1 |
12 |
jlechner |
/* Alias analysis for trees.
|
2 |
|
|
Copyright (C) 2004, 2005 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING. If not, write to
|
19 |
|
|
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
20 |
|
|
Boston, MA 02110-1301, USA. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "tree.h"
|
27 |
|
|
#include "rtl.h"
|
28 |
|
|
#include "tm_p.h"
|
29 |
|
|
#include "hard-reg-set.h"
|
30 |
|
|
#include "basic-block.h"
|
31 |
|
|
#include "timevar.h"
|
32 |
|
|
#include "expr.h"
|
33 |
|
|
#include "ggc.h"
|
34 |
|
|
#include "langhooks.h"
|
35 |
|
|
#include "flags.h"
|
36 |
|
|
#include "function.h"
|
37 |
|
|
#include "diagnostic.h"
|
38 |
|
|
#include "tree-dump.h"
|
39 |
|
|
#include "tree-gimple.h"
|
40 |
|
|
#include "tree-flow.h"
|
41 |
|
|
#include "tree-inline.h"
|
42 |
|
|
#include "tree-pass.h"
|
43 |
|
|
#include "tree-ssa-structalias.h"
|
44 |
|
|
#include "convert.h"
|
45 |
|
|
#include "params.h"
|
46 |
|
|
#include "ipa-type-escape.h"
|
47 |
|
|
#include "vec.h"
|
48 |
|
|
#include "bitmap.h"
|
49 |
|
|
|
50 |
|
|
/* Obstack used to hold grouping bitmaps and other temporary bitmaps used by
|
51 |
|
|
aliasing */
|
52 |
|
|
static bitmap_obstack alias_obstack;
|
53 |
|
|
|
54 |
|
|
/* 'true' after aliases have been computed (see compute_may_aliases). */
|
55 |
|
|
bool aliases_computed_p;
|
56 |
|
|
|
57 |
|
|
/* Structure to map a variable to its alias set and keep track of the
|
58 |
|
|
virtual operands that will be needed to represent it. */
|
59 |
|
|
struct alias_map_d
|
60 |
|
|
{
|
61 |
|
|
/* Variable and its alias set. */
|
62 |
|
|
tree var;
|
63 |
|
|
HOST_WIDE_INT set;
|
64 |
|
|
|
65 |
|
|
/* Total number of virtual operands that will be needed to represent
|
66 |
|
|
all the aliases of VAR. */
|
67 |
|
|
long total_alias_vops;
|
68 |
|
|
|
69 |
|
|
/* Nonzero if the aliases for this memory tag have been grouped
|
70 |
|
|
already. Used in group_aliases. */
|
71 |
|
|
unsigned int grouped_p : 1;
|
72 |
|
|
|
73 |
|
|
/* Set of variables aliased with VAR. This is the exact same
|
74 |
|
|
information contained in VAR_ANN (VAR)->MAY_ALIASES, but in
|
75 |
|
|
bitmap form to speed up alias grouping. */
|
76 |
|
|
bitmap may_aliases;
|
77 |
|
|
};
|
78 |
|
|
|
79 |
|
|
|
80 |
|
|
/* Counters used to display statistics on alias analysis. */
|
81 |
|
|
struct alias_stats_d
|
82 |
|
|
{
|
83 |
|
|
unsigned int alias_queries;
|
84 |
|
|
unsigned int alias_mayalias;
|
85 |
|
|
unsigned int alias_noalias;
|
86 |
|
|
unsigned int simple_queries;
|
87 |
|
|
unsigned int simple_resolved;
|
88 |
|
|
unsigned int tbaa_queries;
|
89 |
|
|
unsigned int tbaa_resolved;
|
90 |
|
|
unsigned int structnoaddress_queries;
|
91 |
|
|
unsigned int structnoaddress_resolved;
|
92 |
|
|
};
|
93 |
|
|
|
94 |
|
|
|
95 |
|
|
/* Local variables. */
|
96 |
|
|
static struct alias_stats_d alias_stats;
|
97 |
|
|
|
98 |
|
|
/* Local functions. */
|
99 |
|
|
static void compute_flow_insensitive_aliasing (struct alias_info *);
|
100 |
|
|
static void dump_alias_stats (FILE *);
|
101 |
|
|
static bool may_alias_p (tree, HOST_WIDE_INT, tree, HOST_WIDE_INT, bool);
|
102 |
|
|
static tree create_memory_tag (tree type, bool is_type_tag);
|
103 |
|
|
static tree get_tmt_for (tree, struct alias_info *);
|
104 |
|
|
static tree get_nmt_for (tree);
|
105 |
|
|
static void add_may_alias (tree, tree);
|
106 |
|
|
static void replace_may_alias (tree, size_t, tree);
|
107 |
|
|
static struct alias_info *init_alias_info (void);
|
108 |
|
|
static void delete_alias_info (struct alias_info *);
|
109 |
|
|
static void compute_flow_sensitive_aliasing (struct alias_info *);
|
110 |
|
|
static void setup_pointers_and_addressables (struct alias_info *);
|
111 |
|
|
static void create_global_var (void);
|
112 |
|
|
static void maybe_create_global_var (struct alias_info *ai);
|
113 |
|
|
static void group_aliases (struct alias_info *);
|
114 |
|
|
static void set_pt_anything (tree ptr);
|
115 |
|
|
|
116 |
|
|
/* Global declarations. */
|
117 |
|
|
|
118 |
|
|
/* Call clobbered variables in the function. If bit I is set, then
|
119 |
|
|
REFERENCED_VARS (I) is call-clobbered. */
|
120 |
|
|
bitmap call_clobbered_vars;
|
121 |
|
|
|
122 |
|
|
/* Addressable variables in the function. If bit I is set, then
|
123 |
|
|
REFERENCED_VARS (I) has had its address taken. Note that
|
124 |
|
|
CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
|
125 |
|
|
addressable variable is not necessarily call-clobbered (e.g., a
|
126 |
|
|
local addressable whose address does not escape) and not all
|
127 |
|
|
call-clobbered variables are addressable (e.g., a local static
|
128 |
|
|
variable). */
|
129 |
|
|
bitmap addressable_vars;
|
130 |
|
|
|
131 |
|
|
/* When the program has too many call-clobbered variables and call-sites,
|
132 |
|
|
this variable is used to represent the clobbering effects of function
|
133 |
|
|
calls. In these cases, all the call clobbered variables in the program
|
134 |
|
|
are forced to alias this variable. This reduces compile times by not
|
135 |
|
|
having to keep track of too many V_MAY_DEF expressions at call sites. */
|
136 |
|
|
tree global_var;
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
/* Compute may-alias information for every variable referenced in function
|
140 |
|
|
FNDECL.
|
141 |
|
|
|
142 |
|
|
Alias analysis proceeds in 3 main phases:
|
143 |
|
|
|
144 |
|
|
1- Points-to and escape analysis.
|
145 |
|
|
|
146 |
|
|
This phase walks the use-def chains in the SSA web looking for three
|
147 |
|
|
things:
|
148 |
|
|
|
149 |
|
|
* Assignments of the form P_i = &VAR
|
150 |
|
|
* Assignments of the form P_i = malloc()
|
151 |
|
|
* Pointers and ADDR_EXPR that escape the current function.
|
152 |
|
|
|
153 |
|
|
The concept of 'escaping' is the same one used in the Java world. When
|
154 |
|
|
a pointer or an ADDR_EXPR escapes, it means that it has been exposed
|
155 |
|
|
outside of the current function. So, assignment to global variables,
|
156 |
|
|
function arguments and returning a pointer are all escape sites, as are
|
157 |
|
|
conversions between pointers and integers.
|
158 |
|
|
|
159 |
|
|
This is where we are currently limited. Since not everything is renamed
|
160 |
|
|
into SSA, we lose track of escape properties when a pointer is stashed
|
161 |
|
|
inside a field in a structure, for instance. In those cases, we are
|
162 |
|
|
assuming that the pointer does escape.
|
163 |
|
|
|
164 |
|
|
We use escape analysis to determine whether a variable is
|
165 |
|
|
call-clobbered. Simply put, if an ADDR_EXPR escapes, then the variable
|
166 |
|
|
is call-clobbered. If a pointer P_i escapes, then all the variables
|
167 |
|
|
pointed-to by P_i (and its memory tag) also escape.
|
168 |
|
|
|
169 |
|
|
2- Compute flow-sensitive aliases
|
170 |
|
|
|
171 |
|
|
We have two classes of memory tags. Memory tags associated with the
|
172 |
|
|
pointed-to data type of the pointers in the program. These tags are
|
173 |
|
|
called "type memory tag" (TMT). The other class are those associated
|
174 |
|
|
with SSA_NAMEs, called "name memory tag" (NMT). The basic idea is that
|
175 |
|
|
when adding operands for an INDIRECT_REF *P_i, we will first check
|
176 |
|
|
whether P_i has a name tag, if it does we use it, because that will have
|
177 |
|
|
more precise aliasing information. Otherwise, we use the standard type
|
178 |
|
|
tag.
|
179 |
|
|
|
180 |
|
|
In this phase, we go through all the pointers we found in points-to
|
181 |
|
|
analysis and create alias sets for the name memory tags associated with
|
182 |
|
|
each pointer P_i. If P_i escapes, we mark call-clobbered the variables
|
183 |
|
|
it points to and its tag.
|
184 |
|
|
|
185 |
|
|
|
186 |
|
|
3- Compute flow-insensitive aliases
|
187 |
|
|
|
188 |
|
|
This pass will compare the alias set of every type memory tag and every
|
189 |
|
|
addressable variable found in the program. Given a type memory tag TMT
|
190 |
|
|
and an addressable variable V. If the alias sets of TMT and V conflict
|
191 |
|
|
(as computed by may_alias_p), then V is marked as an alias tag and added
|
192 |
|
|
to the alias set of TMT.
|
193 |
|
|
|
194 |
|
|
For instance, consider the following function:
|
195 |
|
|
|
196 |
|
|
foo (int i)
|
197 |
|
|
{
|
198 |
|
|
int *p, a, b;
|
199 |
|
|
|
200 |
|
|
if (i > 10)
|
201 |
|
|
p = &a;
|
202 |
|
|
else
|
203 |
|
|
p = &b;
|
204 |
|
|
|
205 |
|
|
*p = 3;
|
206 |
|
|
a = b + 2;
|
207 |
|
|
return *p;
|
208 |
|
|
}
|
209 |
|
|
|
210 |
|
|
After aliasing analysis has finished, the type memory tag for pointer
|
211 |
|
|
'p' will have two aliases, namely variables 'a' and 'b'. Every time
|
212 |
|
|
pointer 'p' is dereferenced, we want to mark the operation as a
|
213 |
|
|
potential reference to 'a' and 'b'.
|
214 |
|
|
|
215 |
|
|
foo (int i)
|
216 |
|
|
{
|
217 |
|
|
int *p, a, b;
|
218 |
|
|
|
219 |
|
|
if (i_2 > 10)
|
220 |
|
|
p_4 = &a;
|
221 |
|
|
else
|
222 |
|
|
p_6 = &b;
|
223 |
|
|
# p_1 = PHI <p_4(1), p_6(2)>;
|
224 |
|
|
|
225 |
|
|
# a_7 = V_MAY_DEF <a_3>;
|
226 |
|
|
# b_8 = V_MAY_DEF <b_5>;
|
227 |
|
|
*p_1 = 3;
|
228 |
|
|
|
229 |
|
|
# a_9 = V_MAY_DEF <a_7>
|
230 |
|
|
# VUSE <b_8>
|
231 |
|
|
a_9 = b_8 + 2;
|
232 |
|
|
|
233 |
|
|
# VUSE <a_9>;
|
234 |
|
|
# VUSE <b_8>;
|
235 |
|
|
return *p_1;
|
236 |
|
|
}
|
237 |
|
|
|
238 |
|
|
In certain cases, the list of may aliases for a pointer may grow too
|
239 |
|
|
large. This may cause an explosion in the number of virtual operands
|
240 |
|
|
inserted in the code. Resulting in increased memory consumption and
|
241 |
|
|
compilation time.
|
242 |
|
|
|
243 |
|
|
When the number of virtual operands needed to represent aliased
|
244 |
|
|
loads and stores grows too large (configurable with @option{--param
|
245 |
|
|
max-aliased-vops}), alias sets are grouped to avoid severe
|
246 |
|
|
compile-time slow downs and memory consumption. See group_aliases. */
|
247 |
|
|
|
248 |
|
|
static void
|
249 |
|
|
compute_may_aliases (void)
|
250 |
|
|
{
|
251 |
|
|
struct alias_info *ai;
|
252 |
|
|
|
253 |
|
|
memset (&alias_stats, 0, sizeof (alias_stats));
|
254 |
|
|
|
255 |
|
|
/* Initialize aliasing information. */
|
256 |
|
|
ai = init_alias_info ();
|
257 |
|
|
|
258 |
|
|
/* For each pointer P_i, determine the sets of variables that P_i may
|
259 |
|
|
point-to. For every addressable variable V, determine whether the
|
260 |
|
|
address of V escapes the current function, making V call-clobbered
|
261 |
|
|
(i.e., whether &V is stored in a global variable or if its passed as a
|
262 |
|
|
function call argument). */
|
263 |
|
|
compute_points_to_sets (ai);
|
264 |
|
|
|
265 |
|
|
/* Collect all pointers and addressable variables, compute alias sets,
|
266 |
|
|
create memory tags for pointers and promote variables whose address is
|
267 |
|
|
not needed anymore. */
|
268 |
|
|
setup_pointers_and_addressables (ai);
|
269 |
|
|
|
270 |
|
|
/* Compute flow-sensitive, points-to based aliasing for all the name
|
271 |
|
|
memory tags. Note that this pass needs to be done before flow
|
272 |
|
|
insensitive analysis because it uses the points-to information
|
273 |
|
|
gathered before to mark call-clobbered type tags. */
|
274 |
|
|
compute_flow_sensitive_aliasing (ai);
|
275 |
|
|
|
276 |
|
|
/* Compute type-based flow-insensitive aliasing for all the type
|
277 |
|
|
memory tags. */
|
278 |
|
|
compute_flow_insensitive_aliasing (ai);
|
279 |
|
|
|
280 |
|
|
/* If the program has too many call-clobbered variables and/or function
|
281 |
|
|
calls, create .GLOBAL_VAR and use it to model call-clobbering
|
282 |
|
|
semantics at call sites. This reduces the number of virtual operands
|
283 |
|
|
considerably, improving compile times at the expense of lost
|
284 |
|
|
aliasing precision. */
|
285 |
|
|
maybe_create_global_var (ai);
|
286 |
|
|
|
287 |
|
|
/* Debugging dumps. */
|
288 |
|
|
if (dump_file)
|
289 |
|
|
{
|
290 |
|
|
dump_referenced_vars (dump_file);
|
291 |
|
|
if (dump_flags & TDF_STATS)
|
292 |
|
|
dump_alias_stats (dump_file);
|
293 |
|
|
dump_points_to_info (dump_file);
|
294 |
|
|
dump_alias_info (dump_file);
|
295 |
|
|
}
|
296 |
|
|
|
297 |
|
|
/* Deallocate memory used by aliasing data structures. */
|
298 |
|
|
delete_alias_info (ai);
|
299 |
|
|
|
300 |
|
|
{
|
301 |
|
|
block_stmt_iterator bsi;
|
302 |
|
|
basic_block bb;
|
303 |
|
|
FOR_EACH_BB (bb)
|
304 |
|
|
{
|
305 |
|
|
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
306 |
|
|
{
|
307 |
|
|
update_stmt_if_modified (bsi_stmt (bsi));
|
308 |
|
|
}
|
309 |
|
|
}
|
310 |
|
|
}
|
311 |
|
|
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
struct tree_opt_pass pass_may_alias =
|
315 |
|
|
{
|
316 |
|
|
"alias", /* name */
|
317 |
|
|
NULL, /* gate */
|
318 |
|
|
compute_may_aliases, /* execute */
|
319 |
|
|
NULL, /* sub */
|
320 |
|
|
NULL, /* next */
|
321 |
|
|
0, /* static_pass_number */
|
322 |
|
|
TV_TREE_MAY_ALIAS, /* tv_id */
|
323 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
324 |
|
|
PROP_alias, /* properties_provided */
|
325 |
|
|
0, /* properties_destroyed */
|
326 |
|
|
0, /* todo_flags_start */
|
327 |
|
|
TODO_dump_func | TODO_update_ssa
|
328 |
|
|
| TODO_ggc_collect | TODO_verify_ssa
|
329 |
|
|
| TODO_verify_stmts, /* todo_flags_finish */
|
330 |
|
|
|
331 |
|
|
};
|
332 |
|
|
|
333 |
|
|
|
334 |
|
|
/* Data structure used to count the number of dereferences to PTR
|
335 |
|
|
inside an expression. */
|
336 |
|
|
struct count_ptr_d
|
337 |
|
|
{
|
338 |
|
|
tree ptr;
|
339 |
|
|
unsigned count;
|
340 |
|
|
};
|
341 |
|
|
|
342 |
|
|
|
343 |
|
|
/* Helper for count_uses_and_derefs. Called by walk_tree to look for
|
344 |
|
|
(ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
|
345 |
|
|
|
346 |
|
|
static tree
|
347 |
|
|
count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
|
348 |
|
|
{
|
349 |
|
|
struct count_ptr_d *count_p = (struct count_ptr_d *) data;
|
350 |
|
|
|
351 |
|
|
/* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
|
352 |
|
|
pointer 'ptr' is *not* dereferenced, it is simply used to compute
|
353 |
|
|
the address of 'fld' as 'ptr + offsetof(fld)'. */
|
354 |
|
|
if (TREE_CODE (*tp) == ADDR_EXPR)
|
355 |
|
|
{
|
356 |
|
|
*walk_subtrees = 0;
|
357 |
|
|
return NULL_TREE;
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
if (INDIRECT_REF_P (*tp) && TREE_OPERAND (*tp, 0) == count_p->ptr)
|
361 |
|
|
count_p->count++;
|
362 |
|
|
|
363 |
|
|
return NULL_TREE;
|
364 |
|
|
}
|
365 |
|
|
|
366 |
|
|
|
367 |
|
|
/* Count the number of direct and indirect uses for pointer PTR in
|
368 |
|
|
statement STMT. The two counts are stored in *NUM_USES_P and
|
369 |
|
|
*NUM_DEREFS_P respectively. *IS_STORE_P is set to 'true' if at
|
370 |
|
|
