1 |
12 |
jlechner |
/* Support routines for Value Range Propagation (VRP).
|
2 |
|
|
Copyright (C) 2005 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING. If not, write to
|
19 |
|
|
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
20 |
|
|
Boston, MA 02110-1301, USA. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "ggc.h"
|
27 |
|
|
#include "flags.h"
|
28 |
|
|
#include "tree.h"
|
29 |
|
|
#include "basic-block.h"
|
30 |
|
|
#include "tree-flow.h"
|
31 |
|
|
#include "tree-pass.h"
|
32 |
|
|
#include "tree-dump.h"
|
33 |
|
|
#include "timevar.h"
|
34 |
|
|
#include "diagnostic.h"
|
35 |
|
|
#include "cfgloop.h"
|
36 |
|
|
#include "tree-scalar-evolution.h"
|
37 |
|
|
#include "tree-ssa-propagate.h"
|
38 |
|
|
#include "tree-chrec.h"
|
39 |
|
|
|
40 |
|
|
/* Set of SSA names found during the dominator traversal of a
|
41 |
|
|
sub-graph in find_assert_locations. */
|
42 |
|
|
static sbitmap found_in_subgraph;
|
43 |
|
|
|
44 |
|
|
/* Loop structure of the program. Used to analyze scalar evolutions
|
45 |
|
|
inside adjust_range_with_scev. */
|
46 |
|
|
static struct loops *cfg_loops;
|
47 |
|
|
|
48 |
|
|
/* Local functions. */
|
49 |
|
|
static int compare_values (tree val1, tree val2);
|
50 |
|
|
|
51 |
|
|
/* Location information for ASSERT_EXPRs. Each instance of this
|
52 |
|
|
structure describes an ASSERT_EXPR for an SSA name. Since a single
|
53 |
|
|
SSA name may have more than one assertion associated with it, these
|
54 |
|
|
locations are kept in a linked list attached to the corresponding
|
55 |
|
|
SSA name. */
|
56 |
|
|
struct assert_locus_d
|
57 |
|
|
{
|
58 |
|
|
/* Basic block where the assertion would be inserted. */
|
59 |
|
|
basic_block bb;
|
60 |
|
|
|
61 |
|
|
/* Some assertions need to be inserted on an edge (e.g., assertions
|
62 |
|
|
generated by COND_EXPRs). In those cases, BB will be NULL. */
|
63 |
|
|
edge e;
|
64 |
|
|
|
65 |
|
|
/* Pointer to the statement that generated this assertion. */
|
66 |
|
|
block_stmt_iterator si;
|
67 |
|
|
|
68 |
|
|
/* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
|
69 |
|
|
enum tree_code comp_code;
|
70 |
|
|
|
71 |
|
|
/* Value being compared against. */
|
72 |
|
|
tree val;
|
73 |
|
|
|
74 |
|
|
/* Next node in the linked list. */
|
75 |
|
|
struct assert_locus_d *next;
|
76 |
|
|
};
|
77 |
|
|
|
78 |
|
|
typedef struct assert_locus_d *assert_locus_t;
|
79 |
|
|
|
80 |
|
|
/* If bit I is present, it means that SSA name N_i has a list of
|
81 |
|
|
assertions that should be inserted in the IL. */
|
82 |
|
|
static bitmap need_assert_for;
|
83 |
|
|
|
84 |
|
|
/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
|
85 |
|
|
holds a list of ASSERT_LOCUS_T nodes that describe where
|
86 |
|
|
ASSERT_EXPRs for SSA name N_I should be inserted. */
|
87 |
|
|
static assert_locus_t *asserts_for;
|
88 |
|
|
|
89 |
|
|
/* Set of blocks visited in find_assert_locations. Used to avoid
|
90 |
|
|
visiting the same block more than once. */
|
91 |
|
|
static sbitmap blocks_visited;
|
92 |
|
|
|
93 |
|
|
/* Value range array. After propagation, VR_VALUE[I] holds the range
|
94 |
|
|
of values that SSA name N_I may take. */
|
95 |
|
|
static value_range_t **vr_value;
|
96 |
|
|
|
97 |
|
|
|
98 |
|
|
/* Return true if ARG is marked with the nonnull attribute in the
|
99 |
|
|
current function signature. */
|
100 |
|
|
|
101 |
|
|
static bool
|
102 |
|
|
nonnull_arg_p (tree arg)
|
103 |
|
|
{
|
104 |
|
|
tree t, attrs, fntype;
|
105 |
|
|
unsigned HOST_WIDE_INT arg_num;
|
106 |
|
|
|
107 |
|
|
gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
|
108 |
|
|
|
109 |
|
|
fntype = TREE_TYPE (current_function_decl);
|
110 |
|
|
attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
|
111 |
|
|
|
112 |
|
|
/* If "nonnull" wasn't specified, we know nothing about the argument. */
|
113 |
|
|
if (attrs == NULL_TREE)
|
114 |
|
|
return false;
|
115 |
|
|
|
116 |
|
|
/* If "nonnull" applies to all the arguments, then ARG is non-null. */
|
117 |
|
|
if (TREE_VALUE (attrs) == NULL_TREE)
|
118 |
|
|
return true;
|
119 |
|
|
|
120 |
|
|
/* Get the position number for ARG in the function signature. */
|
121 |
|
|
for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
|
122 |
|
|
t;
|
123 |
|
|
t = TREE_CHAIN (t), arg_num++)
|
124 |
|
|
{
|
125 |
|
|
if (t == arg)
|
126 |
|
|
break;
|
127 |
|
|
}
|
128 |
|
|
|
129 |
|
|
gcc_assert (t == arg);
|
130 |
|
|
|
131 |
|
|
/* Now see if ARG_NUM is mentioned in the nonnull list. */
|
132 |
|
|
for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
|
133 |
|
|
{
|
134 |
|
|
if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
|
135 |
|
|
return true;
|
136 |
|
|
}
|
137 |
|
|
|
138 |
|
|
return false;
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
/* Set value range VR to {T, MIN, MAX, EQUIV}. */
|
143 |
|
|
|
144 |
|
|
static void
|
145 |
|
|
set_value_range (value_range_t *vr, enum value_range_type t, tree min,
|
146 |
|
|
tree max, bitmap equiv)
|
147 |
|
|
{
|
148 |
|
|
#if defined ENABLE_CHECKING
|
149 |
|
|
/* Check the validity of the range. */
|
150 |
|
|
if (t == VR_RANGE || t == VR_ANTI_RANGE)
|
151 |
|
|
{
|
152 |
|
|
int cmp;
|
153 |
|
|
|
154 |
|
|
gcc_assert (min && max);
|
155 |
|
|
|
156 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
|
157 |
|
|
gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
|
158 |
|
|
|| max != TYPE_MAX_VALUE (TREE_TYPE (max)));
|
159 |
|
|
|
160 |
|
|
cmp = compare_values (min, max);
|
161 |
|
|
gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
|
162 |
|
|
}
|
163 |
|
|
|
164 |
|
|
if (t == VR_UNDEFINED || t == VR_VARYING)
|
165 |
|
|
gcc_assert (min == NULL_TREE && max == NULL_TREE);
|
166 |
|
|
|
167 |
|
|
if (t == VR_UNDEFINED || t == VR_VARYING)
|
168 |
|
|
gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
|
169 |
|
|
#endif
|
170 |
|
|
|
171 |
|
|
vr->type = t;
|
172 |
|
|
vr->min = min;
|
173 |
|
|
vr->max = max;
|
174 |
|
|
|
175 |
|
|
/* Since updating the equivalence set involves deep copying the
|
176 |
|
|
bitmaps, only do it if absolutely necessary. */
|
177 |
|
|
if (vr->equiv == NULL)
|
178 |
|
|
vr->equiv = BITMAP_ALLOC (NULL);
|
179 |
|
|
|
180 |
|
|
if (equiv != vr->equiv)
|
181 |
|
|
{
|
182 |
|
|
if (equiv && !bitmap_empty_p (equiv))
|
183 |
|
|
bitmap_copy (vr->equiv, equiv);
|
184 |
|
|
else
|
185 |
|
|
bitmap_clear (vr->equiv);
|
186 |
|
|
}
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
|
190 |
|
|
/* Copy value range FROM into value range TO. */
|
191 |
|
|
|
192 |
|
|
static inline void
|
193 |
|
|
copy_value_range (value_range_t *to, value_range_t *from)
|
194 |
|
|
{
|
195 |
|
|
set_value_range (to, from->type, from->min, from->max, from->equiv);
|
196 |
|
|
}
|
197 |
|
|
|
198 |
|
|
|
199 |
|
|
/* Set value range VR to a non-NULL range of type TYPE. */
|
200 |
|
|
|
201 |
|
|
static inline void
|
202 |
|
|
set_value_range_to_nonnull (value_range_t *vr, tree type)
|
203 |
|
|
{
|
204 |
|
|
tree zero = build_int_cst (type, 0);
|
205 |
|
|
set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
|
206 |
|
|
}
|
207 |
|
|
|
208 |
|
|
|
209 |
|
|
/* Set value range VR to a NULL range of type TYPE. */
|
210 |
|
|
|
211 |
|
|
static inline void
|
212 |
|
|
set_value_range_to_null (value_range_t *vr, tree type)
|
213 |
|
|
{
|
214 |
|
|
tree zero = build_int_cst (type, 0);
|
215 |
|
|
set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
|
219 |
|
|
/* Set value range VR to VR_VARYING. */
|
220 |
|
|
|
221 |
|
|
static inline void
|
222 |
|
|
set_value_range_to_varying (value_range_t *vr)
|
223 |
|
|
{
|
224 |
|
|
vr->type = VR_VARYING;
|
225 |
|
|
vr->min = vr->max = NULL_TREE;
|
226 |
|
|
if (vr->equiv)
|
227 |
|
|
bitmap_clear (vr->equiv);
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
|
231 |
|
|
/* Set value range VR to VR_UNDEFINED. */
|
232 |
|
|
|
233 |
|
|
static inline void
|
234 |
|
|
set_value_range_to_undefined (value_range_t *vr)
|
235 |
|
|
{
|
236 |
|
|
vr->type = VR_UNDEFINED;
|
237 |
|
|
vr->min = vr->max = NULL_TREE;
|
238 |
|
|
if (vr->equiv)
|
239 |
|
|
bitmap_clear (vr->equiv);
|
240 |
|
|
}
|
241 |
|
|
|
242 |
|
|
|
243 |
|
|
/* Return value range information for VAR. Create an empty range
|
244 |
|
|
if none existed. */
|
245 |
|
|
|
246 |
|
|
static value_range_t *
|
247 |
|
|
get_value_range (tree var)
|
248 |
|
|
{
|
249 |
|
|
value_range_t *vr;
|
250 |
|
|
tree sym;
|
251 |
|
|
unsigned ver = SSA_NAME_VERSION (var);
|
252 |
|
|
|
253 |
|
|
vr = vr_value[ver];
|
254 |
|
|
if (vr)
|
255 |
|
|
return vr;
|
256 |
|
|
|
257 |
|
|
/* Create a default value range. */
|
258 |
|
|
vr_value[ver] = vr = xmalloc (sizeof (*vr));
|
259 |
|
|
memset (vr, 0, sizeof (*vr));
|
260 |
|
|
|
261 |
|
|
/* Allocate an equivalence set. */
|
262 |
|
|
vr->equiv = BITMAP_ALLOC (NULL);
|
263 |
|
|
|
264 |
|
|
/* If VAR is a default definition, the variable can take any value
|
265 |
|
|
in VAR's type. */
|
266 |
|
|
sym = SSA_NAME_VAR (var);
|
267 |
|
|
if (var == default_def (sym))
|
268 |
|
|
{
|
269 |
|
|
/* Try to use the "nonnull" attribute to create ~[0, 0]
|
270 |
|
|
anti-ranges for pointers. Note that this is only valid with
|
271 |
|
|
default definitions of PARM_DECLs. */
|
272 |
|
|
if (TREE_CODE (sym) == PARM_DECL
|
273 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (sym))
|
274 |
|
|
&& nonnull_arg_p (sym))
|
275 |
|
|
set_value_range_to_nonnull (vr, TREE_TYPE (sym));
|
276 |
|
|
else
|
277 |
|
|
set_value_range_to_varying (vr);
|
278 |
|
|
}
|
279 |
|
|
|
280 |
|
|
return vr;
|
281 |
|
|
}
|
282 |
|
|
|
283 |
|
|
|
284 |
|
|
/* Update the value range and equivalence set for variable VAR to
|
285 |
|
|
NEW_VR. Return true if NEW_VR is different from VAR's previous
|
286 |
|
|
value.
