OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [tree-sra.c] - Blame information for rev 16

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Scalar Replacement of Aggregates (SRA) converts some structure
2
   references into scalar references, exposing them to the scalar
3
   optimizers.
4
   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
5
   Contributed by Diego Novillo <dnovillo@redhat.com>
6
 
7
This file is part of GCC.
8
 
9
GCC is free software; you can redistribute it and/or modify it
10
under the terms of the GNU General Public License as published by the
11
Free Software Foundation; either version 2, or (at your option) any
12
later version.
13
 
14
GCC is distributed in the hope that it will be useful, but WITHOUT
15
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17
for more details.
18
 
19
You should have received a copy of the GNU General Public License
20
along with GCC; see the file COPYING.  If not, write to the Free
21
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22
02110-1301, USA.  */
23
 
24
#include "config.h"
25
#include "system.h"
26
#include "coretypes.h"
27
#include "tm.h"
28
#include "ggc.h"
29
#include "tree.h"
30
 
31
/* These RTL headers are needed for basic-block.h.  */
32
#include "rtl.h"
33
#include "tm_p.h"
34
#include "hard-reg-set.h"
35
#include "basic-block.h"
36
#include "diagnostic.h"
37
#include "langhooks.h"
38
#include "tree-inline.h"
39
#include "tree-flow.h"
40
#include "tree-gimple.h"
41
#include "tree-dump.h"
42
#include "tree-pass.h"
43
#include "timevar.h"
44
#include "flags.h"
45
#include "bitmap.h"
46
#include "obstack.h"
47
#include "target.h"
48
/* expr.h is needed for MOVE_RATIO.  */
49
#include "expr.h"
50
#include "params.h"
51
 
52
 
53
/* This object of this pass is to replace a non-addressable aggregate with a
54
   set of independent variables.  Most of the time, all of these variables
55
   will be scalars.  But a secondary objective is to break up larger
56
   aggregates into smaller aggregates.  In the process we may find that some
57
   bits of the larger aggregate can be deleted as unreferenced.
58
 
59
   This substitution is done globally.  More localized substitutions would
60
   be the purvey of a load-store motion pass.
61
 
62
   The optimization proceeds in phases:
63
 
64
     (1) Identify variables that have types that are candidates for
65
         decomposition.
66
 
67
     (2) Scan the function looking for the ways these variables are used.
68
         In particular we're interested in the number of times a variable
69
         (or member) is needed as a complete unit, and the number of times
70
         a variable (or member) is copied.
71
 
72
     (3) Based on the usage profile, instantiate substitution variables.
73
 
74
     (4) Scan the function making replacements.
75
*/
76
 
77
 
78
/* The set of aggregate variables that are candidates for scalarization.  */
79
static bitmap sra_candidates;
80
 
81
/* Set of scalarizable PARM_DECLs that need copy-in operations at the
82
   beginning of the function.  */
83
static bitmap needs_copy_in;
84
 
85
/* Sets of bit pairs that cache type decomposition and instantiation.  */
86
static bitmap sra_type_decomp_cache;
87
static bitmap sra_type_inst_cache;
88
 
89
/* One of these structures is created for each candidate aggregate
90
   and each (accessed) member of such an aggregate.  */
91
struct sra_elt
92
{
93
  /* A tree of the elements.  Used when we want to traverse everything.  */
94
  struct sra_elt *parent;
95
  struct sra_elt *children;
96
  struct sra_elt *sibling;
97
 
98
  /* If this element is a root, then this is the VAR_DECL.  If this is
99
     a sub-element, this is some token used to identify the reference.
100
     In the case of COMPONENT_REF, this is the FIELD_DECL.  In the case
101
     of an ARRAY_REF, this is the (constant) index.  In the case of a
102
     complex number, this is a zero or one.  */
103
  tree element;
104
 
105
  /* The type of the element.  */
106
  tree type;
107
 
108
  /* A VAR_DECL, for any sub-element we've decided to replace.  */
109
  tree replacement;
110
 
111
  /* The number of times the element is referenced as a whole.  I.e.
112
     given "a.b.c", this would be incremented for C, but not for A or B.  */
113
  unsigned int n_uses;
114
 
115
  /* The number of times the element is copied to or from another
116
     scalarizable element.  */
117
  unsigned int n_copies;
118
 
119
  /* True if TYPE is scalar.  */
120
  bool is_scalar;
121
 
122
  /* True if we saw something about this element that prevents scalarization,
123
     such as non-constant indexing.  */
124
  bool cannot_scalarize;
125
 
126
  /* True if we've decided that structure-to-structure assignment
127
     should happen via memcpy and not per-element.  */
128
  bool use_block_copy;
129
 
130
  /* True if everything under this element has been marked TREE_NO_WARNING.  */
131
  bool all_no_warning;
132
 
133
  /* A flag for use with/after random access traversals.  */
134
  bool visited;
135
};
136
 
137
/* Random access to the child of a parent is performed by hashing.
138
   This prevents quadratic behavior, and allows SRA to function
139
   reasonably on larger records.  */
140
static htab_t sra_map;
141
 
142
/* All structures are allocated out of the following obstack.  */
143
static struct obstack sra_obstack;
144
 
145
/* Debugging functions.  */
146
static void dump_sra_elt_name (FILE *, struct sra_elt *);
147
extern void debug_sra_elt_name (struct sra_elt *);
148
 
149
/* Forward declarations.  */
150
static tree generate_element_ref (struct sra_elt *);
151
 
152
/* Return true if DECL is an SRA candidate.  */
153
 
154
static bool
155
is_sra_candidate_decl (tree decl)
156
{
157
  return DECL_P (decl) && bitmap_bit_p (sra_candidates, DECL_UID (decl));
158
}
159
 
160
/* Return true if TYPE is a scalar type.  */
161
 
162
static bool
163
is_sra_scalar_type (tree type)
164
{
165
  enum tree_code code = TREE_CODE (type);
166
  return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
167
          || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
168
          || code == CHAR_TYPE || code == POINTER_TYPE || code == OFFSET_TYPE
169
          || code == REFERENCE_TYPE);
170
}
171
 
172
/* Return true if TYPE can be decomposed into a set of independent variables.
173
 
174
   Note that this doesn't imply that all elements of TYPE can be
175
   instantiated, just that if we decide to break up the type into
176
   separate pieces that it can be done.  */
177
 
178
bool
179
sra_type_can_be_decomposed_p (tree type)
180
{
181
  unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
182
  tree t;
183
 
184
  /* Avoid searching the same type twice.  */
185
  if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
186
    return true;
187
  if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
188
    return false;
189
 
190
  /* The type must have a definite nonzero size.  */
191
  if (TYPE_SIZE (type) == NULL || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
192
      || integer_zerop (TYPE_SIZE (type)))
193
    goto fail;
194
 
195
  /* The type must be a non-union aggregate.  */
196
  switch (TREE_CODE (type))
197
    {
198
    case RECORD_TYPE:
199
      {
200
        bool saw_one_field = false;
201
 
202
        for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
203
          if (TREE_CODE (t) == FIELD_DECL)
204
            {
205
              /* Reject incorrectly represented bit fields.  */
206
              if (DECL_BIT_FIELD (t)
207
                  && (tree_low_cst (DECL_SIZE (t), 1)
208
                      != TYPE_PRECISION (TREE_TYPE (t))))
209
                goto fail;
210
 
211
              saw_one_field = true;
212
            }
213
 
214
        /* Record types must have at least one field.  */
215
        if (!saw_one_field)
216
          goto fail;
217
      }
218
      break;
219
 
220
    case ARRAY_TYPE:
221
      /* Array types must have a fixed lower and upper bound.  */
222
      t = TYPE_DOMAIN (type);
223
      if (t == NULL)
224
        goto fail;
225
      if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
226
        goto fail;
227
      if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
228
        goto fail;
229
      break;
230
 
231
    case COMPLEX_TYPE:
232
      break;
233
 
234
    default:
235
      goto fail;
236
    }
237
 
238
  bitmap_set_bit (sra_type_decomp_cache, cache+0);
239
  return true;
240
 
241
 fail:
242
  bitmap_set_bit (sra_type_decomp_cache, cache+1);
243
  return false;
244
}
245
 
246
/* Return true if DECL can be decomposed into a set of independent
247
   (though not necessarily scalar) variables.  */
248
 
249
static bool
250
decl_can_be_decomposed_p (tree var)
251
{
252
  /* Early out for scalars.  */
253
  if (is_sra_scalar_type (TREE_TYPE (var)))
254
    return false;
255
 
256
  /* The variable must not be aliased.  */
257
  if (!is_gimple_non_addressable (var))
258
    {
259
      if (dump_file && (dump_flags & TDF_DETAILS))
260
        {
261
          fprintf (dump_file, "Cannot scalarize variable ");
262
          print_generic_expr (dump_file, var, dump_flags);
263
          fprintf (dump_file, " because it must live in memory\n");
264
        }
265
      return false;
266
    }
267
 
268
  /* The variable must not be volatile.  */
269
  if (TREE_THIS_VOLATILE (var))
270
    {
271
      if (dump_file && (dump_flags & TDF_DETAILS))
272
        {
273
          fprintf (dump_file, "Cannot scalarize variable ");
274
          print_generic_expr (dump_file, var, dump_flags);
275
          fprintf (dump_file, " because it is declared volatile\n");
276
        }
277
      return false;
278
    }
279
 
280
  /* We must be able to decompose the variable's type.  */
281
  if (!sra_type_can_be_decomposed_p (TREE_TYPE (var)))
282
    {
283
      if (dump_file && (dump_flags & TDF_DETAILS))
284
        {
285
          fprintf (dump_file, "Cannot scalarize variable ");
286
          print_generic_expr (dump_file, var, dump_flags);
287
          fprintf (dump_file, " because its type cannot be decomposed\n");
288
        }
289
      return false;
290
    }
291
 