least one of those dereferences is a store operation. */
|
371 |
|
|
|
372 |
|
|
void
|
373 |
|
|
count_uses_and_derefs (tree ptr, tree stmt, unsigned *num_uses_p,
|
374 |
|
|
unsigned *num_derefs_p, bool *is_store)
|
375 |
|
|
{
|
376 |
|
|
ssa_op_iter i;
|
377 |
|
|
tree use;
|
378 |
|
|
|
379 |
|
|
*num_uses_p = 0;
|
380 |
|
|
*num_derefs_p = 0;
|
381 |
|
|
*is_store = false;
|
382 |
|
|
|
383 |
|
|
/* Find out the total number of uses of PTR in STMT. */
|
384 |
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
|
385 |
|
|
if (use == ptr)
|
386 |
|
|
(*num_uses_p)++;
|
387 |
|
|
|
388 |
|
|
/* Now count the number of indirect references to PTR. This is
|
389 |
|
|
truly awful, but we don't have much choice. There are no parent
|
390 |
|
|
pointers inside INDIRECT_REFs, so an expression like
|
391 |
|
|
'*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
|
392 |
|
|
find all the indirect and direct uses of x_1 inside. The only
|
393 |
|
|
shortcut we can take is the fact that GIMPLE only allows
|
394 |
|
|
INDIRECT_REFs inside the expressions below. */
|
395 |
|
|
if (TREE_CODE (stmt) == MODIFY_EXPR
|
396 |
|
|
|| (TREE_CODE (stmt) == RETURN_EXPR
|
397 |
|
|
&& TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR)
|
398 |
|
|
|| TREE_CODE (stmt) == ASM_EXPR
|
399 |
|
|
|| TREE_CODE (stmt) == CALL_EXPR)
|
400 |
|
|
{
|
401 |
|
|
tree lhs, rhs;
|
402 |
|
|
|
403 |
|
|
if (TREE_CODE (stmt) == MODIFY_EXPR)
|
404 |
|
|
{
|
405 |
|
|
lhs = TREE_OPERAND (stmt, 0);
|
406 |
|
|
rhs = TREE_OPERAND (stmt, 1);
|
407 |
|
|
}
|
408 |
|
|
else if (TREE_CODE (stmt) == RETURN_EXPR)
|
409 |
|
|
{
|
410 |
|
|
tree e = TREE_OPERAND (stmt, 0);
|
411 |
|
|
lhs = TREE_OPERAND (e, 0);
|
412 |
|
|
rhs = TREE_OPERAND (e, 1);
|
413 |
|
|
}
|
414 |
|
|
else if (TREE_CODE (stmt) == ASM_EXPR)
|
415 |
|
|
{
|
416 |
|
|
lhs = ASM_OUTPUTS (stmt);
|
417 |
|
|
rhs = ASM_INPUTS (stmt);
|
418 |
|
|
}
|
419 |
|
|
else
|
420 |
|
|
{
|
421 |
|
|
lhs = NULL_TREE;
|
422 |
|
|
rhs = stmt;
|
423 |
|
|
}
|
424 |
|
|
|
425 |
|
|
if (lhs && (TREE_CODE (lhs) == TREE_LIST || EXPR_P (lhs)))
|
426 |
|
|
{
|
427 |
|
|
struct count_ptr_d count;
|
428 |
|
|
count.ptr = ptr;
|
429 |
|
|
count.count = 0;
|
430 |
|
|
walk_tree (&lhs, count_ptr_derefs, &count, NULL);
|
431 |
|
|
*is_store = true;
|
432 |
|
|
*num_derefs_p = count.count;
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
if (rhs && (TREE_CODE (rhs) == TREE_LIST || EXPR_P (rhs)))
|
436 |
|
|
{
|
437 |
|
|
struct count_ptr_d count;
|
438 |
|
|
count.ptr = ptr;
|
439 |
|
|
count.count = 0;
|
440 |
|
|
walk_tree (&rhs, count_ptr_derefs, &count, NULL);
|
441 |
|
|
*num_derefs_p += count.count;
|
442 |
|
|
}
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
gcc_assert (*num_uses_p >= *num_derefs_p);
|
446 |
|
|
}
|
447 |
|
|
|
448 |
|
|
/* Initialize the data structures used for alias analysis. */
|
449 |
|
|
|
450 |
|
|
static struct alias_info *
|
451 |
|
|
init_alias_info (void)
|
452 |
|
|
{
|
453 |
|
|
struct alias_info *ai;
|
454 |
|
|
referenced_var_iterator rvi;
|
455 |
|
|
tree var;
|
456 |
|
|
|
457 |
|
|
bitmap_obstack_initialize (&alias_obstack);
|
458 |
|
|
ai = xcalloc (1, sizeof (struct alias_info));
|
459 |
|
|
ai->ssa_names_visited = sbitmap_alloc (num_ssa_names);
|
460 |
|
|
sbitmap_zero (ai->ssa_names_visited);
|
461 |
|
|
VARRAY_TREE_INIT (ai->processed_ptrs, 50, "processed_ptrs");
|
462 |
|
|
ai->written_vars = BITMAP_ALLOC (&alias_obstack);
|
463 |
|
|
ai->dereferenced_ptrs_store = BITMAP_ALLOC (&alias_obstack);
|
464 |
|
|
ai->dereferenced_ptrs_load = BITMAP_ALLOC (&alias_obstack);
|
465 |
|
|
|
466 |
|
|
/* If aliases have been computed before, clear existing information. */
|
467 |
|
|
if (aliases_computed_p)
|
468 |
|
|
{
|
469 |
|
|
unsigned i;
|
470 |
|
|
|
471 |
|
|
/* Similarly, clear the set of addressable variables. In this
|
472 |
|
|
case, we can just clear the set because addressability is
|
473 |
|
|
only computed here. */
|
474 |
|
|
bitmap_clear (addressable_vars);
|
475 |
|
|
|
476 |
|
|
/* Clear flow-insensitive alias information from each symbol. */
|
477 |
|
|
FOR_EACH_REFERENCED_VAR (var, rvi)
|
478 |
|
|
{
|
479 |
|
|
var_ann_t ann = var_ann (var);
|
480 |
|
|
|
481 |
|
|
ann->is_alias_tag = 0;
|
482 |
|
|
ann->may_aliases = NULL;
|
483 |
|
|
NUM_REFERENCES_CLEAR (ann);
|
484 |
|
|
|
485 |
|
|
/* Since we are about to re-discover call-clobbered
|
486 |
|
|
variables, clear the call-clobbered flag. Variables that
|
487 |
|
|
are intrinsically call-clobbered (globals, local statics,
|
488 |
|
|
etc) will not be marked by the aliasing code, so we can't
|
489 |
|
|
remove them from CALL_CLOBBERED_VARS.
|
490 |
|
|
|
491 |
|
|
NB: STRUCT_FIELDS are still call clobbered if they are for
|
492 |
|
|
a global variable, so we *don't* clear their call clobberedness
|
493 |
|
|
just because they are tags, though we will clear it if they
|
494 |
|
|
aren't for global variables. */
|
495 |
|
|
if (ann->mem_tag_kind == NAME_TAG
|
496 |
|
|
|| ann->mem_tag_kind == TYPE_TAG
|
497 |
|
|
|| !is_global_var (var))
|
498 |
|
|
clear_call_clobbered (var);
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
/* Clear flow-sensitive points-to information from each SSA name. */
|
502 |
|
|
for (i = 1; i < num_ssa_names; i++)
|
503 |
|
|
{
|
504 |
|
|
tree name = ssa_name (i);
|
505 |
|
|
|
506 |
|
|
if (!name || !POINTER_TYPE_P (TREE_TYPE (name)))
|
507 |
|
|
continue;
|
508 |
|
|
|
509 |
|
|
if (SSA_NAME_PTR_INFO (name))
|
510 |
|
|
{
|
511 |
|
|
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
|
512 |
|
|
|
513 |
|
|
/* Clear all the flags but keep the name tag to
|
514 |
|
|
avoid creating new temporaries unnecessarily. If
|
515 |
|
|
this pointer is found to point to a subset or
|
516 |
|
|
superset of its former points-to set, then a new
|
517 |
|
|
tag will need to be created in create_name_tags. */
|
518 |
|
|
pi->pt_anything = 0;
|
519 |
|
|
pi->pt_null = 0;
|
520 |
|
|
pi->value_escapes_p = 0;
|
521 |
|
|
pi->is_dereferenced = 0;
|
522 |
|
|
if (pi->pt_vars)
|
523 |
|
|
bitmap_clear (pi->pt_vars);
|
524 |
|
|
}
|
525 |
|
|
}
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
/* Next time, we will need to reset alias information. */
|
529 |
|
|
aliases_computed_p = true;
|
530 |
|
|
|
531 |
|
|
return ai;
|
532 |
|
|
}
|
533 |
|
|
|
534 |
|
|
|
535 |
|
|
/* Deallocate memory used by alias analysis. */
|
536 |
|
|
|
537 |
|
|
static void
|
538 |
|
|
delete_alias_info (struct alias_info *ai)
|
539 |
|
|
{
|
540 |
|
|
size_t i;
|
541 |
|
|
referenced_var_iterator rvi;
|
542 |
|
|
tree var;
|
543 |
|
|
|
544 |
|
|
sbitmap_free (ai->ssa_names_visited);
|
545 |
|
|
ai->processed_ptrs = NULL;
|
546 |
|
|
|
547 |
|
|
for (i = 0; i < ai->num_addressable_vars; i++)
|
548 |
|
|
free (ai->addressable_vars[i]);
|
549 |
|
|
|
550 |
|
|
FOR_EACH_REFERENCED_VAR(var, rvi)
|
551 |
|
|
{
|
552 |
|
|
var_ann_t ann = var_ann (var);
|
553 |
|
|
NUM_REFERENCES_CLEAR (ann);
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
free (ai->addressable_vars);
|
557 |
|
|
|
558 |
|
|
for (i = 0; i < ai->num_pointers; i++)
|
559 |
|
|
free (ai->pointers[i]);
|
560 |
|
|
free (ai->pointers);
|
561 |
|
|
|
562 |
|
|
BITMAP_FREE (ai->written_vars);
|
563 |
|
|
BITMAP_FREE (ai->dereferenced_ptrs_store);
|
564 |
|
|
BITMAP_FREE (ai->dereferenced_ptrs_load);
|
565 |
|
|
bitmap_obstack_release (&alias_obstack);
|
566 |
|
|
free (ai);
|
567 |
|
|
|
568 |
|
|
delete_points_to_sets ();
|
569 |
|
|
}
|
570 |
|
|
|
571 |
|
|
/* Create name tags for all the pointers that have been dereferenced.
|
572 |
|
|
We only create a name tag for a pointer P if P is found to point to
|
573 |
|
|
a set of variables (so that we can alias them to *P) or if it is
|
574 |
|
|
the result of a call to malloc (which means that P cannot point to
|
575 |
|
|
anything else nor alias any other variable).
|
576 |
|
|
|
577 |
|
|
If two pointers P and Q point to the same set of variables, they
|
578 |
|
|
are assigned the same name tag. */
|
579 |
|
|
|
580 |
|
|
static void
|
581 |
|
|
create_name_tags (void)
|
582 |
|
|
{
|
583 |
|
|
size_t i;
|
584 |
|
|
VEC (tree, heap) *with_ptvars = NULL;
|
585 |
|
|
tree ptr;
|
586 |
|
|
|
587 |
|
|
/* Collect the list of pointers with a non-empty points to set. */
|
588 |
|
|
for (i = 1; i < num_ssa_names; i++)
|
589 |
|
|
{
|
590 |
|
|
tree ptr = ssa_name (i);
|
591 |
|
|
struct ptr_info_def *pi;
|
592 |
|
|
|
593 |
|
|
if (!ptr
|
594 |
|
|
|| !POINTER_TYPE_P (TREE_TYPE (ptr))
|
595 |
|
|
|| !SSA_NAME_PTR_INFO (ptr))
|
596 |
|
|
continue;
|
597 |
|
|
|
598 |
|
|
pi = SSA_NAME_PTR_INFO (ptr);
|
599 |
|
|
|
600 |
|
|
if (pi->pt_anything || !pi->is_dereferenced)
|
601 |
|
|
{
|
602 |
|
|
/* No name tags for pointers that have not been
|
603 |
|
|
dereferenced or point to an arbitrary location. */
|
604 |
|
|
pi->name_mem_tag = NULL_TREE;
|
605 |
|
|
continue;
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* Set pt_anything on the pointers without pt_vars filled in so
|
609 |
|
|
that they are assigned a type tag. */
|
610 |
|
|
|
611 |
|
|
if (pi->pt_vars && !bitmap_empty_p (pi->pt_vars))
|
612 |
|
|
VEC_safe_push (tree, heap, with_ptvars, ptr);
|
613 |
|
|
else
|
614 |
|
|
set_pt_anything (ptr);
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
/* If we didn't find any pointers with pt_vars set, we're done. */
|
618 |
|
|
if (!with_ptvars)
|
619 |
|
|
return;
|
620 |
|
|
|
621 |
|
|
/* Now go through the pointers with pt_vars, and find a name tag
|
622 |
|
|
with the same pt_vars as this pointer, or create one if one
|
623 |
|
|
doesn't exist. */
|
624 |
|
|
for (i = 0; VEC_iterate (tree, with_ptvars, i, ptr); i++)
|
625 |
|
|
{
|
626 |
|
|
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
|
627 |
|
|
size_t j;
|
628 |
|
|
tree ptr2;
|
629 |
|
|
tree old_name_tag = pi->name_mem_tag;
|
630 |
|
|
|
631 |
|
|
/* If PTR points to a set of variables, check if we don't
|
632 |
|
|
have another pointer Q with the same points-to set before
|
633 |
|
|
creating a tag. If so, use Q's tag instead of creating a
|
634 |
|
|
new one.
|
635 |
|
|
|
636 |
|
|
This is important for not creating unnecessary symbols
|
637 |
|
|
and also for copy propagation. If we ever need to
|
638 |
|
|
propagate PTR into Q or vice-versa, we would run into
|
639 |
|
|
problems if they both had different name tags because
|
640 |
|
|
they would have different SSA version numbers (which
|
641 |
|
|
would force us to take the name tags in and out of SSA). */
|
642 |
|
|
for (j = 0; j < i && VEC_iterate (tree, with_ptvars, j, ptr2); j++)
|
643 |
|
|
{
|
644 |
|
|
struct ptr_info_def *qi = SSA_NAME_PTR_INFO (ptr2);
|
645 |
|
|
|
646 |
|
|
if (bitmap_equal_p (pi->pt_vars, qi->pt_vars))
|
647 |
|
|
{
|
648 |
|
|
pi->name_mem_tag = qi->name_mem_tag;
|
649 |
|
|
break;
|
650 |
|
|
}
|
651 |
|
|
}
|
652 |
|
|
|
653 |
|
|
/* If we didn't find a pointer with the same points-to set
|
654 |
|
|
as PTR, create a new name tag if needed. */
|
655 |
|
|
if (pi->name_mem_tag == NULL_TREE)
|
656 |
|
|
pi->name_mem_tag = get_nmt_for (ptr);
|
657 |
|
|
|
658 |
|
|
/* If the new name tag computed for PTR is different than
|
659 |
|
|
the old name tag that it used to have, then the old tag
|
660 |
|
|
needs to be removed from the IL, so we mark it for
|
661 |
|
|
renaming. */
|
662 |
|
|
if (old_name_tag && old_name_tag != pi->name_mem_tag)
|
663 |
|
|
mark_sym_for_renaming (old_name_tag);
|
664 |
|
|
|
665 |
|
|
TREE_THIS_VOLATILE (pi->name_mem_tag)
|
666 |
|
|
|= TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (ptr)));
|
667 |
|
|
|
668 |
|
|
/* Mark the new name tag for renaming. */
|
669 |
|
|
mark_sym_for_renaming (pi->name_mem_tag);
|
670 |
|
|
}
|
671 |
|
|
|
672 |
|
|
VEC_free (tree, heap, with_ptvars);
|
673 |
|
|
}
|
674 |
|
|
|
675 |
|
|
|
676 |
|
|
/* For every pointer P_i in AI->PROCESSED_PTRS, create may-alias sets for
|
677 |
|
|
the name memory tag (NMT) associated with P_i. If P_i escapes, then its
|
678 |
|
|
name tag and the variables it points-to are call-clobbered. Finally, if
|
679 |
|
|
P_i escapes and we could not determine where it points to, then all the
|
680 |
|
|
variables in the same alias set as *P_i are marked call-clobbered. This
|
681 |
|
|
is necessary because we must assume that P_i may take the address of any
|
682 |
|
|
variable in the same alias set. */
|
683 |
|
|
|
684 |
|
|
static void
|
685 |
|
|
compute_flow_sensitive_aliasing (struct alias_info *ai)
|
686 |
|
|
{
|
687 |
|
|
size_t i;
|
688 |
|
|
|
689 |
|
|
for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
|
690 |
|
|
{
|
691 |
|
|
tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
|
692 |
|
|
if (!find_what_p_points_to (ptr))
|
693 |
|
|
set_pt_anything (ptr);
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
create_name_tags ();
|
697 |
|
|
|
698 |
|
|
for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
|
699 |
|
|
{
|
700 |
|
|
unsigned j;
|
701 |
|
|
tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
|
702 |
|
|
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
|
703 |
|
|
var_ann_t v_ann = var_ann (SSA_NAME_VAR (ptr));
|
704 |
|
|
bitmap_iterator bi;
|
705 |
|
|
|
706 |
|
|
if (pi->value_escapes_p || pi->pt_anything)
|
707 |
|
|
{
|
708 |
|
|
/* If PTR escapes or may point to anything, then its associated
|
709 |
|
|
memory tags and pointed-to variables are call-clobbered. */
|
710 |
|
|
if (pi->name_mem_tag)
|
711 |
|
|
mark_call_clobbered (pi->name_mem_tag);
|
712 |
|
|
|
713 |
|
|
if (v_ann->type_mem_tag)
|
714 |
|
|
mark_call_clobbered (v_ann->type_mem_tag);
|
715 |
|
|
|
716 |
|
|
if (pi->pt_vars)
|
717 |
|
|
EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, j, bi)
|
718 |
|
|
mark_call_clobbered (referenced_var (j));
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
/* Set up aliasing information for PTR's name memory tag (if it has
|
722 |
|
|
one). Note that only pointers that have been dereferenced will
|
723 |
|
|
have a name memory tag. */
|
724 |
|
|
if (pi->name_mem_tag && pi->pt_vars)
|
725 |
|
|
EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, j, bi)
|
726 |
|
|
{
|
727 |
|
|
add_may_alias (pi->name_mem_tag, referenced_var (j));
|
728 |
|
|
add_may_alias (v_ann->type_mem_tag, referenced_var (j));
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
/* If the name tag is call clobbered, so is the type tag
|
732 |
|
|
associated with the base VAR_DECL. */
|
733 |
|
|
if (pi->name_mem_tag
|
734 |
|
|
&& v_ann->type_mem_tag
|
735 |
|
|
&& is_call_clobbered (pi->name_mem_tag))
|
736 |
|
|
mark_call_clobbered (v_ann->type_mem_tag);
|
737 |
|
|
}
|
738 |
|
|
}
|
739 |
|
|
|
740 |
|
|
|
741 |
|
|
/* Compute type-based alias sets. Traverse all the pointers and
|
742 |
|
|
addressable variables found in setup_pointers_and_addressables.