|
287 |
|
|
|
288 |
|
|
NOTE: This function assumes that NEW_VR is a temporary value range
|
289 |
|
|
object created for the sole purpose of updating VAR's range. The
|
290 |
|
|
storage used by the equivalence set from NEW_VR will be freed by
|
291 |
|
|
this function. Do not call update_value_range when NEW_VR
|
292 |
|
|
is the range object associated with another SSA name. */
|
293 |
|
|
|
294 |
|
|
static inline bool
|
295 |
|
|
update_value_range (tree var, value_range_t *new_vr)
|
296 |
|
|
{
|
297 |
|
|
value_range_t *old_vr;
|
298 |
|
|
bool is_new;
|
299 |
|
|
|
300 |
|
|
/* Update the value range, if necessary. */
|
301 |
|
|
old_vr = get_value_range (var);
|
302 |
|
|
is_new = old_vr->type != new_vr->type
|
303 |
|
|
|| old_vr->min != new_vr->min
|
304 |
|
|
|| old_vr->max != new_vr->max
|
305 |
|
|
|| (old_vr->equiv == NULL && new_vr->equiv)
|
306 |
|
|
|| (old_vr->equiv && new_vr->equiv == NULL)
|
307 |
|
|
|| (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
|
308 |
|
|
|
309 |
|
|
if (is_new)
|
310 |
|
|
set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
|
311 |
|
|
new_vr->equiv);
|
312 |
|
|
|
313 |
|
|
BITMAP_FREE (new_vr->equiv);
|
314 |
|
|
new_vr->equiv = NULL;
|
315 |
|
|
|
316 |
|
|
return is_new;
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
|
320 |
|
|
/* Add VAR and VAR's equivalence set to EQUIV. */
|
321 |
|
|
|
322 |
|
|
static void
|
323 |
|
|
add_equivalence (bitmap equiv, tree var)
|
324 |
|
|
{
|
325 |
|
|
unsigned ver = SSA_NAME_VERSION (var);
|
326 |
|
|
value_range_t *vr = vr_value[ver];
|
327 |
|
|
|
328 |
|
|
bitmap_set_bit (equiv, ver);
|
329 |
|
|
if (vr && vr->equiv)
|
330 |
|
|
bitmap_ior_into (equiv, vr->equiv);
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
|
334 |
|
|
/* Return true if VR is ~[0, 0]. */
|
335 |
|
|
|
336 |
|
|
static inline bool
|
337 |
|
|
range_is_nonnull (value_range_t *vr)
|
338 |
|
|
{
|
339 |
|
|
return vr->type == VR_ANTI_RANGE
|
340 |
|
|
&& integer_zerop (vr->min)
|
341 |
|
|
&& integer_zerop (vr->max);
|
342 |
|
|
}
|
343 |
|
|
|
344 |
|
|
|
345 |
|
|
/* Return true if VR is [0, 0]. */
|
346 |
|
|
|
347 |
|
|
static inline bool
|
348 |
|
|
range_is_null (value_range_t *vr)
|
349 |
|
|
{
|
350 |
|
|
return vr->type == VR_RANGE
|
351 |
|
|
&& integer_zerop (vr->min)
|
352 |
|
|
&& integer_zerop (vr->max);
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
|
356 |
|
|
/* Return true if value range VR involves at least one symbol. */
|
357 |
|
|
|
358 |
|
|
static inline bool
|
359 |
|
|
symbolic_range_p (value_range_t *vr)
|
360 |
|
|
{
|
361 |
|
|
return (!is_gimple_min_invariant (vr->min)
|
362 |
|
|
|| !is_gimple_min_invariant (vr->max));
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
|
366 |
|
|
/* Like tree_expr_nonzero_p, but this function uses value ranges
|
367 |
|
|
obtained so far. */
|
368 |
|
|
|
369 |
|
|
static bool
|
370 |
|
|
vrp_expr_computes_nonzero (tree expr)
|
371 |
|
|
{
|
372 |
|
|
if (tree_expr_nonzero_p (expr))
|
373 |
|
|
return true;
|
374 |
|
|
|
375 |
|
|
/* If we have an expression of the form &X->a, then the expression
|
376 |
|
|
is nonnull if X is nonnull. */
|
377 |
|
|
if (TREE_CODE (expr) == ADDR_EXPR)
|
378 |
|
|
{
|
379 |
|
|
tree base = get_base_address (TREE_OPERAND (expr, 0));
|
380 |
|
|
|
381 |
|
|
if (base != NULL_TREE
|
382 |
|
|
&& TREE_CODE (base) == INDIRECT_REF
|
383 |
|
|
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
|
384 |
|
|
{
|
385 |
|
|
value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
|
386 |
|
|
if (range_is_nonnull (vr))
|
387 |
|
|
return true;
|
388 |
|
|
}
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
return false;
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
|
395 |
|
|
/* Compare two values VAL1 and VAL2. Return
|
396 |
|
|
|
397 |
|
|
-2 if VAL1 and VAL2 cannot be compared at compile-time,
|
398 |
|
|
-1 if VAL1 < VAL2,
|
399 |
|
|
|
400 |
|
|
+1 if VAL1 > VAL2, and
|
401 |
|
|
+2 if VAL1 != VAL2
|
402 |
|
|
|
403 |
|
|
This is similar to tree_int_cst_compare but supports pointer values
|
404 |
|
|
and values that cannot be compared at compile time. */
|
405 |
|
|
|
406 |
|
|
static int
|
407 |
|
|
compare_values (tree val1, tree val2)
|
408 |
|
|
{
|
409 |
|
|
if (val1 == val2)
|
410 |
|
|
return 0;
|
411 |
|
|
|
412 |
|
|
/* Below we rely on the fact that VAL1 and VAL2 are both pointers or
|
413 |
|
|
both integers. */
|
414 |
|
|
gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
|
415 |
|
|
== POINTER_TYPE_P (TREE_TYPE (val2)));
|
416 |
|
|
|
417 |
|
|
/* Do some limited symbolic comparisons. */
|
418 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (val1)))
|
419 |
|
|
{
|
420 |
|
|
/* We can determine some comparisons against +INF and -INF even
|
421 |
|
|
if the other value is an expression. */
|
422 |
|
|
if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
|
423 |
|
|
&& TREE_CODE (val2) == MINUS_EXPR)
|
424 |
|
|
{
|
425 |
|
|
/* +INF > NAME - CST. */
|
426 |
|
|
return 1;
|
427 |
|
|
}
|
428 |
|
|
else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
|
429 |
|
|
&& TREE_CODE (val2) == PLUS_EXPR)
|
430 |
|
|
{
|
431 |
|
|
/* -INF < NAME + CST. */
|
432 |
|
|
return -1;
|
433 |
|
|
}
|
434 |
|
|
else if (TREE_CODE (val1) == MINUS_EXPR
|
435 |
|
|
&& val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
|
436 |
|
|
{
|
437 |
|
|
/* NAME - CST < +INF. */
|
438 |
|
|
return -1;
|
439 |
|
|
}
|
440 |
|
|
else if (TREE_CODE (val1) == PLUS_EXPR
|
441 |
|
|
&& val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
|
442 |
|
|
{
|
443 |
|
|
/* NAME + CST > -INF. */
|
444 |
|
|
return 1;
|
445 |
|
|
}
|
446 |
|
|
}
|
447 |
|
|
|
448 |
|
|
if ((TREE_CODE (val1) == SSA_NAME
|
449 |
|
|
|| TREE_CODE (val1) == PLUS_EXPR
|
450 |
|
|
|| TREE_CODE (val1) == MINUS_EXPR)
|
451 |
|
|
&& (TREE_CODE (val2) == SSA_NAME
|
452 |
|
|
|| TREE_CODE (val2) == PLUS_EXPR
|
453 |
|
|
|| TREE_CODE (val2) == MINUS_EXPR))
|
454 |
|
|
{
|
455 |
|
|
tree n1, c1, n2, c2;
|
456 |
|
|
|
457 |
|
|
/* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
|
458 |
|
|
return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
|
459 |
|
|
same name, return -2. */
|
460 |
|
|
if (TREE_CODE (val1) == SSA_NAME)
|
461 |
|
|
{
|
462 |
|
|
n1 = val1;
|
463 |
|
|
c1 = NULL_TREE;
|
464 |
|
|
}
|
465 |
|
|
else
|
466 |
|
|
{
|
467 |
|
|
n1 = TREE_OPERAND (val1, 0);
|
468 |
|
|
c1 = TREE_OPERAND (val1, 1);
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
if (TREE_CODE (val2) == SSA_NAME)
|
472 |
|
|
{
|
473 |
|
|
n2 = val2;
|
474 |
|
|
c2 = NULL_TREE;
|
475 |
|
|
}
|
476 |
|
|
else
|
477 |
|
|
{
|
478 |
|
|
n2 = TREE_OPERAND (val2, 0);
|
479 |
|
|
c2 = TREE_OPERAND (val2, 1);
|
480 |
|
|
}
|
481 |
|
|
|
482 |
|
|
/* Both values must use the same name. */
|
483 |
|
|
if (n1 != n2)
|
484 |
|
|
return -2;
|
485 |
|
|
|
486 |
|
|
if (TREE_CODE (val1) == SSA_NAME)
|
487 |
|
|
{
|
488 |
|
|
if (TREE_CODE (val2) == SSA_NAME)
|
489 |
|
|
/* NAME == NAME */
|
490 |
|
|
return 0;
|
491 |
|
|
else if (TREE_CODE (val2) == PLUS_EXPR)
|
492 |
|
|
/* NAME < NAME + CST */
|
493 |
|
|
return -1;
|
494 |
|
|
else if (TREE_CODE (val2) == MINUS_EXPR)
|
495 |
|
|
/* NAME > NAME - CST */
|
496 |
|
|
return 1;
|
497 |
|
|
}
|
498 |
|
|
else if (TREE_CODE (val1) == PLUS_EXPR)
|
499 |
|
|
{
|
500 |
|
|
if (TREE_CODE (val2) == SSA_NAME)
|
501 |
|
|
/* NAME + CST > NAME */
|
502 |
|
|
return 1;
|
503 |
|
|
else if (TREE_CODE (val2) == PLUS_EXPR)
|
504 |
|
|
/* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
|
505 |
|
|
return compare_values (c1, c2);
|
506 |
|
|
else if (TREE_CODE (val2) == MINUS_EXPR)
|
507 |
|
|
/* NAME + CST1 > NAME - CST2 */
|
508 |
|
|
return 1;
|
509 |
|
|
}
|
510 |
|
|
else if (TREE_CODE (val1) == MINUS_EXPR)
|
511 |
|
|
{
|
512 |
|
|
if (TREE_CODE (val2) == SSA_NAME)
|
513 |
|
|
/* NAME - CST < NAME */
|
514 |
|
|
return -1;
|
515 |
|
|
else if (TREE_CODE (val2) == PLUS_EXPR)
|
516 |
|
|
/* NAME - CST1 < NAME + CST2 */
|
517 |
|
|
return -1;
|
518 |
|
|
else if (TREE_CODE (val2) == MINUS_EXPR)
|
519 |
|
|
/* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
|
520 |
|
|
C1 and C2 are swapped in the call to compare_values. */
|
521 |
|
|
return compare_values (c2, c1);
|
522 |
|
|
}
|
523 |
|
|
|
524 |
|
|
gcc_unreachable ();
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
/* We cannot compare non-constants. */
|
528 |
|
|
if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
|
529 |
|
|
return -2;
|
530 |
|
|
|
531 |
|
|
/* We cannot compare overflowed values. */
|
532 |
|
|
if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
|
533 |
|
|
return -2;
|
534 |
|
|
|
535 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (val1)))
|
536 |
|
|
return tree_int_cst_compare (val1, val2);
|
537 |
|
|
else
|
538 |
|
|
{
|
539 |
|
|
tree t;
|
540 |
|
|
|
541 |
|
|
/* First see if VAL1 and VAL2 are not the same. */
|
542 |
|
|
if (val1 == val2 || operand_equal_p (val1, val2, 0))
|
543 |
|
|
return 0;
|
544 |
|
|
|
545 |
|
|
/* If VAL1 is a lower address than VAL2, return -1. */
|
546 |
|
|
t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
|
547 |
|
|
if (t == boolean_true_node)
|
548 |
|
|
return -1;
|
549 |
|
|
|
550 |
|
|
/* If VAL1 is a higher address than VAL2, return +1. */
|
551 |
|
|
t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
|
552 |
|
|
if (t == boolean_true_node)
|
553 |
|
|
return 1;
|
554 |
|
|
|
555 |
|
|
/* If VAL1 is different than VAL2, return +2. */
|
556 |
|
|
t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
|
557 |
|
|
if (t == boolean_true_node)
|
558 |
|
|
return 2;
|
559 |
|
|
|
560 |
|
|
return -2;
|
561 |
|
|
}
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
|
565 |
|
|
/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
|
566 |
|
|
|
567 |
|
|
-2 if we cannot tell either way.
|
568 |
|
|
|
569 |
|
|
FIXME, the current semantics of this functions are a bit quirky
|
570 |
|
|
when taken in the context of VRP. In here we do not care
|
571 |
|
|
about VR's type. If VR is the anti-range ~[3, 5] the call
|
572 |
|
|
value_inside_range (4, VR) will return 1.
|
573 |
|
|
|
574 |
|
|
This is counter-intuitive in a strict sense, but the callers
|
575 |
|
|
currently expect this. They are calling the function
|
576 |
|
|
merely to determine whether VR->MIN <= VAL <= VR->MAX. The
|
577 |
|
|
callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
|
578 |
|
|
themselves.
|
579 |
|
|
|
580 |
|
|
This also applies to value_ranges_intersect_p and
|
581 |
|
|
range_includes_zero_p. The semantics of VR_RANGE and
|
582 |
|
|
VR_ANTI_RANGE should be encoded here, but that also means
|
583 |
|
|
adapting the users of these functions to the new semantics. */
|
584 |
|
|
|
585 |
|
|
static inline int
|
586 |
|
|
value_inside_range (tree val, value_range_t *vr)
|
587 |
|
|
{
|
588 |
|
|
int cmp1, cmp2;
|
589 |
|
|
|
590 |
|
|
cmp1 = compare_values (val, vr->min);
|
591 |
|
|
if (cmp1 == -2 || cmp1 == 2)
|
592 |
|
|
return -2;
|
593 |
|
|
|
594 |
|
|
cmp2 = compare_values (val, vr->max);
|
595 |
|
|
if (cmp2 == -2 || cmp2 == 2)
|
596 |
|
|
return -2;
|
597 |
|
|
|
598 |
|
|
return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
|
602 |
|
|
/* Return true if value ranges VR0 and VR1 have a non-empty
|
603 |
|
|
intersection. */
|
604 |
|
|
|
605 |
|
|
static inline bool
|
606 |
|
|
value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
|
607 |
|
|
{
|
608 |
|
|
return (value_inside_range (vr1->min, vr0) == 1
|
609 |
|
|
|| value_inside_range (vr1->max, vr0) == 1
|
610 |
|
|
|| value_inside_range (vr0->min, vr1) == 1
|
611 |
|
|
|| value_inside_range (vr0->max, vr1) == 1);
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
|
615 |
|
|
/* Return true if VR includes the value zero, false otherwise. FIXME,
|
616 |
|
|
currently this will return false for an anti-range like ~[-4, 3].