292
  return true;
293
}
294
 
295
/* Return true if TYPE can be *completely* decomposed into scalars.  */
296
 
297
static bool
298
type_can_instantiate_all_elements (tree type)
299
{
300
  if (is_sra_scalar_type (type))
301
    return true;
302
  if (!sra_type_can_be_decomposed_p (type))
303
    return false;
304
 
305
  switch (TREE_CODE (type))
306
    {
307
    case RECORD_TYPE:
308
      {
309
        unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
310
        tree f;
311
 
312
        if (bitmap_bit_p (sra_type_inst_cache, cache+0))
313
          return true;
314
        if (bitmap_bit_p (sra_type_inst_cache, cache+1))
315
          return false;
316
 
317
        for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
318
          if (TREE_CODE (f) == FIELD_DECL)
319
            {
320
              if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
321
                {
322
                  bitmap_set_bit (sra_type_inst_cache, cache+1);
323
                  return false;
324
                }
325
            }
326
 
327
        bitmap_set_bit (sra_type_inst_cache, cache+0);
328
        return true;
329
      }
330
 
331
    case ARRAY_TYPE:
332
      return type_can_instantiate_all_elements (TREE_TYPE (type));
333
 
334
    case COMPLEX_TYPE:
335
      return true;
336
 
337
    default:
338
      gcc_unreachable ();
339
    }
340
}
341
 
342
/* Test whether ELT or some sub-element cannot be scalarized.  */
343
 
344
static bool
345
can_completely_scalarize_p (struct sra_elt *elt)
346
{
347
  struct sra_elt *c;
348
 
349
  if (elt->cannot_scalarize)
350
    return false;
351
 
352
  for (c = elt->children; c ; c = c->sibling)
353
    if (!can_completely_scalarize_p (c))
354
      return false;
355
 
356
  return true;
357
}
358
 
359
 
360
/* A simplified tree hashing algorithm that only handles the types of
361
   trees we expect to find in sra_elt->element.  */
362
 
363
static hashval_t
364
sra_hash_tree (tree t)
365
{
366
  hashval_t h;
367
 
368
  switch (TREE_CODE (t))
369
    {
370
    case VAR_DECL:
371
    case PARM_DECL:
372
    case RESULT_DECL:
373
      h = DECL_UID (t);
374
      break;
375
 
376
    case INTEGER_CST:
377
      h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
378
      break;
379
 
380
    case FIELD_DECL:
381
      /* We can have types that are compatible, but have different member
382
         lists, so we can't hash fields by ID.  Use offsets instead.  */
383
      h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
384
      h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
385
      break;
386
 
387
    default:
388
      gcc_unreachable ();
389
    }
390
 
391
  return h;
392
}
393
 
394
/* Hash function for type SRA_PAIR.  */
395
 
396
static hashval_t
397
sra_elt_hash (const void *x)
398
{
399
  const struct sra_elt *e = x;
400
  const struct sra_elt *p;
401
  hashval_t h;
402
 
403
  h = sra_hash_tree (e->element);
404
 
405
  /* Take into account everything back up the chain.  Given that chain
406
     lengths are rarely very long, this should be acceptable.  If we
407
     truly identify this as a performance problem, it should work to
408
     hash the pointer value "e->parent".  */
409
  for (p = e->parent; p ; p = p->parent)
410
    h = (h * 65521) ^ sra_hash_tree (p->element);
411
 
412
  return h;
413
}
414
 
415
/* Equality function for type SRA_PAIR.  */
416
 
417
static int
418
sra_elt_eq (const void *x, const void *y)
419
{
420
  const struct sra_elt *a = x;
421
  const struct sra_elt *b = y;
422
  tree ae, be;
423
 
424
  if (a->parent != b->parent)
425
    return false;
426
 
427
  ae = a->element;
428
  be = b->element;
429
 
430
  if (ae == be)
431
    return true;
432
  if (TREE_CODE (ae) != TREE_CODE (be))
433
    return false;
434
 
435
  switch (TREE_CODE (ae))
436
    {
437
    case VAR_DECL:
438
    case PARM_DECL:
439
    case RESULT_DECL:
440
      /* These are all pointer unique.  */
441
      return false;
442
 
443
    case INTEGER_CST:
444
      /* Integers are not pointer unique, so compare their values.  */
445
      return tree_int_cst_equal (ae, be);
446
 
447
    case FIELD_DECL:
448
      /* Fields are unique within a record, but not between
449
         compatible records.  */
450
      if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
451
        return false;
452
      return fields_compatible_p (ae, be);
453
 
454
    default:
455
      gcc_unreachable ();
456
    }
457
}
458
 
459
/* Create or return the SRA_ELT structure for CHILD in PARENT.  PARENT
460
   may be null, in which case CHILD must be a DECL.  */
461
 
462
static struct sra_elt *
463
lookup_element (struct sra_elt *parent, tree child, tree type,
464
                enum insert_option insert)
465
{
466
  struct sra_elt dummy;
467
  struct sra_elt **slot;
468
  struct sra_elt *elt;
469
 
470
  dummy.parent = parent;
471
  dummy.element = child;
472
 
473
  slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
474
  if (!slot && insert == NO_INSERT)
475
    return NULL;
476
 
477
  elt = *slot;
478
  if (!elt && insert == INSERT)
479
    {
480
      *slot = elt = obstack_alloc (&sra_obstack, sizeof (*elt));
481
      memset (elt, 0, sizeof (*elt));
482
 
483
      elt->parent = parent;
484
      elt->element = child;
485
      elt->type = type;
486
      elt->is_scalar = is_sra_scalar_type (type);
487
 
488
      if (parent)
489
        {
490
          elt->sibling = parent->children;
491
          parent->children = elt;
492
        }
493
 
494
      /* If this is a parameter, then if we want to scalarize, we have
495
         one copy from the true function parameter.  Count it now.  */
496
      if (TREE_CODE (child) == PARM_DECL)
497
        {
498
          elt->n_copies = 1;
499
          bitmap_set_bit (needs_copy_in, DECL_UID (child));
500
        }
501
    }
502
 
503
  return elt;
504
}
505
 
506
/* Return true if the ARRAY_REF in EXPR is a constant, in bounds access.  */
507
 
508
static bool
509
is_valid_const_index (tree expr)
510
{
511
  tree dom, t, index = TREE_OPERAND (expr, 1);
512
 
513
  if (TREE_CODE (index) != INTEGER_CST)
514
    return false;
515
 
516
  /* Watch out for stupid user tricks, indexing outside the array.
517
 
518
     Careful, we're not called only on scalarizable types, so do not
519
     assume constant array bounds.  We needn't do anything with such
520
     cases, since they'll be referring to objects that we should have
521
     already rejected for scalarization, so returning false is fine.  */
522
 
523
  dom = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (expr, 0)));
524
  if (dom == NULL)
525
    return false;
526
 
527
  t = TYPE_MIN_VALUE (dom);
528
  if (!t || TREE_CODE (t) != INTEGER_CST)
529
    return false;
530
  if (tree_int_cst_lt (index, t))
531
    return false;
532
 
533
  t = TYPE_MAX_VALUE (dom);
534
  if (!t || TREE_CODE (t) != INTEGER_CST)
535
    return false;
536
  if (tree_int_cst_lt (t, index))
537
    return false;
538
 
539
  return true;
540
}
541
 
542
/* Create or return the SRA_ELT structure for EXPR if the expression
543
   refers to a scalarizable variable.  */
544
 
545
static struct sra_elt *
546
maybe_lookup_element_for_expr (tree expr)
547
{
548
  struct sra_elt *elt;
549
  tree child;
550
 
551
  switch (TREE_CODE (expr))
552
    {
553
    case VAR_DECL:
554
    case PARM_DECL:
555
    case RESULT_DECL:
556
      if (is_sra_candidate_decl (expr))
557
        return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
558
      return NULL;
559
 
560
    case ARRAY_REF:
561
      /* We can't scalarize variable array indicies.  */
562
      if (is_valid_const_index (expr))
563
        child = TREE_OPERAND (expr, 1);
564
      else
565
        return NULL;
566
      break;
567
 
568
    case COMPONENT_REF:
569
      /* Don't look through unions.  */
570
      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) != RECORD_TYPE)
571
        return NULL;
572
      child = TREE_OPERAND (expr, 1);
573
      break;
574
 
575
    case REALPART_EXPR:
576
      child = integer_zero_node;
577
      break;
578
    case IMAGPART_EXPR:
579
      child = integer_one_node;
580
      break;
581
 
582
    default:
583
      return NULL;
584
    }
585
 
586
  elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
587
  if (elt)
588
    return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
589
  return NULL;
590
}
591
 
592
 
593
/* Functions to walk just enough of the tree to see all scalarizable
594
   references, and categorize them.  */
595
 
596
/* A set of callbacks for phases 2 and 4.  They'll be invoked for the
597
   various kinds of references seen.  In all cases, *BSI is an iterator
598
   pointing to the statement being processed.  */
599
struct sra_walk_fns
600
{
601
  /* Invoked when ELT is required as a unit.  Note that ELT might refer to
602
     a leaf node, in which case this is a simple scalar reference.  *EXPR_P
603
     points to the location of the expression.  IS_OUTPUT is true if this
604
     is a left-hand-side reference.  USE_ALL is true if we saw something we
605
     couldn't quite identify and had to force the use of the entire object.  */
606
  void (*use) (struct sra_elt *elt, tree *expr_p,
607
               block_stmt_iterator *bsi, bool is_output, bool use_all);
608
 
609
  /* Invoked when we have a copy between two scalarizable references.  */
610
  void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
611
                block_stmt_iterator *bsi);
612
 