|
743 |
|
|
|
744 |
|
|
For every pointer P in AI->POINTERS and addressable variable V in
|
745 |
|
|
AI->ADDRESSABLE_VARS, add V to the may-alias sets of P's type
|
746 |
|
|
memory tag (TMT) if their alias sets conflict. V is then marked as
|
747 |
|
|
an alias tag so that the operand scanner knows that statements
|
748 |
|
|
containing V have aliased operands. */
|
749 |
|
|
|
750 |
|
|
static void
|
751 |
|
|
compute_flow_insensitive_aliasing (struct alias_info *ai)
|
752 |
|
|
{
|
753 |
|
|
size_t i;
|
754 |
|
|
|
755 |
|
|
/* Initialize counter for the total number of virtual operands that
|
756 |
|
|
aliasing will introduce. When AI->TOTAL_ALIAS_VOPS goes beyond the
|
757 |
|
|
threshold set by --params max-alias-vops, we enable alias
|
758 |
|
|
grouping. */
|
759 |
|
|
ai->total_alias_vops = 0;
|
760 |
|
|
|
761 |
|
|
/* For every pointer P, determine which addressable variables may alias
|
762 |
|
|
with P's type memory tag. */
|
763 |
|
|
for (i = 0; i < ai->num_pointers; i++)
|
764 |
|
|
{
|
765 |
|
|
size_t j;
|
766 |
|
|
struct alias_map_d *p_map = ai->pointers[i];
|
767 |
|
|
tree tag = var_ann (p_map->var)->type_mem_tag;
|
768 |
|
|
var_ann_t tag_ann = var_ann (tag);
|
769 |
|
|
|
770 |
|
|
p_map->total_alias_vops = 0;
|
771 |
|
|
p_map->may_aliases = BITMAP_ALLOC (&alias_obstack);
|
772 |
|
|
|
773 |
|
|
for (j = 0; j < ai->num_addressable_vars; j++)
|
774 |
|
|
{
|
775 |
|
|
struct alias_map_d *v_map;
|
776 |
|
|
var_ann_t v_ann;
|
777 |
|
|
tree var;
|
778 |
|
|
bool tag_stored_p, var_stored_p;
|
779 |
|
|
|
780 |
|
|
v_map = ai->addressable_vars[j];
|
781 |
|
|
var = v_map->var;
|
782 |
|
|
v_ann = var_ann (var);
|
783 |
|
|
|
784 |
|
|
/* Skip memory tags and variables that have never been
|
785 |
|
|
written to. We also need to check if the variables are
|
786 |
|
|
call-clobbered because they may be overwritten by
|
787 |
|
|
function calls.
|
788 |
|
|
|
789 |
|
|
Note this is effectively random accessing elements in
|
790 |
|
|
the sparse bitset, which can be highly inefficient.
|
791 |
|
|
So we first check the call_clobbered status of the
|
792 |
|
|
tag and variable before querying the bitmap. */
|
793 |
|
|
tag_stored_p = is_call_clobbered (tag)
|
794 |
|
|
|| bitmap_bit_p (ai->written_vars, DECL_UID (tag));
|
795 |
|
|
var_stored_p = is_call_clobbered (var)
|
796 |
|
|
|| bitmap_bit_p (ai->written_vars, DECL_UID (var));
|
797 |
|
|
if (!tag_stored_p && !var_stored_p)
|
798 |
|
|
continue;
|
799 |
|
|
|
800 |
|
|
if (may_alias_p (p_map->var, p_map->set, var, v_map->set, false))
|
801 |
|
|
{
|
802 |
|
|
size_t num_tag_refs, num_var_refs;
|
803 |
|
|
|
804 |
|
|
num_tag_refs = NUM_REFERENCES (tag_ann);
|
805 |
|
|
num_var_refs = NUM_REFERENCES (v_ann);
|
806 |
|
|
|
807 |
|
|
/* Add VAR to TAG's may-aliases set. */
|
808 |
|
|
|
809 |
|
|
/* We should never have a var with subvars here, because
|
810 |
|
|
they shouldn't get into the set of addressable vars */
|
811 |
|
|
gcc_assert (!var_can_have_subvars (var)
|
812 |
|
|
|| get_subvars_for_var (var) == NULL);
|
813 |
|
|
|
814 |
|
|
add_may_alias (tag, var);
|
815 |
|
|
/* Update the bitmap used to represent TAG's alias set
|
816 |
|
|
in case we need to group aliases. */
|
817 |
|
|
bitmap_set_bit (p_map->may_aliases, DECL_UID (var));
|
818 |
|
|
|
819 |
|
|
/* Update the total number of virtual operands due to
|
820 |
|
|
aliasing. Since we are adding one more alias to TAG's
|
821 |
|
|
may-aliases set, the total number of virtual operands due
|
822 |
|
|
to aliasing will be increased by the number of references
|
823 |
|
|
made to VAR and TAG (every reference to TAG will also
|
824 |
|
|
count as a reference to VAR). */
|
825 |
|
|
ai->total_alias_vops += (num_var_refs + num_tag_refs);
|
826 |
|
|
p_map->total_alias_vops += (num_var_refs + num_tag_refs);
|
827 |
|
|
|
828 |
|
|
|
829 |
|
|
}
|
830 |
|
|
}
|
831 |
|
|
}
|
832 |
|
|
|
833 |
|
|
/* Since this analysis is based exclusively on symbols, it fails to
|
834 |
|
|
handle cases where two pointers P and Q have different memory
|
835 |
|
|
tags with conflicting alias set numbers but no aliased symbols in
|
836 |
|
|
common.
|
837 |
|
|
|
838 |
|
|
For example, suppose that we have two memory tags TMT.1 and TMT.2
|
839 |
|
|
such that
|
840 |
|
|
|
841 |
|
|
may-aliases (TMT.1) = { a }
|
842 |
|
|
may-aliases (TMT.2) = { b }
|
843 |
|
|
|
844 |
|
|
and the alias set number of TMT.1 conflicts with that of TMT.2.
|
845 |
|
|
Since they don't have symbols in common, loads and stores from
|
846 |
|
|
TMT.1 and TMT.2 will seem independent of each other, which will
|
847 |
|
|
lead to the optimizers making invalid transformations (see
|
848 |
|
|
testsuite/gcc.c-torture/execute/pr15262-[12].c).
|
849 |
|
|
|
850 |
|
|
To avoid this problem, we do a final traversal of AI->POINTERS
|
851 |
|
|
looking for pairs of pointers that have no aliased symbols in
|
852 |
|
|
common and yet have conflicting alias set numbers. */
|
853 |
|
|
for (i = 0; i < ai->num_pointers; i++)
|
854 |
|
|
{
|
855 |
|
|
size_t j;
|
856 |
|
|
struct alias_map_d *p_map1 = ai->pointers[i];
|
857 |
|
|
tree tag1 = var_ann (p_map1->var)->type_mem_tag;
|
858 |
|
|
bitmap may_aliases1 = p_map1->may_aliases;
|
859 |
|
|
|
860 |
|
|
for (j = i + 1; j < ai->num_pointers; j++)
|
861 |
|
|
{
|
862 |
|
|
struct alias_map_d *p_map2 = ai->pointers[j];
|
863 |
|
|
tree tag2 = var_ann (p_map2->var)->type_mem_tag;
|
864 |
|
|
bitmap may_aliases2 = p_map2->may_aliases;
|
865 |
|
|
|
866 |
|
|
/* If the pointers may not point to each other, do nothing. */
|
867 |
|
|
if (!may_alias_p (p_map1->var, p_map1->set, tag2, p_map2->set, true))
|
868 |
|
|
continue;
|
869 |
|
|
|
870 |
|
|
/* The two pointers may alias each other. If they already have
|
871 |
|
|
symbols in common, do nothing. */
|
872 |
|
|
if (bitmap_intersect_p (may_aliases1, may_aliases2))
|
873 |
|
|
continue;
|
874 |
|
|
|
875 |
|
|
if (!bitmap_empty_p (may_aliases2))
|
876 |
|
|
{
|
877 |
|
|
unsigned int k;
|
878 |
|
|
bitmap_iterator bi;
|
879 |
|
|
|
880 |
|
|
/* Add all the aliases for TAG2 into TAG1's alias set.
|
881 |
|
|
FIXME, update grouping heuristic counters. */
|
882 |
|
|
EXECUTE_IF_SET_IN_BITMAP (may_aliases2, 0, k, bi)
|
883 |
|
|
add_may_alias (tag1, referenced_var (k));
|
884 |
|
|
bitmap_ior_into (may_aliases1, may_aliases2);
|
885 |
|
|
}
|
886 |
|
|
else
|
887 |
|
|
{
|
888 |
|
|
/* Since TAG2 does not have any aliases of its own, add
|
889 |
|
|
TAG2 itself to the alias set of TAG1. */
|
890 |
|
|
add_may_alias (tag1, tag2);
|
891 |
|
|
bitmap_set_bit (may_aliases1, DECL_UID (tag2));
|
892 |
|
|
}
|
893 |
|
|
}
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
if (dump_file)
|
897 |
|
|
fprintf (dump_file, "\n%s: Total number of aliased vops: %ld\n",
|
898 |
|
|
get_name (current_function_decl),
|
899 |
|
|
ai->total_alias_vops);
|
900 |
|
|
|
901 |
|
|
/* Determine if we need to enable alias grouping. */
|
902 |
|
|
if (ai->total_alias_vops >= MAX_ALIASED_VOPS)
|
903 |
|
|
group_aliases (ai);
|
904 |
|
|
}
|
905 |
|
|
|
906 |
|
|
|
907 |
|
|
/* Comparison function for qsort used in group_aliases. */
|
908 |
|
|
|
909 |
|
|
static int
|
910 |
|
|
total_alias_vops_cmp (const void *p, const void *q)
|
911 |
|
|
{
|
912 |
|
|
const struct alias_map_d **p1 = (const struct alias_map_d **)p;
|
913 |
|
|
const struct alias_map_d **p2 = (const struct alias_map_d **)q;
|
914 |
|
|
long n1 = (*p1)->total_alias_vops;
|
915 |
|
|
long n2 = (*p2)->total_alias_vops;
|
916 |
|
|
|
917 |
|
|
/* We want to sort in descending order. */
|
918 |
|
|
return (n1 > n2 ? -1 : (n1 == n2) ? 0 : 1);
|
919 |
|
|
}
|
920 |
|
|
|
921 |
|
|
/* Group all the aliases for TAG to make TAG represent all the
|
922 |
|
|
variables in its alias set. Update the total number
|
923 |
|
|
of virtual operands due to aliasing (AI->TOTAL_ALIAS_VOPS). This
|
924 |
|
|
function will make TAG be the unique alias tag for all the
|
925 |
|
|
variables in its may-aliases. So, given:
|
926 |
|
|
|
927 |
|
|
may-aliases(TAG) = { V1, V2, V3 }
|
928 |
|
|
|
929 |
|
|
This function will group the variables into:
|
930 |
|
|
|
931 |
|
|
may-aliases(V1) = { TAG }
|
932 |
|
|
may-aliases(V2) = { TAG }
|
933 |
|
|
may-aliases(V2) = { TAG } */
|
934 |
|
|
|
935 |
|
|
static void
|
936 |
|
|
group_aliases_into (tree tag, bitmap tag_aliases, struct alias_info *ai)
|
937 |
|
|
{
|
938 |
|
|
unsigned int i;
|
939 |
|
|
var_ann_t tag_ann = var_ann (tag);
|
940 |
|
|
size_t num_tag_refs = NUM_REFERENCES (tag_ann);
|
941 |
|
|
bitmap_iterator bi;
|
942 |
|
|
|
943 |
|
|
EXECUTE_IF_SET_IN_BITMAP (tag_aliases, 0, i, bi)
|
944 |
|
|
{
|
945 |
|
|
tree var = referenced_var (i);
|
946 |
|
|
var_ann_t ann = var_ann (var);
|
947 |
|
|
|
948 |
|
|
/* Make TAG the unique alias of VAR. */
|
949 |
|
|
ann->is_alias_tag = 0;
|
950 |
|
|
ann->may_aliases = NULL;
|
951 |
|
|
|
952 |
|
|
/* Note that VAR and TAG may be the same if the function has no
|
953 |
|
|
addressable variables (see the discussion at the end of
|
954 |
|
|
setup_pointers_and_addressables). */
|
955 |
|
|
if (var != tag)
|
956 |
|
|
add_may_alias (var, tag);
|
957 |
|
|
|
958 |
|
|
/* Reduce total number of virtual operands contributed
|
959 |
|
|
by TAG on behalf of VAR. Notice that the references to VAR
|
960 |
|
|
itself won't be removed. We will merely replace them with
|
961 |
|
|
references to TAG. */
|
962 |
|
|
ai->total_alias_vops -= num_tag_refs;
|
963 |
|
|
}
|
964 |
|
|
|
965 |
|
|
/* We have reduced the number of virtual operands that TAG makes on
|
966 |
|
|
behalf of all the variables formerly aliased with it. However,
|
967 |
|
|
we have also "removed" all the virtual operands for TAG itself,
|
968 |
|
|
so we add them back. */
|
969 |
|
|
ai->total_alias_vops += num_tag_refs;
|
970 |
|
|
|
971 |
|
|
/* TAG no longer has any aliases. */
|
972 |
|
|
tag_ann->may_aliases = NULL;
|
973 |
|
|
}
|
974 |
|
|
|
975 |
|
|
|
976 |
|
|
/* Group may-aliases sets to reduce the number of virtual operands due
|
977 |
|
|
to aliasing.
|
978 |
|
|
|
979 |
|
|
1- Sort the list of pointers in decreasing number of contributed
|
980 |
|
|
virtual operands.
|
981 |
|
|
|
982 |
|
|
2- Take the first entry in AI->POINTERS and revert the role of
|
983 |
|
|
the memory tag and its aliases. Usually, whenever an aliased
|
984 |
|
|
variable Vi is found to alias with a memory tag T, we add Vi
|
985 |
|
|
to the may-aliases set for T. Meaning that after alias
|
986 |
|
|
analysis, we will have:
|
987 |
|
|
|
988 |
|
|
may-aliases(T) = { V1, V2, V3, ..., Vn }
|
989 |
|
|
|
990 |
|
|
This means that every statement that references T, will get 'n'
|
991 |
|
|
virtual operands for each of the Vi tags. But, when alias
|
992 |
|
|
grouping is enabled, we make T an alias tag and add it to the
|
993 |
|
|
alias set of all the Vi variables:
|
994 |
|
|
|
995 |
|
|
may-aliases(V1) = { T }
|
996 |
|
|
may-aliases(V2) = { T }
|
997 |
|
|
...
|
998 |
|
|
may-aliases(Vn) = { T }
|
999 |
|
|
|
1000 |
|
|
This has two effects: (a) statements referencing T will only get
|
1001 |
|
|
a single virtual operand, and, (b) all the variables Vi will now
|
1002 |
|
|
appear to alias each other. So, we lose alias precision to
|
1003 |
|
|
improve compile time. But, in theory, a program with such a high
|
1004 |
|
|
level of aliasing should not be very optimizable in the first
|
1005 |
|
|
place.
|
1006 |
|
|
|
1007 |
|
|
3- Since variables may be in the alias set of more than one
|
1008 |
|
|
memory tag, the grouping done in step (2) needs to be extended
|
1009 |
|
|
to all the memory tags that have a non-empty intersection with
|
1010 |
|
|
the may-aliases set of tag T. For instance, if we originally
|
1011 |
|
|
had these may-aliases sets:
|
1012 |
|
|
|
1013 |
|
|
may-aliases(T) = { V1, V2, V3 }
|
1014 |
|
|
may-aliases(R) = { V2, V4 }
|
1015 |
|
|
|
1016 |
|
|
In step (2) we would have reverted the aliases for T as:
|
1017 |
|
|
|
1018 |
|
|
may-aliases(V1) = { T }
|
1019 |
|
|
may-aliases(V2) = { T }
|
1020 |
|
|
may-aliases(V3) = { T }
|
1021 |
|
|
|
1022 |
|
|
But note that now V2 is no longer aliased with R. We could
|
1023 |
|
|
add R to may-aliases(V2), but we are in the process of
|
1024 |
|
|
grouping aliases to reduce virtual operands so what we do is
|
1025 |
|
|
add V4 to the grouping to obtain:
|
1026 |
|
|
|
1027 |
|
|
may-aliases(V1) = { T }
|
1028 |
|
|
may-aliases(V2) = { T }
|
1029 |
|
|
may-aliases(V3) = { T }
|
1030 |
|
|
may-aliases(V4) = { T }
|
1031 |
|
|
|
1032 |
|
|
4- If the total number of virtual operands due to aliasing is
|
1033 |
|
|
still above the threshold set by max-alias-vops, go back to (2). */
|
1034 |
|
|
|
1035 |
|
|
static void
|
1036 |
|
|
group_aliases (struct alias_info *ai)
|
1037 |
|
|
{
|
1038 |
|
|
size_t i;
|
1039 |
|
|
|
1040 |
|
|
/* Sort the POINTERS array in descending order of contributed
|
1041 |
|
|
virtual operands. */
|
1042 |
|
|
qsort (ai->pointers, ai->num_pointers, sizeof (struct alias_map_d *),
|
1043 |
|
|
total_alias_vops_cmp);
|
1044 |
|
|
|
1045 |
|
|
/* For every pointer in AI->POINTERS, reverse the roles of its tag
|
1046 |
|
|
and the tag's may-aliases set. */
|
1047 |
|
|
for (i = 0; i < ai->num_pointers; i++)
|
1048 |
|
|
{
|
1049 |
|
|
size_t j;
|
1050 |
|
|
tree tag1 = var_ann (ai->pointers[i]->var)->type_mem_tag;
|
1051 |
|
|
bitmap tag1_aliases = ai->pointers[i]->may_aliases;
|
1052 |
|
|
|
1053 |
|
|
/* Skip tags that have been grouped already. */
|
1054 |
|
|
if (ai->pointers[i]->grouped_p)
|
1055 |
|
|
continue;
|
1056 |
|
|
|
1057 |
|
|
/* See if TAG1 had any aliases in common with other type tags.
|
1058 |
|
|
If we find a TAG2 with common aliases with TAG1, add TAG2's
|
1059 |
|
|
aliases into TAG1. */
|
1060 |
|
|
for (j = i + 1; j < ai->num_pointers; j++)
|
1061 |
|
|
{
|
1062 |
|
|
bitmap tag2_aliases = ai->pointers[j]->may_aliases;
|
1063 |
|
|
|
1064 |
|
|
if (bitmap_intersect_p (tag1_aliases, tag2_aliases))
|
1065 |
|
|
{
|
1066 |
|
|
tree tag2 = var_ann (ai->pointers[j]->var)->type_mem_tag;
|
1067 |
|
|
|
1068 |
|
|
bitmap_ior_into (tag1_aliases, tag2_aliases);
|
1069 |
|
|
|
1070 |
|
|
/* TAG2 does not need its aliases anymore. */
|
1071 |
|
|
bitmap_clear (tag2_aliases);
|
1072 |
|
|
var_ann (tag2)->may_aliases = NULL;
|
1073 |
|
|
|
1074 |
|
|
/* TAG1 is the unique alias of TAG2. */
|
1075 |
|
|
add_may_alias (tag2, tag1);
|
1076 |
|
|
|
1077 |
|
|
ai->pointers[j]->grouped_p = true;
|
1078 |
|
|
}
|
1079 |
|
|
}
|
1080 |
|
|
|
1081 |
|
|
/* Now group all the aliases we collected into TAG1. */
|
1082 |
|
|
group_aliases_into (tag1, tag1_aliases, ai);
|
1083 |
|
|
|
1084 |
|
|
/* If we've reduced total number of virtual operands below the
|
1085 |
|
|
threshold, stop. */
|
1086 |
|
|
if (ai->total_alias_vops < MAX_ALIASED_VOPS)
|
1087 |
|
|
break;
|
1088 |
|
|
}
|
1089 |
|
|
|
1090 |
|
|
/* Finally, all the variables that have been grouped cannot be in
|
1091 |
|
|
the may-alias set of name memory tags. Suppose that we have
|
1092 |
|
|
grouped the aliases in this code so that may-aliases(a) = TMT.20
|
1093 |
|
|
|
1094 |
|
|
p_5 = &a;
|
1095 |
|
|
...