|
617 |
|
|
This will be wrong when the semantics of value_inside_range are
|
618 |
|
|
modified (currently the users of this function expect these
|
619 |
|
|
semantics). */
|
620 |
|
|
|
621 |
|
|
static inline bool
|
622 |
|
|
range_includes_zero_p (value_range_t *vr)
|
623 |
|
|
{
|
624 |
|
|
tree zero;
|
625 |
|
|
|
626 |
|
|
gcc_assert (vr->type != VR_UNDEFINED
|
627 |
|
|
&& vr->type != VR_VARYING
|
628 |
|
|
&& !symbolic_range_p (vr));
|
629 |
|
|
|
630 |
|
|
zero = build_int_cst (TREE_TYPE (vr->min), 0);
|
631 |
|
|
return (value_inside_range (zero, vr) == 1);
|
632 |
|
|
}
|
633 |
|
|
|
634 |
|
|
|
635 |
|
|
/* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
|
636 |
|
|
initially consider X_i and Y_j equivalent, so the equivalence set
|
637 |
|
|
of Y_j is added to the equivalence set of X_i. However, it is
|
638 |
|
|
possible to have a chain of ASSERT_EXPRs whose predicates are
|
639 |
|
|
actually incompatible. This is usually the result of nesting of
|
640 |
|
|
contradictory if-then-else statements. For instance, in PR 24670:
|
641 |
|
|
|
642 |
|
|
count_4 has range [-INF, 63]
|
643 |
|
|
|
644 |
|
|
if (count_4 != 0)
|
645 |
|
|
{
|
646 |
|
|
count_19 = ASSERT_EXPR <count_4, count_4 != 0>
|
647 |
|
|
if (count_19 > 63)
|
648 |
|
|
{
|
649 |
|
|
count_18 = ASSERT_EXPR <count_19, count_19 > 63>
|
650 |
|
|
if (count_18 <= 63)
|
651 |
|
|
...
|
652 |
|
|
}
|
653 |
|
|
}
|
654 |
|
|
|
655 |
|
|
Notice that 'if (count_19 > 63)' is trivially false and will be
|
656 |
|
|
folded out at the end. However, during propagation, the flowgraph
|
657 |
|
|
is not cleaned up and so, VRP will evaluate predicates more
|
658 |
|
|
predicates than necessary, so it must support these
|
659 |
|
|
inconsistencies. The problem here is that because of the chaining
|
660 |
|
|
of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
|
661 |
|
|
Since count_4 has an incompatible range, we ICE when evaluating the
|
662 |
|
|
ranges in the equivalency set. So, we need to remove count_4 from
|
663 |
|
|
it. */
|
664 |
|
|
|
665 |
|
|
static void
|
666 |
|
|
fix_equivalence_set (value_range_t *vr_p)
|
667 |
|
|
{
|
668 |
|
|
bitmap_iterator bi;
|
669 |
|
|
unsigned i;
|
670 |
|
|
bitmap e = vr_p->equiv;
|
671 |
|
|
bitmap to_remove = BITMAP_ALLOC (NULL);
|
672 |
|
|
|
673 |
|
|
/* Only detect inconsistencies on numeric ranges. */
|
674 |
|
|
if (vr_p->type == VR_VARYING
|
675 |
|
|
|| vr_p->type == VR_UNDEFINED
|
676 |
|
|
|| symbolic_range_p (vr_p))
|
677 |
|
|
return;
|
678 |
|
|
|
679 |
|
|
EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
|
680 |
|
|
{
|
681 |
|
|
value_range_t *equiv_vr = vr_value[i];
|
682 |
|
|
|
683 |
|
|
if (equiv_vr->type == VR_VARYING
|
684 |
|
|
|| equiv_vr->type == VR_UNDEFINED
|
685 |
|
|
|| symbolic_range_p (equiv_vr))
|
686 |
|
|
continue;
|
687 |
|
|
|
688 |
|
|
if (equiv_vr->type == VR_RANGE
|
689 |
|
|
&& vr_p->type == VR_RANGE
|
690 |
|
|
&& !value_ranges_intersect_p (vr_p, equiv_vr))
|
691 |
|
|
bitmap_set_bit (to_remove, i);
|
692 |
|
|
else if ((equiv_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
|
693 |
|
|
|| (equiv_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
|
694 |
|
|
{
|
695 |
|
|
/* A range and an anti-range have an empty intersection if
|
696 |
|
|
their end points are the same. FIXME,
|
697 |
|
|
value_ranges_intersect_p should handle this
|
698 |
|
|
automatically. */
|
699 |
|
|
if (compare_values (equiv_vr->min, vr_p->min) == 0
|
700 |
|
|
&& compare_values (equiv_vr->max, vr_p->max) == 0)
|
701 |
|
|
bitmap_set_bit (to_remove, i);
|
702 |
|
|
}
|
703 |
|
|
}
|
704 |
|
|
|
705 |
|
|
bitmap_and_compl_into (vr_p->equiv, to_remove);
|
706 |
|
|
BITMAP_FREE (to_remove);
|
707 |
|
|
}
|
708 |
|
|
|
709 |
|
|
|
710 |
|
|
/* Extract value range information from an ASSERT_EXPR EXPR and store
|
711 |
|
|
it in *VR_P. */
|
712 |
|
|
|
713 |
|
|
static void
|
714 |
|
|
extract_range_from_assert (value_range_t *vr_p, tree expr)
|
715 |
|
|
{
|
716 |
|
|
tree var, cond, limit, min, max, type;
|
717 |
|
|
value_range_t *var_vr, *limit_vr;
|
718 |
|
|
enum tree_code cond_code;
|
719 |
|
|
|
720 |
|
|
var = ASSERT_EXPR_VAR (expr);
|
721 |
|
|
cond = ASSERT_EXPR_COND (expr);
|
722 |
|
|
|
723 |
|
|
gcc_assert (COMPARISON_CLASS_P (cond));
|
724 |
|
|
|
725 |
|
|
/* Find VAR in the ASSERT_EXPR conditional. */
|
726 |
|
|
if (var == TREE_OPERAND (cond, 0))
|
727 |
|
|
{
|
728 |
|
|
/* If the predicate is of the form VAR COMP LIMIT, then we just
|
729 |
|
|
take LIMIT from the RHS and use the same comparison code. */
|
730 |
|
|
limit = TREE_OPERAND (cond, 1);
|
731 |
|
|
cond_code = TREE_CODE (cond);
|
732 |
|
|
}
|
733 |
|
|
else
|
734 |
|
|
{
|
735 |
|
|
/* If the predicate is of the form LIMIT COMP VAR, then we need
|
736 |
|
|
to flip around the comparison code to create the proper range
|
737 |
|
|
for VAR. */
|
738 |
|
|
limit = TREE_OPERAND (cond, 0);
|
739 |
|
|
cond_code = swap_tree_comparison (TREE_CODE (cond));
|
740 |
|
|
}
|
741 |
|
|
|
742 |
|
|
type = TREE_TYPE (limit);
|
743 |
|
|
gcc_assert (limit != var);
|
744 |
|
|
|
745 |
|
|
/* For pointer arithmetic, we only keep track of pointer equality
|
746 |
|
|
and inequality. */
|
747 |
|
|
if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
|
748 |
|
|
{
|
749 |
|
|
set_value_range_to_varying (vr_p);
|
750 |
|
|
return;
|
751 |
|
|
}
|
752 |
|
|
|
753 |
|
|
/* If LIMIT is another SSA name and LIMIT has a range of its own,
|
754 |
|
|
try to use LIMIT's range to avoid creating symbolic ranges
|
755 |
|
|
unnecessarily. */
|
756 |
|
|
limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
|
757 |
|
|
|
758 |
|
|
/* LIMIT's range is only interesting if it has any useful information. */
|
759 |
|
|
if (limit_vr
|
760 |
|
|
&& (limit_vr->type == VR_UNDEFINED
|
761 |
|
|
|| limit_vr->type == VR_VARYING
|
762 |
|
|
|| symbolic_range_p (limit_vr)))
|
763 |
|
|
limit_vr = NULL;
|
764 |
|
|
|
765 |
|
|
/* Special handling for integral types with super-types. Some FEs
|
766 |
|
|
construct integral types derived from other types and restrict
|
767 |
|
|
the range of values these new types may take.
|
768 |
|
|
|
769 |
|
|
It may happen that LIMIT is actually smaller than TYPE's minimum
|
770 |
|
|
value. For instance, the Ada FE is generating code like this
|
771 |
|
|
during bootstrap:
|
772 |
|
|
|
773 |
|
|
D.1480_32 = nam_30 - 300000361;
|
774 |
|
|
if (D.1480_32 <= 1) goto <L112>; else goto <L52>;
|
775 |
|
|
<L112>:;
|
776 |
|
|
D.1480_94 = ASSERT_EXPR <D.1480_32, D.1480_32 <= 1>;
|
777 |
|
|
|
778 |
|
|
All the names are of type types__name_id___XDLU_300000000__399999999
|
779 |
|
|
which has min == 300000000 and max == 399999999. This means that
|
780 |
|
|
the ASSERT_EXPR would try to create the range [3000000, 1] which
|
781 |
|
|
is invalid.
|
782 |
|
|
|
783 |
|
|
The fact that the type specifies MIN and MAX values does not
|
784 |
|
|
automatically mean that every variable of that type will always
|
785 |
|
|
be within that range, so the predicate may well be true at run
|
786 |
|
|
time. If we had symbolic -INF and +INF values, we could
|
787 |
|
|
represent this range, but we currently represent -INF and +INF
|
788 |
|
|
using the type's min and max values.
|
789 |
|
|
|
790 |
|
|
So, the only sensible thing we can do for now is set the
|
791 |
|
|
resulting range to VR_VARYING. TODO, would having symbolic -INF
|
792 |
|
|
and +INF values be worth the trouble? */
|
793 |
|
|
if (TREE_CODE (limit) != SSA_NAME
|
794 |
|
|
&& INTEGRAL_TYPE_P (type)
|
795 |
|
|
&& TREE_TYPE (type))
|
796 |
|
|
{
|
797 |
|
|
if (cond_code == LE_EXPR || cond_code == LT_EXPR)
|
798 |
|
|
{
|
799 |
|
|
tree type_min = TYPE_MIN_VALUE (type);
|
800 |
|
|
int cmp = compare_values (limit, type_min);
|
801 |
|
|
|
802 |
|
|
/* For < or <= comparisons, if LIMIT is smaller than
|
803 |
|
|
TYPE_MIN, set the range to VR_VARYING. */
|
804 |
|
|
if (cmp == -1 || cmp == 0)
|
805 |
|
|
{
|
806 |
|
|
set_value_range_to_varying (vr_p);
|
807 |
|
|
return;
|
808 |
|
|
}
|
809 |
|
|
}
|
810 |
|
|
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
|
811 |
|
|
{
|
812 |
|
|
tree type_max = TYPE_MIN_VALUE (type);
|
813 |
|
|
int cmp = compare_values (limit, type_max);
|
814 |
|
|
|
815 |
|
|
/* For > or >= comparisons, if LIMIT is bigger than
|
816 |
|
|
TYPE_MAX, set the range to VR_VARYING. */
|
817 |
|
|
if (cmp == 1 || cmp == 0)
|
818 |
|
|
{
|
819 |
|
|
set_value_range_to_varying (vr_p);
|
820 |
|
|
return;
|
821 |
|
|
}
|
822 |
|
|
}
|
823 |
|
|
}
|
824 |
|
|
|
825 |
|
|
/* Initially, the new range has the same set of equivalences of
|
826 |
|
|
VAR's range. This will be revised before returning the final
|
827 |
|
|
value. Since assertions may be chained via mutually exclusive
|
828 |
|
|
predicates, we will need to trim the set of equivalences before
|
829 |
|
|
we are done. */
|
830 |
|
|
gcc_assert (vr_p->equiv == NULL);
|
831 |
|
|
vr_p->equiv = BITMAP_ALLOC (NULL);
|
832 |
|
|
add_equivalence (vr_p->equiv, var);
|
833 |
|
|
|
834 |
|
|
/* Extract a new range based on the asserted comparison for VAR and
|
835 |
|
|
LIMIT's value range. Notice that if LIMIT has an anti-range, we
|
836 |
|
|
will only use it for equality comparisons (EQ_EXPR). For any
|
837 |
|
|
other kind of assertion, we cannot derive a range from LIMIT's
|
838 |
|
|
anti-range that can be used to describe the new range. For
|
839 |
|
|
instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
|
840 |
|
|
then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
|
841 |
|
|
no single range for x_2 that could describe LE_EXPR, so we might
|
842 |
|
|
as well build the range [b_4, +INF] for it. */
|
843 |
|
|
if (cond_code == EQ_EXPR)
|
844 |
|
|
{
|
845 |
|
|
enum value_range_type range_type;
|
846 |
|
|
|
847 |
|
|
if (limit_vr)
|
848 |
|
|
{
|
849 |
|
|
range_type = limit_vr->type;
|
850 |
|
|
min = limit_vr->min;
|
851 |
|
|
max = limit_vr->max;
|
852 |
|
|
}
|
853 |
|
|
else
|
854 |
|
|
{
|
855 |
|
|
range_type = VR_RANGE;
|
856 |
|
|
min = limit;
|
857 |
|
|
max = limit;
|
858 |
|
|
}
|
859 |
|
|
|
860 |
|
|
set_value_range (vr_p, range_type, min, max, vr_p->equiv);
|
861 |
|
|
|
862 |
|
|
/* When asserting the equality VAR == LIMIT and LIMIT is another
|
863 |
|
|
SSA name, the new range will also inherit the equivalence set
|
864 |
|
|
from LIMIT. */
|
865 |
|
|
if (TREE_CODE (limit) == SSA_NAME)
|
866 |
|
|
add_equivalence (vr_p->equiv, limit);
|
867 |
|
|
}
|
868 |
|
|
else if (cond_code == NE_EXPR)
|
869 |
|
|
{
|
870 |
|
|
/* As described above, when LIMIT's range is an anti-range and
|
871 |
|
|
this assertion is an inequality (NE_EXPR), then we cannot
|
872 |
|
|
derive anything from the anti-range. For instance, if
|
873 |
|
|
LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
|
874 |
|
|
not imply that VAR's range is [0, 0]. So, in the case of
|
875 |
|
|
anti-ranges, we just assert the inequality using LIMIT and
|
876 |
|
|
not its anti-range.
