV_MODE_SWITCH,                       /* tv_id */
758
  0,                                    /* properties_required */
759
  0,                                    /* properties_provided */
760
  0,                                    /* properties_destroyed */
761
  0,                                    /* todo_flags_start */
762
  TODO_dump_func,                       /* todo_flags_finish */
763
 
764
};

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.