OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [tree-ssa-propagate.c] - Blame information for rev 18

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 12 jlechner
/* Generic SSA value propagation engine.
2
   Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3
   Contributed by Diego Novillo <dnovillo@redhat.com>
4
 
5
   This file is part of GCC.
6
 
7
   GCC is free software; you can redistribute it and/or modify it
8
   under the terms of the GNU General Public License as published by the
9
   Free Software Foundation; either version 2, or (at your option) any
10
   later version.
11
 
12
   GCC is distributed in the hope that it will be useful, but WITHOUT
13
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15
   for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with GCC; see the file COPYING.  If not, write to the Free
19
   Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20
   02110-1301, USA.  */
21
 
22
#include "config.h"
23
#include "system.h"
24
#include "coretypes.h"
25
#include "tm.h"
26
#include "tree.h"
27
#include "flags.h"
28
#include "rtl.h"
29
#include "tm_p.h"
30
#include "ggc.h"
31
#include "basic-block.h"
32
#include "output.h"
33
#include "expr.h"
34
#include "function.h"
35
#include "diagnostic.h"
36
#include "timevar.h"
37
#include "tree-dump.h"
38
#include "tree-flow.h"
39
#include "tree-pass.h"
40
#include "tree-ssa-propagate.h"
41
#include "langhooks.h"
42
#include "varray.h"
43
#include "vec.h"
44
 
45
/* This file implements a generic value propagation engine based on
46
   the same propagation used by the SSA-CCP algorithm [1].
47
 
48
   Propagation is performed by simulating the execution of every
49
   statement that produces the value being propagated.  Simulation
50
   proceeds as follows:
51
 
52
   1- Initially, all edges of the CFG are marked not executable and
53
      the CFG worklist is seeded with all the statements in the entry
54
      basic block (block 0).
55
 
56
   2- Every statement S is simulated with a call to the call-back
57
      function SSA_PROP_VISIT_STMT.  This evaluation may produce 3
58
      results:
59
 
60
        SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61
            interest and does not affect any of the work lists.
62
 
63
        SSA_PROP_VARYING: The value produced by S cannot be determined
64
            at compile time.  Further simulation of S is not required.
65
            If S is a conditional jump, all the outgoing edges for the
66
            block are considered executable and added to the work
67
            list.
68
 
69
        SSA_PROP_INTERESTING: S produces a value that can be computed
70
            at compile time.  Its result can be propagated into the
71
            statements that feed from S.  Furthermore, if S is a
72
            conditional jump, only the edge known to be taken is added
73
            to the work list.  Edges that are known not to execute are
74
            never simulated.
75
 
76
   3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI.  The
77
      return value from SSA_PROP_VISIT_PHI has the same semantics as
78
      described in #2.
79
 
80
   4- Three work lists are kept.  Statements are only added to these
81
      lists if they produce one of SSA_PROP_INTERESTING or
82
      SSA_PROP_VARYING.
83
 
84
        CFG_BLOCKS contains the list of blocks to be simulated.
85
            Blocks are added to this list if their incoming edges are
86
            found executable.
87
 
88
        VARYING_SSA_EDGES contains the list of statements that feed
89
            from statements that produce an SSA_PROP_VARYING result.
90
            These are simulated first to speed up processing.
91
 
92
        INTERESTING_SSA_EDGES contains the list of statements that
93
            feed from statements that produce an SSA_PROP_INTERESTING
94
            result.
95
 
96
   5- Simulation terminates when all three work lists are drained.
97
 
98
   Before calling ssa_propagate, it is important to clear
99
   DONT_SIMULATE_AGAIN for all the statements in the program that
100
   should be simulated.  This initialization allows an implementation
101
   to specify which statements should never be simulated.
102
 
103
   It is also important to compute def-use information before calling
104
   ssa_propagate.
105
 
106
   References:
107
 
108
     [1] Constant propagation with conditional branches,
109
         Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
110
 
111
     [2] Building an Optimizing Compiler,
112
         Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
113
 
114
     [3] Advanced Compiler Design and Implementation,
115
         Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6  */
116
 
117
/* Function pointers used to parameterize the propagation engine.  */
118
static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119
static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
120
 
121
/* Use the TREE_DEPRECATED bitflag to mark statements that have been
122
   added to one of the SSA edges worklists.  This flag is used to
123
   avoid visiting statements unnecessarily when draining an SSA edge
124
   worklist.  If while simulating a basic block, we find a statement with
125
   STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126
   processing from visiting it again.  */
127
#define STMT_IN_SSA_EDGE_WORKLIST(T)    TREE_DEPRECATED (T)
128
 
129
/* A bitmap to keep track of executable blocks in the CFG.  */
130
static sbitmap executable_blocks;
131
 
132
/* Array of control flow edges on the worklist.  */
133
static GTY(()) varray_type cfg_blocks = NULL;
134
 
135
static unsigned int cfg_blocks_num = 0;
136
static int cfg_blocks_tail;
137
static int cfg_blocks_head;
138
 