613
  /* Invoked when ELT is initialized from a constant.  VALUE may be NULL,
614
     in which case it should be treated as an empty CONSTRUCTOR.  */
615
  void (*init) (struct sra_elt *elt, tree value, block_stmt_iterator *bsi);
616
 
617
  /* Invoked when we have a copy between one scalarizable reference ELT
618
     and one non-scalarizable reference OTHER.  IS_OUTPUT is true if ELT
619
     is on the left-hand side.  */
620
  void (*ldst) (struct sra_elt *elt, tree other,
621
                block_stmt_iterator *bsi, bool is_output);
622
 
623
  /* True during phase 2, false during phase 4.  */
624
  /* ??? This is a hack.  */
625
  bool initial_scan;
626
};
627
 
628
#ifdef ENABLE_CHECKING
629
/* Invoked via walk_tree, if *TP contains a candidate decl, return it.  */
630
 
631
static tree
632
sra_find_candidate_decl (tree *tp, int *walk_subtrees,
633
                         void *data ATTRIBUTE_UNUSED)
634
{
635
  tree t = *tp;
636
  enum tree_code code = TREE_CODE (t);
637
 
638
  if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
639
    {
640
      *walk_subtrees = 0;
641
      if (is_sra_candidate_decl (t))
642
        return t;
643
    }
644
  else if (TYPE_P (t))
645
    *walk_subtrees = 0;
646
 
647
  return NULL;
648
}
649
#endif
650
 
651
/* Walk most expressions looking for a scalarizable aggregate.
652
   If we find one, invoke FNS->USE.  */
653
 
654
static void
655
sra_walk_expr (tree *expr_p, block_stmt_iterator *bsi, bool is_output,
656
               const struct sra_walk_fns *fns)
657
{
658
  tree expr = *expr_p;
659
  tree inner = expr;
660
  bool disable_scalarization = false;
661
  bool use_all_p = false;
662
 
663
  /* We're looking to collect a reference expression between EXPR and INNER,
664
     such that INNER is a scalarizable decl and all other nodes through EXPR
665
     are references that we can scalarize.  If we come across something that
666
     we can't scalarize, we reset EXPR.  This has the effect of making it
667
     appear that we're referring to the larger expression as a whole.  */
668
 
669
  while (1)
670
    switch (TREE_CODE (inner))
671
      {
672
      case VAR_DECL:
673
      case PARM_DECL:
674
      case RESULT_DECL:
675
        /* If there is a scalarizable decl at the bottom, then process it.  */
676
        if (is_sra_candidate_decl (inner))
677
          {
678
            struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
679
            if (disable_scalarization)
680
              elt->cannot_scalarize = true;
681
            else
682
              fns->use (elt, expr_p, bsi, is_output, use_all_p);
683
          }
684
        return;
685
 
686
      case ARRAY_REF:
687
        /* Non-constant index means any member may be accessed.  Prevent the
688
           expression from being scalarized.  If we were to treat this as a
689
           reference to the whole array, we can wind up with a single dynamic
690
           index reference inside a loop being overridden by several constant
691
           index references during loop setup.  It's possible that this could
692
           be avoided by using dynamic usage counts based on BB trip counts
693
           (based on loop analysis or profiling), but that hardly seems worth
694
           the effort.  */
695
        /* ??? Hack.  Figure out how to push this into the scan routines
696
           without duplicating too much code.  */
697
        if (!is_valid_const_index (inner))
698
          {
699
            disable_scalarization = true;
700
            goto use_all;
701
          }
702
        /* ??? Are we assured that non-constant bounds and stride will have
703
           the same value everywhere?  I don't think Fortran will...  */
704
        if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
705
          goto use_all;
706
        inner = TREE_OPERAND (inner, 0);
707
        break;
708
 
709
      case COMPONENT_REF:
710
        /* A reference to a union member constitutes a reference to the
711
           entire union.  */
712
        if (TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) != RECORD_TYPE)
713
          goto use_all;
714
        /* ??? See above re non-constant stride.  */
715
        if (TREE_OPERAND (inner, 2))
716
          goto use_all;
717
        inner = TREE_OPERAND (inner, 0);
718
        break;
719
 
720
      case REALPART_EXPR:
721
      case IMAGPART_EXPR:
722
        inner = TREE_OPERAND (inner, 0);
723
        break;
724
 
725
      case BIT_FIELD_REF:
726
        /* A bit field reference (access to *multiple* fields simultaneously)
727
           is not currently scalarized.  Consider this an access to the
728
           complete outer element, to which walk_tree will bring us next.  */
729
        goto use_all;
730
 
731
      case ARRAY_RANGE_REF:
732
        /* Similarly, a subrange reference is used to modify indexing.  Which
733
           means that the canonical element names that we have won't work.  */
734
        goto use_all;
735
 
736
      case VIEW_CONVERT_EXPR:
737
      case NOP_EXPR:
738
        /* Similarly, a view/nop explicitly wants to look at an object in a
739
           type other than the one we've scalarized.  */
740
        goto use_all;
741
 
742
      case WITH_SIZE_EXPR:
743
        /* This is a transparent wrapper.  The entire inner expression really
744
           is being used.  */
745
        goto use_all;
746
 
747
      use_all:
748
        expr_p = &TREE_OPERAND (inner, 0);
749
        inner = expr = *expr_p;
750
        use_all_p = true;
751
        break;
752
 
753
      default:
754
#ifdef ENABLE_CHECKING
755
        /* Validate that we're not missing any references.  */
756
        gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
757
#endif
758
        return;
759
      }
760
}
761
 
762
/* Walk a TREE_LIST of values looking for scalarizable aggregates.
763
   If we find one, invoke FNS->USE.  */
764
 
765
static void
766
sra_walk_tree_list (tree list, block_stmt_iterator *bsi, bool is_output,
767
                    const struct sra_walk_fns *fns)
768
{
769
  tree op;
770
  for (op = list; op ; op = TREE_CHAIN (op))
771
    sra_walk_expr (&TREE_VALUE (op), bsi, is_output, fns);
772
}
773
 
774
/* Walk the arguments of a CALL_EXPR looking for scalarizable aggregates.
775
   If we find one, invoke FNS->USE.  */
776
 
777
static void
778
sra_walk_call_expr (tree expr, block_stmt_iterator *bsi,
779
                    const struct sra_walk_fns *fns)
780
{
781
  sra_walk_tree_list (TREE_OPERAND (expr, 1), bsi, false, fns);
782
}
783
 
784
/* Walk the inputs and outputs of an ASM_EXPR looking for scalarizable
785
   aggregates.  If we find one, invoke FNS->USE.  */
786
 
787
static void
788
sra_walk_asm_expr (tree expr, block_stmt_iterator *bsi,
789
                   const struct sra_walk_fns *fns)
790
{
791
  sra_walk_tree_list (ASM_INPUTS (expr), bsi, false, fns);
792
  sra_walk_tree_list (ASM_OUTPUTS (expr), bsi, true, fns);
793
}
794
 
795
/* Walk a MODIFY_EXPR and categorize the assignment appropriately.  */
796
 
797
static void
798
sra_walk_modify_expr (tree expr, block_stmt_iterator *bsi,
799
                      const struct sra_walk_fns *fns)
800
{
801
  struct sra_elt *lhs_elt, *rhs_elt;
802
  tree lhs, rhs;
803
 
804
  lhs = TREE_OPERAND (expr, 0);
805
  rhs = TREE_OPERAND (expr, 1);
806
  lhs_elt = maybe_lookup_element_for_expr (lhs);
807
  rhs_elt = maybe_lookup_element_for_expr (rhs);
808
 
809
  /* If both sides are scalarizable, this is a COPY operation.  */
810
  if (lhs_elt && rhs_elt)
811
    {
812
      fns->copy (lhs_elt, rhs_elt, bsi);
813
      return;
814
    }
815
 
816
  /* If the RHS is scalarizable, handle it.  There are only two cases.  */
817
  if (rhs_elt)
818
    {
819
      if (!rhs_elt->is_scalar)
820
        fns->ldst (rhs_elt, lhs, bsi, false);
821
      else
822
        fns->use (rhs_elt, &TREE_OPERAND (expr, 1), bsi, false, false);
823
    }
824
 
825
  /* If it isn't scalarizable, there may be scalarizable variables within, so
826
     check for a call or else walk the RHS to see if we need to do any
827
     copy-in operations.  We need to do it before the LHS is scalarized so
828
     that the statements get inserted in the proper place, before any
829
     copy-out operations.  */
830
  else
831
    {
832
      tree call = get_call_expr_in (rhs);
833
      if (call)
834
        sra_walk_call_expr (call, bsi, fns);
835
      else
836
        sra_walk_expr (&TREE_OPERAND (expr, 1), bsi, false, fns);
837
    }
838
 
839
  /* Likewise, handle the LHS being scalarizable.  We have cases similar
840
     to those above, but also want to handle RHS being constant.  */
841
  if (lhs_elt)
842
    {
843
      /* If this is an assignment from a constant, or constructor, then
844
         we have access to all of the elements individually.  Invoke INIT.  */
845
      if (TREE_CODE (rhs) == COMPLEX_EXPR
846
          || TREE_CODE (rhs) == COMPLEX_CST
847
          || TREE_CODE (rhs) == CONSTRUCTOR)
848
        fns->init (lhs_elt, rhs, bsi);
849
 
850
      /* If this is an assignment from read-only memory, treat this as if
851
         we'd been passed the constructor directly.  Invoke INIT.  */
852
      else if (TREE_CODE (rhs) == VAR_DECL
853
               && TREE_STATIC (rhs)
854
               && TREE_READONLY (rhs)
855
               && targetm.binds_local_p (rhs))
856
        fns->init (lhs_elt, DECL_INITIAL (rhs), bsi);
857
 