|
877 |
|
|
|
878 |
|
|
If LIMIT_VR is a range, we can only use it to build a new
|
879 |
|
|
anti-range if LIMIT_VR is a single-valued range. For
|
880 |
|
|
instance, if LIMIT_VR is [0, 1], the predicate
|
881 |
|
|
VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
|
882 |
|
|
Rather, it means that for value 0 VAR should be ~[0, 0]
|
883 |
|
|
and for value 1, VAR should be ~[1, 1]. We cannot
|
884 |
|
|
represent these ranges.
|
885 |
|
|
|
886 |
|
|
The only situation in which we can build a valid
|
887 |
|
|
anti-range is when LIMIT_VR is a single-valued range
|
888 |
|
|
(i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
|
889 |
|
|
build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
|
890 |
|
|
if (limit_vr
|
891 |
|
|
&& limit_vr->type == VR_RANGE
|
892 |
|
|
&& compare_values (limit_vr->min, limit_vr->max) == 0)
|
893 |
|
|
{
|
894 |
|
|
min = limit_vr->min;
|
895 |
|
|
max = limit_vr->max;
|
896 |
|
|
}
|
897 |
|
|
else
|
898 |
|
|
{
|
899 |
|
|
/* In any other case, we cannot use LIMIT's range to build a
|
900 |
|
|
valid anti-range. */
|
901 |
|
|
min = max = limit;
|
902 |
|
|
}
|
903 |
|
|
|
904 |
|
|
/* If MIN and MAX cover the whole range for their type, then
|
905 |
|
|
just use the original LIMIT. */
|
906 |
|
|
if (INTEGRAL_TYPE_P (type)
|
907 |
|
|
&& min == TYPE_MIN_VALUE (type)
|
908 |
|
|
&& max == TYPE_MAX_VALUE (type))
|
909 |
|
|
min = max = limit;
|
910 |
|
|
|
911 |
|
|
set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
|
912 |
|
|
}
|
913 |
|
|
else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
|
914 |
|
|
{
|
915 |
|
|
min = TYPE_MIN_VALUE (type);
|
916 |
|
|
|
917 |
|
|
if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
|
918 |
|
|
max = limit;
|
919 |
|
|
else
|
920 |
|
|
{
|
921 |
|
|
/* If LIMIT_VR is of the form [N1, N2], we need to build the
|
922 |
|
|
range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
|
923 |
|
|
LT_EXPR. */
|
924 |
|
|
max = limit_vr->max;
|
925 |
|
|
}
|
926 |
|
|
|
927 |
|
|
/* For LT_EXPR, we create the range [MIN, MAX - 1]. */
|
928 |
|
|
if (cond_code == LT_EXPR)
|
929 |
|
|
{
|
930 |
|
|
tree one = build_int_cst (type, 1);
|
931 |
|
|
max = fold_build2 (MINUS_EXPR, type, max, one);
|
932 |
|
|
}
|
933 |
|
|
|
934 |
|
|
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
|
935 |
|
|
}
|
936 |
|
|
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
|
937 |
|
|
{
|
938 |
|
|
max = TYPE_MAX_VALUE (type);
|
939 |
|
|
|
940 |
|
|
if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
|
941 |
|
|
min = limit;
|
942 |
|
|
else
|
943 |
|
|
{
|
944 |
|
|
/* If LIMIT_VR is of the form [N1, N2], we need to build the
|
945 |
|
|
range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
|
946 |
|
|
GT_EXPR. */
|
947 |
|
|
min = limit_vr->min;
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
/* For GT_EXPR, we create the range [MIN + 1, MAX]. */
|
951 |
|
|
if (cond_code == GT_EXPR)
|
952 |
|
|
{
|
953 |
|
|
tree one = build_int_cst (type, 1);
|
954 |
|
|
min = fold_build2 (PLUS_EXPR, type, min, one);
|
955 |
|
|
}
|
956 |
|
|
|
957 |
|
|
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
|
958 |
|
|
}
|
959 |
|
|
else
|
960 |
|
|
gcc_unreachable ();
|
961 |
|
|
|
962 |
|
|
/* If VAR already had a known range, it may happen that the new
|
963 |
|
|
range we have computed and VAR's range are not compatible. For
|
964 |
|
|
instance,
|
965 |
|
|
|
966 |
|
|
if (p_5 == NULL)
|
967 |
|
|
p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
|
968 |
|
|
x_7 = p_6->fld;
|
969 |
|
|
p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
|
970 |
|
|
|
971 |
|
|
While the above comes from a faulty program, it will cause an ICE
|
972 |
|
|
later because p_8 and p_6 will have incompatible ranges and at
|
973 |
|
|
the same time will be considered equivalent. A similar situation
|
974 |
|
|
would arise from
|
975 |
|
|
|
976 |
|
|
if (i_5 > 10)
|
977 |
|
|
i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
|
978 |
|
|
if (i_5 < 5)
|
979 |
|
|
i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
|
980 |
|
|
|
981 |
|
|
Again i_6 and i_7 will have incompatible ranges. It would be
|
982 |
|
|
pointless to try and do anything with i_7's range because
|
983 |
|
|
anything dominated by 'if (i_5 < 5)' will be optimized away.
|
984 |
|
|
Note, due to the wa in which simulation proceeds, the statement
|
985 |
|
|
i_7 = ASSERT_EXPR <...> we would never be visited because the
|
986 |
|
|
conditional 'if (i_5 < 5)' always evaluates to false. However,
|
987 |
|
|
this extra check does not hurt and may protect against future
|
988 |
|
|
changes to VRP that may get into a situation similar to the
|
989 |
|
|
NULL pointer dereference example.
|
990 |
|
|
|
991 |
|
|
Note that these compatibility tests are only needed when dealing
|
992 |
|
|
with ranges or a mix of range and anti-range. If VAR_VR and VR_P
|
993 |
|
|
are both anti-ranges, they will always be compatible, because two
|
994 |
|
|
anti-ranges will always have a non-empty intersection. */
|
995 |
|
|
|
996 |
|
|
var_vr = get_value_range (var);
|
997 |
|
|
|
998 |
|
|
/* We may need to make adjustments when VR_P and VAR_VR are numeric
|
999 |
|
|
ranges or anti-ranges. */
|
1000 |
|
|
if (vr_p->type == VR_VARYING
|
1001 |
|
|
|| vr_p->type == VR_UNDEFINED
|
1002 |
|
|
|| var_vr->type == VR_VARYING
|
1003 |
|
|
|| var_vr->type == VR_UNDEFINED
|
1004 |
|
|
|| symbolic_range_p (vr_p)
|
1005 |
|
|
|| symbolic_range_p (var_vr))
|
1006 |
|
|
goto done;
|
1007 |
|
|
|
1008 |
|
|
if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
|
1009 |
|
|
{
|
1010 |
|
|
/* If the two ranges have a non-empty intersection, we can
|
1011 |
|
|
refine the resulting range. Since the assert expression
|
1012 |
|
|
creates an equivalency and at the same time it asserts a
|
1013 |
|
|
predicate, we can take the intersection of the two ranges to
|
1014 |
|
|
get better precision. */
|
1015 |
|
|
if (value_ranges_intersect_p (var_vr, vr_p))
|
1016 |
|
|
{
|
1017 |
|
|
/* Use the larger of the two minimums. */
|
1018 |
|
|
if (compare_values (vr_p->min, var_vr->min) == -1)
|
1019 |
|
|
min = var_vr->min;
|
1020 |
|
|
else
|
1021 |
|
|
min = vr_p->min;
|
1022 |
|
|
|
1023 |
|
|
/* Use the smaller of the two maximums. */
|
1024 |
|
|
if (compare_values (vr_p->max, var_vr->max) == 1)
|
1025 |
|
|
max = var_vr->max;
|
1026 |
|
|
else
|
1027 |
|
|
max = vr_p->max;
|
1028 |
|
|
|
1029 |
|
|
set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
|
1030 |
|
|
}
|
1031 |
|
|
else
|
1032 |
|
|
{
|
1033 |
|
|
/* The two ranges do not intersect, set the new range to
|
1034 |
|
|
VARYING, because we will not be able to do anything
|
1035 |
|
|
meaningful with it. */
|
1036 |
|
|
set_value_range_to_varying (vr_p);
|
1037 |
|
|
}
|
1038 |
|
|
}
|
1039 |
|
|
else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
|
1040 |
|
|
|| (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
|
1041 |
|
|
{
|
1042 |
|
|
/* A range and an anti-range will cancel each other only if
|
1043 |
|
|
their ends are the same. For instance, in the example above,
|
1044 |
|
|
p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
|
1045 |
|
|
so VR_P should be set to VR_VARYING. */
|
1046 |
|
|
if (compare_values (var_vr->min, vr_p->min) == 0
|
1047 |
|
|
&& compare_values (var_vr->max, vr_p->max) == 0)
|
1048 |
|
|
set_value_range_to_varying (vr_p);
|
1049 |
|
|
}
|
1050 |
|
|
|
1051 |
|
|
/* Remove names from the equivalence set that have ranges
|
1052 |
|
|
incompatible with VR_P. */
|
1053 |
|
|
done:
|
1054 |
|
|
fix_equivalence_set (vr_p);
|
1055 |
|
|
}
|
1056 |
|
|
|
1057 |
|
|
|
1058 |
|
|
/* Extract range information from SSA name VAR and store it in VR. If
|
1059 |
|
|
VAR has an interesting range, use it. Otherwise, create the
|
1060 |
|
|
range [VAR, VAR] and return it. This is useful in situations where
|
1061 |
|
|
we may have conditionals testing values of VARYING names. For
|
1062 |
|
|
instance,
|
1063 |
|
|
|
1064 |
|
|
x_3 = y_5;
|
1065 |
|
|
if (x_3 > y_5)
|
1066 |
|
|
...
|
1067 |
|
|
|
1068 |
|
|
Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
|
1069 |
|
|
always false. */
|
1070 |
|
|
|
1071 |
|
|
static void
|
1072 |
|
|
extract_range_from_ssa_name (value_range_t *vr, tree var)
|
1073 |
|
|
{
|
1074 |
|
|
value_range_t *var_vr = get_value_range (var);
|
1075 |
|
|
|
1076 |
|
|
if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
|
1077 |
|
|
copy_value_range (vr, var_vr);
|
1078 |
|
|
else
|
1079 |
|
|
set_value_range (vr, VR_RANGE, var, var, NULL);
|
1080 |
|
|
|
1081 |
|
|
add_equivalence (vr->equiv, var);
|
1082 |
|
|
}
|
1083 |
|
|
|
1084 |
|
|
|
1085 |
|
|
/* Wrapper around int_const_binop. If the operation overflows and we
|
1086 |
|
|
are not using wrapping arithmetic, then adjust the result to be
|
1087 |
|
|
-INF or +INF depending on CODE, VAL1 and VAL2. */
|
1088 |
|
|
|
1089 |
|
|
static inline tree
|
1090 |
|
|
vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
|
1091 |
|
|
{
|
1092 |
|
|
tree res;
|
1093 |
|
|
|
1094 |
|
|
if (flag_wrapv)
|
1095 |
|
|
return int_const_binop (code, val1, val2, 0);
|
1096 |
|
|
|
1097 |
|
|
/* If we are not using wrapping arithmetic, operate symbolically
|
1098 |
|
|
on -INF and +INF. */
|
1099 |
|
|
res = int_const_binop (code, val1, val2, 0);
|
1100 |
|
|
|
1101 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (val1)))
|
1102 |
|
|
{
|
1103 |
|
|
int checkz = compare_values (res, val1);
|
1104 |
|
|
bool overflow = false;
|
1105 |
|
|
|
1106 |
|
|
/* Ensure that res = val1 [+*] val2 >= val1
|
1107 |
|
|
or that res = val1 - val2 <= val1. */
|
1108 |
|
|
if ((code == PLUS_EXPR
|
1109 |
|
|
&& !(checkz == 1 || checkz == 0))
|
1110 |
|
|
|| (code == MINUS_EXPR
|
1111 |
|
|
&& !(checkz == 0 || checkz == -1)))
|
1112 |
|
|
{
|
1113 |
|
|
overflow = true;
|
1114 |
|
|
}
|
1115 |
|
|
/* Checking for multiplication overflow is done by dividing the
|
1116 |
|
|
output of the multiplication by the first input of the
|
1117 |
|
|
multiplication. If the result of that division operation is
|
1118 |
|
|
not equal to the second input of the multiplication, then the
|
1119 |
|
|
multiplication overflowed. */
|
1120 |
|
|
else if (code == MULT_EXPR && !integer_zerop (val1))
|
1121 |
|
|
{
|
1122 |
|
|
tree tmp = int_const_binop (TRUNC_DIV_EXPR,
|
1123 |
|
|
TYPE_MAX_VALUE (TREE_TYPE (val1)),
|
1124 |
|
|
val1, 0);
|
1125 |
|
|
int check = compare_values (tmp, val2);
|
1126 |
|
|
|
1127 |
|
|
if (check != 0)
|
1128 |
|
|
overflow = true;
|
1129 |
|
|
}
|
1130 |
|
|
|
1131 |
|
|
if (overflow)
|
1132 |
|
|
{
|
1133 |
|
|
res = copy_node (res);
|
1134 |
|
|
TREE_OVERFLOW (res) = 1;
|
1135 |
|
|
}
|
1136 |
|
|
|
1137 |
|
|
}
|
1138 |
|
|
else if (TREE_OVERFLOW (res)
|
1139 |
|
|
&& !TREE_OVERFLOW (val1)
|
1140 |
|
|
&& !TREE_OVERFLOW (val2))
|
1141 |
|
|
{
|
1142 |
|
|
/* If the operation overflowed but neither VAL1 nor VAL2 are
|
1143 |
|
|
overflown, return -INF or +INF depending on the operation
|
1144 |
|
|
and the combination of signs of the operands. */
|
1145 |
|
|
int sgn1 = tree_int_cst_sgn (val1);
|
1146 |
|
|
int sgn2 = tree_int_cst_sgn (val2);
|
1147 |
|
|
|
1148 |
|
|
/* Notice that we only need to handle the restricted set of
|
1149 |
|
|
operations handled by extract_range_from_binary_expr.