|
1096 |
|
|
# a_9 = V_MAY_DEF <a_8>
|
1097 |
|
|
p_5->field = 0
|
1098 |
|
|
... Several modifications to TMT.20 ...
|
1099 |
|
|
# VUSE <a_9>
|
1100 |
|
|
x_30 = p_5->field
|
1101 |
|
|
|
1102 |
|
|
Since p_5 points to 'a', the optimizers will try to propagate 0
|
1103 |
|
|
into p_5->field, but that is wrong because there have been
|
1104 |
|
|
modifications to 'TMT.20' in between. To prevent this we have to
|
1105 |
|
|
replace 'a' with 'TMT.20' in the name tag of p_5. */
|
1106 |
|
|
for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
|
1107 |
|
|
{
|
1108 |
|
|
size_t j;
|
1109 |
|
|
tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
|
1110 |
|
|
tree name_tag = SSA_NAME_PTR_INFO (ptr)->name_mem_tag;
|
1111 |
|
|
varray_type aliases;
|
1112 |
|
|
|
1113 |
|
|
if (name_tag == NULL_TREE)
|
1114 |
|
|
continue;
|
1115 |
|
|
|
1116 |
|
|
aliases = var_ann (name_tag)->may_aliases;
|
1117 |
|
|
for (j = 0; aliases && j < VARRAY_ACTIVE_SIZE (aliases); j++)
|
1118 |
|
|
{
|
1119 |
|
|
tree alias = VARRAY_TREE (aliases, j);
|
1120 |
|
|
var_ann_t ann = var_ann (alias);
|
1121 |
|
|
|
1122 |
|
|
if ((ann->mem_tag_kind == NOT_A_TAG
|
1123 |
|
|
|| ann->mem_tag_kind == STRUCT_FIELD)
|
1124 |
|
|
&& ann->may_aliases)
|
1125 |
|
|
{
|
1126 |
|
|
tree new_alias;
|
1127 |
|
|
|
1128 |
|
|
gcc_assert (VARRAY_ACTIVE_SIZE (ann->may_aliases) == 1);
|
1129 |
|
|
|
1130 |
|
|
new_alias = VARRAY_TREE (ann->may_aliases, 0);
|
1131 |
|
|
replace_may_alias (name_tag, j, new_alias);
|
1132 |
|
|
}
|
1133 |
|
|
}
|
1134 |
|
|
}
|
1135 |
|
|
|
1136 |
|
|
if (dump_file)
|
1137 |
|
|
fprintf (dump_file,
|
1138 |
|
|
"%s: Total number of aliased vops after grouping: %ld%s\n",
|
1139 |
|
|
get_name (current_function_decl),
|
1140 |
|
|
ai->total_alias_vops,
|
1141 |
|
|
(ai->total_alias_vops < 0) ? " (negative values are OK)" : "");
|
1142 |
|
|
}
|
1143 |
|
|
|
1144 |
|
|
|
1145 |
|
|
/* Create a new alias set entry for VAR in AI->ADDRESSABLE_VARS. */
|
1146 |
|
|
|
1147 |
|
|
static void
|
1148 |
|
|
create_alias_map_for (tree var, struct alias_info *ai)
|
1149 |
|
|
{
|
1150 |
|
|
struct alias_map_d *alias_map;
|
1151 |
|
|
alias_map = xcalloc (1, sizeof (*alias_map));
|
1152 |
|
|
alias_map->var = var;
|
1153 |
|
|
alias_map->set = get_alias_set (var);
|
1154 |
|
|
ai->addressable_vars[ai->num_addressable_vars++] = alias_map;
|
1155 |
|
|
}
|
1156 |
|
|
|
1157 |
|
|
|
1158 |
|
|
/* Create memory tags for all the dereferenced pointers and build the
|
1159 |
|
|
ADDRESSABLE_VARS and POINTERS arrays used for building the may-alias
|
1160 |
|
|
sets. Based on the address escape and points-to information collected
|
1161 |
|
|
earlier, this pass will also clear the TREE_ADDRESSABLE flag from those
|
1162 |
|
|
variables whose address is not needed anymore. */
|
1163 |
|
|
|
1164 |
|
|
static void
|
1165 |
|
|
setup_pointers_and_addressables (struct alias_info *ai)
|
1166 |
|
|
{
|
1167 |
|
|
size_t n_vars, num_addressable_vars, num_pointers;
|
1168 |
|
|
referenced_var_iterator rvi;
|
1169 |
|
|
tree var;
|
1170 |
|
|
VEC (tree, heap) *varvec = NULL;
|
1171 |
|
|
safe_referenced_var_iterator srvi;
|
1172 |
|
|
|
1173 |
|
|
/* Size up the arrays ADDRESSABLE_VARS and POINTERS. */
|
1174 |
|
|
num_addressable_vars = num_pointers = 0;
|
1175 |
|
|
|
1176 |
|
|
FOR_EACH_REFERENCED_VAR (var, rvi)
|
1177 |
|
|
{
|
1178 |
|
|
if (may_be_aliased (var))
|
1179 |
|
|
num_addressable_vars++;
|
1180 |
|
|
|
1181 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (var)))
|
1182 |
|
|
{
|
1183 |
|
|
/* Since we don't keep track of volatile variables, assume that
|
1184 |
|
|
these pointers are used in indirect store operations. */
|
1185 |
|
|
if (TREE_THIS_VOLATILE (var))
|
1186 |
|
|
bitmap_set_bit (ai->dereferenced_ptrs_store, DECL_UID (var));
|
1187 |
|
|
|
1188 |
|
|
num_pointers++;
|
1189 |
|
|
}
|
1190 |
|
|
}
|
1191 |
|
|
|
1192 |
|
|
/* Create ADDRESSABLE_VARS and POINTERS. Note that these arrays are
|
1193 |
|
|
always going to be slightly bigger than we actually need them
|
1194 |
|
|
because some TREE_ADDRESSABLE variables will be marked
|
1195 |
|
|
non-addressable below and only pointers with unique type tags are
|
1196 |
|
|
going to be added to POINTERS. */
|
1197 |
|
|
ai->addressable_vars = xcalloc (num_addressable_vars,
|
1198 |
|
|
sizeof (struct alias_map_d *));
|
1199 |
|
|
ai->pointers = xcalloc (num_pointers, sizeof (struct alias_map_d *));
|
1200 |
|
|
ai->num_addressable_vars = 0;
|
1201 |
|
|
ai->num_pointers = 0;
|
1202 |
|
|
|
1203 |
|
|
/* Since we will be creating type memory tags within this loop, cache the
|
1204 |
|
|
value of NUM_REFERENCED_VARS to avoid processing the additional tags
|
1205 |
|
|
unnecessarily. */
|
1206 |
|
|
n_vars = num_referenced_vars;
|
1207 |
|
|
|
1208 |
|
|
FOR_EACH_REFERENCED_VAR_SAFE (var, varvec, srvi)
|
1209 |
|
|
{
|
1210 |
|
|
var_ann_t v_ann = var_ann (var);
|
1211 |
|
|
subvar_t svars;
|
1212 |
|
|
|
1213 |
|
|
/* Name memory tags already have flow-sensitive aliasing
|
1214 |
|
|
information, so they need not be processed by
|
1215 |
|
|
compute_flow_insensitive_aliasing. Similarly, type memory
|
1216 |
|
|
tags are already accounted for when we process their
|
1217 |
|
|
associated pointer.
|
1218 |
|
|
|
1219 |
|
|
Structure fields, on the other hand, have to have some of this
|
1220 |
|
|
information processed for them, but it's pointless to mark them
|
1221 |
|
|
non-addressable (since they are fake variables anyway). */
|
1222 |
|
|
if (v_ann->mem_tag_kind != NOT_A_TAG
|
1223 |
|
|
&& v_ann->mem_tag_kind != STRUCT_FIELD)
|
1224 |
|
|
continue;
|
1225 |
|
|
|
1226 |
|
|
/* Remove the ADDRESSABLE flag from every addressable variable whose
|
1227 |
|
|
address is not needed anymore. This is caused by the propagation
|
1228 |
|
|
of ADDR_EXPR constants into INDIRECT_REF expressions and the
|
1229 |
|
|
removal of dead pointer assignments done by the early scalar
|
1230 |
|
|
cleanup passes. */
|
1231 |
|
|
if (TREE_ADDRESSABLE (var))
|
1232 |
|
|
{
|
1233 |
|
|
if (!bitmap_bit_p (addressable_vars, DECL_UID (var))
|
1234 |
|
|
&& TREE_CODE (var) != RESULT_DECL
|
1235 |
|
|
&& !is_global_var (var))
|
1236 |
|
|
{
|
1237 |
|
|
bool okay_to_mark = true;
|
1238 |
|
|
|
1239 |
|
|
/* Since VAR is now a regular GIMPLE register, we will need
|
1240 |
|
|
to rename VAR into SSA afterwards. */
|
1241 |
|
|
mark_sym_for_renaming (var);
|
1242 |
|
|
|
1243 |
|
|
/* If VAR can have sub-variables, and any of its
|
1244 |
|
|
sub-variables has its address taken, then we cannot
|
1245 |
|
|
remove the addressable flag from VAR. */
|
1246 |
|
|
if (var_can_have_subvars (var)
|
1247 |
|
|
&& (svars = get_subvars_for_var (var)))
|
1248 |
|
|
{
|
1249 |
|
|
subvar_t sv;
|
1250 |
|
|
|
1251 |
|
|
for (sv = svars; sv; sv = sv->next)
|
1252 |
|
|
{
|
1253 |
|
|
if (bitmap_bit_p (addressable_vars, DECL_UID (sv->var)))
|
1254 |
|
|
okay_to_mark = false;
|
1255 |
|
|
mark_sym_for_renaming (sv->var);
|
1256 |
|
|
}
|
1257 |
|
|
}
|
1258 |
|
|
|
1259 |
|
|
/* The address of VAR is not needed, remove the
|
1260 |
|
|
addressable bit, so that it can be optimized as a
|
1261 |
|
|
regular variable. */
|
1262 |
|
|
if (okay_to_mark)
|
1263 |
|
|
mark_non_addressable (var);
|
1264 |
|
|
}
|
1265 |
|
|
}
|
1266 |
|
|
|
1267 |
|
|
/* Global variables and addressable locals may be aliased. Create an
|
1268 |
|
|
entry in ADDRESSABLE_VARS for VAR. */
|
1269 |
|
|
if (may_be_aliased (var)
|
1270 |
|
|
&& (!var_can_have_subvars (var)
|
1271 |
|
|
|| get_subvars_for_var (var) == NULL))
|
1272 |
|
|
{
|
1273 |
|
|
create_alias_map_for (var, ai);
|
1274 |
|
|
mark_sym_for_renaming (var);
|
1275 |
|
|
}
|
1276 |
|
|
|
1277 |
|
|
/* Add pointer variables that have been dereferenced to the POINTERS
|
1278 |
|
|
array and create a type memory tag for them. */
|
1279 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (var)))
|
1280 |
|
|
{
|
1281 |
|
|
if ((bitmap_bit_p (ai->dereferenced_ptrs_store, DECL_UID (var))
|
1282 |
|
|
|| bitmap_bit_p (ai->dereferenced_ptrs_load, DECL_UID (var))))
|
1283 |
|
|
{
|
1284 |
|
|
tree tag;
|
1285 |
|
|
var_ann_t t_ann;
|
1286 |
|
|
|
1287 |
|
|
/* If pointer VAR still doesn't have a memory tag
|
1288 |
|
|
associated with it, create it now or re-use an
|
1289 |
|
|
existing one. */
|
1290 |
|
|
tag = get_tmt_for (var, ai);
|
1291 |
|
|
t_ann = var_ann (tag);
|
1292 |
|
|
|
1293 |
|
|
/* The type tag will need to be renamed into SSA
|
1294 |
|
|
afterwards. Note that we cannot do this inside
|
1295 |
|
|
get_tmt_for because aliasing may run multiple times
|
1296 |
|
|
and we only create type tags the first time. */
|
1297 |
|
|
mark_sym_for_renaming (tag);
|
1298 |
|
|
|
1299 |
|
|
/* Similarly, if pointer VAR used to have another type
|
1300 |
|
|
tag, we will need to process it in the renamer to
|
1301 |
|
|
remove the stale virtual operands. */
|
1302 |
|
|
if (v_ann->type_mem_tag)
|
1303 |
|
|
mark_sym_for_renaming (v_ann->type_mem_tag);
|
1304 |
|
|
|
1305 |
|
|
/* Associate the tag with pointer VAR. */
|
1306 |
|
|
v_ann->type_mem_tag = tag;
|
1307 |
|
|
|
1308 |
|
|
/* If pointer VAR has been used in a store operation,
|
1309 |
|
|
then its memory tag must be marked as written-to. */
|
1310 |
|
|
if (bitmap_bit_p (ai->dereferenced_ptrs_store, DECL_UID (var)))
|
1311 |
|
|
bitmap_set_bit (ai->written_vars, DECL_UID (tag));
|
1312 |
|
|
|
1313 |
|
|
/* If pointer VAR is a global variable or a PARM_DECL,
|
1314 |
|
|
then its memory tag should be considered a global
|
1315 |
|
|
variable. */
|
1316 |
|
|
if (TREE_CODE (var) == PARM_DECL || is_global_var (var))
|
1317 |
|
|
mark_call_clobbered (tag);
|
1318 |
|
|
|
1319 |
|
|
/* All the dereferences of pointer VAR count as
|
1320 |
|
|
references of TAG. Since TAG can be associated with
|
1321 |
|
|
several pointers, add the dereferences of VAR to the
|
1322 |
|
|
TAG. */
|
1323 |
|
|
NUM_REFERENCES_SET (t_ann,
|
1324 |
|
|
NUM_REFERENCES (t_ann)
|
1325 |
|
|
+ NUM_REFERENCES (v_ann));
|
1326 |
|
|
}
|
1327 |
|
|
else
|
1328 |
|
|
{
|
1329 |
|
|
/* The pointer has not been dereferenced. If it had a
|
1330 |
|
|
type memory tag, remove it and mark the old tag for
|
1331 |
|
|
renaming to remove it out of the IL. */
|
1332 |
|
|
var_ann_t ann = var_ann (var);
|
1333 |
|
|
tree tag = ann->type_mem_tag;
|
1334 |
|
|
if (tag)
|
1335 |
|
|
{
|
1336 |
|
|
mark_sym_for_renaming (tag);
|
1337 |
|
|
ann->type_mem_tag = NULL_TREE;
|
1338 |
|
|
}
|
1339 |
|
|
}
|
1340 |
|
|
}
|
1341 |
|
|
}
|
1342 |
|
|
VEC_free (tree, heap, varvec);
|
1343 |
|
|
}
|
1344 |
|
|
|
1345 |
|
|
|
1346 |
|
|
/* Determine whether to use .GLOBAL_VAR to model call clobbering semantics. At
|
1347 |
|
|
every call site, we need to emit V_MAY_DEF expressions to represent the
|
1348 |
|
|
clobbering effects of the call for variables whose address escapes the
|
1349 |
|
|
current function.
|
1350 |
|
|
|
1351 |
|
|
One approach is to group all call-clobbered variables into a single
|
1352 |
|
|
representative that is used as an alias of every call-clobbered variable
|
1353 |
|
|
(.GLOBAL_VAR). This works well, but it ties the optimizer hands because
|
1354 |
|
|
references to any call clobbered variable is a reference to .GLOBAL_VAR.
|
1355 |
|
|
|
1356 |
|
|
The second approach is to emit a clobbering V_MAY_DEF for every
|
1357 |
|
|
call-clobbered variable at call sites. This is the preferred way in terms
|
1358 |
|
|
of optimization opportunities but it may create too many V_MAY_DEF operands
|
1359 |
|
|
if there are many call clobbered variables and function calls in the
|
1360 |
|
|
function.
|
1361 |
|
|
|
1362 |
|
|
To decide whether or not to use .GLOBAL_VAR we multiply the number of
|
1363 |
|
|
function calls found by the number of call-clobbered variables. If that
|
1364 |
|
|
product is beyond a certain threshold, as determined by the parameterized
|
1365 |
|
|
values shown below, we use .GLOBAL_VAR.
|
1366 |
|
|
|
1367 |
|
|
FIXME. This heuristic should be improved. One idea is to use several
|
1368 |
|
|
.GLOBAL_VARs of different types instead of a single one. The thresholds
|
1369 |
|
|
have been derived from a typical bootstrap cycle, including all target
|
1370 |
|
|
libraries. Compile times were found increase by ~1% compared to using
|
1371 |
|
|
.GLOBAL_VAR. */
|
1372 |
|
|
|
1373 |
|
|
static void
|
1374 |
|
|
maybe_create_global_var (struct alias_info *ai)
|
1375 |
|
|
{
|
1376 |
|
|
unsigned i, n_clobbered;
|
1377 |
|
|
bitmap_iterator bi;
|
1378 |
|
|
|
1379 |
|
|
/* No need to create it, if we have one already. */
|
1380 |
|
|
if (global_var == NULL_TREE)
|
1381 |
|
|
{
|
1382 |
|
|
/* Count all the call-clobbered variables. */
|
1383 |
|
|
n_clobbered = 0;
|
1384 |
|
|
EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
|
1385 |
|
|
{
|
1386 |
|
|
n_clobbered++;
|
1387 |
|
|
}
|
1388 |
|
|
|
1389 |
|
|
/* If the number of virtual operands that would be needed to
|
1390 |
|
|
model all the call-clobbered variables is larger than
|
1391 |
|
|
GLOBAL_VAR_THRESHOLD, create .GLOBAL_VAR.
|
1392 |
|
|
|
1393 |
|
|
Also create .GLOBAL_VAR if there are no call-clobbered
|
1394 |
|
|
variables and the program contains a mixture of pure/const
|
1395 |
|
|
and regular function calls. This is to avoid the problem
|
1396 |
|
|
described in PR 20115:
|
1397 |
|
|
|
1398 |
|
|
int X;
|
1399 |
|
|
int func_pure (void) { return X; }
|
1400 |
|
|
int func_non_pure (int a) { X += a; }
|
1401 |
|
|
int foo ()
|
1402 |
|
|
{
|
1403 |
|
|
int a = func_pure ();
|
1404 |
|
|
func_non_pure (a);
|
1405 |
|
|
a = func_pure ();
|
1406 |
|
|
return a;
|
1407 |
|
|
}
|
1408 |
|
|
|
1409 |
|
|
Since foo() has no call-clobbered variables, there is
|
1410 |
|
|
no relationship between the calls to func_pure and
|
1411 |
|
|
func_non_pure. Since func_pure has no side-effects, value
|
1412 |
|
|
numbering optimizations elide the second call to func_pure.