858
      /* If this is a copy from a non-scalarizable lvalue, invoke LDST.
859
         The lvalue requirement prevents us from trying to directly scalarize
860
         the result of a function call.  Which would result in trying to call
861
         the function multiple times, and other evil things.  */
862
      else if (!lhs_elt->is_scalar && is_gimple_addressable (rhs))
863
        fns->ldst (lhs_elt, rhs, bsi, true);
864
 
865
      /* Otherwise we're being used in some context that requires the
866
         aggregate to be seen as a whole.  Invoke USE.  */
867
      else
868
        fns->use (lhs_elt, &TREE_OPERAND (expr, 0), bsi, true, false);
869
    }
870
 
871
  /* Similarly to above, LHS_ELT being null only means that the LHS as a
872
     whole is not a scalarizable reference.  There may be occurrences of
873
     scalarizable variables within, which implies a USE.  */
874
  else
875
    sra_walk_expr (&TREE_OPERAND (expr, 0), bsi, true, fns);
876
}
877
 
878
/* Entry point to the walk functions.  Search the entire function,
879
   invoking the callbacks in FNS on each of the references to
880
   scalarizable variables.  */
881
 
882
static void
883
sra_walk_function (const struct sra_walk_fns *fns)
884
{
885
  basic_block bb;
886
  block_stmt_iterator si, ni;
887
 
888
  /* ??? Phase 4 could derive some benefit to walking the function in
889
     dominator tree order.  */
890
 
891
  FOR_EACH_BB (bb)
892
    for (si = bsi_start (bb); !bsi_end_p (si); si = ni)
893
      {
894
        tree stmt, t;
895
        stmt_ann_t ann;
896
 
897
        stmt = bsi_stmt (si);
898
        ann = stmt_ann (stmt);
899
 
900
        ni = si;
901
        bsi_next (&ni);
902
 
903
        /* If the statement has no virtual operands, then it doesn't
904
           make any structure references that we care about.  */
905
        if (ZERO_SSA_OPERANDS (stmt, (SSA_OP_VIRTUAL_DEFS | SSA_OP_VUSE)))
906
          continue;
907
 
908
        switch (TREE_CODE (stmt))
909
          {
910
          case RETURN_EXPR:
911
            /* If we have "return <retval>" then the return value is
912
               already exposed for our pleasure.  Walk it as a USE to
913
               force all the components back in place for the return.
914
 
915
               If we have an embedded assignment, then <retval> is of
916
               a type that gets returned in registers in this ABI, and
917
               we do not wish to extend their lifetimes.  Treat this
918
               as a USE of the variable on the RHS of this assignment.  */
919
 
920
            t = TREE_OPERAND (stmt, 0);
921
            if (TREE_CODE (t) == MODIFY_EXPR)
922
              sra_walk_expr (&TREE_OPERAND (t, 1), &si, false, fns);
923
            else
924
              sra_walk_expr (&TREE_OPERAND (stmt, 0), &si, false, fns);
925
            break;
926
 
927
          case MODIFY_EXPR:
928
            sra_walk_modify_expr (stmt, &si, fns);
929
            break;
930
          case CALL_EXPR:
931
            sra_walk_call_expr (stmt, &si, fns);
932
            break;
933
          case ASM_EXPR:
934
            sra_walk_asm_expr (stmt, &si, fns);
935
            break;
936
 
937
          default:
938
            break;
939
          }
940
      }
941
}
942
 
943
/* Phase One: Scan all referenced variables in the program looking for
944
   structures that could be decomposed.  */
945
 
946
static bool
947
find_candidates_for_sra (void)
948
{
949
  bool any_set = false;
950
  tree var;
951
  referenced_var_iterator rvi;
952
 
953
  FOR_EACH_REFERENCED_VAR (var, rvi)
954
    {
955
      if (decl_can_be_decomposed_p (var))
956
        {
957
          bitmap_set_bit (sra_candidates, DECL_UID (var));
958
          any_set = true;
959
        }
960
    }
961
 
962
  return any_set;
963
}
964
 
965
 
966
/* Phase Two: Scan all references to scalarizable variables.  Count the
967
   number of times they are used or copied respectively.  */
968
 
969
/* Callbacks to fill in SRA_WALK_FNS.  Everything but USE is
970
   considered a copy, because we can decompose the reference such that
971
   the sub-elements needn't be contiguous.  */
972
 
973
static void
974
scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
975
          block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
976
          bool is_output ATTRIBUTE_UNUSED, bool use_all ATTRIBUTE_UNUSED)
977
{
978
  elt->n_uses += 1;
979
}
980
 
981
static void
982
scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
983
           block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
984
{
985
  lhs_elt->n_copies += 1;
986
  rhs_elt->n_copies += 1;
987
}
988
 
989
static void
990
scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
991
           block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
992
{
993
  lhs_elt->n_copies += 1;
994
}
995
 
996
static void
997
scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
998
           block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
999
           bool is_output ATTRIBUTE_UNUSED)
1000
{
1001
  elt->n_copies += 1;
1002
}
1003
 
1004
/* Dump the values we collected during the scanning phase.  */
1005
 
1006
static void
1007
scan_dump (struct sra_elt *elt)
1008
{
1009
  struct sra_elt *c;
1010
 
1011
  dump_sra_elt_name (dump_file, elt);
1012
  fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);
1013
 
1014
  for (c = elt->children; c ; c = c->sibling)
1015
    scan_dump (c);
1016
}
1017
 
1018
/* Entry point to phase 2.  Scan the entire function, building up
1019
   scalarization data structures, recording copies and uses.  */
1020
 
1021
static void
1022
scan_function (void)
1023
{
1024
  static const struct sra_walk_fns fns = {
1025
    scan_use, scan_copy, scan_init, scan_ldst, true
1026
  };
1027
  bitmap_iterator bi;
1028
 
1029
  sra_walk_function (&fns);
1030
 
1031
  if (dump_file && (dump_flags & TDF_DETAILS))
1032
    {
1033
      unsigned i;
1034
 
1035
      fputs ("\nScan results:\n", dump_file);
1036
      EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1037
        {
1038
          tree var = referenced_var (i);
1039
          struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1040
          if (elt)
1041
            scan_dump (elt);
1042
        }
1043
      fputc ('\n', dump_file);
1044
    }
1045
}
1046
 
1047
/* Phase Three: Make decisions about which variables to scalarize, if any.
1048
   All elements to be scalarized have replacement variables made for them.  */
1049
 
1050
/* A subroutine of build_element_name.  Recursively build the element
1051
   name on the obstack.  */
1052
 
1053
static void
1054
build_element_name_1 (struct sra_elt *elt)
1055
{
1056
  tree t;
1057
  char buffer[32];
1058
 
1059
  if (elt->parent)
1060
    {
1061
      build_element_name_1 (elt->parent);
1062
      obstack_1grow (&sra_obstack, '$');
1063
 
1064
      if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
1065
        {
1066
          if (elt->element == integer_zero_node)
1067
            obstack_grow (&sra_obstack, "real", 4);
1068
          else
1069
            obstack_grow (&sra_obstack, "imag", 4);
1070
          return;
1071
        }
1072
    }
1073
 
1074
  t = elt->element;
1075
  if (TREE_CODE (t) == INTEGER_CST)
1076
    {
1077
      /* ??? Eh.  Don't bother doing double-wide printing.  */
1078
      sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
1079
      obstack_grow (&sra_obstack, buffer, strlen (buffer));
1080
    }
1081
  else
1082
    {
1083
      tree name = DECL_NAME (t);
1084
      if (name)
1085
        obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
1086
                      IDENTIFIER_LENGTH (name));
1087
      else
1088
        {
1089
          sprintf (buffer, "D%u", DECL_UID (t));
1090
          obstack_grow (&sra_obstack, buffer, strlen (buffer));
1091
        }
1092
    }
1093
}
1094
 
1095
/* Construct a pretty variable name for an element's replacement variable.
1096
   The name is built on the obstack.  */
1097
 
1098
static char *
1099
build_element_name (struct sra_elt *elt)
1100
{
1101
  build_element_name_1 (elt);
1102
  obstack_1grow (&sra_obstack, '\0');
1103
  return XOBFINISH (&sra_obstack, char *);
1104
}
1105
 
1106
/* Instantiate an element as an independent variable.  */
1107
 
1108
static void
1109
instantiate_element (struct sra_elt *elt)
1110
{
1111
  struct sra_elt *base_elt;
1112
  tree var, base;
1113
 
1114
  for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
1115
    continue;
1116
  base = base_elt->element;
1117
 
1118
  elt->replacement = var = make_rename_temp (elt->type, "SR");
1119
  DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
1120
  DECL_ARTIFICIAL (var) = 1;
1121
 
1122
  if (TREE_THIS_VOLATILE (elt->type))
1123
    {
1124
      TREE_THIS_VOLATILE (var) = 1;
1125
      TREE_SIDE_EFFECTS (var) = 1;
1126
    }
1127
 
1128
  if (DECL_NAME (base) && !DECL_IGNORED_P (base))
1129
    {
1130
      char *pretty_name = build_element_name (elt);
1131
      DECL_NAME (var) = get_identifier (pretty_name);
1132
      obstack_free (&sra_obstack, pretty_name);
1133
 
1134
      SET_DECL_DEBUG_EXPR (var, generate_element_ref (elt));
1135
      DECL_DEBUG_EXPR_IS_FROM (var) = 1;
1136
 
1137
      DECL_IGNORED_P (var) = 0;
1138
      TREE_NO_WARNING (var) = TREE_NO_WARNING (base);
1139
    }
1140
  else
1141
    {
1142
      DECL_IGNORED_P (var) = 1;
1143
      /* ??? We can't generate any warning that would be meaningful.  */
1144
      TREE_NO_WARNING (var) = 1;
1145
    }
1146
 