|
1150 |
|
|
Among them, only multiplication, addition and subtraction
|
1151 |
|
|
can yield overflow without overflown operands because we
|
1152 |
|
|
are working with integral types only... except in the
|
1153 |
|
|
case VAL1 = -INF and VAL2 = -1 which overflows to +INF
|
1154 |
|
|
for division too. */
|
1155 |
|
|
|
1156 |
|
|
/* For multiplication, the sign of the overflow is given
|
1157 |
|
|
by the comparison of the signs of the operands. */
|
1158 |
|
|
if ((code == MULT_EXPR && sgn1 == sgn2)
|
1159 |
|
|
/* For addition, the operands must be of the same sign
|
1160 |
|
|
to yield an overflow. Its sign is therefore that
|
1161 |
|
|
of one of the operands, for example the first. */
|
1162 |
|
|
|| (code == PLUS_EXPR && sgn1 > 0)
|
1163 |
|
|
/* For subtraction, the operands must be of different
|
1164 |
|
|
signs to yield an overflow. Its sign is therefore
|
1165 |
|
|
that of the first operand or the opposite of that
|
1166 |
|
|
of the second operand. A first operand of 0 counts
|
1167 |
|
|
as positive here, for the corner case 0 - (-INF),
|
1168 |
|
|
which overflows, but must yield +INF. */
|
1169 |
|
|
|| (code == MINUS_EXPR && sgn1 >= 0)
|
1170 |
|
|
/* For division, the only case is -INF / -1 = +INF. */
|
1171 |
|
|
|| code == TRUNC_DIV_EXPR
|
1172 |
|
|
|| code == FLOOR_DIV_EXPR
|
1173 |
|
|
|| code == CEIL_DIV_EXPR
|
1174 |
|
|
|| code == EXACT_DIV_EXPR
|
1175 |
|
|
|| code == ROUND_DIV_EXPR)
|
1176 |
|
|
return TYPE_MAX_VALUE (TREE_TYPE (res));
|
1177 |
|
|
else
|
1178 |
|
|
return TYPE_MIN_VALUE (TREE_TYPE (res));
|
1179 |
|
|
}
|
1180 |
|
|
|
1181 |
|
|
return res;
|
1182 |
|
|
}
|
1183 |
|
|
|
1184 |
|
|
|
1185 |
|
|
/* Extract range information from a binary expression EXPR based on
|
1186 |
|
|
the ranges of each of its operands and the expression code. */
|
1187 |
|
|
|
1188 |
|
|
static void
|
1189 |
|
|
extract_range_from_binary_expr (value_range_t *vr, tree expr)
|
1190 |
|
|
{
|
1191 |
|
|
enum tree_code code = TREE_CODE (expr);
|
1192 |
|
|
tree op0, op1, min, max;
|
1193 |
|
|
int cmp;
|
1194 |
|
|
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
1195 |
|
|
value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
1196 |
|
|
|
1197 |
|
|
/* Not all binary expressions can be applied to ranges in a
|
1198 |
|
|
meaningful way. Handle only arithmetic operations. */
|
1199 |
|
|
if (code != PLUS_EXPR
|
1200 |
|
|
&& code != MINUS_EXPR
|
1201 |
|
|
&& code != MULT_EXPR
|
1202 |
|
|
&& code != TRUNC_DIV_EXPR
|
1203 |
|
|
&& code != FLOOR_DIV_EXPR
|
1204 |
|
|
&& code != CEIL_DIV_EXPR
|
1205 |
|
|
&& code != EXACT_DIV_EXPR
|
1206 |
|
|
&& code != ROUND_DIV_EXPR
|
1207 |
|
|
&& code != MIN_EXPR
|
1208 |
|
|
&& code != MAX_EXPR
|
1209 |
|
|
&& code != TRUTH_ANDIF_EXPR
|
1210 |
|
|
&& code != TRUTH_ORIF_EXPR
|
1211 |
|
|
&& code != TRUTH_AND_EXPR
|
1212 |
|
|
&& code != TRUTH_OR_EXPR
|
1213 |
|
|
&& code != TRUTH_XOR_EXPR)
|
1214 |
|
|
{
|
1215 |
|
|
set_value_range_to_varying (vr);
|
1216 |
|
|
return;
|
1217 |
|
|
}
|
1218 |
|
|
|
1219 |
|
|
/* Get value ranges for each operand. For constant operands, create
|
1220 |
|
|
a new value range with the operand to simplify processing. */
|
1221 |
|
|
op0 = TREE_OPERAND (expr, 0);
|
1222 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
1223 |
|
|
vr0 = *(get_value_range (op0));
|
1224 |
|
|
else if (is_gimple_min_invariant (op0))
|
1225 |
|
|
set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
|
1226 |
|
|
else
|
1227 |
|
|
set_value_range_to_varying (&vr0);
|
1228 |
|
|
|
1229 |
|
|
op1 = TREE_OPERAND (expr, 1);
|
1230 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
1231 |
|
|
vr1 = *(get_value_range (op1));
|
1232 |
|
|
else if (is_gimple_min_invariant (op1))
|
1233 |
|
|
set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
|
1234 |
|
|
else
|
1235 |
|
|
set_value_range_to_varying (&vr1);
|
1236 |
|
|
|
1237 |
|
|
/* If either range is UNDEFINED, so is the result. */
|
1238 |
|
|
if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
|
1239 |
|
|
{
|
1240 |
|
|
set_value_range_to_undefined (vr);
|
1241 |
|
|
return;
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
/* Refuse to operate on VARYING ranges, ranges of different kinds
|
1245 |
|
|
and symbolic ranges. TODO, we may be able to derive anti-ranges
|
1246 |
|
|
in some cases. */
|
1247 |
|
|
if (vr0.type == VR_VARYING
|
1248 |
|
|
|| vr1.type == VR_VARYING
|
1249 |
|
|
|| vr0.type != vr1.type
|
1250 |
|
|
|| symbolic_range_p (&vr0)
|
1251 |
|
|
|| symbolic_range_p (&vr1))
|
1252 |
|
|
{
|
1253 |
|
|
set_value_range_to_varying (vr);
|
1254 |
|
|
return;
|
1255 |
|
|
}
|
1256 |
|
|
|
1257 |
|
|
/* Now evaluate the expression to determine the new range. */
|
1258 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (expr))
|
1259 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (op0))
|
1260 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (op1)))
|
1261 |
|
|
{
|
1262 |
|
|
/* For pointer types, we are really only interested in asserting
|
1263 |
|
|
whether the expression evaluates to non-NULL. FIXME, we used
|
1264 |
|
|
to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
|
1265 |
|
|
ivopts is generating expressions with pointer multiplication
|
1266 |
|
|
in them. */
|
1267 |
|
|
if (code == PLUS_EXPR)
|
1268 |
|
|
{
|
1269 |
|
|
if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
|
1270 |
|
|
set_value_range_to_nonnull (vr, TREE_TYPE (expr));
|
1271 |
|
|
else if (range_is_null (&vr0) && range_is_null (&vr1))
|
1272 |
|
|
set_value_range_to_null (vr, TREE_TYPE (expr));
|
1273 |
|
|
else
|
1274 |
|
|
set_value_range_to_varying (vr);
|
1275 |
|
|
}
|
1276 |
|
|
else
|
1277 |
|
|
{
|
1278 |
|
|
/* Subtracting from a pointer, may yield 0, so just drop the
|
1279 |
|
|
resulting range to varying. */
|
1280 |
|
|
set_value_range_to_varying (vr);
|
1281 |
|
|
}
|
1282 |
|
|
|
1283 |
|
|
return;
|
1284 |
|
|
}
|
1285 |
|
|
|
1286 |
|
|
/* For integer ranges, apply the operation to each end of the
|
1287 |
|
|
range and see what we end up with. */
|
1288 |
|
|
if (code == TRUTH_ANDIF_EXPR
|
1289 |
|
|
|| code == TRUTH_ORIF_EXPR
|
1290 |
|
|
|| code == TRUTH_AND_EXPR
|
1291 |
|
|
|| code == TRUTH_OR_EXPR
|
1292 |
|
|
|| code == TRUTH_XOR_EXPR)
|
1293 |
|
|
{
|
1294 |
|
|
/* Boolean expressions cannot be folded with int_const_binop. */
|
1295 |
|
|
min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
|
1296 |
|
|
max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
|
1297 |
|
|
}
|
1298 |
|
|
else if (code == PLUS_EXPR
|
1299 |
|
|
|| code == MIN_EXPR
|
1300 |
|
|
|| code == MAX_EXPR)
|
1301 |
|
|
{
|
1302 |
|
|
/* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
|
1303 |
|
|
VR_VARYING. It would take more effort to compute a precise
|
1304 |
|
|
range for such a case. For example, if we have op0 == 1 and
|
1305 |
|
|
op1 == -1 with their ranges both being ~[0,0], we would have
|
1306 |
|
|
op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
|
1307 |
|
|
Note that we are guaranteed to have vr0.type == vr1.type at
|
1308 |
|
|
this point. */
|
1309 |
|
|
if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
|
1310 |
|
|
{
|
1311 |
|
|
set_value_range_to_varying (vr);
|
1312 |
|
|
return;
|
1313 |
|
|
}
|
1314 |
|
|
|
1315 |
|
|
/* For operations that make the resulting range directly
|
1316 |
|
|
proportional to the original ranges, apply the operation to
|
1317 |
|
|
the same end of each range. */
|
1318 |
|
|
min = vrp_int_const_binop (code, vr0.min, vr1.min);
|
1319 |
|
|
max = vrp_int_const_binop (code, vr0.max, vr1.max);
|
1320 |
|
|
}
|
1321 |
|
|
else if (code == MULT_EXPR
|
1322 |
|
|
|| code == TRUNC_DIV_EXPR
|
1323 |
|
|
|| code == FLOOR_DIV_EXPR
|
1324 |
|
|
|| code == CEIL_DIV_EXPR
|
1325 |
|
|
|| code == EXACT_DIV_EXPR
|
1326 |
|
|
|| code == ROUND_DIV_EXPR)
|
1327 |
|
|
{
|
1328 |
|
|
tree val[4];
|
1329 |
|
|
size_t i;
|
1330 |
|
|
|
1331 |
|
|
/* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
|
1332 |
|
|
drop to VR_VARYING. It would take more effort to compute a
|
1333 |
|
|
precise range for such a case. For example, if we have
|
1334 |
|
|
op0 == 65536 and op1 == 65536 with their ranges both being
|
1335 |
|
|
~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
|
1336 |
|
|
we cannot claim that the product is in ~[0,0]. Note that we
|
1337 |
|
|
are guaranteed to have vr0.type == vr1.type at this
|
1338 |
|
|
point. */
|
1339 |
|
|
if (code == MULT_EXPR
|
1340 |
|
|
&& vr0.type == VR_ANTI_RANGE
|
1341 |
|
|
&& (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
|
1342 |
|
|
{
|
1343 |
|
|
set_value_range_to_varying (vr);
|
1344 |
|
|
return;
|
1345 |
|
|
}
|
1346 |
|
|
|
1347 |
|
|
/* Multiplications and divisions are a bit tricky to handle,
|
1348 |
|
|
depending on the mix of signs we have in the two ranges, we
|
1349 |
|
|
need to operate on different values to get the minimum and
|
1350 |
|
|
maximum values for the new range. One approach is to figure
|
1351 |
|
|
out all the variations of range combinations and do the
|
1352 |
|
|
operations.