|
1413 |
|
|
So, if we have some pure/const and some regular calls in the
|
1414 |
|
|
program we create .GLOBAL_VAR to avoid missing these
|
1415 |
|
|
relations. */
|
1416 |
|
|
if (ai->num_calls_found * n_clobbered >= (size_t) GLOBAL_VAR_THRESHOLD
|
1417 |
|
|
|| (n_clobbered == 0
|
1418 |
|
|
&& ai->num_calls_found > 0
|
1419 |
|
|
&& ai->num_pure_const_calls_found > 0
|
1420 |
|
|
&& ai->num_calls_found > ai->num_pure_const_calls_found))
|
1421 |
|
|
create_global_var ();
|
1422 |
|
|
}
|
1423 |
|
|
|
1424 |
|
|
/* Mark all call-clobbered symbols for renaming. Since the initial
|
1425 |
|
|
rewrite into SSA ignored all call sites, we may need to rename
|
1426 |
|
|
.GLOBAL_VAR and the call-clobbered variables. */
|
1427 |
|
|
EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
|
1428 |
|
|
{
|
1429 |
|
|
tree var = referenced_var (i);
|
1430 |
|
|
|
1431 |
|
|
/* If the function has calls to clobbering functions and
|
1432 |
|
|
.GLOBAL_VAR has been created, make it an alias for all
|
1433 |
|
|
call-clobbered variables. */
|
1434 |
|
|
if (global_var && var != global_var)
|
1435 |
|
|
{
|
1436 |
|
|
subvar_t svars;
|
1437 |
|
|
add_may_alias (var, global_var);
|
1438 |
|
|
if (var_can_have_subvars (var)
|
1439 |
|
|
&& (svars = get_subvars_for_var (var)))
|
1440 |
|
|
{
|
1441 |
|
|
subvar_t sv;
|
1442 |
|
|
for (sv = svars; sv; sv = sv->next)
|
1443 |
|
|
mark_sym_for_renaming (sv->var);
|
1444 |
|
|
}
|
1445 |
|
|
}
|
1446 |
|
|
|
1447 |
|
|
mark_sym_for_renaming (var);
|
1448 |
|
|
}
|
1449 |
|
|
}
|
1450 |
|
|
|
1451 |
|
|
|
1452 |
|
|
/* Return TRUE if pointer PTR may point to variable VAR.
|
1453 |
|
|
|
1454 |
|
|
MEM_ALIAS_SET is the alias set for the memory location pointed-to by PTR
|
1455 |
|
|
This is needed because when checking for type conflicts we are
|
1456 |
|
|
interested in the alias set of the memory location pointed-to by
|
1457 |
|
|
PTR. The alias set of PTR itself is irrelevant.
|
1458 |
|
|
|
1459 |
|
|
VAR_ALIAS_SET is the alias set for VAR. */
|
1460 |
|
|
|
1461 |
|
|
static bool
|
1462 |
|
|
may_alias_p (tree ptr, HOST_WIDE_INT mem_alias_set,
|
1463 |
|
|
tree var, HOST_WIDE_INT var_alias_set,
|
1464 |
|
|
bool alias_set_only)
|
1465 |
|
|
{
|
1466 |
|
|
tree mem;
|
1467 |
|
|
var_ann_t m_ann;
|
1468 |
|
|
|
1469 |
|
|
alias_stats.alias_queries++;
|
1470 |
|
|
alias_stats.simple_queries++;
|
1471 |
|
|
|
1472 |
|
|
/* By convention, a variable cannot alias itself. */
|
1473 |
|
|
mem = var_ann (ptr)->type_mem_tag;
|
1474 |
|
|
if (mem == var)
|
1475 |
|
|
{
|
1476 |
|
|
alias_stats.alias_noalias++;
|
1477 |
|
|
alias_stats.simple_resolved++;
|
1478 |
|
|
return false;
|
1479 |
|
|
}
|
1480 |
|
|
|
1481 |
|
|
/* If -fargument-noalias-global is >1, pointer arguments may
|
1482 |
|
|
not point to global variables. */
|
1483 |
|
|
if (flag_argument_noalias > 1 && is_global_var (var)
|
1484 |
|
|
&& TREE_CODE (ptr) == PARM_DECL)
|
1485 |
|
|
{
|
1486 |
|
|
alias_stats.alias_noalias++;
|
1487 |
|
|
alias_stats.simple_resolved++;
|
1488 |
|
|
return false;
|
1489 |
|
|
}
|
1490 |
|
|
|
1491 |
|
|
/* If either MEM or VAR is a read-only global and the other one
|
1492 |
|
|
isn't, then PTR cannot point to VAR. */
|
1493 |
|
|
if ((unmodifiable_var_p (mem) && !unmodifiable_var_p (var))
|
1494 |
|
|
|| (unmodifiable_var_p (var) && !unmodifiable_var_p (mem)))
|
1495 |
|
|
{
|
1496 |
|
|
alias_stats.alias_noalias++;
|
1497 |
|
|
alias_stats.simple_resolved++;
|
1498 |
|
|
return false;
|
1499 |
|
|
}
|
1500 |
|
|
|
1501 |
|
|
m_ann = var_ann (mem);
|
1502 |
|
|
|
1503 |
|
|
gcc_assert (m_ann->mem_tag_kind == TYPE_TAG);
|
1504 |
|
|
|
1505 |
|
|
alias_stats.tbaa_queries++;
|
1506 |
|
|
|
1507 |
|
|
/* If the alias sets don't conflict then MEM cannot alias VAR. */
|
1508 |
|
|
if (!alias_sets_conflict_p (mem_alias_set, var_alias_set))
|
1509 |
|
|
{
|
1510 |
|
|
alias_stats.alias_noalias++;
|
1511 |
|
|
alias_stats.tbaa_resolved++;
|
1512 |
|
|
return false;
|
1513 |
|
|
}
|
1514 |
|
|
|
1515 |
|
|
/* If var is a record or union type, ptr cannot point into var
|
1516 |
|
|
unless there is some operation explicit address operation in the
|
1517 |
|
|
program that can reference a field of the ptr's dereferenced
|
1518 |
|
|
type. This also assumes that the types of both var and ptr are
|
1519 |
|
|
contained within the compilation unit, and that there is no fancy
|
1520 |
|
|
addressing arithmetic associated with any of the types
|
1521 |
|
|
involved. */
|
1522 |
|
|
|
1523 |
|
|
if ((mem_alias_set != 0) && (var_alias_set != 0))
|
1524 |
|
|
{
|
1525 |
|
|
tree ptr_type = TREE_TYPE (ptr);
|
1526 |
|
|
tree var_type = TREE_TYPE (var);
|
1527 |
|
|
|
1528 |
|
|
/* The star count is -1 if the type at the end of the pointer_to
|
1529 |
|
|
chain is not a record or union type. */
|
1530 |
|
|
if ((!alias_set_only) &&
|
1531 |
|
|
ipa_type_escape_star_count_of_interesting_type (var_type) >= 0)
|
1532 |
|
|
{
|
1533 |
|
|
int ptr_star_count = 0;
|
1534 |
|
|
|
1535 |
|
|
/* Ipa_type_escape_star_count_of_interesting_type is a little to
|
1536 |
|
|
restrictive for the pointer type, need to allow pointers to
|
1537 |
|
|
primitive types as long as those types cannot be pointers
|
1538 |
|
|
to everything. */
|
1539 |
|
|
while (POINTER_TYPE_P (ptr_type))
|
1540 |
|
|
/* Strip the *'s off. */
|
1541 |
|
|
{
|
1542 |
|
|
ptr_type = TREE_TYPE (ptr_type);
|
1543 |
|
|
ptr_star_count++;
|
1544 |
|
|
}
|
1545 |
|
|
|
1546 |
|
|
/* There does not appear to be a better test to see if the
|
1547 |
|
|
pointer type was one of the pointer to everything
|
1548 |
|
|
types. */
|
1549 |
|
|
|
1550 |
|
|
if (ptr_star_count > 0)
|
1551 |
|
|
{
|
1552 |
|
|
alias_stats.structnoaddress_queries++;
|
1553 |
|
|
if (ipa_type_escape_field_does_not_clobber_p (var_type,
|
1554 |
|
|
TREE_TYPE (ptr)))
|
1555 |
|
|
{
|
1556 |
|
|
alias_stats.structnoaddress_resolved++;
|
1557 |
|
|
alias_stats.alias_noalias++;
|
1558 |
|
|
return false;
|
1559 |
|
|
}
|
1560 |
|
|
}
|
1561 |
|
|
else if (ptr_star_count == 0)
|
1562 |
|
|
{
|
1563 |
|
|
/* If ptr_type was not really a pointer to type, it cannot
|
1564 |
|
|
alias. */
|
1565 |
|
|
alias_stats.structnoaddress_queries++;
|
1566 |
|
|
alias_stats.structnoaddress_resolved++;
|
1567 |
|
|
alias_stats.alias_noalias++;
|
1568 |
|
|
return false;
|
1569 |
|
|
}
|
1570 |
|
|
}
|
1571 |
|
|
}
|
1572 |
|
|
|
1573 |
|
|
alias_stats.alias_mayalias++;
|
1574 |
|
|
return true;
|
1575 |
|
|
}
|
1576 |
|
|
|
1577 |
|
|
|
1578 |
|
|
/* Add ALIAS to the set of variables that may alias VAR. */
|
1579 |
|
|
|
1580 |
|
|
static void
|
1581 |
|
|
add_may_alias (tree var, tree alias)
|
1582 |
|
|
{
|
1583 |
|
|
size_t i;
|
1584 |
|
|
var_ann_t v_ann = get_var_ann (var);
|
1585 |
|
|
var_ann_t a_ann = get_var_ann (alias);
|
1586 |
|
|
|
1587 |
|
|
/* Don't allow self-referential aliases. */
|
1588 |
|
|
gcc_assert (var != alias);
|
1589 |
|
|
|
1590 |
|
|
/* ALIAS must be addressable if it's being added to an alias set. */
|
1591 |
|
|
#if 1
|
1592 |
|
|
TREE_ADDRESSABLE (alias) = 1;
|
1593 |
|
|
#else
|
1594 |
|
|
gcc_assert (may_be_aliased (alias));
|
1595 |
|
|
#endif
|
1596 |
|
|
|
1597 |
|
|
if (v_ann->may_aliases == NULL)
|
1598 |
|
|
VARRAY_TREE_INIT (v_ann->may_aliases, 2, "aliases");
|
1599 |
|
|
|
1600 |
|
|
/* Avoid adding duplicates. */
|
1601 |
|
|
for (i = 0; i < VARRAY_ACTIVE_SIZE (v_ann->may_aliases); i++)
|
1602 |
|
|
if (alias == VARRAY_TREE (v_ann->may_aliases, i))
|
1603 |
|
|
return;
|
1604 |
|
|
|
1605 |
|
|
/* If VAR is a call-clobbered variable, so is its new ALIAS.
|
1606 |
|
|
FIXME, call-clobbering should only depend on whether an address
|
1607 |
|
|
escapes. It should be independent of aliasing. */
|
1608 |
|
|
if (is_call_clobbered (var))
|
1609 |
|
|
mark_call_clobbered (alias);
|
1610 |
|
|
|
1611 |
|
|
/* Likewise. If ALIAS is call-clobbered, so is VAR. */
|
1612 |
|
|
else if (is_call_clobbered (alias))
|
1613 |
|
|
mark_call_clobbered (var);
|
1614 |
|
|
|
1615 |
|
|
VARRAY_PUSH_TREE (v_ann->may_aliases, alias);
|
1616 |
|
|
a_ann->is_alias_tag = 1;
|
1617 |
|
|
}
|
1618 |
|
|
|
1619 |
|
|
|
1620 |
|
|
/* Replace alias I in the alias sets of VAR with NEW_ALIAS. */
|
1621 |
|
|
|
1622 |
|
|
static void
|
1623 |
|
|
replace_may_alias (tree var, size_t i, tree new_alias)
|
1624 |
|
|
{
|
1625 |
|
|
var_ann_t v_ann = var_ann (var);
|
1626 |
|
|
VARRAY_TREE (v_ann->may_aliases, i) = new_alias;
|
1627 |
|
|
|
1628 |
|
|
/* If VAR is a call-clobbered variable, so is NEW_ALIAS.
|
1629 |
|
|
FIXME, call-clobbering should only depend on whether an address
|
1630 |
|
|
escapes. It should be independent of aliasing. */
|
1631 |
|
|
if (is_call_clobbered (var))
|
1632 |
|
|
mark_call_clobbered (new_alias);
|
1633 |
|
|
|
1634 |
|
|
/* Likewise. If NEW_ALIAS is call-clobbered, so is VAR. */
|
1635 |
|
|
else if (is_call_clobbered (new_alias))
|
1636 |
|
|
mark_call_clobbered (var);
|
1637 |
|
|
}
|
1638 |
|
|
|
1639 |
|
|
|
1640 |
|
|
/* Mark pointer PTR as pointing to an arbitrary memory location. */
|
1641 |
|
|
|
1642 |
|
|
static void
|
1643 |
|
|
set_pt_anything (tree ptr)
|
1644 |
|
|
{
|
1645 |
|
|
struct ptr_info_def *pi = get_ptr_info (ptr);
|
1646 |
|
|
|
1647 |
|
|
pi->pt_anything = 1;
|
1648 |
|
|
pi->pt_vars = NULL;
|
1649 |
|
|
|
1650 |
|
|
/* The pointer used to have a name tag, but we now found it pointing
|
1651 |
|
|
to an arbitrary location. The name tag needs to be renamed and
|
1652 |
|
|
disassociated from PTR. */
|
1653 |
|
|
if (pi->name_mem_tag)
|
1654 |
|
|
{
|
1655 |
|
|
mark_sym_for_renaming (pi->name_mem_tag);
|
1656 |
|
|
pi->name_mem_tag = NULL_TREE;
|
1657 |
|
|
}
|
1658 |
|
|
}
|
1659 |
|
|
|
1660 |
|
|
|
1661 |
|
|
/* Return true if STMT is an "escape" site from the current function. Escape
|
1662 |
|
|
sites those statements which might expose the address of a variable
|
1663 |
|
|
outside the current function. STMT is an escape site iff:
|
1664 |
|
|
|
1665 |
|
|
1- STMT is a function call, or
|
1666 |
|
|
2- STMT is an __asm__ expression, or
|
1667 |
|
|
3- STMT is an assignment to a non-local variable, or
|
1668 |
|
|
4- STMT is a return statement.
|
1669 |
|
|
|
1670 |
|
|
AI points to the alias information collected so far. */
|
1671 |
|
|
|
1672 |
|
|
bool
|
1673 |
|
|
is_escape_site (tree stmt, struct alias_info *ai)
|
1674 |
|
|
{
|
1675 |
|
|
tree call = get_call_expr_in (stmt);
|
1676 |
|
|
if (call != NULL_TREE)
|
1677 |
|
|
{
|
1678 |
|
|
ai->num_calls_found++;
|
1679 |
|
|
|
1680 |
|
|
if (!TREE_SIDE_EFFECTS (call))
|
1681 |
|
|
ai->num_pure_const_calls_found++;
|
1682 |
|
|
|
1683 |
|
|
return true;
|
1684 |
|
|
}
|
1685 |
|
|
else if (TREE_CODE (stmt) == ASM_EXPR)
|
1686 |
|
|
return true;
|
1687 |
|
|
else if (TREE_CODE (stmt) == MODIFY_EXPR)
|
1688 |
|
|
{
|
1689 |
|
|
tree lhs = TREE_OPERAND (stmt, 0);
|
1690 |
|
|
|
1691 |
|
|
/* Get to the base of _REF nodes. */
|
1692 |
|
|
if (TREE_CODE (lhs) != SSA_NAME)
|
1693 |
|
|
lhs = get_base_address (lhs);
|
1694 |
|
|
|
1695 |
|
|
/* If we couldn't recognize the LHS of the assignment, assume that it
|
1696 |
|
|
is a non-local store. */
|
1697 |
|
|
if (lhs == NULL_TREE)
|
1698 |
|
|
return true;
|
1699 |
|
|
|
1700 |
|
|
/* If the RHS is a conversion between a pointer and an integer, the
|
1701 |
|
|
pointer escapes since we can't track the integer. */
|
1702 |
|
|
if ((TREE_CODE (TREE_OPERAND (stmt, 1)) == NOP_EXPR
|
1703 |
|
|
|| TREE_CODE (TREE_OPERAND (stmt, 1)) == CONVERT_EXPR
|
1704 |
|
|
|| TREE_CODE (TREE_OPERAND (stmt, 1)) == VIEW_CONVERT_EXPR)
|
1705 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND
|
1706 |
|
|
(TREE_OPERAND (stmt, 1), 0)))
|
1707 |
|
|
&& !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1))))
|
1708 |
|
|
return true;
|
1709 |
|
|
|
1710 |
|
|
/* If the LHS is an SSA name, it can't possibly represent a non-local
|
1711 |
|
|
memory store. */
|
1712 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
1713 |
|
|
return false;
|
1714 |
|
|
|
1715 |
|
|
/* FIXME: LHS is not an SSA_NAME. Even if it's an assignment to a
|
1716 |
|
|
local variables we cannot be sure if it will escape, because we
|
1717 |
|
|
don't have information about objects not in SSA form. Need to
|
1718 |
|
|
implement something along the lines of
|
1719 |
|
|
|
1720 |
|
|
J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.
|
1721 |
|
|
Midkiff, ``Escape analysis for java,'' in Proceedings of the
|
1722 |
|
|
Conference on Object-Oriented Programming Systems, Languages, and
|
1723 |
|
|
Applications (OOPSLA), pp. 1-19, 1999. */
|
1724 |
|
|
return true;
|
1725 |
|
|
}
|
1726 |
|
|
else if (TREE_CODE (stmt) == RETURN_EXPR)
|
1727 |
|
|
return true;
|
1728 |
|
|
|
1729 |
|
|
return false;
|
1730 |
|
|
}
|
1731 |
|
|
|
1732 |
|
|
|
1733 |
|
|
/* Create a new memory tag of type TYPE. If IS_TYPE_TAG is true, the tag
|
1734 |
|
|
is considered to represent all the pointers whose pointed-to types are
|
1735 |
|
|
in the same alias set class. Otherwise, the tag represents a single
|
1736 |
|
|
SSA_NAME pointer variable. */
|
1737 |
|
|
|
1738 |
|
|
static tree
|
1739 |
|
|
create_memory_tag (tree type, bool is_type_tag)
|
1740 |
|
|
{
|
1741 |
|
|
var_ann_t ann;
|
1742 |
|
|
tree tag = create_tmp_var_raw (type, (is_type_tag) ? "TMT" : "NMT");
|
1743 |
|
|
|
1744 |
|
|
/* By default, memory tags are local variables. Alias analysis will
|
1745 |
|
|
determine whether they should be considered globals. */
|
1746 |
|
|
DECL_CONTEXT (tag) = current_function_decl;
|
1747 |
|
|
|
1748 |
|
|
/* Memory tags are by definition addressable. */
|
1749 |
|
|
TREE_ADDRESSABLE (tag) = 1;
|
1750 |
|
|
|
1751 |
|
|
ann = get_var_ann (tag);
|
1752 |
|
|
ann->mem_tag_kind = (is_type_tag) ? TYPE_TAG : NAME_TAG;
|
1753 |
|
|
ann->type_mem_tag = NULL_TREE;
|
1754 |
|
|
|
1755 |
|
|
/* Add the tag to the symbol table. */
|
1756 |
|
|
add_referenced_tmp_var (tag);
|
1757 |
|
|
|
1758 |
|
|
return tag;
|
1759 |
|
|
}
|
1760 |
|
|
|
1761 |
|
|
|
1762 |
|
|
/* Create a name memory tag to represent a specific SSA_NAME pointer P_i.