1147
  if (dump_file)
1148
    {
1149
      fputs ("  ", dump_file);
1150
      dump_sra_elt_name (dump_file, elt);
1151
      fputs (" -> ", dump_file);
1152
      print_generic_expr (dump_file, var, dump_flags);
1153
      fputc ('\n', dump_file);
1154
    }
1155
}
1156
 
1157
/* Make one pass across an element tree deciding whether or not it's
1158
   profitable to instantiate individual leaf scalars.
1159
 
1160
   PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
1161
   fields all the way up the tree.  */
1162
 
1163
static void
1164
decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
1165
                        unsigned int parent_copies)
1166
{
1167
  if (dump_file && !elt->parent)
1168
    {
1169
      fputs ("Initial instantiation for ", dump_file);
1170
      dump_sra_elt_name (dump_file, elt);
1171
      fputc ('\n', dump_file);
1172
    }
1173
 
1174
  if (elt->cannot_scalarize)
1175
    return;
1176
 
1177
  if (elt->is_scalar)
1178
    {
1179
      /* The decision is simple: instantiate if we're used more frequently
1180
         than the parent needs to be seen as a complete unit.  */
1181
      if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
1182
        instantiate_element (elt);
1183
    }
1184
  else
1185
    {
1186
      struct sra_elt *c;
1187
      unsigned int this_uses = elt->n_uses + parent_uses;
1188
      unsigned int this_copies = elt->n_copies + parent_copies;
1189
 
1190
      for (c = elt->children; c ; c = c->sibling)
1191
        decide_instantiation_1 (c, this_uses, this_copies);
1192
    }
1193
}
1194
 
1195
/* Compute the size and number of all instantiated elements below ELT.
1196
   We will only care about this if the size of the complete structure
1197
   fits in a HOST_WIDE_INT, so we don't have to worry about overflow.  */
1198
 
1199
static unsigned int
1200
sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
1201
{
1202
  if (elt->replacement)
1203
    {
1204
      *sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
1205
      return 1;
1206
    }
1207
  else
1208
    {
1209
      struct sra_elt *c;
1210
      unsigned int count = 0;
1211
 
1212
      for (c = elt->children; c ; c = c->sibling)
1213
        count += sum_instantiated_sizes (c, sizep);
1214
 
1215
      return count;
1216
    }
1217
}
1218
 
1219
/* Instantiate fields in ELT->TYPE that are not currently present as
1220
   children of ELT.  */
1221
 
1222
static void instantiate_missing_elements (struct sra_elt *elt);
1223
 
1224
static void
1225
instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
1226
{
1227
  struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
1228
  if (sub->is_scalar)
1229
    {
1230
      if (sub->replacement == NULL)
1231
        instantiate_element (sub);
1232
    }
1233
  else
1234
    instantiate_missing_elements (sub);
1235
}
1236
 
1237
static void
1238
instantiate_missing_elements (struct sra_elt *elt)
1239
{
1240
  tree type = elt->type;
1241
 
1242
  switch (TREE_CODE (type))
1243
    {
1244
    case RECORD_TYPE:
1245
      {
1246
        tree f;
1247
        for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
1248
          if (TREE_CODE (f) == FIELD_DECL)
1249
            instantiate_missing_elements_1 (elt, f, TREE_TYPE (f));
1250
        break;
1251
      }
1252
 
1253
    case ARRAY_TYPE:
1254
      {
1255
        tree i, max, subtype;
1256
 
1257
        i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1258
        max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
1259
        subtype = TREE_TYPE (type);
1260
 
1261
        while (1)
1262
          {
1263
            instantiate_missing_elements_1 (elt, i, subtype);
1264
            if (tree_int_cst_equal (i, max))
1265
              break;
1266
            i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
1267
          }
1268
 
1269
        break;
1270
      }
1271
 
1272
    case COMPLEX_TYPE:
1273
      type = TREE_TYPE (type);
1274
      instantiate_missing_elements_1 (elt, integer_zero_node, type);
1275
      instantiate_missing_elements_1 (elt, integer_one_node, type);
1276
      break;
1277
 
1278
    default:
1279
      gcc_unreachable ();
1280
    }
1281
}
1282
 
1283
/* Make one pass across an element tree deciding whether to perform block
1284
   or element copies.  If we decide on element copies, instantiate all
1285
   elements.  Return true if there are any instantiated sub-elements.  */
1286
 
1287
static bool
1288
decide_block_copy (struct sra_elt *elt)
1289
{
1290
  struct sra_elt *c;
1291
  bool any_inst;
1292
 
1293
  /* If scalarization is disabled, respect it.  */
1294
  if (elt->cannot_scalarize)
1295
    {
1296
      elt->use_block_copy = 1;
1297
 
1298
      if (dump_file)
1299
        {
1300
          fputs ("Scalarization disabled for ", dump_file);
1301
          dump_sra_elt_name (dump_file, elt);
1302
          fputc ('\n', dump_file);
1303
        }
1304
 
1305
      /* Disable scalarization of sub-elements */
1306
      for (c = elt->children; c; c = c->sibling)
1307
        {
1308
          c->cannot_scalarize = 1;
1309
          decide_block_copy (c);
1310
        }
1311
      return false;
1312
    }
1313
 
1314
  /* Don't decide if we've no uses.  */
1315
  if (elt->n_uses == 0 && elt->n_copies == 0)
1316
    ;
1317
 
1318
  else if (!elt->is_scalar)
1319
    {
1320
      tree size_tree = TYPE_SIZE_UNIT (elt->type);
1321
      bool use_block_copy = true;
1322
 
1323
      /* Tradeoffs for COMPLEX types pretty much always make it better
1324
         to go ahead and split the components.  */
1325
      if (TREE_CODE (elt->type) == COMPLEX_TYPE)
1326
        use_block_copy = false;
1327
 
1328
      /* Don't bother trying to figure out the rest if the structure is
1329
         so large we can't do easy arithmetic.  This also forces block
1330
         copies for variable sized structures.  */
1331
      else if (host_integerp (size_tree, 1))
1332
        {
1333
          unsigned HOST_WIDE_INT full_size, inst_size = 0;
1334
          unsigned int max_size, max_count, inst_count, full_count;
1335
 
1336
          /* If the sra-max-structure-size parameter is 0, then the
1337
             user has not overridden the parameter and we can choose a
1338
             sensible default.  */
1339
          max_size = SRA_MAX_STRUCTURE_SIZE
1340
            ? SRA_MAX_STRUCTURE_SIZE
1341
            : MOVE_RATIO * UNITS_PER_WORD;
1342
          max_count = SRA_MAX_STRUCTURE_COUNT
1343
            ? SRA_MAX_STRUCTURE_COUNT
1344
            : MOVE_RATIO;
1345
 
1346
          full_size = tree_low_cst (size_tree, 1);
1347
          full_count = count_type_elements (elt->type, false);
1348
          inst_count = sum_instantiated_sizes (elt, &inst_size);
1349
 
1350
          /* ??? What to do here.  If there are two fields, and we've only
1351
             instantiated one, then instantiating the other is clearly a win.
1352
             If there are a large number of fields then the size of the copy
1353
             is much more of a factor.  */
1354
 
1355
          /* If the structure is small, and we've made copies, go ahead
1356
             and instantiate, hoping that the copies will go away.  */
1357
          if (full_size <= max_size
1358
              && (full_count - inst_count) <= max_count
1359
              && elt->n_copies > elt->n_uses)
1360
            use_block_copy = false;
1361
          else if (inst_count * 100 >= full_count * SRA_FIELD_STRUCTURE_RATIO
1362
                   && inst_size * 100 >= full_size * SRA_FIELD_STRUCTURE_RATIO)
1363
            use_block_copy = false;
1364
 
1365
          /* In order to avoid block copy, we have to be able to instantiate
1366
             all elements of the type.  See if this is possible.  */
1367
          if (!use_block_copy
1368
              && (!can_completely_scalarize_p (elt)
1369
                  || !type_can_instantiate_all_elements (elt->type)))
1370
            use_block_copy = true;
1371
        }
1372
      elt->use_block_copy = use_block_copy;
1373
 
1374
      if (dump_file)
1375
        {
1376
          fprintf (dump_file, "Using %s for ",
1377
                   use_block_copy ? "block-copy" : "element-copy");
1378
          dump_sra_elt_name (dump_file, elt);
1379
          fputc ('\n', dump_file);
1380
        }
1381
 
1382
      if (!use_block_copy)
1383
        {
1384
          instantiate_missing_elements (elt);
1385
          return true;
1386
        }
1387
    }
1388
 
1389
  any_inst = elt->replacement != NULL;
1390
 
1391
  for (c = elt->children; c ; c = c->sibling)
1392
    any_inst |= decide_block_copy (c);
1393
 
1394
  return any_inst;
1395
}
1396
 
1397
/* Entry point to phase 3.  Instantiate scalar replacement variables.  */
1398
 
1399
static void
1400
decide_instantiations (void)
1401
{
1402
  unsigned int i;
1403
  bool cleared_any;
1404
  bitmap_head done_head;
1405
  bitmap_iterator bi;
1406
 
1407
  /* We cannot clear bits from a bitmap we're iterating over,
1408
     so save up all the bits to clear until the end.  */
1409
  bitmap_initialize (&done_head, &bitmap_default_obstack);
1410
  cleared_any = false;
1411
 