|
1353 |
|
|
|
1354 |
|
|
However, this involves several calls to compare_values and it
|
1355 |
|
|
is pretty convoluted. It's simpler to do the 4 operations
|
1356 |
|
|
(MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
|
1357 |
|
|
MAX1) and then figure the smallest and largest values to form
|
1358 |
|
|
the new range. */
|
1359 |
|
|
|
1360 |
|
|
/* Divisions by zero result in a VARYING value. */
|
1361 |
|
|
if (code != MULT_EXPR
|
1362 |
|
|
&& (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
|
1363 |
|
|
{
|
1364 |
|
|
set_value_range_to_varying (vr);
|
1365 |
|
|
return;
|
1366 |
|
|
}
|
1367 |
|
|
|
1368 |
|
|
/* Compute the 4 cross operations. */
|
1369 |
|
|
val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
|
1370 |
|
|
|
1371 |
|
|
val[1] = (vr1.max != vr1.min)
|
1372 |
|
|
? vrp_int_const_binop (code, vr0.min, vr1.max)
|
1373 |
|
|
: NULL_TREE;
|
1374 |
|
|
|
1375 |
|
|
val[2] = (vr0.max != vr0.min)
|
1376 |
|
|
? vrp_int_const_binop (code, vr0.max, vr1.min)
|
1377 |
|
|
: NULL_TREE;
|
1378 |
|
|
|
1379 |
|
|
val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
|
1380 |
|
|
? vrp_int_const_binop (code, vr0.max, vr1.max)
|
1381 |
|
|
: NULL_TREE;
|
1382 |
|
|
|
1383 |
|
|
/* Set MIN to the minimum of VAL[i] and MAX to the maximum
|
1384 |
|
|
of VAL[i]. */
|
1385 |
|
|
min = val[0];
|
1386 |
|
|
max = val[0];
|
1387 |
|
|
for (i = 1; i < 4; i++)
|
1388 |
|
|
{
|
1389 |
|
|
if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
|
1390 |
|
|
break;
|
1391 |
|
|
|
1392 |
|
|
if (val[i])
|
1393 |
|
|
{
|
1394 |
|
|
if (TREE_OVERFLOW (val[i]))
|
1395 |
|
|
{
|
1396 |
|
|
/* If we found an overflowed value, set MIN and MAX
|
1397 |
|
|
to it so that we set the resulting range to
|
1398 |
|
|
VARYING. */
|
1399 |
|
|
min = max = val[i];
|
1400 |
|
|
break;
|
1401 |
|
|
}
|
1402 |
|
|
|
1403 |
|
|
if (compare_values (val[i], min) == -1)
|
1404 |
|
|
min = val[i];
|
1405 |
|
|
|
1406 |
|
|
if (compare_values (val[i], max) == 1)
|
1407 |
|
|
max = val[i];
|
1408 |
|
|
}
|
1409 |
|
|
}
|
1410 |
|
|
}
|
1411 |
|
|
else if (code == MINUS_EXPR)
|
1412 |
|
|
{
|
1413 |
|
|
/* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
|
1414 |
|
|
VR_VARYING. It would take more effort to compute a precise
|
1415 |
|
|
range for such a case. For example, if we have op0 == 1 and
|
1416 |
|
|
op1 == 1 with their ranges both being ~[0,0], we would have
|
1417 |
|
|
op0 - op1 == 0, so we cannot claim that the difference is in
|
1418 |
|
|
~[0,0]. Note that we are guaranteed to have
|
1419 |
|
|
vr0.type == vr1.type at this point. */
|
1420 |
|
|
if (vr0.type == VR_ANTI_RANGE)
|
1421 |
|
|
{
|
1422 |
|
|
set_value_range_to_varying (vr);
|
1423 |
|
|
return;
|
1424 |
|
|
}
|
1425 |
|
|
|
1426 |
|
|
/* For MINUS_EXPR, apply the operation to the opposite ends of
|
1427 |
|
|
each range. */
|
1428 |
|
|
min = vrp_int_const_binop (code, vr0.min, vr1.max);
|
1429 |
|
|
max = vrp_int_const_binop (code, vr0.max, vr1.min);
|
1430 |
|
|
}
|
1431 |
|
|
else
|
1432 |
|
|
gcc_unreachable ();
|
1433 |
|
|
|
1434 |
|
|
/* If either MIN or MAX overflowed, then set the resulting range to
|
1435 |
|
|
VARYING. */
|
1436 |
|
|
if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
|
1437 |
|
|
{
|
1438 |
|
|
set_value_range_to_varying (vr);
|
1439 |
|
|
return;
|
1440 |
|
|
}
|
1441 |
|
|
|
1442 |
|
|
cmp = compare_values (min, max);
|
1443 |
|
|
if (cmp == -2 || cmp == 1)
|
1444 |
|
|
{
|
1445 |
|
|
/* If the new range has its limits swapped around (MIN > MAX),
|
1446 |
|
|
then the operation caused one of them to wrap around, mark
|
1447 |
|
|
the new range VARYING. */
|
1448 |
|
|
set_value_range_to_varying (vr);
|
1449 |
|
|
}
|
1450 |
|
|
else
|
1451 |
|
|
set_value_range (vr, vr0.type, min, max, NULL);
|
1452 |
|
|
}
|
1453 |
|
|
|
1454 |
|
|
|
1455 |
|
|
/* Extract range information from a unary expression EXPR based on
|
1456 |
|
|
the range of its operand and the expression code. */
|
1457 |
|
|
|
1458 |
|
|
static void
|
1459 |
|
|
extract_range_from_unary_expr (value_range_t *vr, tree expr)
|
1460 |
|
|
{
|
1461 |
|
|
enum tree_code code = TREE_CODE (expr);
|
1462 |
|
|
tree min, max, op0;
|
1463 |
|
|
int cmp;
|
1464 |
|
|
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
1465 |
|
|
|
1466 |
|
|
/* Refuse to operate on certain unary expressions for which we
|
1467 |
|
|
cannot easily determine a resulting range. */
|
1468 |
|
|
if (code == FIX_TRUNC_EXPR
|
1469 |
|
|
|| code == FIX_CEIL_EXPR
|
1470 |
|
|
|| code == FIX_FLOOR_EXPR
|
1471 |
|
|
|| code == FIX_ROUND_EXPR
|
1472 |
|
|
|| code == FLOAT_EXPR
|
1473 |
|
|
|| code == BIT_NOT_EXPR
|
1474 |
|
|
|| code == NON_LVALUE_EXPR
|
1475 |
|
|
|| code == CONJ_EXPR)
|
1476 |
|
|
{
|
1477 |
|
|
set_value_range_to_varying (vr);
|
1478 |
|
|
return;
|
1479 |
|
|
}
|
1480 |
|
|
|
1481 |
|
|
/* Get value ranges for the operand. For constant operands, create
|
1482 |
|
|
a new value range with the operand to simplify processing. */
|
1483 |
|
|
op0 = TREE_OPERAND (expr, 0);
|
1484 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
1485 |
|
|
vr0 = *(get_value_range (op0));
|
1486 |
|
|
else if (is_gimple_min_invariant (op0))
|
1487 |
|
|
set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
|
1488 |
|
|
else
|
1489 |
|
|
set_value_range_to_varying (&vr0);
|
1490 |
|
|
|
1491 |
|
|
/* If VR0 is UNDEFINED, so is the result. */
|
1492 |
|
|
if (vr0.type == VR_UNDEFINED)
|
1493 |
|
|
{
|
1494 |
|
|
set_value_range_to_undefined (vr);
|
1495 |
|
|
return;
|
1496 |
|
|
}
|
1497 |
|
|
|
1498 |
|
|
/* Refuse to operate on varying and symbolic ranges. Also, if the
|
1499 |
|
|
operand is neither a pointer nor an integral type, set the
|
1500 |
|
|
resulting range to VARYING. TODO, in some cases we may be able
|
1501 |
|
|
to derive anti-ranges (like nonzero values). */
|
1502 |
|
|
if (vr0.type == VR_VARYING
|
1503 |
|
|
|| (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
|
1504 |
|
|
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
|
1505 |
|
|
|| symbolic_range_p (&vr0))
|
1506 |
|
|
{
|
1507 |
|
|
set_value_range_to_varying (vr);
|
1508 |
|
|
return;
|
1509 |
|
|
}
|
1510 |
|
|
|
1511 |
|
|
/* If the expression involves pointers, we are only interested in
|
1512 |
|
|
determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
|
1513 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
|
1514 |
|
|
{
|
1515 |
|
|
if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
|
1516 |
|
|
set_value_range_to_nonnull (vr, TREE_TYPE (expr));
|
1517 |
|
|
else if (range_is_null (&vr0))
|
1518 |
|
|
set_value_range_to_null (vr, TREE_TYPE (expr));
|
1519 |
|
|
else
|
1520 |
|
|
set_value_range_to_varying (vr);
|
1521 |
|
|
|
1522 |
|
|
return;
|
1523 |
|
|
}
|
1524 |
|
|
|
1525 |
|
|
/* Handle unary expressions on integer ranges. */
|
1526 |
|
|
if (code == NOP_EXPR || code == CONVERT_EXPR)
|
1527 |
|
|
{
|
1528 |
|
|
tree inner_type = TREE_TYPE (op0);
|
1529 |
|
|
tree outer_type = TREE_TYPE (expr);
|
1530 |
|
|
|
1531 |
|
|
/* If VR0 represents a simple range, then try to convert
|
1532 |
|
|
the min and max values for the range to the same type
|
1533 |
|
|
as OUTER_TYPE. If the results compare equal to VR0's
|
1534 |
|
|
min and max values and the new min is still less than
|
1535 |
|
|
or equal to the new max, then we can safely use the newly
|
1536 |
|
|
computed range for EXPR. This allows us to compute
|
1537 |
|
|
accurate ranges through many casts. */
|
1538 |
|
|
if (vr0.type == VR_RANGE)
|
1539 |
|
|
{
|
1540 |
|
|
tree new_min, new_max;
|
1541 |
|
|
|
1542 |
|
|
/* Convert VR0's min/max to OUTER_TYPE. */
|
1543 |
|
|
new_min = fold_convert (outer_type, vr0.min);
|
1544 |
|
|
new_max = fold_convert (outer_type, vr0.max);
|
1545 |
|
|
|
1546 |
|
|
/* Verify the new min/max values are gimple values and
|
1547 |
|
|
that they compare equal to VR0's min/max values. */
|
1548 |
|
|
if (is_gimple_val (new_min)
|
1549 |
|
|
&& is_gimple_val (new_max)
|
1550 |
|
|
&& tree_int_cst_equal (new_min, vr0.min)
|
1551 |
|
|
&& tree_int_cst_equal (new_max, vr0.max)
|
1552 |
|
|
&& compare_values (new_min, new_max) <= 0
|
1553 |
|
|
&& compare_values (new_min, new_max) >= -1)
|
1554 |
|
|
{
|
1555 |
|
|
set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
|
1556 |
|
|
return;
|
1557 |
|
|
}
|
1558 |
|
|
}
|
1559 |
|
|
|
1560 |
|
|
/* When converting types of different sizes, set the result to
|
1561 |
|
|
VARYING. Things like sign extensions and precision loss may
|
1562 |
|
|
change the range. For instance, if x_3 is of type 'long long
|
1563 |
|
|
int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
|
1564 |
|
|
is impossible to know at compile time whether y_5 will be
|
1565 |
|
|
~[0, 0]. */
|
1566 |
|
|
if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
|
1567 |
|
|
|| TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
|
1568 |
|
|
{
|
1569 |
|
|
set_value_range_to_varying (vr);
|
1570 |
|
|
return;
|
1571 |
|
|
}
|
1572 |
|
|
}
|
1573 |
|
|
|
1574 |
|
|
/* Apply the operation to each end of the range and see what we end
|
1575 |
|
|
up with. */
|
1576 |
|
|
if (code == NEGATE_EXPR
|
1577 |
|
|
&& !TYPE_UNSIGNED (TREE_TYPE (expr)))
|
1578 |
|
|
{
|
1579 |
|
|
/* NEGATE_EXPR flips the range around. */
|
1580 |
|
|
min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
|
1581 |
|
|
? TYPE_MIN_VALUE (TREE_TYPE (expr))
|
1582 |
|
|
: fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
|
1583 |
|
|
|
1584 |
|
|
max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
|
1585 |
|
|
? TYPE_MAX_VALUE (TREE_TYPE (expr))
|
1586 |
|
|
: fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
|
1587 |
|
|
}
|
1588 |
|
|
else if (code == ABS_EXPR
|
1589 |
|
|
&& !TYPE_UNSIGNED (TREE_TYPE (expr)))
|
1590 |
|
|
{
|
1591 |
|
|
/* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
|
1592 |
|
|
useful range. */
|
1593 |
|
|
if (flag_wrapv
|
1594 |
|
|
&& ((vr0.type == VR_RANGE
|
1595 |
|
|
&& vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
|
1596 |
|
|
|| (vr0.type == VR_ANTI_RANGE
|
1597 |
|
|
&& vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
|
1598 |
|
|
&& !range_includes_zero_p (&vr0))))
|
1599 |
|
|
{
|
1600 |
|
|
set_value_range_to_varying (vr);
|
1601 |
|
|
return;
|
1602 |
|
|
}
|
1603 |
|
|
|
1604 |
|
|
/* ABS_EXPR may flip the range around, if the original range
|
1605 |
|
|
included negative values. */
|
1606 |
|
|
min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
|
1607 |
|
|
? TYPE_MAX_VALUE (TREE_TYPE (expr))
|
1608 |
|
|
: fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
|
1609 |
|
|
|
1610 |
|
|
max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
|
1611 |
|
|
|
1612 |
|
|
cmp = compare_values (min, max);
|
1613 |
|
|
|
1614 |
|
|
/* If a VR_ANTI_RANGEs contains zero, then we have
|
1615 |
|
|
~[-INF, min(MIN, MAX)]. */
|
1616 |
|
|
if (vr0.type == VR_ANTI_RANGE)
|
1617 |
|
|
{
|
1618 |
|
|
if (range_includes_zero_p (&vr0))
|
1619 |
|
|
{
|
1620 |
|
|
tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
|
1621 |