|
1763 |
|
|
This is used if P_i has been found to point to a specific set of
|
1764 |
|
|
variables or to a non-aliased memory location like the address returned
|
1765 |
|
|
by malloc functions. */
|
1766 |
|
|
|
1767 |
|
|
static tree
|
1768 |
|
|
get_nmt_for (tree ptr)
|
1769 |
|
|
{
|
1770 |
|
|
struct ptr_info_def *pi = get_ptr_info (ptr);
|
1771 |
|
|
tree tag = pi->name_mem_tag;
|
1772 |
|
|
|
1773 |
|
|
if (tag == NULL_TREE)
|
1774 |
|
|
tag = create_memory_tag (TREE_TYPE (TREE_TYPE (ptr)), false);
|
1775 |
|
|
|
1776 |
|
|
/* If PTR is a PARM_DECL, it points to a global variable or malloc,
|
1777 |
|
|
then its name tag should be considered a global variable. */
|
1778 |
|
|
if (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL
|
1779 |
|
|
|| pi->pt_global_mem)
|
1780 |
|
|
mark_call_clobbered (tag);
|
1781 |
|
|
|
1782 |
|
|
return tag;
|
1783 |
|
|
}
|
1784 |
|
|
|
1785 |
|
|
|
1786 |
|
|
/* Return the type memory tag associated to pointer PTR. A memory tag is an
|
1787 |
|
|
artificial variable that represents the memory location pointed-to by
|
1788 |
|
|
PTR. It is used to model the effects of pointer de-references on
|
1789 |
|
|
addressable variables.
|
1790 |
|
|
|
1791 |
|
|
AI points to the data gathered during alias analysis. This function
|
1792 |
|
|
populates the array AI->POINTERS. */
|
1793 |
|
|
|
1794 |
|
|
static tree
|
1795 |
|
|
get_tmt_for (tree ptr, struct alias_info *ai)
|
1796 |
|
|
{
|
1797 |
|
|
size_t i;
|
1798 |
|
|
tree tag;
|
1799 |
|
|
tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
|
1800 |
|
|
HOST_WIDE_INT tag_set = get_alias_set (tag_type);
|
1801 |
|
|
|
1802 |
|
|
/* To avoid creating unnecessary memory tags, only create one memory tag
|
1803 |
|
|
per alias set class. Note that it may be tempting to group
|
1804 |
|
|
memory tags based on conflicting alias sets instead of
|
1805 |
|
|
equivalence. That would be wrong because alias sets are not
|
1806 |
|
|
necessarily transitive (as demonstrated by the libstdc++ test
|
1807 |
|
|
23_containers/vector/cons/4.cc). Given three alias sets A, B, C
|
1808 |
|
|
such that conflicts (A, B) == true and conflicts (A, C) == true,
|
1809 |
|
|
it does not necessarily follow that conflicts (B, C) == true. */
|
1810 |
|
|
for (i = 0, tag = NULL_TREE; i < ai->num_pointers; i++)
|
1811 |
|
|
{
|
1812 |
|
|
struct alias_map_d *curr = ai->pointers[i];
|
1813 |
|
|
tree curr_tag = var_ann (curr->var)->type_mem_tag;
|
1814 |
|
|
if (tag_set == curr->set
|
1815 |
|
|
&& TYPE_READONLY (tag_type) == TYPE_READONLY (TREE_TYPE (curr_tag)))
|
1816 |
|
|
{
|
1817 |
|
|
tag = curr_tag;
|
1818 |
|
|
break;
|
1819 |
|
|
}
|
1820 |
|
|
}
|
1821 |
|
|
|
1822 |
|
|
/* If VAR cannot alias with any of the existing memory tags, create a new
|
1823 |
|
|
tag for PTR and add it to the POINTERS array. */
|
1824 |
|
|
if (tag == NULL_TREE)
|
1825 |
|
|
{
|
1826 |
|
|
struct alias_map_d *alias_map;
|
1827 |
|
|
|
1828 |
|
|
/* If PTR did not have a type tag already, create a new TMT.*
|
1829 |
|
|
artificial variable representing the memory location
|
1830 |
|
|
pointed-to by PTR. */
|
1831 |
|
|
if (var_ann (ptr)->type_mem_tag == NULL_TREE)
|
1832 |
|
|
tag = create_memory_tag (tag_type, true);
|
1833 |
|
|
else
|
1834 |
|
|
tag = var_ann (ptr)->type_mem_tag;
|
1835 |
|
|
|
1836 |
|
|
/* Add PTR to the POINTERS array. Note that we are not interested in
|
1837 |
|
|
PTR's alias set. Instead, we cache the alias set for the memory that
|
1838 |
|
|
PTR points to. */
|
1839 |
|
|
alias_map = xcalloc (1, sizeof (*alias_map));
|
1840 |
|
|
alias_map->var = ptr;
|
1841 |
|
|
alias_map->set = tag_set;
|
1842 |
|
|
ai->pointers[ai->num_pointers++] = alias_map;
|
1843 |
|
|
}
|
1844 |
|
|
|
1845 |
|
|
/* If the pointed-to type is volatile, so is the tag. */
|
1846 |
|
|
TREE_THIS_VOLATILE (tag) |= TREE_THIS_VOLATILE (tag_type);
|
1847 |
|
|
|
1848 |
|
|
/* Make sure that the type tag has the same alias set as the
|
1849 |
|
|
pointed-to type. */
|
1850 |
|
|
gcc_assert (tag_set == get_alias_set (tag));
|
1851 |
|
|
|
1852 |
|
|
/* If PTR's pointed-to type is read-only, then TAG's type must also
|
1853 |
|
|
be read-only. */
|
1854 |
|
|
gcc_assert (TYPE_READONLY (tag_type) == TYPE_READONLY (TREE_TYPE (tag)));
|
1855 |
|
|
|
1856 |
|
|
return tag;
|
1857 |
|
|
}
|
1858 |
|
|
|
1859 |
|
|
|
1860 |
|
|
/* Create GLOBAL_VAR, an artificial global variable to act as a
|
1861 |
|
|
representative of all the variables that may be clobbered by function
|
1862 |
|
|
calls. */
|
1863 |
|
|
|
1864 |
|
|
static void
|
1865 |
|
|
create_global_var (void)
|
1866 |
|
|
{
|
1867 |
|
|
global_var = build_decl (VAR_DECL, get_identifier (".GLOBAL_VAR"),
|
1868 |
|
|
void_type_node);
|
1869 |
|
|
DECL_ARTIFICIAL (global_var) = 1;
|
1870 |
|
|
TREE_READONLY (global_var) = 0;
|
1871 |
|
|
DECL_EXTERNAL (global_var) = 1;
|
1872 |
|
|
TREE_STATIC (global_var) = 1;
|
1873 |
|
|
TREE_USED (global_var) = 1;
|
1874 |
|
|
DECL_CONTEXT (global_var) = NULL_TREE;
|
1875 |
|
|
TREE_THIS_VOLATILE (global_var) = 0;
|
1876 |
|
|
TREE_ADDRESSABLE (global_var) = 0;
|
1877 |
|
|
|
1878 |
|
|
add_referenced_tmp_var (global_var);
|
1879 |
|
|
mark_sym_for_renaming (global_var);
|
1880 |
|
|
}
|
1881 |
|
|
|
1882 |
|
|
|
1883 |
|
|
/* Dump alias statistics on FILE. */
|
1884 |
|
|
|
1885 |
|
|
static void
|
1886 |
|
|
dump_alias_stats (FILE *file)
|
1887 |
|
|
{
|
1888 |
|
|
const char *funcname
|
1889 |
|
|
= lang_hooks.decl_printable_name (current_function_decl, 2);
|
1890 |
|
|
fprintf (file, "\nAlias statistics for %s\n\n", funcname);
|
1891 |
|
|
fprintf (file, "Total alias queries:\t%u\n", alias_stats.alias_queries);
|
1892 |
|
|
fprintf (file, "Total alias mayalias results:\t%u\n",
|
1893 |
|
|
alias_stats.alias_mayalias);
|
1894 |
|
|
fprintf (file, "Total alias noalias results:\t%u\n",
|
1895 |
|
|
alias_stats.alias_noalias);
|
1896 |
|
|
fprintf (file, "Total simple queries:\t%u\n",
|
1897 |
|
|
alias_stats.simple_queries);
|
1898 |
|
|
fprintf (file, "Total simple resolved:\t%u\n",
|
1899 |
|
|
alias_stats.simple_resolved);
|
1900 |
|
|
fprintf (file, "Total TBAA queries:\t%u\n",
|
1901 |
|
|
alias_stats.tbaa_queries);
|
1902 |
|
|
fprintf (file, "Total TBAA resolved:\t%u\n",
|
1903 |
|
|
alias_stats.tbaa_resolved);
|
1904 |
|
|
fprintf (file, "Total non-addressable structure type queries:\t%u\n",
|
1905 |
|
|
alias_stats.structnoaddress_queries);
|
1906 |
|
|
fprintf (file, "Total non-addressable structure type resolved:\t%u\n",
|
1907 |
|
|
alias_stats.structnoaddress_resolved);
|
1908 |
|
|
}
|
1909 |
|
|
|
1910 |
|
|
|
1911 |
|
|
/* Dump alias information on FILE. */
|
1912 |
|
|
|
1913 |
|
|
void
|
1914 |
|
|
dump_alias_info (FILE *file)
|
1915 |
|
|
{
|
1916 |
|
|
size_t i;
|
1917 |
|
|
const char *funcname
|
1918 |
|
|
= lang_hooks.decl_printable_name (current_function_decl, 2);
|
1919 |
|
|
referenced_var_iterator rvi;
|
1920 |
|
|
tree var;
|
1921 |
|
|
|
1922 |
|
|
fprintf (file, "\nFlow-insensitive alias information for %s\n\n", funcname);
|
1923 |
|
|
|
1924 |
|
|
fprintf (file, "Aliased symbols\n\n");
|
1925 |
|
|
|
1926 |
|
|
FOR_EACH_REFERENCED_VAR (var, rvi)
|
1927 |
|
|
{
|
1928 |
|
|
if (may_be_aliased (var))
|
1929 |
|
|
dump_variable (file, var);
|
1930 |
|
|
}
|
1931 |
|
|
|
1932 |
|
|
fprintf (file, "\nDereferenced pointers\n\n");
|
1933 |
|
|
|
1934 |
|
|
FOR_EACH_REFERENCED_VAR (var, rvi)
|
1935 |
|
|
{
|
1936 |
|
|
var_ann_t ann = var_ann (var);
|
1937 |
|
|
if (ann->type_mem_tag)
|
1938 |
|
|
dump_variable (file, var);
|
1939 |
|
|
}
|
1940 |
|
|
|
1941 |
|
|
fprintf (file, "\nType memory tags\n\n");
|
1942 |
|
|
|
1943 |
|
|
FOR_EACH_REFERENCED_VAR (var, rvi)
|
1944 |
|
|
{
|
1945 |
|
|
var_ann_t ann = var_ann (var);
|
1946 |
|
|
if (ann->mem_tag_kind == TYPE_TAG)
|
1947 |
|
|
dump_variable (file, var);
|
1948 |
|
|
}
|
1949 |
|
|
|
1950 |
|
|
fprintf (file, "\n\nFlow-sensitive alias information for %s\n\n", funcname);
|
1951 |
|
|
|
1952 |
|
|
fprintf (file, "SSA_NAME pointers\n\n");
|
1953 |
|
|
for (i = 1; i < num_ssa_names; i++)
|
1954 |
|
|
{
|
1955 |
|
|
tree ptr = ssa_name (i);
|
1956 |
|
|
struct ptr_info_def *pi;
|
1957 |
|
|
|
1958 |
|
|
if (ptr == NULL_TREE)
|
1959 |
|
|
continue;
|
1960 |
|
|
|
1961 |
|
|
pi = SSA_NAME_PTR_INFO (ptr);
|
1962 |
|
|
if (!SSA_NAME_IN_FREE_LIST (ptr)
|
1963 |
|
|
&& pi
|
1964 |
|
|
&& pi->name_mem_tag)
|
1965 |
|
|
dump_points_to_info_for (file, ptr);
|
1966 |
|
|
}
|
1967 |
|
|
|
1968 |
|
|
fprintf (file, "\nName memory tags\n\n");
|
1969 |
|
|
|
1970 |
|
|
FOR_EACH_REFERENCED_VAR (var, rvi)
|
1971 |
|
|
{
|
1972 |
|
|
var_ann_t ann = var_ann (var);
|
1973 |
|
|
if (ann->mem_tag_kind == NAME_TAG)
|
1974 |
|
|
dump_variable (file, var);
|
1975 |
|
|
}
|
1976 |
|
|
|
1977 |
|
|
fprintf (file, "\n");
|
1978 |
|
|
}
|
1979 |
|
|
|
1980 |
|
|
|
1981 |
|
|
/* Dump alias information on stderr. */
|
1982 |
|
|
|
1983 |
|
|
void
|
1984 |
|
|
debug_alias_info (void)
|
1985 |
|
|
{
|
1986 |
|
|
dump_alias_info (stderr);
|
1987 |
|
|
}
|
1988 |
|
|
|
1989 |
|
|
|
1990 |
|
|
/* Return the alias information associated with pointer T. It creates a
|
1991 |
|
|
new instance if none existed. */
|
1992 |
|
|
|
1993 |
|
|
struct ptr_info_def *
|
1994 |
|
|
get_ptr_info (tree t)
|
1995 |
|
|
{
|
1996 |
|
|
struct ptr_info_def *pi;
|
1997 |
|
|
|
1998 |
|
|
gcc_assert (POINTER_TYPE_P (TREE_TYPE (t)));
|
1999 |
|
|
|
2000 |
|
|
pi = SSA_NAME_PTR_INFO (t);
|
2001 |
|
|
if (pi == NULL)
|
2002 |
|
|
{
|
2003 |
|
|
pi = ggc_alloc (sizeof (*pi));
|
2004 |
|
|
memset ((void *)pi, 0, sizeof (*pi));
|
2005 |
|
|
SSA_NAME_PTR_INFO (t) = pi;
|
2006 |
|
|
}
|
2007 |
|
|
|
2008 |
|
|
return pi;
|
2009 |
|
|
}
|
2010 |
|
|
|
2011 |
|
|
|
2012 |
|
|
/* Dump points-to information for SSA_NAME PTR into FILE. */
|
2013 |
|
|
|
2014 |
|
|
void
|
2015 |
|
|
dump_points_to_info_for (FILE *file, tree ptr)
|
2016 |
|
|
{
|
2017 |
|
|
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
|
2018 |
|
|
|
2019 |
|
|
print_generic_expr (file, ptr, dump_flags);
|
2020 |
|
|
|
2021 |
|
|
if (pi)
|
2022 |
|
|
{
|
2023 |
|
|
if (pi->name_mem_tag)
|
2024 |
|
|
{
|
2025 |
|
|
fprintf (file, ", name memory tag: ");
|
2026 |
|
|
print_generic_expr (file, pi->name_mem_tag, dump_flags);
|
2027 |
|
|
}
|
2028 |
|
|
|
2029 |
|
|
if (pi->is_dereferenced)
|
2030 |
|
|
fprintf (file, ", is dereferenced");
|
2031 |
|
|
|
2032 |
|
|
if (pi->value_escapes_p)
|
2033 |
|
|
fprintf (file, ", its value escapes");
|
2034 |
|
|
|
2035 |
|
|
if (pi->pt_anything)
|
2036 |
|
|
fprintf (file, ", points-to anything");
|
2037 |
|
|
|
2038 |
|
|
if (pi->pt_null)
|
2039 |
|
|
fprintf (file, ", points-to NULL");
|
2040 |
|
|
|
2041 |
|
|
if (pi->pt_vars)
|
2042 |
|
|
{
|
2043 |
|
|
unsigned ix;
|
2044 |
|
|
bitmap_iterator bi;
|
2045 |
|
|
|
2046 |
|
|
fprintf (file, ", points-to vars: { ");
|
2047 |
|
|
EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, ix, bi)
|
2048 |
|
|
{
|
2049 |
|
|
print_generic_expr (file, referenced_var (ix), dump_flags);
|
2050 |
|
|
fprintf (file, " ");
|
2051 |
|
|
}
|
2052 |
|
|
fprintf (file, "}");
|
2053 |
|
|
}
|
2054 |
|
|
}
|
2055 |
|
|
|
2056 |
|
|
fprintf (file, "\n");
|
2057 |
|
|
}
|
2058 |
|
|
|
2059 |
|
|
|
2060 |
|
|
/* Dump points-to information for VAR into stderr. */
|
2061 |
|
|
|
2062 |
|
|
void
|
2063 |
|
|
debug_points_to_info_for (tree var)
|
2064 |
|
|
{
|
2065 |
|
|
dump_points_to_info_for (stderr, var);
|
2066 |
|
|
}
|
2067 |
|
|
|
2068 |
|
|
|
2069 |
|
|
/* Dump points-to information into FILE. NOTE: This function is slow, as
|
2070 |
|
|
it needs to traverse the whole CFG looking for pointer SSA_NAMEs. */
|
2071 |
|
|
|
2072 |
|
|
void
|
2073 |
|
|
dump_points_to_info (FILE *file)
|
2074 |
|
|
{
|
2075 |
|
|
basic_block bb;
|
2076 |
|
|
block_stmt_iterator si;
|
2077 |
|
|
ssa_op_iter iter;
|
2078 |
|
|
const char *fname =
|
2079 |
|
|
lang_hooks.decl_printable_name (current_function_decl, 2);
|
2080 |
|
|
referenced_var_iterator rvi;
|
2081 |
|
|
tree var;
|
2082 |
|
|
|
2083 |
|
|
fprintf (file, "\n\nPointed-to sets for pointers in %s\n\n", fname);
|
2084 |
|
|
|
2085 |
|
|
/* First dump points-to information for the default definitions of
|
2086 |
|
|
pointer variables. This is necessary because default definitions are
|
2087 |
|
|
not part of the code. */
|
2088 |
|
|
FOR_EACH_REFERENCED_VAR (var, rvi)
|
2089 |
|
|
{
|
2090 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (var)))
|
2091 |
|
|
{
|
2092 |
|
|
tree def = default_def (var);
|
2093 |
|
|
if (def)
|
2094 |
|
|
dump_points_to_info_for (file, def);
|
2095 |
|
|
}
|
2096 |
|
|
}
|
2097 |
|
|
|
2098 |
|
|
/* Dump points-to information for every pointer defined in the program. */
|
2099 |
|
|
FOR_EACH_BB (bb)
|
2100 |
|
|
{
|
2101 |
|
|
tree phi;
|
2102 |
|
|
|
2103 |
|
|
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
2104 |
|
|
{
|
2105 |
|
|
tree ptr = PHI_RESULT (phi);
|
2106 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (ptr)))
|
2107 |
|
|
dump_points_to_info_for (file, ptr);
|
2108 |
|
|
}
|
2109 |
|
|
|
2110 |
|
|
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
|
2111 |
|
|
{
|
2112 |
|
|
tree stmt = bsi_stmt (si);
|
2113 |
|
|
tree def;
|
2114 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
|
2115 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (def)))
|
2116 |
|
|
dump_points_to_info_for (file, def);
|
2117 |
|
|
}
|
2118 |
|
|
}
|
2119 |
|
|
|
2120 |
|
|
fprintf (file, "\n");
|
2121 |
|
|
}
|
2122 |
|
|
|
2123 |
|
|
|
2124 |
|
|
/* Dump points-to info pointed to by PTO into STDERR. */
|
2125 |
|
|
|
2126 |
|
|
void
|
2127 |
|
|
debug_points_to_info (void)
|
2128 |
|
|
{
|
2129 |
|
|
dump_points_to_info (stderr);
|
2130 |
|
|
}
|
2131 |
|
|
|
2132 |
|
|
/* Dump to FILE the list of variables that may be aliasing VAR. */
|
2133 |
|
|
|
2134 |
|
|
void
|
2135 |
|
|
dump_may_aliases_for (FILE *file, tree var)
|
2136 |
|
|
{
|
2137 |
|
|
varray_type aliases;
|
2138 |
|
|
|
2139 |
|
|
if (TREE_CODE (var) == SSA_NAME)
|
2140 |
|
|
var = SSA_NAME_VAR (var);
|
2141 |
|
|
|
2142 |
|
|
aliases = var_ann (var)->may_aliases;
|
2143 |
|
|
if (aliases)
|
2144 |
|
|
{
|
2145 |
|
|
size_t i;
|
2146 |
|
|
fprintf (file, "{ ");
|
2147 |
|
|
for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
|
2148 |
|
|
{
|
2149 |
|
|
print_generic_expr (file, VARRAY_TREE (aliases, i), dump_flags);
|
2150 |
|
|
fprintf (file, " ");
|
2151 |
|
|
}
|
2152 |
|
|
fprintf (file, "}");
|
2153 |
|
|
}
|
2154 |
|
|
}
|
2155 |
|
|
|
2156 |
|
|
|
2157 |
|
|
/* Dump to stderr the list of variables that may be aliasing VAR. */
|
2158 |
|
|
|
2159 |
|
|
void
|
2160 |
|
|
debug_may_aliases_for (tree var)
|
2161 |
|
|
{
|
2162 |
|
|
dump_may_aliases_for (stderr, var);
|
2163 |
|
|
}
|
2164 |
|
|
|
2165 |
|
|
/* Return true if VAR may be aliased. */
|
2166 |
|
|
|
2167 |
|
|
bool
|
2168 |
|
|
may_be_aliased (tree var)
|
2169 |
|
|
{
|
2170 |
|
|
/* Obviously. */
|
2171 |
|
|
if (TREE_ADDRESSABLE (var))
|
2172 |
|
|
return true;
|
2173 |
|
|
|
2174 |
|
|
/* Globally visible variables can have their addresses taken by other
|
2175 |
|
|
translation units. */
|
2176 |
|
|
if (DECL_EXTERNAL (var) || TREE_PUBLIC (var))
|
2177 |
|
|
return true;
|
2178 |
|
|
|
2179 |
|
|
/* Automatic variables can't have their addresses escape any other way.