1412
  EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1413
    {
1414
      tree var = referenced_var (i);
1415
      struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1416
      if (elt)
1417
        {
1418
          decide_instantiation_1 (elt, 0, 0);
1419
          if (!decide_block_copy (elt))
1420
            elt = NULL;
1421
        }
1422
      if (!elt)
1423
        {
1424
          bitmap_set_bit (&done_head, i);
1425
          cleared_any = true;
1426
        }
1427
    }
1428
 
1429
  if (cleared_any)
1430
    {
1431
      bitmap_and_compl_into (sra_candidates, &done_head);
1432
      bitmap_and_compl_into (needs_copy_in, &done_head);
1433
    }
1434
  bitmap_clear (&done_head);
1435
 
1436
  mark_set_for_renaming (sra_candidates);
1437
 
1438
  if (dump_file)
1439
    fputc ('\n', dump_file);
1440
}
1441
 
1442
 
1443
/* Phase Four: Update the function to match the replacements created.  */
1444
 
1445
/* Mark all the variables in V_MAY_DEF or V_MUST_DEF operands for STMT for
1446
   renaming. This becomes necessary when we modify all of a non-scalar.  */
1447
 
1448
static void
1449
mark_all_v_defs_1 (tree stmt)
1450
{
1451
  tree sym;
1452
  ssa_op_iter iter;
1453
 
1454
  update_stmt_if_modified (stmt);
1455
 
1456
  FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
1457
    {
1458
      if (TREE_CODE (sym) == SSA_NAME)
1459
        sym = SSA_NAME_VAR (sym);
1460
      mark_sym_for_renaming (sym);
1461
    }
1462
}
1463
 
1464
 
1465
/* Mark all the variables in virtual operands in all the statements in
1466
   LIST for renaming.  */
1467
 
1468
static void
1469
mark_all_v_defs (tree list)
1470
{
1471
  if (TREE_CODE (list) != STATEMENT_LIST)
1472
    mark_all_v_defs_1 (list);
1473
  else
1474
    {
1475
      tree_stmt_iterator i;
1476
      for (i = tsi_start (list); !tsi_end_p (i); tsi_next (&i))
1477
        mark_all_v_defs_1 (tsi_stmt (i));
1478
    }
1479
}
1480
 
1481
/* Mark every replacement under ELT with TREE_NO_WARNING.  */
1482
 
1483
static void
1484
mark_no_warning (struct sra_elt *elt)
1485
{
1486
  if (!elt->all_no_warning)
1487
    {
1488
      if (elt->replacement)
1489
        TREE_NO_WARNING (elt->replacement) = 1;
1490
      else
1491
        {
1492
          struct sra_elt *c;
1493
          for (c = elt->children; c ; c = c->sibling)
1494
            mark_no_warning (c);
1495
        }
1496
    }
1497
}
1498
 
1499
/* Build a single level component reference to ELT rooted at BASE.  */
1500
 
1501
static tree
1502
generate_one_element_ref (struct sra_elt *elt, tree base)
1503
{
1504
  switch (TREE_CODE (TREE_TYPE (base)))
1505
    {
1506
    case RECORD_TYPE:
1507
      {
1508
        tree field = elt->element;
1509
 
1510
        /* Watch out for compatible records with differing field lists.  */
1511
        if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
1512
          field = find_compatible_field (TREE_TYPE (base), field);
1513
 
1514
        return build (COMPONENT_REF, elt->type, base, field, NULL);
1515
      }
1516
 
1517
    case ARRAY_TYPE:
1518
      return build (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);
1519
 
1520
    case COMPLEX_TYPE:
1521
      if (elt->element == integer_zero_node)
1522
        return build (REALPART_EXPR, elt->type, base);
1523
      else
1524
        return build (IMAGPART_EXPR, elt->type, base);
1525
 
1526
    default:
1527
      gcc_unreachable ();
1528
    }
1529
}
1530
 
1531
/* Build a full component reference to ELT rooted at its native variable.  */
1532
 
1533
static tree
1534
generate_element_ref (struct sra_elt *elt)
1535
{
1536
  if (elt->parent)
1537
    return generate_one_element_ref (elt, generate_element_ref (elt->parent));
1538
  else
1539
    return elt->element;
1540
}
1541
 
1542
/* Generate a set of assignment statements in *LIST_P to copy all
1543
   instantiated elements under ELT to or from the equivalent structure
1544
   rooted at EXPR.  COPY_OUT controls the direction of the copy, with
1545
   true meaning to copy out of EXPR into ELT.  */
1546
 
1547
static void
1548
generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
1549
                     tree *list_p)
1550
{
1551
  struct sra_elt *c;
1552
  tree t;
1553
 
1554
  if (!copy_out && TREE_CODE (expr) == SSA_NAME
1555
      && TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
1556
    {
1557
      tree r, i;
1558
 
1559
      c = lookup_element (elt, integer_zero_node, NULL, NO_INSERT);
1560
      r = c->replacement;
1561
      c = lookup_element (elt, integer_one_node, NULL, NO_INSERT);
1562
      i = c->replacement;
1563
 
1564
      t = build (COMPLEX_EXPR, elt->type, r, i);
1565
      t = build (MODIFY_EXPR, void_type_node, expr, t);
1566
      SSA_NAME_DEF_STMT (expr) = t;
1567
      append_to_statement_list (t, list_p);
1568
    }
1569
  else if (elt->replacement)
1570
    {
1571
      if (copy_out)
1572
        t = build (MODIFY_EXPR, void_type_node, elt->replacement, expr);
1573
      else
1574
        t = build (MODIFY_EXPR, void_type_node, expr, elt->replacement);
1575
      append_to_statement_list (t, list_p);
1576
    }
1577
  else
1578
    {
1579
      for (c = elt->children; c ; c = c->sibling)
1580
        {
1581
          t = generate_one_element_ref (c, unshare_expr (expr));
1582
          generate_copy_inout (c, copy_out, t, list_p);
1583
        }
1584
    }
1585
}
1586
 
1587
/* Generate a set of assignment statements in *LIST_P to copy all instantiated
1588
   elements under SRC to their counterparts under DST.  There must be a 1-1
1589
   correspondence of instantiated elements.  */
1590
 
1591
static void
1592
generate_element_copy (struct sra_elt *dst, struct sra_elt *src, tree *list_p)
1593
{
1594
  struct sra_elt *dc, *sc;
1595
 
1596
  for (dc = dst->children; dc ; dc = dc->sibling)
1597
    {
1598
      sc = lookup_element (src, dc->element, NULL, NO_INSERT);
1599
      gcc_assert (sc);
1600
      generate_element_copy (dc, sc, list_p);
1601
    }
1602
 
1603
  if (dst->replacement)
1604
    {
1605
      tree t;
1606
 
1607
      gcc_assert (src->replacement);
1608
 
1609
      t = build (MODIFY_EXPR, void_type_node, dst->replacement,
1610
                 src->replacement);
1611
      append_to_statement_list (t, list_p);
1612
    }
1613
}
1614
 
1615
/* Generate a set of assignment statements in *LIST_P to zero all instantiated
1616
   elements under ELT.  In addition, do not assign to elements that have been
1617
   marked VISITED but do reset the visited flag; this allows easy coordination
1618
   with generate_element_init.  */
1619
 
1620
static void
1621
generate_element_zero (struct sra_elt *elt, tree *list_p)
1622
{
1623
  struct sra_elt *c;
1624
 
1625
  if (elt->visited)
1626
    {
1627
      elt->visited = false;
1628
      return;
1629
    }
1630
 
1631
  for (c = elt->children; c ; c = c->sibling)
1632
    generate_element_zero (c, list_p);
1633
 
1634
  if (elt->replacement)
1635
    {
1636
      tree t;
1637
 
1638
      gcc_assert (elt->is_scalar);
1639
      t = fold_convert (elt->type, integer_zero_node);
1640
 
1641
      t = build (MODIFY_EXPR, void_type_node, elt->replacement, t);
1642
      append_to_statement_list (t, list_p);
1643
    }
1644
}
1645
 
1646
/* Generate an assignment VAR = INIT, where INIT may need gimplification.
1647
   Add the result to *LIST_P.  */
1648
 
1649
static void
1650
generate_one_element_init (tree var, tree init, tree *list_p)
1651
{
1652
  /* The replacement can be almost arbitrarily complex.  Gimplify.  */
1653
  tree stmt = build (MODIFY_EXPR, void_type_node, var, init);
1654
  gimplify_and_add (stmt, list_p);
1655
}
1656
 
1657
/* Generate a set of assignment statements in *LIST_P to set all instantiated
1658
   elements under ELT with the contents of the initializer INIT.  In addition,
1659
   mark all assigned elements VISITED; this allows easy coordination with
1660
   generate_element_zero.  Return false if we found a case we couldn't
1661
   handle.  */
1662
 
1663
static bool
1664
generate_element_init_1 (struct sra_elt *elt, tree init, tree *list_p)
1665
{
1666
  bool result = true;
1667
  enum tree_code init_code;
1668
  struct sra_elt *sub;
1669
  tree t;
1670
  unsigned HOST_WIDE_INT idx;
1671
  tree value, purpose;
1672
 
1673
  /* We can be passed DECL_INITIAL of a static variable.  It might have a
1674
     conversion, which we strip off here.  */
1675
  STRIP_USELESS_TYPE_CONVERSION (init);
1676
  init_code = TREE_CODE (init);
1677
 
1678
  if (elt->is_scalar)
1679
    {
1680
      if (elt->replacement)
1681
        {
1682
          generate_one_element_init (elt->replacement, init, list_p);
1683
          elt->visited = true;
1684
        }
1685
      return result;
1686
    }
1687
 