|
|
|
1622 |
|
|
/* Take the lower of the two values. */
|
1623 |
|
|
if (cmp != 1)
|
1624 |
|
|
max = min;
|
1625 |
|
|
|
1626 |
|
|
/* Create ~[-INF, min (abs(MIN), abs(MAX))]
|
1627 |
|
|
or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
|
1628 |
|
|
flag_wrapv is set and the original anti-range doesn't include
|
1629 |
|
|
TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
|
1630 |
|
|
min = (flag_wrapv && vr0.min != type_min_value
|
1631 |
|
|
? int_const_binop (PLUS_EXPR,
|
1632 |
|
|
type_min_value,
|
1633 |
|
|
integer_one_node, 0)
|
1634 |
|
|
: type_min_value);
|
1635 |
|
|
}
|
1636 |
|
|
else
|
1637 |
|
|
{
|
1638 |
|
|
/* All else has failed, so create the range [0, INF], even for
|
1639 |
|
|
flag_wrapv since TYPE_MIN_VALUE is in the original
|
1640 |
|
|
anti-range. */
|
1641 |
|
|
vr0.type = VR_RANGE;
|
1642 |
|
|
min = build_int_cst (TREE_TYPE (expr), 0);
|
1643 |
|
|
max = TYPE_MAX_VALUE (TREE_TYPE (expr));
|
1644 |
|
|
}
|
1645 |
|
|
}
|
1646 |
|
|
|
1647 |
|
|
/* If the range contains zero then we know that the minimum value in the
|
1648 |
|
|
range will be zero. */
|
1649 |
|
|
else if (range_includes_zero_p (&vr0))
|
1650 |
|
|
{
|
1651 |
|
|
if (cmp == 1)
|
1652 |
|
|
max = min;
|
1653 |
|
|
min = build_int_cst (TREE_TYPE (expr), 0);
|
1654 |
|
|
}
|
1655 |
|
|
else
|
1656 |
|
|
{
|
1657 |
|
|
/* If the range was reversed, swap MIN and MAX. */
|
1658 |
|
|
if (cmp == 1)
|
1659 |
|
|
{
|
1660 |
|
|
tree t = min;
|
1661 |
|
|
min = max;
|
1662 |
|
|
max = t;
|
1663 |
|
|
}
|
1664 |
|
|
}
|
1665 |
|
|
}
|
1666 |
|
|
else
|
1667 |
|
|
{
|
1668 |
|
|
/* Otherwise, operate on each end of the range. */
|
1669 |
|
|
min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
|
1670 |
|
|
max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
|
1671 |
|
|
}
|
1672 |
|
|
|
1673 |
|
|
cmp = compare_values (min, max);
|
1674 |
|
|
if (cmp == -2 || cmp == 1)
|
1675 |
|
|
{
|
1676 |
|
|
/* If the new range has its limits swapped around (MIN > MAX),
|
1677 |
|
|
then the operation caused one of them to wrap around, mark
|
1678 |
|
|
the new range VARYING. */
|
1679 |
|
|
set_value_range_to_varying (vr);
|
1680 |
|
|
}
|
1681 |
|
|
else
|
1682 |
|
|
set_value_range (vr, vr0.type, min, max, NULL);
|
1683 |
|
|
}
|
1684 |
|
|
|
1685 |
|
|
|
1686 |
|
|
/* Extract range information from a comparison expression EXPR based
|
1687 |
|
|
on the range of its operand and the expression code. */
|
1688 |
|
|
|
1689 |
|
|
static void
|
1690 |
|
|
extract_range_from_comparison (value_range_t *vr, tree expr)
|
1691 |
|
|
{
|
1692 |
|
|
tree val = vrp_evaluate_conditional (expr, false);
|
1693 |
|
|
if (val)
|
1694 |
|
|
{
|
1695 |
|
|
/* Since this expression was found on the RHS of an assignment,
|
1696 |
|
|
its type may be different from _Bool. Convert VAL to EXPR's
|
1697 |
|
|
type. */
|
1698 |
|
|
val = fold_convert (TREE_TYPE (expr), val);
|
1699 |
|
|
set_value_range (vr, VR_RANGE, val, val, vr->equiv);
|
1700 |
|
|
}
|
1701 |
|
|
else
|
1702 |
|
|
set_value_range_to_varying (vr);
|
1703 |
|
|
}
|
1704 |
|
|
|
1705 |
|
|
|
1706 |
|
|
/* Try to compute a useful range out of expression EXPR and store it
|
1707 |
|
|
in *VR. */
|
1708 |
|
|
|
1709 |
|
|
static void
|
1710 |
|
|
extract_range_from_expr (value_range_t *vr, tree expr)
|
1711 |
|
|
{
|
1712 |
|
|
enum tree_code code = TREE_CODE (expr);
|
1713 |
|
|
|
1714 |
|
|
if (code == ASSERT_EXPR)
|
1715 |
|
|
extract_range_from_assert (vr, expr);
|
1716 |
|
|
else if (code == SSA_NAME)
|
1717 |
|
|
extract_range_from_ssa_name (vr, expr);
|
1718 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_binary
|
1719 |
|
|
|| code == TRUTH_ANDIF_EXPR
|
1720 |
|
|
|| code == TRUTH_ORIF_EXPR
|
1721 |
|
|
|| code == TRUTH_AND_EXPR
|
1722 |
|
|
|| code == TRUTH_OR_EXPR
|
1723 |
|
|
|| code == TRUTH_XOR_EXPR)
|
1724 |
|
|
extract_range_from_binary_expr (vr, expr);
|
1725 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_unary)
|
1726 |
|
|
extract_range_from_unary_expr (vr, expr);
|
1727 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_comparison)
|
1728 |
|
|
extract_range_from_comparison (vr, expr);
|
1729 |
|
|
else if (is_gimple_min_invariant (expr))
|
1730 |
|
|
set_value_range (vr, VR_RANGE, expr, expr, NULL);
|
1731 |
|
|
else if (vrp_expr_computes_nonzero (expr))
|
1732 |
|
|
set_value_range_to_nonnull (vr, TREE_TYPE (expr));
|
1733 |
|
|
else
|
1734 |
|
|
set_value_range_to_varying (vr);
|
1735 |
|
|
}
|
1736 |
|
|
|
1737 |
|
|
/* Given a range VR, a LOOP and a variable VAR, determine whether it
|
1738 |
|
|
would be profitable to adjust VR using scalar evolution information
|
1739 |
|
|
for VAR. If so, update VR with the new limits. */
|
1740 |
|
|
|
1741 |
|
|
static void
|
1742 |
|
|
adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
|
1743 |
|
|
tree var)
|
1744 |
|
|
{
|
1745 |
|
|
tree init, step, chrec;
|
1746 |
|
|
bool init_is_max, unknown_max;
|
1747 |
|
|
|
1748 |
|
|
/* TODO. Don't adjust anti-ranges. An anti-range may provide
|
1749 |
|
|
better opportunities than a regular range, but I'm not sure. */
|
1750 |
|
|
if (vr->type == VR_ANTI_RANGE)
|
1751 |
|
|
return;
|
1752 |
|
|
|
1753 |
|
|
chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
|
1754 |
|
|
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
|
1755 |
|
|
return;
|
1756 |
|
|
|
1757 |
|
|
init = initial_condition_in_loop_num (chrec, loop->num);
|
1758 |
|
|
step = evolution_part_in_loop_num (chrec, loop->num);
|
1759 |
|
|
|
1760 |
|
|
/* If STEP is symbolic, we can't know whether INIT will be the
|
1761 |
|
|
minimum or maximum value in the range. */
|
1762 |
|
|
if (step == NULL_TREE
|
1763 |
|
|
|| !is_gimple_min_invariant (step))
|
1764 |
|
|
return;
|
1765 |
|
|
|
1766 |
|
|
/* Do not adjust ranges when chrec may wrap. */
|
1767 |
|
|
if (scev_probably_wraps_p (chrec_type (chrec), init, step, stmt,
|
1768 |
|
|
cfg_loops->parray[CHREC_VARIABLE (chrec)],
|
1769 |
|
|
&init_is_max, &unknown_max)
|
1770 |
|
|
|| unknown_max)
|
1771 |
|
|
return;
|
1772 |
|
|
|
1773 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (init))
|
1774 |
|
|
&& (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
|
1775 |
|
|
{
|
1776 |
|
|
/* For VARYING or UNDEFINED ranges, just about anything we get
|
1777 |
|
|
from scalar evolutions should be better. */
|
1778 |
|
|
if (init_is_max)
|
1779 |
|
|
set_value_range (vr, VR_RANGE, TYPE_MIN_VALUE (TREE_TYPE (init)),
|
1780 |
|
|
init, vr->equiv);
|
1781 |
|
|
else
|
1782 |
|
|
set_value_range (vr, VR_RANGE, init, TYPE_MAX_VALUE (TREE_TYPE (init)),
|
1783 |
|
|
vr->equiv);
|
1784 |
|
|
}
|
1785 |
|
|
else if (vr->type == VR_RANGE)
|
1786 |
|
|
{
|
1787 |
|
|
tree min = vr->min;
|
1788 |
|
|
tree max = vr->max;
|
1789 |
|
|
|
1790 |
|
|
if (init_is_max)
|
1791 |
|
|
{
|
1792 |
|
|
/* INIT is the maximum value. If INIT is lower than VR->MAX
|
1793 |
|
|
but no smaller than VR->MIN, set VR->MAX to INIT. */
|
1794 |
|
|
if (compare_values (init, max) == -1)
|
1795 |
|
|
{
|
1796 |
|
|
max = init;
|
1797 |
|
|
|
1798 |
|
|
/* If we just created an invalid range with the minimum
|
1799 |
|
|
greater than the maximum, take the minimum all the
|
1800 |
|
|
way to -INF. */
|
1801 |
|
|
if (compare_values (min, max) == 1)
|
1802 |
|
|
min = TYPE_MIN_VALUE (TREE_TYPE (min));
|
1803 |
|
|
}
|
1804 |
|
|
}
|
1805 |
|
|
else
|
1806 |
|
|
{
|
1807 |
|
|
/* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
|
1808 |
|
|
if (compare_values (init, min) == 1)
|
1809 |
|
|
{
|
1810 |
|
|
min = init;
|
1811 |
|
|
|
1812 |
|
|
/* If we just created an invalid range with the minimum
|
1813 |
|
|
greater than the maximum, take the maximum all the
|
1814 |
|
|
way to +INF. */
|
1815 |
|
|
if (compare_values (min, max) == 1)
|
1816 |
|
|
max = TYPE_MAX_VALUE (TREE_TYPE (max));
|
1817 |
|
|
}
|
1818 |
|
|
}
|
1819 |
|
|
|
1820 |
|
|
set_value_range (vr, VR_RANGE, min, max, vr->equiv);
|
1821 |
|
|
}
|
1822 |
|
|
}
|
1823 |
|
|
|
1824 |
|
|
|
1825 |
|
|
/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
|
1826 |
|
|
|
1827 |
|
|
- Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
|
1828 |
|
|
all the values in the ranges.
|
1829 |
|
|
|
1830 |
|
|
- Return BOOLEAN_FALSE_NODE if the comparison always returns false.
|
1831 |
|
|
|
1832 |
|
|
- Return NULL_TREE if it is not always possible to determine the
|
1833 |
|
|
value of the comparison. */
|
1834 |
|
|
|
1835 |
|
|
|
1836 |
|
|
static tree
|
1837 |
|
|
compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
|
1838 |
|
|
{
|
1839 |
|
|
/* VARYING or UNDEFINED ranges cannot be compared. */
|
1840 |
|
|
if (vr0->type == VR_VARYING
|
1841 |
|
|
|| vr0->type == VR_UNDEFINED
|
1842 |
|
|
|| vr1->type == VR_VARYING
|
1843 |
|
|
|| vr1->type == VR_UNDEFINED)
|
1844 |
|
|
return NULL_TREE;
|
1845 |
|
|
|
1846 |
|
|
/* Anti-ranges need to be handled separately. */
|
1847 |
|
|
if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
|
1848 |
|
|
{
|
1849 |
|
|
/* If both are anti-ranges, then we cannot compute any
|
1850 |
|
|
comparison. */
|
1851 |
|
|
if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
|
1852 |
|
|
return NULL_TREE;
|
1853 |
|
|
|
1854 |
|
|
/* These comparisons are never statically computable. */
|
1855 |
|
|
if (comp == GT_EXPR
|
1856 |
|
|
|| comp == GE_EXPR
|
1857 |
|
|
|| comp == LT_EXPR
|
1858 |
|
|
|| comp == LE_EXPR)
|
1859 |
|
|
return NULL_TREE;
|
1860 |
|
|
|
1861 |
|
|
/* Equality can be computed only between a range and an
|
1862 |
|
|
anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
|
1863 |
|
|
if (vr0->type == VR_RANGE)
|
1864 |
|
|
{
|
1865 |
|
|
/* To simplify processing, make VR0 the anti-range. */
|
1866 |
|
|
value_range_t *tmp = vr0;
|
1867 |
|
|
vr0 = vr1;
|
1868 |
|
|
vr1 = tmp;
|
1869 |
|
|
}
|
1870 |
|
|
|
1871 |
|
|
gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
|
1872 |
|
|
|
1873 |
|
|
if (compare_values (vr0->min, vr1->min) == 0
|
1874 |
|
|
&& compare_values (vr0->max, vr1->max) == 0)
|
1875 |
|
|
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
|
1876 |
|
|
|
1877 |
|
|
return NULL_TREE;
|
1878 |
|
|
}
|
1879 |
|
|
|
1880 |
|
|
/* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
|
1881 |
|
|
operands around and change the comparison code. */
|
1882 |
|
|
if (comp == GT_EXPR || comp == GE_EXPR)
|
1883 |
|
|
{
|
1884 |
|
|
value_range_t *tmp;
|
1885 |
|
|
comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
|
1886 |
|
|
tmp = vr0;
|
1887 |
|
|
vr0 = vr1;
|
1888 |
|
|
vr1 = tmp;
|
1889 |
|
|
}
|
1890 |
|
|
|
1891 |
|
|
if (comp == EQ_EXPR)
|
1892 |
|
|
{
|
1893 |
|
|
/* Equality may only be computed if both ranges represent
|
1894 |
|
|
exactly one value. */
|
1895 |
|
|
if (compare_values (vr0->min, vr0->max) == 0
|
1896 |
|
|
&& compare_values (vr1->min, vr1->max) == 0)
|
1897 |
|
|
{
|
1898 |
|
|
int cmp_min = compare_values (vr0->min, vr1->min);
|
1899 |
|
|
int cmp_max = compare_values (vr0->max, vr1->max);
|
1900 |
|
|
if (cmp_min == 0 && cmp_max == 0)
|
1901 |
|
|
return boolean_true_node;
|
1902 |
|
|