|
2180 |
|
|
This must be after the check for global variables, as extern declarations
|
2181 |
|
|
do not have TREE_STATIC set. */
|
2182 |
|
|
if (!TREE_STATIC (var))
|
2183 |
|
|
return false;
|
2184 |
|
|
|
2185 |
|
|
/* If we're in unit-at-a-time mode, then we must have seen all occurrences
|
2186 |
|
|
of address-of operators, and so we can trust TREE_ADDRESSABLE. Otherwise
|
2187 |
|
|
we can only be sure the variable isn't addressable if it's local to the
|
2188 |
|
|
current function. */
|
2189 |
|
|
if (flag_unit_at_a_time)
|
2190 |
|
|
return false;
|
2191 |
|
|
if (decl_function_context (var) == current_function_decl)
|
2192 |
|
|
return false;
|
2193 |
|
|
|
2194 |
|
|
return true;
|
2195 |
|
|
}
|
2196 |
|
|
|
2197 |
|
|
|
2198 |
|
|
/* Given two symbols return TRUE if one is in the alias set of the other. */
|
2199 |
|
|
bool
|
2200 |
|
|
is_aliased_with (tree tag, tree sym)
|
2201 |
|
|
{
|
2202 |
|
|
size_t i;
|
2203 |
|
|
varray_type aliases;
|
2204 |
|
|
|
2205 |
|
|
if (var_ann (sym)->is_alias_tag)
|
2206 |
|
|
{
|
2207 |
|
|
aliases = var_ann (tag)->may_aliases;
|
2208 |
|
|
|
2209 |
|
|
if (aliases == NULL)
|
2210 |
|
|
return false;
|
2211 |
|
|
|
2212 |
|
|
for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
|
2213 |
|
|
if (VARRAY_TREE (aliases, i) == sym)
|
2214 |
|
|
return true;
|
2215 |
|
|
}
|
2216 |
|
|
else
|
2217 |
|
|
{
|
2218 |
|
|
aliases = var_ann (sym)->may_aliases;
|
2219 |
|
|
|
2220 |
|
|
if (aliases == NULL)
|
2221 |
|
|
return false;
|
2222 |
|
|
|
2223 |
|
|
for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
|
2224 |
|
|
if (VARRAY_TREE (aliases, i) == tag)
|
2225 |
|
|
return true;
|
2226 |
|
|
}
|
2227 |
|
|
|
2228 |
|
|
return false;
|
2229 |
|
|
}
|
2230 |
|
|
|
2231 |
|
|
|
2232 |
|
|
/* Add VAR to the list of may-aliases of PTR's type tag. If PTR
|
2233 |
|
|
doesn't already have a type tag, create one. */
|
2234 |
|
|
|
2235 |
|
|
void
|
2236 |
|
|
add_type_alias (tree ptr, tree var)
|
2237 |
|
|
{
|
2238 |
|
|
varray_type aliases;
|
2239 |
|
|
tree tag;
|
2240 |
|
|
var_ann_t ann = var_ann (ptr);
|
2241 |
|
|
subvar_t svars;
|
2242 |
|
|
VEC (tree, heap) *varvec = NULL;
|
2243 |
|
|
|
2244 |
|
|
if (ann->type_mem_tag == NULL_TREE)
|
2245 |
|
|
{
|
2246 |
|
|
tree q = NULL_TREE;
|
2247 |
|
|
tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
|
2248 |
|
|
HOST_WIDE_INT tag_set = get_alias_set (tag_type);
|
2249 |
|
|
safe_referenced_var_iterator rvi;
|
2250 |
|
|
|
2251 |
|
|
/* PTR doesn't have a type tag, create a new one and add VAR to
|
2252 |
|
|
the new tag's alias set.
|
2253 |
|
|
|
2254 |
|
|
FIXME, This is slower than necessary. We need to determine
|
2255 |
|
|
whether there is another pointer Q with the same alias set as
|
2256 |
|
|
PTR. This could be sped up by having type tags associated
|
2257 |
|
|
with types. */
|
2258 |
|
|
FOR_EACH_REFERENCED_VAR_SAFE (q, varvec, rvi)
|
2259 |
|
|
{
|
2260 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (q))
|
2261 |
|
|
&& tag_set == get_alias_set (TREE_TYPE (TREE_TYPE (q))))
|
2262 |
|
|
{
|
2263 |
|
|
/* Found another pointer Q with the same alias set as
|
2264 |
|
|
the PTR's pointed-to type. If Q has a type tag, use
|
2265 |
|
|
it. Otherwise, create a new memory tag for PTR. */
|
2266 |
|
|
var_ann_t ann1 = var_ann (q);
|
2267 |
|
|
if (ann1->type_mem_tag)
|
2268 |
|
|
ann->type_mem_tag = ann1->type_mem_tag;
|
2269 |
|
|
else
|
2270 |
|
|
ann->type_mem_tag = create_memory_tag (tag_type, true);
|
2271 |
|
|
goto found_tag;
|
2272 |
|
|
}
|
2273 |
|
|
}
|
2274 |
|
|
|
2275 |
|
|
/* Couldn't find any other pointer with a type tag we could use.
|
2276 |
|
|
Create a new memory tag for PTR. */
|
2277 |
|
|
ann->type_mem_tag = create_memory_tag (tag_type, true);
|
2278 |
|
|
}
|
2279 |
|
|
|
2280 |
|
|
found_tag:
|
2281 |
|
|
/* If VAR is not already PTR's type tag, add it to the may-alias set
|
2282 |
|
|
for PTR's type tag. */
|
2283 |
|
|
gcc_assert (var_ann (var)->type_mem_tag == NOT_A_TAG);
|
2284 |
|
|
tag = ann->type_mem_tag;
|
2285 |
|
|
|
2286 |
|
|
/* If VAR has subvars, add the subvars to the tag instead of the
|
2287 |
|
|
actual var. */
|
2288 |
|
|
if (var_can_have_subvars (var)
|
2289 |
|
|
&& (svars = get_subvars_for_var (var)))
|
2290 |
|
|
{
|
2291 |
|
|
subvar_t sv;
|
2292 |
|
|
for (sv = svars; sv; sv = sv->next)
|
2293 |
|
|
add_may_alias (tag, sv->var);
|
2294 |
|
|
}
|
2295 |
|
|
else
|
2296 |
|
|
add_may_alias (tag, var);
|
2297 |
|
|
|
2298 |
|
|
/* TAG and its set of aliases need to be marked for renaming. */
|
2299 |
|
|
mark_sym_for_renaming (tag);
|
2300 |
|
|
if ((aliases = var_ann (tag)->may_aliases) != NULL)
|
2301 |
|
|
{
|
2302 |
|
|
size_t i;
|
2303 |
|
|
for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
|
2304 |
|
|
mark_sym_for_renaming (VARRAY_TREE (aliases, i));
|
2305 |
|
|
}
|
2306 |
|
|
|
2307 |
|
|
/* If we had grouped aliases, VAR may have aliases of its own. Mark
|
2308 |
|
|
them for renaming as well. Other statements referencing the
|
2309 |
|
|
aliases of VAR will need to be updated. */
|
2310 |
|
|
if ((aliases = var_ann (var)->may_aliases) != NULL)
|
2311 |
|
|
{
|
2312 |
|
|
size_t i;
|
2313 |
|
|
for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
|
2314 |
|
|
mark_sym_for_renaming (VARRAY_TREE (aliases, i));
|
2315 |
|
|
}
|
2316 |
|
|
VEC_free (tree, heap, varvec);
|
2317 |
|
|
}
|
2318 |
|
|
|
2319 |
|
|
|
2320 |
|
|
/* Create a new type tag for PTR. Construct the may-alias list of this type
|
2321 |
|
|
tag so that it has the aliasing of VAR.
|
2322 |
|
|
|
2323 |
|
|
Note, the set of aliases represented by the new type tag are not marked
|
2324 |
|
|
for renaming. */
|
2325 |
|
|
|
2326 |
|
|
void
|
2327 |
|
|
new_type_alias (tree ptr, tree var)
|
2328 |
|
|
{
|
2329 |
|
|
var_ann_t p_ann = var_ann (ptr);
|
2330 |
|
|
tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
|
2331 |
|
|
var_ann_t v_ann = var_ann (var);
|
2332 |
|
|
tree tag;
|
2333 |
|
|
subvar_t svars;
|
2334 |
|
|
|
2335 |
|
|
gcc_assert (p_ann->type_mem_tag == NULL_TREE);
|
2336 |
|
|
gcc_assert (v_ann->mem_tag_kind == NOT_A_TAG);
|
2337 |
|
|
|
2338 |
|
|
/* Add VAR to the may-alias set of PTR's new type tag. If VAR has
|
2339 |
|
|
subvars, add the subvars to the tag instead of the actual var. */
|
2340 |
|
|
if (var_can_have_subvars (var)
|
2341 |
|
|
&& (svars = get_subvars_for_var (var)))
|
2342 |
|
|
{
|
2343 |
|
|
subvar_t sv;
|
2344 |
|
|
|
2345 |
|
|
tag = create_memory_tag (tag_type, true);
|
2346 |
|
|
p_ann->type_mem_tag = tag;
|
2347 |
|
|
|
2348 |
|
|
for (sv = svars; sv; sv = sv->next)
|
2349 |
|
|
add_may_alias (tag, sv->var);
|
2350 |
|
|
}
|
2351 |
|
|
else
|
2352 |
|
|
{
|
2353 |
|
|
/* The following is based on code in add_stmt_operand to ensure that the
|
2354 |
|
|
same defs/uses/vdefs/vuses will be found after replacing a reference
|
2355 |
|
|
to var (or ARRAY_REF to var) with an INDIRECT_REF to ptr whose value
|
2356 |
|
|
is the address of var. */
|
2357 |
|
|
varray_type aliases = v_ann->may_aliases;
|
2358 |
|
|
|
2359 |
|
|
if ((aliases != NULL)
|
2360 |
|
|
&& (VARRAY_ACTIVE_SIZE (aliases) == 1))
|
2361 |
|
|
{
|
2362 |
|
|
tree ali = VARRAY_TREE (aliases, 0);
|
2363 |
|
|
|
2364 |
|
|
if (get_var_ann (ali)->mem_tag_kind == TYPE_TAG)
|
2365 |
|
|
{
|
2366 |
|
|
p_ann->type_mem_tag = ali;
|
2367 |
|
|
return;
|
2368 |
|
|
}
|
2369 |
|
|
}
|
2370 |
|
|
|
2371 |
|
|
tag = create_memory_tag (tag_type, true);
|
2372 |
|
|
p_ann->type_mem_tag = tag;
|
2373 |
|
|
|
2374 |
|
|
if (aliases == NULL)
|
2375 |
|
|
add_may_alias (tag, var);
|
2376 |
|
|
else
|
2377 |
|
|
{
|
2378 |
|
|
size_t i;
|
2379 |
|
|
|
2380 |
|
|
for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
|
2381 |
|
|
add_may_alias (tag, VARRAY_TREE (aliases, i));
|
2382 |
|
|
}
|
2383 |
|
|
}
|
2384 |
|
|
}
|
2385 |
|
|
|
2386 |
|
|
|
2387 |
|
|
|
2388 |
|
|
/* This represents the used range of a variable. */
|
2389 |
|
|
|
2390 |
|
|
typedef struct used_part
|
2391 |
|
|
{
|
2392 |
|
|
HOST_WIDE_INT minused;
|
2393 |
|
|
HOST_WIDE_INT maxused;
|
2394 |
|
|
/* True if we have an explicit use/def of some portion of this variable,
|
2395 |
|
|
even if it is all of it. i.e. a.b = 5 or temp = a.b. */
|
2396 |
|
|
bool explicit_uses;
|
2397 |
|
|
/* True if we have an implicit use/def of some portion of this
|
2398 |
|
|
variable. Implicit uses occur when we can't tell what part we
|
2399 |
|
|
are referencing, and have to make conservative assumptions. */
|
2400 |
|
|
bool implicit_uses;
|
2401 |
|
|
} *used_part_t;
|
2402 |
|
|
|
2403 |
|
|
/* An array of used_part structures, indexed by variable uid. */
|
2404 |
|
|
|
2405 |
|
|
static htab_t used_portions;
|
2406 |
|
|
|
2407 |
|
|
struct used_part_map
|
2408 |
|
|
{
|
2409 |
|
|
unsigned int uid;
|
2410 |
|
|
used_part_t to;
|
2411 |
|
|
};
|
2412 |
|
|
|
2413 |
|
|
/* Return true if the uid in the two used part maps are equal. */
|
2414 |
|
|
|
2415 |
|
|
static int
|
2416 |
|
|
used_part_map_eq (const void *va, const void *vb)
|
2417 |
|
|
{
|
2418 |
|
|
const struct used_part_map *a = va, *b = vb;
|
2419 |
|
|
return (a->uid == b->uid);
|
2420 |
|
|
}
|
2421 |
|
|
|
2422 |
|
|
/* Hash a from uid in a used_part_map. */
|
2423 |
|
|
|
2424 |
|
|
static unsigned int
|
2425 |
|
|
used_part_map_hash (const void *item)
|
2426 |
|
|
{
|
2427 |
|
|
return ((const struct used_part_map *)item)->uid;
|
2428 |
|
|
}
|
2429 |
|
|
|
2430 |
|
|
/* Free a used part map element. */
|
2431 |
|
|
|
2432 |
|
|
static void
|
2433 |
|
|
free_used_part_map (void *item)
|
2434 |
|
|
{
|
2435 |
|
|
free (((struct used_part_map *)item)->to);
|
2436 |
|
|
free (item);
|
2437 |
|
|
}
|
2438 |
|
|
|
2439 |
|
|
/* Lookup a used_part structure for a UID. */
|
2440 |
|
|
|
2441 |
|
|
static used_part_t
|
2442 |
|
|
up_lookup (unsigned int uid)
|
2443 |
|
|
{
|
2444 |
|
|
struct used_part_map *h, in;
|
2445 |
|
|
in.uid = uid;
|
2446 |
|
|
h = htab_find_with_hash (used_portions, &in, uid);
|
2447 |
|
|
if (!h)
|
2448 |
|
|
return NULL;
|
2449 |
|
|
return h->to;
|
2450 |
|
|
}
|
2451 |
|
|
|
2452 |
|
|
/* Insert the pair UID, TO into the used part hashtable. */
|
2453 |
|
|
|
2454 |
|
|
static void
|
2455 |
|
|
up_insert (unsigned int uid, used_part_t to)
|
2456 |
|
|
{
|
2457 |
|
|
struct used_part_map *h;
|
2458 |
|
|
void **loc;
|
2459 |
|
|
|
2460 |
|
|
h = xmalloc (sizeof (struct used_part_map));
|
2461 |
|
|
h->uid = uid;
|
2462 |
|
|
h->to = to;
|
2463 |
|
|
loc = htab_find_slot_with_hash (used_portions, h,
|
2464 |
|
|
uid, INSERT);
|
2465 |
|
|
if (*loc != NULL)
|
2466 |
|
|
free (*loc);
|
2467 |
|
|
*(struct used_part_map **) loc = h;
|
2468 |
|
|
}
|
2469 |
|
|
|
2470 |
|
|
|
2471 |
|
|
/* Given a variable uid, UID, get or create the entry in the used portions
|
2472 |
|
|
table for the variable. */
|
2473 |
|
|
|
2474 |
|
|
static used_part_t
|
2475 |
|
|
get_or_create_used_part_for (size_t uid)
|
2476 |
|
|
{
|
2477 |
|
|
used_part_t up;
|
2478 |
|
|
if ((up = up_lookup (uid)) == NULL)
|
2479 |
|
|
{
|
2480 |
|
|
up = xcalloc (1, sizeof (struct used_part));
|
2481 |
|
|
up->minused = INT_MAX;
|
2482 |
|
|
up->maxused = 0;
|
2483 |
|
|
up->explicit_uses = false;
|
2484 |
|
|
up->implicit_uses = false;
|
2485 |
|
|
}
|
2486 |
|
|
|
2487 |
|
|
return up;
|
2488 |
|
|
}
|
2489 |
|
|
|
2490 |
|
|
|
2491 |
|
|
/* Create and return a structure sub-variable for field FIELD of
|
2492 |
|
|
variable VAR. */
|
2493 |
|
|
|
2494 |
|
|
static tree
|
2495 |
|
|
create_sft (tree var, tree field)
|
2496 |
|
|
{
|
2497 |
|
|
var_ann_t ann;
|
2498 |
|
|
tree subvar = create_tmp_var_raw (TREE_TYPE (field), "SFT");
|
2499 |
|
|
|
2500 |
|
|
/* We need to copy the various flags from VAR to SUBVAR, so that
|
2501 |
|
|
they are is_global_var iff the original variable was. */
|
2502 |
|
|
DECL_CONTEXT (subvar) = DECL_CONTEXT (var);
|
2503 |
|
|
DECL_EXTERNAL (subvar) = DECL_EXTERNAL (var);
|
2504 |
|
|
TREE_PUBLIC (subvar) = TREE_PUBLIC (var);
|
2505 |
|
|
TREE_STATIC (subvar) = TREE_STATIC (var);
|
2506 |
|
|
TREE_READONLY (subvar) = TREE_READONLY (var);
|
2507 |
|
|
TREE_ADDRESSABLE (subvar) = TREE_ADDRESSABLE (var);
|
2508 |
|
|
|
2509 |
|
|
/* Add the new variable to REFERENCED_VARS. */
|
2510 |
|
|
ann = get_var_ann (subvar);
|
2511 |
|
|
ann->mem_tag_kind = STRUCT_FIELD;
|
2512 |
|
|
ann->type_mem_tag = NULL;
|
2513 |
|
|
add_referenced_tmp_var (subvar);
|
2514 |
|
|
|
2515 |
|
|
return subvar;
|
2516 |
|
|
}
|
2517 |
|
|
|
2518 |
|
|
|
2519 |
|
|
/* Given an aggregate VAR, create the subvariables that represent its
|
2520 |
|
|
fields. */
|
2521 |
|
|
|
2522 |
|
|
static void
|
2523 |
|
|
create_overlap_variables_for (tree var)
|
2524 |
|
|
{
|
2525 |
|
|
VEC(fieldoff_s,heap) *fieldstack = NULL;
|
2526 |
|
|
used_part_t up;
|
2527 |
|
|
size_t uid = DECL_UID (var);
|
2528 |
|
|
|
2529 |
|
|
if (!up_lookup (uid))
|
2530 |
|
|
return;
|
2531 |
|
|
|
2532 |
|
|
up = up_lookup (uid);
|
2533 |
|
|
push_fields_onto_fieldstack (TREE_TYPE (var), &fieldstack, 0, NULL);
|
2534 |
|
|
if (VEC_length (fieldoff_s, fieldstack) != 0)
|
2535 |
|
|
{
|
2536 |
|
|
subvar_t *subvars;
|
2537 |
|
|
fieldoff_s *fo;
|
2538 |
|
|
bool notokay = false;
|
2539 |
|
|
int fieldcount = 0;
|
2540 |
|
|
int i;
|
2541 |
|
|
HOST_WIDE_INT lastfooffset = -1;
|
2542 |
|
|
HOST_WIDE_INT lastfosize = -1;
|
2543 |
|
|
tree lastfotype = NULL_TREE;
|
2544 |
|
|
|
2545 |
|
|
/* Not all fields have DECL_SIZE set, and those that don't, we don't
|
2546 |
|
|
know their size, and thus, can't handle.