1688
  switch (init_code)
1689
    {
1690
    case COMPLEX_CST:
1691
    case COMPLEX_EXPR:
1692
      for (sub = elt->children; sub ; sub = sub->sibling)
1693
        {
1694
          if (sub->element == integer_zero_node)
1695
            t = (init_code == COMPLEX_EXPR
1696
                 ? TREE_OPERAND (init, 0) : TREE_REALPART (init));
1697
          else
1698
            t = (init_code == COMPLEX_EXPR
1699
                 ? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
1700
          result &= generate_element_init_1 (sub, t, list_p);
1701
        }
1702
      break;
1703
 
1704
    case CONSTRUCTOR:
1705
      FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, purpose, value)
1706
        {
1707
          if (TREE_CODE (purpose) == RANGE_EXPR)
1708
            {
1709
              tree lower = TREE_OPERAND (purpose, 0);
1710
              tree upper = TREE_OPERAND (purpose, 1);
1711
 
1712
              while (1)
1713
                {
1714
                  sub = lookup_element (elt, lower, NULL, NO_INSERT);
1715
                  if (sub != NULL)
1716
                    result &= generate_element_init_1 (sub, value, list_p);
1717
                  if (tree_int_cst_equal (lower, upper))
1718
                    break;
1719
                  lower = int_const_binop (PLUS_EXPR, lower,
1720
                                           integer_one_node, true);
1721
                }
1722
            }
1723
          else
1724
            {
1725
              sub = lookup_element (elt, purpose, NULL, NO_INSERT);
1726
              if (sub != NULL)
1727
                result &= generate_element_init_1 (sub, value, list_p);
1728
            }
1729
        }
1730
      break;
1731
 
1732
    default:
1733
      elt->visited = true;
1734
      result = false;
1735
    }
1736
 
1737
  return result;
1738
}
1739
 
1740
/* A wrapper function for generate_element_init_1 that handles cleanup after
1741
   gimplification.  */
1742
 
1743
static bool
1744
generate_element_init (struct sra_elt *elt, tree init, tree *list_p)
1745
{
1746
  bool ret;
1747
 
1748
  push_gimplify_context ();
1749
  ret = generate_element_init_1 (elt, init, list_p);
1750
  pop_gimplify_context (NULL);
1751
 
1752
  /* The replacement can expose previously unreferenced variables.  */
1753
  if (ret && *list_p)
1754
    {
1755
      tree_stmt_iterator i;
1756
 
1757
      for (i = tsi_start (*list_p); !tsi_end_p (i); tsi_next (&i))
1758
        find_new_referenced_vars (tsi_stmt_ptr (i));
1759
    }
1760
 
1761
  return ret;
1762
}
1763
 
1764
/* Insert STMT on all the outgoing edges out of BB.  Note that if BB
1765
   has more than one edge, STMT will be replicated for each edge.  Also,
1766
   abnormal edges will be ignored.  */
1767
 
1768
void
1769
insert_edge_copies (tree stmt, basic_block bb)
1770
{
1771
  edge e;
1772
  edge_iterator ei;
1773
  bool first_copy;
1774
 
1775
  first_copy = true;
1776
  FOR_EACH_EDGE (e, ei, bb->succs)
1777
    {
1778
      /* We don't need to insert copies on abnormal edges.  The
1779
         value of the scalar replacement is not guaranteed to
1780
         be valid through an abnormal edge.  */
1781
      if (!(e->flags & EDGE_ABNORMAL))
1782
        {
1783
          if (first_copy)
1784
            {
1785
              bsi_insert_on_edge (e, stmt);
1786
              first_copy = false;
1787
            }
1788
          else
1789
            bsi_insert_on_edge (e, unsave_expr_now (stmt));
1790
        }
1791
    }
1792
}
1793
 
1794
/* Helper function to insert LIST before BSI, and set up line number info.  */
1795
 
1796
void
1797
sra_insert_before (block_stmt_iterator *bsi, tree list)
1798
{
1799
  tree stmt = bsi_stmt (*bsi);
1800
 
1801
  if (EXPR_HAS_LOCATION (stmt))
1802
    annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
1803
  bsi_insert_before (bsi, list, BSI_SAME_STMT);
1804
}
1805
 
1806
/* Similarly, but insert after BSI.  Handles insertion onto edges as well.  */
1807
 
1808
void
1809
sra_insert_after (block_stmt_iterator *bsi, tree list)
1810
{
1811
  tree stmt = bsi_stmt (*bsi);
1812
 
1813
  if (EXPR_HAS_LOCATION (stmt))
1814
    annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
1815
 
1816
  if (stmt_ends_bb_p (stmt))
1817
    insert_edge_copies (list, bsi->bb);
1818
  else
1819
    bsi_insert_after (bsi, list, BSI_SAME_STMT);
1820
}
1821
 
1822
/* Similarly, but replace the statement at BSI.  */
1823
 
1824
static void
1825
sra_replace (block_stmt_iterator *bsi, tree list)
1826
{
1827
  sra_insert_before (bsi, list);
1828
  bsi_remove (bsi);
1829
  if (bsi_end_p (*bsi))
1830
    *bsi = bsi_last (bsi->bb);
1831
  else
1832
    bsi_prev (bsi);
1833
}
1834
 
1835
/* Scalarize a USE.  To recap, this is either a simple reference to ELT,
1836
   if elt is scalar, or some occurrence of ELT that requires a complete
1837
   aggregate.  IS_OUTPUT is true if ELT is being modified.  */
1838
 
1839
static void
1840
scalarize_use (struct sra_elt *elt, tree *expr_p, block_stmt_iterator *bsi,
1841
               bool is_output, bool use_all)
1842
{
1843
  tree list = NULL, stmt = bsi_stmt (*bsi);
1844
 
1845
  if (elt->replacement)
1846
    {
1847
      /* If we have a replacement, then updating the reference is as
1848
         simple as modifying the existing statement in place.  */
1849
      if (is_output)
1850
        mark_all_v_defs (stmt);
1851
      *expr_p = elt->replacement;
1852
      update_stmt (stmt);
1853
    }
1854
  else
1855
    {
1856
      /* Otherwise we need some copies.  If ELT is being read, then we want
1857
         to store all (modified) sub-elements back into the structure before
1858
         the reference takes place.  If ELT is being written, then we want to
1859
         load the changed values back into our shadow variables.  */
1860
      /* ??? We don't check modified for reads, we just always write all of
1861
         the values.  We should be able to record the SSA number of the VOP
1862
         for which the values were last read.  If that number matches the
1863
         SSA number of the VOP in the current statement, then we needn't
1864
         emit an assignment.  This would also eliminate double writes when
1865
         a structure is passed as more than one argument to a function call.
1866
         This optimization would be most effective if sra_walk_function
1867
         processed the blocks in dominator order.  */
1868
 
1869
      generate_copy_inout (elt, is_output, generate_element_ref (elt), &list);
1870
      if (list == NULL)
1871
        return;
1872
      mark_all_v_defs (list);
1873
      if (is_output)
1874
        sra_insert_after (bsi, list);
1875
      else
1876
        {
1877
          sra_insert_before (bsi, list);
1878
          if (use_all)
1879
            mark_no_warning (elt);
1880
        }
1881
    }
1882
}
1883
 
1884
/* Scalarize a COPY.  To recap, this is an assignment statement between
1885
   two scalarizable references, LHS_ELT and RHS_ELT.  */
1886
 
1887
static void
1888
scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
1889
                block_stmt_iterator *bsi)
1890
{
1891
  tree list, stmt;
1892
 
1893
  if (lhs_elt->replacement && rhs_elt->replacement)
1894
    {
1895
      /* If we have two scalar operands, modify the existing statement.  */
1896
      stmt = bsi_stmt (*bsi);
1897
 
1898
      /* See the commentary in sra_walk_function concerning
1899
         RETURN_EXPR, and why we should never see one here.  */
1900
      gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
1901
 
1902
      TREE_OPERAND (stmt, 0) = lhs_elt->replacement;
1903
      TREE_OPERAND (stmt, 1) = rhs_elt->replacement;
1904
      update_stmt (stmt);
1905
    }
1906
  else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
1907
    {
1908
      /* If either side requires a block copy, then sync the RHS back
1909
         to the original structure, leave the original assignment
1910
         statement (which will perform the block copy), then load the
1911
         LHS values out of its now-updated original structure.  */
1912
      /* ??? Could perform a modified pair-wise element copy.  That
1913
         would at least allow those elements that are instantiated in
1914
         both structures to be optimized well.  */
1915
 
1916
      list = NULL;
1917
      generate_copy_inout (rhs_elt, false,
1918
                           generate_element_ref (rhs_elt), &list);
1919
      if (list)
1920
        {
1921
          mark_all_v_defs (list);
1922
          sra_insert_before (bsi, list);
1923
        }
1924
 
1925
      list = NULL;
1926
      generate_copy_inout (lhs_elt, true,
1927
                           generate_element_ref (lhs_elt), &list);
1928
      if (list)
1929
        {
1930
          mark_all_v_defs (list);
1931
          sra_insert_after (bsi, list);
1932
        }
1933
    }
1934
  else
1935
    {
1936
      /* Otherwise both sides must be fully instantiated.  In which
1937
         case perform pair-wise element assignments and replace the
1938
         original block copy statement.  */
1939
 
1940
      stmt = bsi_stmt (*bsi);
1941
      mark_all_v_defs (stmt);
1942
 
1943
      list = NULL;
1944
      generate_element_copy (lhs_elt, rhs_elt, &list);
1945
      gcc_assert (list);
1946
      mark_all_v_defs (list);
1947
      sra_replace (bsi, list);
1948
    }
1949
}
1950
 
1951
/* Scalarize an INIT.  To recap, this is an assignment to a scalarizable
1952
   reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
1953
   COMPLEX_EXPR.  If RHS is NULL, it should be treated as an empty
1954
   CONSTRUCTOR.  */
1955
 