139
static sbitmap bb_in_list;
140
 
141
/* Worklist of SSA edges which will need reexamination as their
142
   definition has changed.  SSA edges are def-use edges in the SSA
143
   web.  For each D-U edge, we store the target statement or PHI node
144
   U.  */
145
static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
146
 
147
/* Identical to INTERESTING_SSA_EDGES.  For performance reasons, the
148
   list of SSA edges is split into two.  One contains all SSA edges
149
   who need to be reexamined because their lattice value changed to
150
   varying (this worklist), and the other contains all other SSA edges
151
   to be reexamined (INTERESTING_SSA_EDGES).
152
 
153
   Since most values in the program are VARYING, the ideal situation
154
   is to move them to that lattice value as quickly as possible.
155
   Thus, it doesn't make sense to process any other type of lattice
156
   value until all VARYING values are propagated fully, which is one
157
   thing using the VARYING worklist achieves.  In addition, if we
158
   don't use a separate worklist for VARYING edges, we end up with
159
   situations where lattice values move from
160
   UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING.  */
161
static GTY(()) VEC(tree,gc) *varying_ssa_edges;
162
 
163
 
164
/* Return true if the block worklist empty.  */
165
 
166
static inline bool
167
cfg_blocks_empty_p (void)
168
{
169
  return (cfg_blocks_num == 0);
170
}
171
 
172
 
173
/* Add a basic block to the worklist.  The block must not be already
174
   in the worklist, and it must not be the ENTRY or EXIT block.  */
175
 
176
static void
177
cfg_blocks_add (basic_block bb)
178
{
179
  gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
180
  gcc_assert (!TEST_BIT (bb_in_list, bb->index));
181
 
182
  if (cfg_blocks_empty_p ())
183
    {
184
      cfg_blocks_tail = cfg_blocks_head = 0;
185
      cfg_blocks_num = 1;
186
    }
187
  else
188
    {
189
      cfg_blocks_num++;
190
      if (cfg_blocks_num > VARRAY_SIZE (cfg_blocks))
191
        {
192
          /* We have to grow the array now.  Adjust to queue to occupy the
193
             full space of the original array.  */
194
          cfg_blocks_tail = VARRAY_SIZE (cfg_blocks);
195
          cfg_blocks_head = 0;
196
          VARRAY_GROW (cfg_blocks, 2 * VARRAY_SIZE (cfg_blocks));
197
        }
198
      else
199
        cfg_blocks_tail = (cfg_blocks_tail + 1) % VARRAY_SIZE (cfg_blocks);
200
    }
201
 
202
  VARRAY_BB (cfg_blocks, cfg_blocks_tail) = bb;
203
  SET_BIT (bb_in_list, bb->index);
204
}
205
 
206
 
207
/* Remove a block from the worklist.  */
208
 
209
static basic_block
210
cfg_blocks_get (void)
211
{
212
  basic_block bb;
213
 
214
  bb = VARRAY_BB (cfg_blocks, cfg_blocks_head);
215
 
216
  gcc_assert (!cfg_blocks_empty_p ());
217
  gcc_assert (bb);
218
 
219
  cfg_blocks_head = (cfg_blocks_head + 1) % VARRAY_SIZE (cfg_blocks);
220
  --cfg_blocks_num;
221
  RESET_BIT (bb_in_list, bb->index);
222
 
223
  return bb;
224
}
225
 
226
 
227
/* We have just defined a new value for VAR.  If IS_VARYING is true,
228
   add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
229
   them to INTERESTING_SSA_EDGES.  */
230
 
231
static void
232
add_ssa_edge (tree var, bool is_varying)
233
{
234
  imm_use_iterator iter;
235
  use_operand_p use_p;
236
 
237
  FOR_EACH_IMM_USE_FAST (use_p, iter, var)
238
    {
239
      tree use_stmt = USE_STMT (use_p);
240
 
241
      if (!DONT_SIMULATE_AGAIN (use_stmt)
242
          && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
243
        {
244
          STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
245
          if (is_varying)
246
            VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
247
          else
248
            VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
249
        }
250
    }
251
}
252
 
253
 
254
/* Add edge E to the control flow worklist.  */
255
 
256
static void
257
add_control_edge (edge e)
258
{
259
  basic_block bb = e->dest;
260
  if (bb == EXIT_BLOCK_PTR)
261
    return;
262
 
263
  /* If the edge had already been executed, skip it.  */
264
  if (e->flags & EDGE_EXECUTABLE)
265
    return;
266
 
267
  e->flags |= EDGE_EXECUTABLE;
268
 
269
  /* If the block is already in the list, we're done.  */
270
  if (TEST_BIT (bb_in_list, bb->index))
271
    return;
272
 
273
  cfg_blocks_add (bb);
274
 
275
  if (dump_file && (dump_flags & TDF_DETAILS))
276
    fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
277
        e->src->index, e->dest->index);
278
}
279
 
280
 
281
/* Simulate the execution of STMT and update the work lists accordingly.  */
282
 
283
static void
284
simulate_stmt (tree stmt)
285
{
286
  enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
287
  edge taken_edge = NULL;
288
  tree output_name = NULL_TREE;
289
 