|
2547 |
|
|
The same is true of fields with DECL_SIZE that is not an integer
|
2548 |
|
|
constant (such as variable sized fields).
|
2549 |
|
|
Fields with offsets which are not constant will have an offset < 0
|
2550 |
|
|
We *could* handle fields that are constant sized arrays, but
|
2551 |
|
|
currently don't. Doing so would require some extra changes to
|
2552 |
|
|
tree-ssa-operands.c. */
|
2553 |
|
|
|
2554 |
|
|
for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
|
2555 |
|
|
{
|
2556 |
|
|
if (!DECL_SIZE (fo->field)
|
2557 |
|
|
|| TREE_CODE (DECL_SIZE (fo->field)) != INTEGER_CST
|
2558 |
|
|
|| TREE_CODE (TREE_TYPE (fo->field)) == ARRAY_TYPE
|
2559 |
|
|
|| fo->offset < 0)
|
2560 |
|
|
{
|
2561 |
|
|
notokay = true;
|
2562 |
|
|
break;
|
2563 |
|
|
}
|
2564 |
|
|
fieldcount++;
|
2565 |
|
|
}
|
2566 |
|
|
|
2567 |
|
|
/* The current heuristic we use is as follows:
|
2568 |
|
|
If the variable has no used portions in this function, no
|
2569 |
|
|
structure vars are created for it.
|
2570 |
|
|
Otherwise,
|
2571 |
|
|
If the variable has less than SALIAS_MAX_IMPLICIT_FIELDS,
|
2572 |
|
|
we always create structure vars for them.
|
2573 |
|
|
If the variable has more than SALIAS_MAX_IMPLICIT_FIELDS, and
|
2574 |
|
|
some explicit uses, we create structure vars for them.
|
2575 |
|
|
If the variable has more than SALIAS_MAX_IMPLICIT_FIELDS, and
|
2576 |
|
|
no explicit uses, we do not create structure vars for them.
|
2577 |
|
|
*/
|
2578 |
|
|
|
2579 |
|
|
if (fieldcount >= SALIAS_MAX_IMPLICIT_FIELDS
|
2580 |
|
|
&& !up->explicit_uses)
|
2581 |
|
|
{
|
2582 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2583 |
|
|
{
|
2584 |
|
|
fprintf (dump_file, "Variable ");
|
2585 |
|
|
print_generic_expr (dump_file, var, 0);
|
2586 |
|
|
fprintf (dump_file, " has no explicit uses in this function, and is > SALIAS_MAX_IMPLICIT_FIELDS, so skipping\n");
|
2587 |
|
|
}
|
2588 |
|
|
notokay = true;
|
2589 |
|
|
}
|
2590 |
|
|
|
2591 |
|
|
/* Bail out, if we can't create overlap variables. */
|
2592 |
|
|
if (notokay)
|
2593 |
|
|
{
|
2594 |
|
|
VEC_free (fieldoff_s, heap, fieldstack);
|
2595 |
|
|
return;
|
2596 |
|
|
}
|
2597 |
|
|
|
2598 |
|
|
/* Otherwise, create the variables. */
|
2599 |
|
|
subvars = lookup_subvars_for_var (var);
|
2600 |
|
|
|
2601 |
|
|
sort_fieldstack (fieldstack);
|
2602 |
|
|
|
2603 |
|
|
for (i = VEC_length (fieldoff_s, fieldstack);
|
2604 |
|
|
VEC_iterate (fieldoff_s, fieldstack, --i, fo);)
|
2605 |
|
|
{
|
2606 |
|
|
subvar_t sv;
|
2607 |
|
|
HOST_WIDE_INT fosize;
|
2608 |
|
|
tree currfotype;
|
2609 |
|
|
|
2610 |
|
|
fosize = TREE_INT_CST_LOW (DECL_SIZE (fo->field));
|
2611 |
|
|
currfotype = TREE_TYPE (fo->field);
|
2612 |
|
|
|
2613 |
|
|
/* If this field isn't in the used portion,
|
2614 |
|
|
or it has the exact same offset and size as the last
|
2615 |
|
|
field, skip it. */
|
2616 |
|
|
|
2617 |
|
|
if (((fo->offset <= up->minused
|
2618 |
|
|
&& fo->offset + fosize <= up->minused)
|
2619 |
|
|
|| fo->offset >= up->maxused)
|
2620 |
|
|
|| (fo->offset == lastfooffset
|
2621 |
|
|
&& fosize == lastfosize
|
2622 |
|
|
&& currfotype == lastfotype))
|
2623 |
|
|
continue;
|
2624 |
|
|
sv = ggc_alloc (sizeof (struct subvar));
|
2625 |
|
|
sv->offset = fo->offset;
|
2626 |
|
|
sv->size = fosize;
|
2627 |
|
|
sv->next = *subvars;
|
2628 |
|
|
sv->var = create_sft (var, fo->field);
|
2629 |
|
|
|
2630 |
|
|
if (dump_file)
|
2631 |
|
|
{
|
2632 |
|
|
fprintf (dump_file, "structure field tag %s created for var %s",
|
2633 |
|
|
get_name (sv->var), get_name (var));
|
2634 |
|
|
fprintf (dump_file, " offset " HOST_WIDE_INT_PRINT_DEC,
|
2635 |
|
|
sv->offset);
|
2636 |
|
|
fprintf (dump_file, " size " HOST_WIDE_INT_PRINT_DEC,
|
2637 |
|
|
sv->size);
|
2638 |
|
|
fprintf (dump_file, "\n");
|
2639 |
|
|
}
|
2640 |
|
|
|
2641 |
|
|
lastfotype = currfotype;
|
2642 |
|
|
lastfooffset = fo->offset;
|
2643 |
|
|
lastfosize = fosize;
|
2644 |
|
|
*subvars = sv;
|
2645 |
|
|
}
|
2646 |
|
|
|
2647 |
|
|
/* Once we have created subvars, the original is no longer call
|
2648 |
|
|
clobbered on its own. Its call clobbered status depends
|
2649 |
|
|
completely on the call clobbered status of the subvars.
|
2650 |
|
|
|
2651 |
|
|
add_referenced_var in the above loop will take care of
|
2652 |
|
|
marking subvars of global variables as call clobbered for us
|
2653 |
|
|
to start, since they are global as well. */
|
2654 |
|
|
clear_call_clobbered (var);
|
2655 |
|
|
}
|
2656 |
|
|
|
2657 |
|
|
VEC_free (fieldoff_s, heap, fieldstack);
|
2658 |
|
|
}
|
2659 |
|
|
|
2660 |
|
|
|
2661 |
|
|
/* Find the conservative answer to the question of what portions of what
|
2662 |
|
|
structures are used by this statement. We assume that if we have a
|
2663 |
|
|
component ref with a known size + offset, that we only need that part
|
2664 |
|
|
of the structure. For unknown cases, or cases where we do something
|
2665 |
|
|
to the whole structure, we assume we need to create fields for the
|
2666 |
|
|
entire structure. */
|
2667 |
|
|
|
2668 |
|
|
static tree
|
2669 |
|
|
find_used_portions (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
|
2670 |
|
|
{
|
2671 |
|
|
switch (TREE_CODE (*tp))
|
2672 |
|
|
{
|
2673 |
|
|
case COMPONENT_REF:
|
2674 |
|
|
{
|
2675 |
|
|
HOST_WIDE_INT bitsize;
|
2676 |
|
|
HOST_WIDE_INT bitpos;
|
2677 |
|
|
tree offset;
|
2678 |
|
|
enum machine_mode mode;
|
2679 |
|
|
int unsignedp;
|
2680 |
|
|
int volatilep;
|
2681 |
|
|
tree ref;
|
2682 |
|
|
ref = get_inner_reference (*tp, &bitsize, &bitpos, &offset, &mode,
|
2683 |
|
|
&unsignedp, &volatilep, false);
|
2684 |
|
|
if (DECL_P (ref) && offset == NULL && bitsize != -1)
|
2685 |
|
|
{
|
2686 |
|
|
size_t uid = DECL_UID (ref);
|
2687 |
|
|
used_part_t up;
|
2688 |
|
|
|
2689 |
|
|
up = get_or_create_used_part_for (uid);
|
2690 |
|
|
|
2691 |
|
|
if (bitpos <= up->minused)
|
2692 |
|
|
up->minused = bitpos;
|
2693 |
|
|
if ((bitpos + bitsize >= up->maxused))
|
2694 |
|
|
up->maxused = bitpos + bitsize;
|
2695 |
|
|
|
2696 |
|
|
up->explicit_uses = true;
|
2697 |
|
|
up_insert (uid, up);
|
2698 |
|
|
|
2699 |
|
|
*walk_subtrees = 0;
|
2700 |
|
|
return NULL_TREE;
|
2701 |
|
|
}
|
2702 |
|
|
else if (DECL_P (ref))
|
2703 |
|
|
{
|
2704 |
|
|
if (DECL_SIZE (ref)
|
2705 |
|
|
&& var_can_have_subvars (ref)
|
2706 |
|
|
&& TREE_CODE (DECL_SIZE (ref)) == INTEGER_CST)
|
2707 |
|
|
{
|
2708 |
|
|
used_part_t up;
|
2709 |
|
|
size_t uid = DECL_UID (ref);
|
2710 |
|
|
|
2711 |
|
|
up = get_or_create_used_part_for (uid);
|
2712 |
|
|
|
2713 |
|
|
up->minused = 0;
|
2714 |
|
|
up->maxused = TREE_INT_CST_LOW (DECL_SIZE (ref));
|
2715 |
|
|
|
2716 |
|
|
up->implicit_uses = true;
|
2717 |
|
|
|
2718 |
|
|
up_insert (uid, up);
|
2719 |
|
|
|
2720 |
|
|
*walk_subtrees = 0;
|
2721 |
|
|
return NULL_TREE;
|
2722 |
|
|
}
|
2723 |
|
|
}
|
2724 |
|
|
}
|
2725 |
|
|
break;
|
2726 |
|
|
/* This is here to make sure we mark the entire base variable as used
|
2727 |
|
|
when you take its address. Because our used portion analysis is
|
2728 |
|
|
simple, we aren't looking at casts or pointer arithmetic to see what
|
2729 |
|
|
happens when you take the address. */
|
2730 |
|
|
case ADDR_EXPR:
|
2731 |
|
|
{
|
2732 |
|
|
tree var = get_base_address (TREE_OPERAND (*tp, 0));
|
2733 |
|
|
|
2734 |
|
|
if (var
|
2735 |
|
|
&& DECL_P (var)
|
2736 |
|
|
&& DECL_SIZE (var)
|
2737 |
|
|
&& var_can_have_subvars (var)
|
2738 |
|
|
&& TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
|
2739 |
|
|
{
|
2740 |
|
|
used_part_t up;
|
2741 |
|
|
size_t uid = DECL_UID (var);
|
2742 |
|
|
|
2743 |
|
|
up = get_or_create_used_part_for (uid);
|
2744 |
|
|
|
2745 |
|
|
up->minused = 0;
|
2746 |
|
|
up->maxused = TREE_INT_CST_LOW (DECL_SIZE (var));
|
2747 |
|
|
up->implicit_uses = true;
|
2748 |
|
|
|
2749 |
|
|
up_insert (uid, up);
|
2750 |
|
|
*walk_subtrees = 0;
|
2751 |
|
|
return NULL_TREE;
|
2752 |
|
|
}
|
2753 |
|
|
}
|
2754 |
|
|
break;
|
2755 |
|
|
case VAR_DECL:
|
2756 |
|
|
case PARM_DECL:
|
2757 |
|
|
case RESULT_DECL:
|
2758 |
|
|
{
|
2759 |
|
|
tree var = *tp;
|
2760 |
|
|
if (DECL_SIZE (var)
|
2761 |
|
|
&& var_can_have_subvars (var)
|
2762 |
|
|
&& TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
|
2763 |
|
|
{
|
2764 |
|
|
used_part_t up;
|
2765 |
|
|
size_t uid = DECL_UID (var);
|
2766 |
|
|
|
2767 |
|
|
up = get_or_create_used_part_for (uid);
|
2768 |
|
|
|
2769 |
|
|
up->minused = 0;
|
2770 |
|
|
up->maxused = TREE_INT_CST_LOW (DECL_SIZE (var));
|
2771 |
|
|
up->implicit_uses = true;
|
2772 |
|
|
|
2773 |
|
|
up_insert (uid, up);
|
2774 |
|
|
*walk_subtrees = 0;
|
2775 |
|
|
return NULL_TREE;
|
2776 |
|
|
}
|
2777 |
|
|
}
|
2778 |
|
|
break;
|
2779 |
|
|
|
2780 |
|
|
default:
|
2781 |
|
|
break;
|
2782 |
|
|
|
2783 |
|
|
}
|
2784 |
|
|
return NULL_TREE;
|
2785 |
|
|
}
|
2786 |
|
|
|
2787 |
|
|
/* Create structure field variables for structures used in this function. */
|
2788 |
|
|
|
2789 |
|
|
static void
|
2790 |
|
|
create_structure_vars (void)
|
2791 |
|
|
{
|
2792 |
|
|
basic_block bb;
|
2793 |
|
|
safe_referenced_var_iterator rvi;
|
2794 |
|
|
VEC (tree, heap) *varvec = NULL;
|
2795 |
|
|
tree var;
|
2796 |
|
|
|
2797 |
|
|
used_portions = htab_create (10, used_part_map_hash, used_part_map_eq,
|
2798 |
|
|
free_used_part_map);
|
2799 |
|
|
|
2800 |
|
|
FOR_EACH_BB (bb)
|
2801 |
|
|
{
|
2802 |
|
|
block_stmt_iterator bsi;
|
2803 |
|
|
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
2804 |
|
|
{
|
2805 |
|
|
walk_tree_without_duplicates (bsi_stmt_ptr (bsi),
|
2806 |
|
|
find_used_portions,
|
2807 |
|
|
NULL);
|
2808 |
|
|
}
|
2809 |
|
|
}
|
2810 |
|
|
FOR_EACH_REFERENCED_VAR_SAFE (var, varvec, rvi)
|
2811 |
|
|
{
|
2812 |
|
|
/* The C++ FE creates vars without DECL_SIZE set, for some reason. */
|
2813 |
|
|
if (var
|
2814 |
|
|
&& DECL_SIZE (var)
|
2815 |
|
|
&& var_can_have_subvars (var)
|
2816 |
|
|
&& var_ann (var)->mem_tag_kind == NOT_A_TAG
|
2817 |
|
|
&& TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
|
2818 |
|
|
create_overlap_variables_for (var);
|
2819 |
|
|
}
|
2820 |
|
|
htab_delete (used_portions);
|
2821 |
|
|
VEC_free (tree, heap, varvec);
|
2822 |
|
|
|
2823 |
|
|
}
|
2824 |
|
|
|
2825 |
|
|
static bool
|
2826 |
|
|
gate_structure_vars (void)
|
2827 |
|
|
{
|
2828 |
|
|
return flag_tree_salias != 0;
|
2829 |
|
|
}
|
2830 |
|
|
|
2831 |
|
|
struct tree_opt_pass pass_create_structure_vars =
|
2832 |
|
|
{
|
2833 |
|
|
"salias", /* name */
|
2834 |
|
|
gate_structure_vars, /* gate */
|
2835 |
|
|
create_structure_vars, /* execute */
|
2836 |
|
|
NULL, /* sub */
|
2837 |
|
|
NULL, /* next */
|
2838 |
|
|
0, /* static_pass_number */
|
2839 |
|
|
0, /* tv_id */
|
2840 |
|
|
PROP_cfg, /* properties_required */
|
2841 |
|
|
0, /* properties_provided */
|
2842 |
|
|
0, /* properties_destroyed */
|
2843 |
|
|
0, /* todo_flags_start */
|
2844 |
|
|
TODO_dump_func, /* todo_flags_finish */
|
2845 |
|
|
|
2846 |
|
|
};
|