1956
static void
1957
scalarize_init (struct sra_elt *lhs_elt, tree rhs, block_stmt_iterator *bsi)
1958
{
1959
  bool result = true;
1960
  tree list = NULL;
1961
 
1962
  /* Generate initialization statements for all members extant in the RHS.  */
1963
  if (rhs)
1964
    {
1965
      /* Unshare the expression just in case this is from a decl's initial.  */
1966
      rhs = unshare_expr (rhs);
1967
      result = generate_element_init (lhs_elt, rhs, &list);
1968
    }
1969
 
1970
  /* CONSTRUCTOR is defined such that any member not mentioned is assigned
1971
     a zero value.  Initialize the rest of the instantiated elements.  */
1972
  generate_element_zero (lhs_elt, &list);
1973
 
1974
  if (!result)
1975
    {
1976
      /* If we failed to convert the entire initializer, then we must
1977
         leave the structure assignment in place and must load values
1978
         from the structure into the slots for which we did not find
1979
         constants.  The easiest way to do this is to generate a complete
1980
         copy-out, and then follow that with the constant assignments
1981
         that we were able to build.  DCE will clean things up.  */
1982
      tree list0 = NULL;
1983
      generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
1984
                           &list0);
1985
      append_to_statement_list (list, &list0);
1986
      list = list0;
1987
    }
1988
 
1989
  if (lhs_elt->use_block_copy || !result)
1990
    {
1991
      /* Since LHS is not fully instantiated, we must leave the structure
1992
         assignment in place.  Treating this case differently from a USE
1993
         exposes constants to later optimizations.  */
1994
      if (list)
1995
        {
1996
          mark_all_v_defs (list);
1997
          sra_insert_after (bsi, list);
1998
        }
1999
    }
2000
  else
2001
    {
2002
      /* The LHS is fully instantiated.  The list of initializations
2003
         replaces the original structure assignment.  */
2004
      gcc_assert (list);
2005
      mark_all_v_defs (bsi_stmt (*bsi));
2006
      mark_all_v_defs (list);
2007
      sra_replace (bsi, list);
2008
    }
2009
}
2010
 
2011
/* A subroutine of scalarize_ldst called via walk_tree.  Set TREE_NO_TRAP
2012
   on all INDIRECT_REFs.  */
2013
 
2014
static tree
2015
mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2016
{
2017
  tree t = *tp;
2018
 
2019
  if (TREE_CODE (t) == INDIRECT_REF)
2020
    {
2021
      TREE_THIS_NOTRAP (t) = 1;
2022
      *walk_subtrees = 0;
2023
    }
2024
  else if (IS_TYPE_OR_DECL_P (t))
2025
    *walk_subtrees = 0;
2026
 
2027
  return NULL;
2028
}
2029
 
2030
/* Scalarize a LDST.  To recap, this is an assignment between one scalarizable
2031
   reference ELT and one non-scalarizable reference OTHER.  IS_OUTPUT is true
2032
   if ELT is on the left-hand side.  */
2033
 
2034
static void
2035
scalarize_ldst (struct sra_elt *elt, tree other,
2036
                block_stmt_iterator *bsi, bool is_output)
2037
{
2038
  /* Shouldn't have gotten called for a scalar.  */
2039
  gcc_assert (!elt->replacement);
2040
 
2041
  if (elt->use_block_copy)
2042
    {
2043
      /* Since ELT is not fully instantiated, we have to leave the
2044
         block copy in place.  Treat this as a USE.  */
2045
      scalarize_use (elt, NULL, bsi, is_output, false);
2046
    }
2047
  else
2048
    {
2049
      /* The interesting case is when ELT is fully instantiated.  In this
2050
         case we can have each element stored/loaded directly to/from the
2051
         corresponding slot in OTHER.  This avoids a block copy.  */
2052
 
2053
      tree list = NULL, stmt = bsi_stmt (*bsi);
2054
 
2055
      mark_all_v_defs (stmt);
2056
      generate_copy_inout (elt, is_output, other, &list);
2057
      mark_all_v_defs (list);
2058
      gcc_assert (list);
2059
 
2060
      /* Preserve EH semantics.  */
2061
      if (stmt_ends_bb_p (stmt))
2062
        {
2063
          tree_stmt_iterator tsi;
2064
          tree first;
2065
 
2066
          /* Extract the first statement from LIST.  */
2067
          tsi = tsi_start (list);
2068
          first = tsi_stmt (tsi);
2069
          tsi_delink (&tsi);
2070
 
2071
          /* Replace the old statement with this new representative.  */
2072
          bsi_replace (bsi, first, true);
2073
 
2074
          if (!tsi_end_p (tsi))
2075
            {
2076
              /* If any reference would trap, then they all would.  And more
2077
                 to the point, the first would.  Therefore none of the rest
2078
                 will trap since the first didn't.  Indicate this by
2079
                 iterating over the remaining statements and set
2080
                 TREE_THIS_NOTRAP in all INDIRECT_REFs.  */
2081
              do
2082
                {
2083
                  walk_tree (tsi_stmt_ptr (tsi), mark_notrap, NULL, NULL);
2084
                  tsi_next (&tsi);
2085
                }
2086
              while (!tsi_end_p (tsi));
2087
 
2088
              insert_edge_copies (list, bsi->bb);
2089
            }
2090
        }
2091
      else
2092
        sra_replace (bsi, list);
2093
    }
2094
}
2095
 
2096
/* Generate initializations for all scalarizable parameters.  */
2097
 
2098
static void
2099
scalarize_parms (void)
2100
{
2101
  tree list = NULL;
2102
  unsigned i;
2103
  bitmap_iterator bi;
2104
 
2105
  EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
2106
    {
2107
      tree var = referenced_var (i);
2108
      struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
2109
      generate_copy_inout (elt, true, var, &list);
2110
    }
2111
 
2112
  if (list)
2113
    {
2114
      insert_edge_copies (list, ENTRY_BLOCK_PTR);
2115
      mark_all_v_defs (list);
2116
    }
2117
}
2118
 
2119
/* Entry point to phase 4.  Update the function to match replacements.  */
2120
 
2121
static void
2122
scalarize_function (void)
2123
{
2124
  static const struct sra_walk_fns fns = {
2125
    scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
2126
  };
2127
 
2128
  sra_walk_function (&fns);
2129
  scalarize_parms ();
2130
  bsi_commit_edge_inserts ();
2131
}
2132
 
2133
 
2134
/* Debug helper function.  Print ELT in a nice human-readable format.  */
2135
 
2136
static void
2137
dump_sra_elt_name (FILE *f, struct sra_elt *elt)
2138
{
2139
  if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
2140
    {
2141
      fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
2142
      dump_sra_elt_name (f, elt->parent);
2143
    }
2144
  else
2145
    {
2146
      if (elt->parent)
2147
        dump_sra_elt_name (f, elt->parent);
2148
      if (DECL_P (elt->element))
2149
        {
2150
          if (TREE_CODE (elt->element) == FIELD_DECL)
2151
            fputc ('.', f);
2152
          print_generic_expr (f, elt->element, dump_flags);
2153
        }
2154
      else
2155
        fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
2156
                 TREE_INT_CST_LOW (elt->element));
2157
    }
2158
}
2159
 
2160
/* Likewise, but callable from the debugger.  */
2161
 
2162
void
2163
debug_sra_elt_name (struct sra_elt *elt)
2164
{
2165
  dump_sra_elt_name (stderr, elt);
2166
  fputc ('\n', stderr);
2167
}
2168
 
2169
void
2170
sra_init_cache (void)
2171
{
2172
  if (sra_type_decomp_cache)
2173
    return;
2174
 
2175
  sra_type_decomp_cache = BITMAP_ALLOC (NULL);
2176
  sra_type_inst_cache = BITMAP_ALLOC (NULL);
2177
}
2178
 
2179
/* Main entry point.  */
2180
 
2181
static void
2182
tree_sra (void)
2183
{
2184
  /* Initialize local variables.  */
2185
  gcc_obstack_init (&sra_obstack);
2186
  sra_candidates = BITMAP_ALLOC (NULL);
2187
  needs_copy_in = BITMAP_ALLOC (NULL);
2188
  sra_init_cache ();
2189
  sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);
2190
 
2191
  /* Scan.  If we find anything, instantiate and scalarize.  */
2192
  if (find_candidates_for_sra ())
2193
    {
2194
      scan_function ();
2195
      decide_instantiations ();
2196
      scalarize_function ();
2197
    }
2198
 
2199
  /* Free allocated memory.  */
2200
  htab_delete (sra_map);
2201
  sra_map = NULL;
2202
  BITMAP_FREE (sra_candidates);
2203
  BITMAP_FREE (needs_copy_in);
2204
  BITMAP_FREE (sra_type_decomp_cache);
2205
  BITMAP_FREE (sra_type_inst_cache);
2206
  obstack_free (&sra_obstack, NULL);
2207
}
2208
 
2209
static bool
2210
gate_sra (void)
2211
{
2212
  return flag_tree_sra != 0;
2213
}
2214
 
2215
struct tree_opt_pass pass_sra =
2216
{
2217
  "sra",                                /* name */
2218
  gate_sra,                             /* gate */
2219
  tree_sra,                             /* execute */
2220
  NULL,                                 /* sub */
2221
  NULL,                                 /* next */
2222
  0,                                     /* static_pass_number */
2223
  TV_TREE_SRA,                          /* tv_id */
2224
  PROP_cfg | PROP_ssa | PROP_alias,     /* properties_required */
2225
  0,                                     /* properties_provided */
2226
  0,                                     /* properties_destroyed */
2227
  0,                                     /* todo_flags_start */
2228
  TODO_dump_func | TODO_update_ssa
2229
    | TODO_ggc_collect | TODO_verify_ssa,  /* todo_flags_finish */
2230
 
2231
};

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.