290
  /* Don't bother visiting statements that are already
291
     considered varying by the propagator.  */
292
  if (DONT_SIMULATE_AGAIN (stmt))
293
    return;
294
 
295
  if (TREE_CODE (stmt) == PHI_NODE)
296
    {
297
      val = ssa_prop_visit_phi (stmt);
298
      output_name = PHI_RESULT (stmt);
299
    }
300
  else
301
    val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
302
 
303
  if (val == SSA_PROP_VARYING)
304
    {
305
      DONT_SIMULATE_AGAIN (stmt) = 1;
306
 
307
      /* If the statement produced a new varying value, add the SSA
308
         edges coming out of OUTPUT_NAME.  */
309
      if (output_name)
310
        add_ssa_edge (output_name, true);
311
 
312
      /* If STMT transfers control out of its basic block, add
313
         all outgoing edges to the work list.  */
314
      if (stmt_ends_bb_p (stmt))
315
        {
316
          edge e;
317
          edge_iterator ei;
318
          basic_block bb = bb_for_stmt (stmt);
319
          FOR_EACH_EDGE (e, ei, bb->succs)
320
            add_control_edge (e);
321
        }
322
    }
323
  else if (val == SSA_PROP_INTERESTING)
324
    {
325
      /* If the statement produced new value, add the SSA edges coming
326
         out of OUTPUT_NAME.  */
327
      if (output_name)
328
        add_ssa_edge (output_name, false);
329
 
330
      /* If we know which edge is going to be taken out of this block,
331
         add it to the CFG work list.  */
332
      if (taken_edge)
333
        add_control_edge (taken_edge);
334
    }
335
}
336
 
337
/* Process an SSA edge worklist.  WORKLIST is the SSA edge worklist to
338
   drain.  This pops statements off the given WORKLIST and processes
339
   them until there are no more statements on WORKLIST.
340
   We take a pointer to WORKLIST because it may be reallocated when an
341
   SSA edge is added to it in simulate_stmt.  */
342
 
343
static void
344
process_ssa_edge_worklist (VEC(tree,gc) **worklist)
345
{
346
  /* Drain the entire worklist.  */
347
  while (VEC_length (tree, *worklist) > 0)
348
    {
349
      basic_block bb;
350
 
351
      /* Pull the statement to simulate off the worklist.  */
352
      tree stmt = VEC_pop (tree, *worklist);
353
 
354
      /* If this statement was already visited by simulate_block, then
355
         we don't need to visit it again here.  */
356
      if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
357
        continue;
358
 
359
      /* STMT is no longer in a worklist.  */
360
      STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
361
 
362
      if (dump_file && (dump_flags & TDF_DETAILS))
363
        {
364
          fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
365
          print_generic_stmt (dump_file, stmt, dump_flags);
366
        }
367
 
368
      bb = bb_for_stmt (stmt);
369
 
370
      /* PHI nodes are always visited, regardless of whether or not
371
         the destination block is executable.  Otherwise, visit the
372
         statement only if its block is marked executable.  */
373
      if (TREE_CODE (stmt) == PHI_NODE
374
          || TEST_BIT (executable_blocks, bb->index))
375
        simulate_stmt (stmt);
376
    }
377
}
378
 
379
 
380
/* Simulate the execution of BLOCK.  Evaluate the statement associated
381
   with each variable reference inside the block.  */
382
 
383
static void
384
simulate_block (basic_block block)
385
{
386
  tree phi;
387
 
388
  /* There is nothing to do for the exit block.  */
389
  if (block == EXIT_BLOCK_PTR)
390
    return;
391
 
392
  if (dump_file && (dump_flags & TDF_DETAILS))
393
    fprintf (dump_file, "\nSimulating block %d\n", block->index);
394
 
395
  /* Always simulate PHI nodes, even if we have simulated this block
396
     before.  */
397
  for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
398
    simulate_stmt (phi);
399
 
400
  /* If this is the first time we've simulated this block, then we
401
     must simulate each of its statements.  */
402
  if (!TEST_BIT (executable_blocks, block->index))
403
    {
404
      block_stmt_iterator j;
405
      unsigned int normal_edge_count;
406
      edge e, normal_edge;
407
      edge_iterator ei;
408
 
409
      /* Note that we have simulated this block.  */
410
      SET_BIT (executable_blocks, block->index);
411
 
412
      for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
413
        {
414
          tree stmt = bsi_stmt (j);
415
 
416
          /* If this statement is already in the worklist then
417
             "cancel" it.  The reevaluation implied by the worklist
418
             entry will produce the same value we generate here and
419
             thus reevaluating it again from the worklist is
420
             pointless.  */
421
          if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
422
            STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
423
 
424
          simulate_stmt (stmt);
425
        }
426
 
427
      /* We can not predict when abnormal edges will be executed, so
428
         once a block is considered executable, we consider any
429
         outgoing abnormal edges as executable.
430
 
431
         At the same time, if this block has only one successor that is
432
         reached by non-abnormal edges, then add that successor to the
433
         worklist.  */
434
      normal_edge_count = 0;
435
      normal_edge = NULL;
436
      FOR_EACH_EDGE (e, ei, block->succs)
437
        {
438
          if (e->flags & EDGE_ABNORMAL)
439
            add_control_edge (e);
440
          else
441
            {
442
              normal_edge_count++;
443
              normal_edge = e;
444
            }
445
        }
446
 
447
      if (normal_edge_count == 1)
448
        add_control_edge (normal_edge);
449
    }
450
}
451
 
452
 
453
/* Initialize local data structures and work lists.  */
454
 
455
static void
456
ssa_prop_init (void)
457
{
458
  edge e;
459
  edge_iterator ei;
460
  basic_block bb;
461
  size_t i;
462
 
463
  /* Worklists of SSA edges.  */
464
  interesting_ssa_edges = VEC_alloc (tree, gc, 20);
465
  varying_ssa_edges = VEC_alloc (tree, gc, 20);
466
 
467
  executable_blocks = sbitmap_alloc (last_basic_block);
468
  sbitmap_zero (executable_blocks);
469
 
470
  bb_in_list = sbitmap_alloc (last_basic_block);
471
  sbitmap_zero (bb_in_list);
472
 
473
  if (dump_file && (dump_flags & TDF_DETAILS))
474
    dump_immediate_uses (dump_file);
475
 
476
  VARRAY_BB_INIT (cfg_blocks, 20, "cfg_blocks");
477
 
478
  /* Initialize the values for every SSA_NAME.  */
479
  for (i = 1; i < num_ssa_names; i++)
480
    if (ssa_name (i))
481
      SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
482
 
483
  /* Initially assume that every edge in the CFG is not executable.
484
     (including the edges coming out of ENTRY_BLOCK_PTR).  */
485
  FOR_ALL_BB (bb)
486
    {
487
      block_stmt_iterator si;
488
 
489
      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
490
        STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
491
 
492
      FOR_EACH_EDGE (e, ei, bb->succs)
493
        e->flags &= ~EDGE_EXECUTABLE;
494
    }
495
 
496
  /* Seed the algorithm by adding the successors of the entry block to the
497
     edge worklist.  */
498
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
499
    add_control_edge (e);
500
}
501
 
502
 
503
/* Free allocated storage.  */
504
 
505
static void
506
ssa_prop_fini (void)
507
{
508
  VEC_free (tree, gc, interesting_ssa_edges);
509
  VEC_free (tree, gc, varying_ssa_edges);
510
  cfg_blocks = NULL;
511
  sbitmap_free (bb_in_list);
512
  sbitmap_free (executable_blocks);
513
}
514
 
515
 
516
/* Get the main expression from statement STMT.  */
517
 
518
tree
519
get_rhs (tree stmt)
520
{
521
  enum tree_code code = TREE_CODE (stmt);
522
 
523
  switch (code)
524
    {
525
    case RETURN_EXPR:
526
      stmt = TREE_OPERAND (stmt, 0);
527
      if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
528
        return stmt;
529
      /* FALLTHRU */
530
 
531
    case MODIFY_EXPR:
532
      stmt = TREE_OPERAND (stmt, 1);
533
      if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
534
        return TREE_OPERAND (stmt, 0);
535
      else
536
        return stmt;
537
 
538
    case COND_EXPR:
539
      return COND_EXPR_COND (stmt);
540
    case SWITCH_EXPR:
541
      return SWITCH_COND (stmt);
542
    case GOTO_EXPR:
543
      return GOTO_DESTINATION (stmt);
544
    case LABEL_EXPR:
545
      return LABEL_EXPR_LABEL (stmt);
546
 
547
    default:
548
      return stmt;
549
    }
550
}
551
 
552
 
553
/* Set the main expression of *STMT_P to EXPR.  If EXPR is not a valid
554
   GIMPLE expression no changes are done and the function returns
555
   false.  */
556
 
557
bool
558
set_rhs (tree *stmt_p, tree expr)
559
{
560
  tree stmt = *stmt_p, op;
561
  enum tree_code code = TREE_CODE (expr);
562
  stmt_ann_t ann;
563
  tree var;
564
  ssa_op_iter iter;
565
 
566
  /* Verify the constant folded result is valid gimple.  */
567
  if (TREE_CODE_CLASS (code) == tcc_binary)
568
    {
569
      if (!is_gimple_val (TREE_OPERAND (expr, 0))
570
          || !is_gimple_val (TREE_OPERAND (expr, 1)))
571
        return false;
572
    }
573
  else if (TREE_CODE_CLASS (code) == tcc_unary)
574
    {
575
      if (!is_gimple_val (TREE_OPERAND (expr, 0)))
576
        return false;
577
    }
578
  else if (code == ADDR_EXPR)
579
    {
580
      if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
581
          && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
582
        return false;
583
    }
584
  else if (code == COMPOUND_EXPR)
585
    return false;
586
 
587
  switch (TREE_CODE (stmt))
588
    {
589
    case RETURN_EXPR:
590
      op = TREE_OPERAND (stmt, 0);
591
      if (TREE_CODE (op) != MODIFY_EXPR)
592
        {
593
          TREE_OPERAND (stmt, 0) = expr;
594
          break;
595
        }
596
      stmt = op;
597
      /* FALLTHRU */
598
 
599
    case MODIFY_EXPR:
600
      op = TREE_OPERAND (stmt, 1);
601
      if (TREE_CODE (op) == WITH_SIZE_EXPR)
602
        stmt = op;
603
      TREE_OPERAND (stmt, 1) = expr;
604
      break;
605
 
606
    case COND_EXPR:
607
      if (!is_gimple_condexpr (expr))
608
        return false;
609
      COND_EXPR_COND (stmt) = expr;
610
      break;
611
    case SWITCH_EXPR:
612
      SWITCH_COND (stmt) = expr;
613
      break;
614
    case GOTO_EXPR:
615
      GOTO_DESTINATION (stmt) = expr;
616
      break;
617
    case LABEL_EXPR:
618
      LABEL_EXPR_LABEL (stmt) = expr;
619
      break;
620
 
621
    default:
622
      /* Replace the whole statement with EXPR.  If EXPR has no side
623
         effects, then replace *STMT_P with an empty statement.  */
624
      ann = stmt_ann (stmt);
625
      *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
626
      (*stmt_p)->common.ann = (tree_ann_t) ann;
627
 
628
      if (in_ssa_p
629
          && TREE_SIDE_EFFECTS (expr))
630
        {
631
          /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
632
             replacement.  */
633
          FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
634
            {
635
              if (TREE_CODE (var) == SSA_NAME)
636
                SSA_NAME_DEF_STMT (var) = *stmt_p;
637
            }
638
        }
639
      break;
640
    }
641
 
642
  return true;
643
}
644
 
645
 
646
/* Entry point to the propagation engine.
647
 
648
   VISIT_STMT is called for every statement visited.
649
   VISIT_PHI is called for every PHI node visited.  */
650
 
651
void
652
ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
653
               ssa_prop_visit_phi_fn visit_phi)
654
{
655
  ssa_prop_visit_stmt = visit_stmt;
656
  ssa_prop_visit_phi = visit_phi;
657
 
658
  ssa_prop_init ();
659
 
660
  /* Iterate until the worklists are empty.  */
661
  while (!cfg_blocks_empty_p ()
662
         || VEC_length (tree, interesting_ssa_edges) > 0
663
         || VEC_length (tree, varying_ssa_edges) > 0)
664
    {
665
      if (!cfg_blocks_empty_p ())
666
        {
667
          /* Pull the next block to simulate off the worklist.  */
668
          basic_block dest_block = cfg_blocks_get ();
669
          simulate_block (dest_block);
670
        }
671
 
672
      /* In order to move things to varying as quickly as
673
         possible,process the VARYING_SSA_EDGES worklist first.  */
674
      process_ssa_edge_worklist (&varying_ssa_edges);
675
 
676
      /* Now process the INTERESTING_SSA_EDGES worklist.  */
677
      process_ssa_edge_worklist (&interesting_ssa_edges);
678
    }
679
 
680
  ssa_prop_fini ();
681
}
682
 
683
 
684
/* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT.  */
685
 
686
tree
687
first_vdef (tree stmt)
688
{
689
  ssa_op_iter iter;
690
  tree op;
691
 
692
  /* Simply return the first operand we arrive at.  */
693
  FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
694
    return (op);
695
 
696
  gcc_unreachable ();
697
}
698
 
699
 
700
/* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
701
   is a non-volatile pointer dereference, a structure reference or a
702
   reference to a single _DECL.  Ignore volatile memory references
703
   because they are not interesting for the optimizers.  */
704
 
705
bool
706
stmt_makes_single_load (tree stmt)
707
{
708
  tree rhs;
709
 
710
  if (TREE_CODE (stmt) != MODIFY_EXPR)
711
    return false;
712
 
713
  if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
714
    return false;
715
 
716
  rhs = TREE_OPERAND (stmt, 1);
717
  STRIP_NOPS (rhs);
718
 
719
  return (!TREE_THIS_VOLATILE (rhs)
720
          && (DECL_P (rhs)
721
              || REFERENCE_CLASS_P (rhs)));
722
}
723
 
724
 
725
/* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
726
   is a non-volatile pointer dereference, a structure reference or a
727
   reference to a single _DECL.  Ignore volatile memory references
728
   because they are not interesting for the optimizers.  */
729
 
730
bool
731
stmt_makes_single_store (tree stmt)
732
{
733
  tree lhs;
734
 
735
  if (TREE_CODE (stmt) != MODIFY_EXPR)
736
    return false;
737
 
738
  if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
739
    return false;
740
 
741
  lhs = TREE_OPERAND (stmt, 0);
742
  STRIP_NOPS (lhs);
743
 
744
  return (!TREE_THIS_VOLATILE (lhs)
745
          && (DECL_P (lhs)
746
              || REFERENCE_CLASS_P (lhs)));
747
}
748
 
749
 
750
/* If STMT makes a single memory load and all the virtual use operands
751
   have the same value in array VALUES, return it.  Otherwise, return
752
   NULL.  */
753
 
754
prop_value_t *
755
get_value_loaded_by (tree stmt, prop_value_t *values)
756
{
757
  ssa_op_iter i;
758
  tree vuse;
759
  prop_value_t *prev_val = NULL;
760
  prop_value_t *val = NULL;
761
 
762
  FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
763
    {
764
      val = &values[SSA_NAME_VERSION (vuse)];
765
      if (prev_val && prev_val->value != val->value)
766
        return NULL;
767
      prev_val = val;
768
    }
769
 
770
  return val;
771
}
772
 
773
 
774
/* Propagation statistics.  */
775
struct prop_stats_d
776
{
777
  long num_const_prop;
778
  long num_copy_prop;
779
  long num_pred_folded;
780
};
781
 
782
static struct prop_stats_d prop_stats;
783
 
784
/* Replace USE references in statement STMT with the values stored in
785
   PROP_VALUE. Return true if at least one reference was replaced.  If
786
   REPLACED_ADDRESSES_P is given, it will be set to true if an address
787
   constant was replaced.  */
788
 
789
bool
790
replace_uses_in (tree stmt, bool *replaced_addresses_p,
791
                 prop_value_t *prop_value)
792
{
793
  bool replaced = false;
794
  use_operand_p use;
795
  ssa_op_iter iter;
796
 
797
  FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
798
    {
799
      tree tuse = USE_FROM_PTR (use);
800
      tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
801
 
802
      if (val == tuse || val == NULL_TREE)
803
        continue;
804
 
805
      if (TREE_CODE (stmt) == ASM_EXPR
806
          && !may_propagate_copy_into_asm (tuse))
807
        continue;
808
 
809
      if (!may_propagate_copy (tuse, val))
810
        continue;
811
 
812
      if (TREE_CODE (val) != SSA_NAME)
813
        prop_stats.num_const_prop++;
814
      else
815
        prop_stats.num_copy_prop++;
816
 
817
      propagate_value (use, val);
818
 
819
      replaced = true;
820
      if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
821
        *replaced_addresses_p = true;
822
    }
823
 
824
  return replaced;
825
}
826
 
827
 
828
/* Replace the VUSE references in statement STMT with the values
829
   stored in PROP_VALUE.  Return true if a reference was replaced.  If
830
   REPLACED_ADDRESSES_P is given, it will be set to true if an address
831
   constant was replaced.
832
 
833
   Replacing VUSE operands is slightly more complex than replacing
834
   regular USEs.  We are only interested in two types of replacements
835
   here:
836
 
837
   1- If the value to be replaced is a constant or an SSA name for a
838
      GIMPLE register, then we are making a copy/constant propagation
839
      from a memory store.  For instance,
840
 
841
        # a_3 = V_MAY_DEF <a_2>
842
        a.b = x_1;
843
        ...
844
        # VUSE <a_3>
845
        y_4 = a.b;
846
 
847
      This replacement is only possible iff STMT is an assignment
848
      whose RHS is identical to the LHS of the statement that created
849
      the VUSE(s) that we are replacing.  Otherwise, we may do the
850
      wrong replacement:
851
 
852
        # a_3 = V_MAY_DEF <a_2>
853
        # b_5 = V_MAY_DEF <b_4>
854
        *p = 10;
855
        ...
856
        # VUSE <b_5>
857
        x_8 = b;
858
 
859
      Even though 'b_5' acquires the value '10' during propagation,
860
      there is no way for the propagator to tell whether the
861
      replacement is correct in every reached use, because values are
862
      computed at definition sites.  Therefore, when doing final
863
      substitution of propagated values, we have to check each use
864
      site.  Since the RHS of STMT ('b') is different from the LHS of
865
      the originating statement ('*p'), we cannot replace 'b' with
866
      '10'.
867
 
868
      Similarly, when merging values from PHI node arguments,
869
      propagators need to take care not to merge the same values
870
      stored in different locations:
871
 
872
                if (...)
873
                  # a_3 = V_MAY_DEF <a_2>
874
                  a.b = 3;
875
                else
876
                  # a_4 = V_MAY_DEF <a_2>
877
                  a.c = 3;
878
                # a_5 = PHI <a_3, a_4>
879
 
880
      It would be wrong to propagate '3' into 'a_5' because that
881
      operation merges two stores to different memory locations.
882
 
883
 
884
   2- If the value to be replaced is an SSA name for a virtual
885
      register, then we simply replace each VUSE operand with its
886
      value from PROP_VALUE.  This is the same replacement done by
887
      replace_uses_in.  */
888
 
889
static bool
890
replace_vuses_in (tree stmt, bool *replaced_addresses_p,
891
                  prop_value_t *prop_value)
892
{
893
  bool replaced = false;
894
  ssa_op_iter iter;
895
  use_operand_p vuse;
896
 
897
  if (stmt_makes_single_load (stmt))
898
    {
899
      /* If STMT is an assignment whose RHS is a single memory load,
900
         see if we are trying to propagate a constant or a GIMPLE
901
         register (case #1 above).  */
902
      prop_value_t *val = get_value_loaded_by (stmt, prop_value);
903
      tree rhs = TREE_OPERAND (stmt, 1);
904
 
905
      if (val
906
          && val->value
907
          && (is_gimple_reg (val->value)
908
              || is_gimple_min_invariant (val->value))
909
          && simple_cst_equal (rhs, val->mem_ref) == 1)
910
 
911
        {
912
          /* If we are replacing a constant address, inform our
913
             caller.  */
914
          if (TREE_CODE (val->value) != SSA_NAME
915
              && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
916
              && replaced_addresses_p)
917
            *replaced_addresses_p = true;
918
 
919
          /* We can only perform the substitution if the load is done
920
             from the same memory location as the original store.
921
             Since we already know that there are no intervening
922
             stores between DEF_STMT and STMT, we only need to check
923
             that the RHS of STMT is the same as the memory reference
924
             propagated together with the value.  */
925
          TREE_OPERAND (stmt, 1) = val->value;
926
 
927
          if (TREE_CODE (val->value) != SSA_NAME)
928
            prop_stats.num_const_prop++;
929
          else
930
            prop_stats.num_copy_prop++;
931
 
932
          /* Since we have replaced the whole RHS of STMT, there
933
             is no point in checking the other VUSEs, as they will
934
             all have the same value.  */
935
          return true;
936
        }
937
    }
938
 
939
  /* Otherwise, the values for every VUSE operand must be other
940
     SSA_NAMEs that can be propagated into STMT.  */
941
  FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
942
    {
943
      tree var = USE_FROM_PTR (vuse);
944
      tree val = prop_value[SSA_NAME_VERSION (var)].value;
945
 
946
      if (val == NULL_TREE || var == val)
947
        continue;
948
 
949
      /* Constants and copies propagated between real and virtual
950
         operands are only possible in the cases handled above.  They
951
         should be ignored in any other context.  */
952
      if (is_gimple_min_invariant (val) || is_gimple_reg (val))
953
        continue;
954
 
955
      propagate_value (vuse, val);
956
      prop_stats.num_copy_prop++;
957
      replaced = true;
958
    }
959
 
960
  return replaced;
961
}
962
 
963
 
964
/* Replace propagated values into all the arguments for PHI using the
965
   values from PROP_VALUE.  */
966
 
967
static void
968
replace_phi_args_in (tree phi, prop_value_t *prop_value)
969
{
970
  int i;
971
  bool replaced = false;
972
  tree prev_phi = NULL;
973
 
974
  if (dump_file && (dump_flags & TDF_DETAILS))
975
    prev_phi = unshare_expr (phi);
976
 
977
  for (i = 0; i < PHI_NUM_ARGS (phi); i++)
978
    {
979
      tree arg = PHI_ARG_DEF (phi, i);
980
 
981
      if (TREE_CODE (arg) == SSA_NAME)
982
        {
983
          tree val = prop_value[SSA_NAME_VERSION (arg)].value;
984
 
985
          if (val && val != arg && may_propagate_copy (arg, val))
986
            {
987
              if (TREE_CODE (val) != SSA_NAME)
988
                prop_stats.num_const_prop++;
989
              else
990
                prop_stats.num_copy_prop++;
991
 
992
              propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
993
              replaced = true;
994
 
995
              /* If we propagated a copy and this argument flows
996
                 through an abnormal edge, update the replacement
997
                 accordingly.  */
998
              if (TREE_CODE (val) == SSA_NAME
999
                  && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1000
                SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1001
            }
1002
        }
1003
    }
1004
 
1005
  if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1006
    {
1007
      fprintf (dump_file, "Folded PHI node: ");
1008
      print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1009
      fprintf (dump_file, "           into: ");
1010
      print_generic_stmt (dump_file, phi, TDF_SLIM);
1011
      fprintf (dump_file, "\n");
1012
    }
1013
}
1014
 
1015
 
1016
/* If STMT has a predicate whose value can be computed using the value
1017
   range information computed by VRP, compute its value and return true.
1018
   Otherwise, return false.  */
1019
 
1020
static bool
1021
fold_predicate_in (tree stmt)
1022
{
1023
  tree *pred_p = NULL;
1024
  bool modify_expr_p = false;
1025
  tree val;
1026
 
1027
  if (TREE_CODE (stmt) == MODIFY_EXPR
1028
      && COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
1029
    {
1030
      modify_expr_p = true;
1031
      pred_p = &TREE_OPERAND (stmt, 1);
1032
    }
1033
  else if (TREE_CODE (stmt) == COND_EXPR)
1034
    pred_p = &COND_EXPR_COND (stmt);
1035
  else
1036
    return false;
1037
 
1038
  val = vrp_evaluate_conditional (*pred_p, true);
1039
  if (val)
1040
    {
1041
      if (modify_expr_p)
1042
        val = fold_convert (TREE_TYPE (*pred_p), val);
1043
 
1044
      if (dump_file)
1045
        {
1046
          fprintf (dump_file, "Folding predicate ");
1047
          print_generic_expr (dump_file, *pred_p, 0);
1048
          fprintf (dump_file, " to ");
1049
          print_generic_expr (dump_file, val, 0);
1050
          fprintf (dump_file, "\n");
1051
        }
1052
 
1053
      prop_stats.num_pred_folded++;
1054
      *pred_p = val;
1055
      return true;
1056
    }
1057
 
1058
  return false;
1059
}
1060
 
1061
 
1062
/* Perform final substitution and folding of propagated values.
1063
 
1064
   PROP_VALUE[I] contains the single value that should be substituted
1065
   at every use of SSA name N_I.  If PROP_VALUE is NULL, no values are
1066
   substituted.
1067
 
1068
   If USE_RANGES_P is true, statements that contain predicate
1069
   expressions are evaluated with a call to vrp_evaluate_conditional.
1070
   This will only give meaningful results when called from tree-vrp.c
1071
   (the information used by vrp_evaluate_conditional is built by the
1072
   VRP pass).  */
1073
 
1074
void
1075
substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1076
{
1077
  basic_block bb;
1078
 
1079
  if (prop_value == NULL && !use_ranges_p)
1080
    return;
1081
 
1082
  if (dump_file && (dump_flags & TDF_DETAILS))
1083
    fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1084
 
1085
  memset (&prop_stats, 0, sizeof (prop_stats));
1086
 
1087
  /* Substitute values in every statement of every basic block.  */
1088
  FOR_EACH_BB (bb)
1089
    {
1090
      block_stmt_iterator i;
1091
      tree phi;
1092
 
1093
      /* Propagate known values into PHI nodes.  */
1094
      if (prop_value)
1095
        for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1096
          replace_phi_args_in (phi, prop_value);
1097
 
1098
      for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1099
        {
1100
          bool replaced_address, did_replace;
1101
          tree prev_stmt = NULL;
1102
          tree stmt = bsi_stmt (i);
1103
 
1104
          /* Ignore ASSERT_EXPRs.  They are used by VRP to generate
1105
             range information for names and they are discarded
1106
             afterwards.  */
1107
          if (TREE_CODE (stmt) == MODIFY_EXPR
1108
              && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
1109
            continue;
1110
 
1111
          /* Replace the statement with its folded version and mark it
1112
             folded.  */
1113
          did_replace = false;
1114
          replaced_address = false;
1115
          if (dump_file && (dump_flags & TDF_DETAILS))
1116
            prev_stmt = unshare_expr (stmt);
1117
 
1118
          /* If we have range information, see if we can fold
1119
             predicate expressions.  */
1120
          if (use_ranges_p)
1121
            {
1122
              did_replace = fold_predicate_in (stmt);
1123
 
1124
              /* Some statements may be simplified using ranges.  For
1125
                 example, division may be replaced by shifts, modulo
1126
                 replaced with bitwise and, etc.  */
1127
              simplify_stmt_using_ranges (stmt);
1128
            }
1129
 
1130
          if (prop_value)
1131
            {
1132
              /* Only replace real uses if we couldn't fold the
1133
                 statement using value range information (value range
1134
                 information is not collected on virtuals, so we only
1135
                 need to check this for real uses).  */
1136
              if (!did_replace)
1137
                did_replace |= replace_uses_in (stmt, &replaced_address,
1138
                                                prop_value);
1139
 
1140
              did_replace |= replace_vuses_in (stmt, &replaced_address,
1141
                                               prop_value);
1142
            }
1143
 
1144
          /* If we made a replacement, fold and cleanup the statement.  */
1145
          if (did_replace)
1146
            {
1147
              tree old_stmt = stmt;
1148
              tree rhs;
1149
 
1150
              fold_stmt (bsi_stmt_ptr (i));
1151
              stmt = bsi_stmt (i);
1152
 
1153
              /* If we folded a builtin function, we'll likely
1154
                 need to rename VDEFs.  */
1155
              mark_new_vars_to_rename (stmt);
1156
 
1157
              /* If we cleaned up EH information from the statement,
1158
                 remove EH edges.  */
1159
              if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1160
                tree_purge_dead_eh_edges (bb);
1161
 
1162
              rhs = get_rhs (stmt);
1163
              if (TREE_CODE (rhs) == ADDR_EXPR)
1164
                recompute_tree_invarant_for_addr_expr (rhs);
1165
 
1166
              if (dump_file && (dump_flags & TDF_DETAILS))
1167
                {
1168
                  fprintf (dump_file, "Folded statement: ");
1169
                  print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1170
                  fprintf (dump_file, "            into: ");
1171
                  print_generic_stmt (dump_file, stmt, TDF_SLIM);
1172
                  fprintf (dump_file, "\n");
1173
                }
1174
            }
1175
        }
1176
    }
1177
 
1178
  if (dump_file && (dump_flags & TDF_STATS))
1179
    {
1180
      fprintf (dump_file, "Constants propagated: %6ld\n",
1181
               prop_stats.num_const_prop);
1182
      fprintf (dump_file, "Copies propagated:    %6ld\n",
1183
               prop_stats.num_copy_prop);
1184
      fprintf (dump_file, "Predicates folded:    %6ld\n",
1185
               prop_stats.num_pred_folded);
1186
    }
1187
}
1188
 
1189
#include "gt-tree-ssa-propagate.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.