else if (cmp_min != -2 && cmp_max != -2)
|
1903 |
|
|
return boolean_false_node;
|
1904 |
|
|
}
|
1905 |
|
|
|
1906 |
|
|
return NULL_TREE;
|
1907 |
|
|
}
|
1908 |
|
|
else if (comp == NE_EXPR)
|
1909 |
|
|
{
|
1910 |
|
|
int cmp1, cmp2;
|
1911 |
|
|
|
1912 |
|
|
/* If VR0 is completely to the left or completely to the right
|
1913 |
|
|
of VR1, they are always different. Notice that we need to
|
1914 |
|
|
make sure that both comparisons yield similar results to
|
1915 |
|
|
avoid comparing values that cannot be compared at
|
1916 |
|
|
compile-time. */
|
1917 |
|
|
cmp1 = compare_values (vr0->max, vr1->min);
|
1918 |
|
|
cmp2 = compare_values (vr0->min, vr1->max);
|
1919 |
|
|
if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
|
1920 |
|
|
return boolean_true_node;
|
1921 |
|
|
|
1922 |
|
|
/* If VR0 and VR1 represent a single value and are identical,
|
1923 |
|
|
return false. */
|
1924 |
|
|
else if (compare_values (vr0->min, vr0->max) == 0
|
1925 |
|
|
&& compare_values (vr1->min, vr1->max) == 0
|
1926 |
|
|
&& compare_values (vr0->min, vr1->min) == 0
|
1927 |
|
|
&& compare_values (vr0->max, vr1->max) == 0)
|
1928 |
|
|
return boolean_false_node;
|
1929 |
|
|
|
1930 |
|
|
/* Otherwise, they may or may not be different. */
|
1931 |
|
|
else
|
1932 |
|
|
return NULL_TREE;
|
1933 |
|
|
}
|
1934 |
|
|
else if (comp == LT_EXPR || comp == LE_EXPR)
|
1935 |
|
|
{
|
1936 |
|
|
int tst;
|
1937 |
|
|
|
1938 |
|
|
/* If VR0 is to the left of VR1, return true. */
|
1939 |
|
|
tst = compare_values (vr0->max, vr1->min);
|
1940 |
|
|
if ((comp == LT_EXPR && tst == -1)
|
1941 |
|
|
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
|
1942 |
|
|
return boolean_true_node;
|
1943 |
|
|
|
1944 |
|
|
/* If VR0 is to the right of VR1, return false. */
|
1945 |
|
|
tst = compare_values (vr0->min, vr1->max);
|
1946 |
|
|
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|
1947 |
|
|
|| (comp == LE_EXPR && tst == 1))
|
1948 |
|
|
return boolean_false_node;
|
1949 |
|
|
|
1950 |
|
|
/* Otherwise, we don't know. */
|
1951 |
|
|
return NULL_TREE;
|
1952 |
|
|
}
|
1953 |
|
|
|
1954 |
|
|
gcc_unreachable ();
|
1955 |
|
|
}
|
1956 |
|
|
|
1957 |
|
|
|
1958 |
|
|
/* Given a value range VR, a value VAL and a comparison code COMP, return
|
1959 |
|
|
BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
|
1960 |
|
|
values in VR. Return BOOLEAN_FALSE_NODE if the comparison
|
1961 |
|
|
always returns false. Return NULL_TREE if it is not always
|
1962 |
|
|
possible to determine the value of the comparison. */
|
1963 |
|
|
|
1964 |
|
|
static tree
|
1965 |
|
|
compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
|
1966 |
|
|
{
|
1967 |
|
|
if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
|
1968 |
|
|
return NULL_TREE;
|
1969 |
|
|
|
1970 |
|
|
/* Anti-ranges need to be handled separately. */
|
1971 |
|
|
if (vr->type == VR_ANTI_RANGE)
|
1972 |
|
|
{
|
1973 |
|
|
/* For anti-ranges, the only predicates that we can compute at
|
1974 |
|
|
compile time are equality and inequality. */
|
1975 |
|
|
if (comp == GT_EXPR
|
1976 |
|
|
|| comp == GE_EXPR
|
1977 |
|
|
|| comp == LT_EXPR
|
1978 |
|
|
|| comp == LE_EXPR)
|
1979 |
|
|
return NULL_TREE;
|
1980 |
|
|
|
1981 |
|
|
/* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
|
1982 |
|
|
if (value_inside_range (val, vr) == 1)
|
1983 |
|
|
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
|
1984 |
|
|
|
1985 |
|
|
return NULL_TREE;
|
1986 |
|
|
}
|
1987 |
|
|
|
1988 |
|
|
if (comp == EQ_EXPR)
|
1989 |
|
|
{
|
1990 |
|
|
/* EQ_EXPR may only be computed if VR represents exactly
|
1991 |
|
|
one value. */
|
1992 |
|
|
if (compare_values (vr->min, vr->max) == 0)
|
1993 |
|
|
{
|
1994 |
|
|
int cmp = compare_values (vr->min, val);
|
1995 |
|
|
if (cmp == 0)
|
1996 |
|
|
return boolean_true_node;
|
1997 |
|
|
else if (cmp == -1 || cmp == 1 || cmp == 2)
|
1998 |
|
|
return boolean_false_node;
|
1999 |
|
|
}
|
2000 |
|
|
else if (compare_values (val, vr->min) == -1
|
2001 |
|
|
|| compare_values (vr->max, val) == -1)
|
2002 |
|
|
return boolean_false_node;
|
2003 |
|
|
|
2004 |
|
|
return NULL_TREE;
|
2005 |
|
|
}
|
2006 |
|
|
else if (comp == NE_EXPR)
|
2007 |
|
|
{
|
2008 |
|
|
/* If VAL is not inside VR, then they are always different. */
|
2009 |
|
|
if (compare_values (vr->max, val) == -1
|
2010 |
|
|
|| compare_values (vr->min, val) == 1)
|
2011 |
|
|
return boolean_true_node;
|
2012 |
|
|
|
2013 |
|
|
/* If VR represents exactly one value equal to VAL, then return
|
2014 |
|
|
false. */
|
2015 |
|
|
if (compare_values (vr->min, vr->max) == 0
|
2016 |
|
|
&& compare_values (vr->min, val) == 0)
|
2017 |
|
|
return boolean_false_node;
|
2018 |
|
|
|
2019 |
|
|
/* Otherwise, they may or may not be different. */
|
2020 |
|
|
return NULL_TREE;
|
2021 |
|
|
}
|
2022 |
|
|
else if (comp == LT_EXPR || comp == LE_EXPR)
|
2023 |
|
|
{
|
2024 |
|
|
int tst;
|
2025 |
|
|
|
2026 |
|
|
/* If VR is to the left of VAL, return true. */
|
2027 |
|
|
tst = compare_values (vr->max, val);
|
2028 |
|
|
if ((comp == LT_EXPR && tst == -1)
|
2029 |
|
|
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
|
2030 |
|
|
return boolean_true_node;
|
2031 |
|
|
|
2032 |
|
|
/* If VR is to the right of VAL, return false. */
|
2033 |
|
|
tst = compare_values (vr->min, val);
|
2034 |
|
|
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|
2035 |
|
|
|| (comp == LE_EXPR && tst == 1))
|
2036 |
|
|
return boolean_false_node;
|
2037 |
|
|
|
2038 |
|
|
/* Otherwise, we don't know. */
|
2039 |
|
|
return NULL_TREE;
|
2040 |
|
|
}
|
2041 |
|
|
else if (comp == GT_EXPR || comp == GE_EXPR)
|
2042 |
|
|
{
|
2043 |
|
|
int tst;
|
2044 |
|
|
|
2045 |
|
|
/* If VR is to the right of VAL, return true. */
|
2046 |
|
|
tst = compare_values (vr->min, val);
|
2047 |
|
|
if ((comp == GT_EXPR && tst == 1)
|
2048 |
|
|
|| (comp == GE_EXPR && (tst == 0 || tst == 1)))
|
2049 |
|
|
return boolean_true_node;
|
2050 |
|
|
|
2051 |
|
|
/* If VR is to the left of VAL, return false. */
|
2052 |
|
|
tst = compare_values (vr->max, val);
|
2053 |
|
|
if ((comp == GT_EXPR && (tst == -1 || tst == 0))
|
2054 |
|
|
|| (comp == GE_EXPR && tst == -1))
|
2055 |
|
|
return boolean_false_node;
|
2056 |
|
|
|
2057 |
|
|
/* Otherwise, we don't know. */
|
2058 |
|
|
return NULL_TREE;
|
2059 |
|
|
}
|
2060 |
|
|
|
2061 |
|
|
gcc_unreachable ();
|
2062 |
|
|
}
|
2063 |
|
|
|
2064 |
|
|
|
2065 |
|
|
/* Debugging dumps. */
|
2066 |
|
|
|
2067 |
|
|
void dump_value_range (FILE *, value_range_t *);
|
2068 |
|
|
void debug_value_range (value_range_t *);
|
2069 |
|
|
void dump_all_value_ranges (FILE *);
|
2070 |
|
|
void debug_all_value_ranges (void);
|
2071 |
|
|
void dump_vr_equiv (FILE *, bitmap);
|
2072 |
|
|
void debug_vr_equiv (bitmap);
|
2073 |
|
|
|
2074 |
|
|
|
2075 |
|
|
/* Dump value range VR to FILE. */
|
2076 |
|
|
|
2077 |
|
|
void
|
2078 |
|
|
dump_value_range (FILE *file, value_range_t *vr)
|
2079 |
|
|
{
|
2080 |
|
|
if (vr == NULL)
|
2081 |
|
|
fprintf (file, "[]");
|
2082 |
|
|
else if (vr->type == VR_UNDEFINED)
|
2083 |
|
|
fprintf (file, "UNDEFINED");
|
2084 |
|
|
else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
|
2085 |
|
|
{
|
2086 |
|
|
tree type = TREE_TYPE (vr->min);
|
2087 |
|
|
|
2088 |
|
|
fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
|
2089 |
|
|
|
2090 |
|
|
if (INTEGRAL_TYPE_P (type)
|
2091 |
|
|
&& !TYPE_UNSIGNED (type)
|
2092 |
|
|
&& vr->min == TYPE_MIN_VALUE (type))
|
2093 |
|
|
fprintf (file, "-INF");
|
2094 |
|
|
else
|
2095 |
|
|
print_generic_expr (file, vr->min, 0);
|
2096 |
|
|
|
2097 |
|
|
fprintf (file, ", ");
|
2098 |
|
|
|
2099 |
|
|
if (INTEGRAL_TYPE_P (type)
|
2100 |
|
|
&& vr->max == TYPE_MAX_VALUE (type))
|
2101 |
|
|
fprintf (file, "+INF");
|
2102 |
|
|
else
|
2103 |
|
|
print_generic_expr (file, vr->max, 0);
|
2104 |
|
|
|
2105 |
|
|
fprintf (file, "]");
|
2106 |
|
|
|
2107 |
|
|
if (vr->equiv)
|
2108 |
|
|
{
|
2109 |
|
|
bitmap_iterator bi;
|
2110 |
|
|
unsigned i, c = 0;
|
2111 |
|
|
|
2112 |
|
|
fprintf (file, " EQUIVALENCES: { ");
|
2113 |
|
|
|
2114 |
|
|
EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
|
2115 |
|
|
{
|
2116 |
|
|
print_generic_expr (file, ssa_name (i), 0);
|
2117 |
|
|
fprintf (file, " ");
|
2118 |
|
|
c++;
|
2119 |
|
|
}
|
2120 |
|
|
|
2121 |
|
|
fprintf (file, "} (%u elements)", c);
|
2122 |
|
|
}
|
2123 |
|
|
}
|
2124 |
|
|
else if (vr->type == VR_VARYING)
|
2125 |
|
|
fprintf (file, "VARYING");
|
2126 |
|
|
else
|
2127 |
|
|
fprintf (file, "INVALID RANGE");
|
2128 |
|
|
}
|
2129 |
|
|
|
2130 |
|
|
|
2131 |
|
|
/* Dump value range VR to stderr. */
|
2132 |
|
|
|
2133 |
|
|
void
|
2134 |
|
|
debug_value_range (value_range_t *vr)
|
2135 |
|
|
{
|
2136 |
|
|
dump_value_range (stderr, vr);
|
2137 |
|
|
}
|
2138 |
|
|
|
2139 |
|
|
|
2140 |
|
|
/* Dump value ranges of all SSA_NAMEs to FILE. */
|
2141 |
|
|
|
2142 |
|
|
void
|
2143 |
|
|
dump_all_value_ranges (FILE *file)
|
2144 |
|
|
{
|
2145 |
|
|
size_t i;
|
2146 |
|
|
|
2147 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
2148 |
|
|
{
|
2149 |
|
|
if (vr_value[i])
|
2150 |
|
|
{
|
2151 |
|
|
print_generic_expr (file, ssa_name (i), 0);
|
2152 |
|
|
fprintf (file, ": ");
|
2153 |
|
|
dump_value_range (file, vr_value[i]);
|
2154 |
|
|
fprintf (file, "\n");
|
2155 |
|
|
}
|
2156 |
|
|
}
|
2157 |
|
|
|
2158 |
|
|
fprintf (file, "\n");
|
2159 |
|
|
}
|
2160 |
|
|
|
2161 |
|
|
|
2162 |
|
|
/* Dump all value ranges to stderr. */
|
2163 |
|
|
|
2164 |
|
|
void
|
2165 |
|
|
debug_all_value_ranges (void)
|
2166 |
|
|
{
|
2167 |
|
|
dump_all_value_ranges (stderr);
|
2168 |
|
|
}
|
2169 |
|
|
|
2170 |
|
|
|
2171 |
|
|
/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
|
2172 |
|
|
create a new SSA name N and return the assertion assignment
|
2173 |
|
|
'V = ASSERT_EXPR <V, V OP W>'. */
|
2174 |
|
|
|
2175 |
|
|
static tree
|
2176 |
|
|
build_assert_expr_for (tree cond, tree v)
|
2177 |
|
|
{
|
2178 |
|
|
tree n, assertion;
|
2179 |
|
|
|
2180 |
|
|
gcc_assert (TREE_CODE (v) == SSA_NAME);
|
2181 |
|
|
n = duplicate_ssa_name (v, NULL_TREE);
|
2182 |
|
|
|
2183 |
|
|
if (COMPARISON_CLASS_P (cond))
|
2184 |
|
|
{
|
2185 |
|
|
tree a = build (ASSERT_EXPR, TREE_TYPE (v), v, cond);
|
2186 |
|
|
assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, a);
|
2187 |
|
|
}
|
2188 |
|
|
else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
|
2189 |
|
|
{
|
2190 |
|
|
/* Given !V, build the assignment N = false. */
|
2191 |
|
|
tree op0 = TREE_OPERAND (cond, 0);
|
2192 |
|
|
gcc_assert (op0 == v);
|
2193 |
|
|
assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
|
2194 |
|
|
}
|
2195 |
|
|
else if (TREE_CODE (cond) == SSA_NAME)
|
2196 |
|
|
{
|
2197 |
|
|
/* Given V, build the assignment N = true. */
|
2198 |
|
|
gcc_assert (v == cond);
|
2199 |
|
|
assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
|
2200 |
|
|
}
|
2201 |
|
|
else
|
2202 |
|
|
gcc_unreachable ();
|
2203 |
|
|
|
2204 |
|
|
SSA_NAME_DEF_STMT (n) = assertion;
|
2205 |
|
|
|
2206 |
|
|
/* The new ASSERT_EXPR, creates a new SSA name that replaces the
|
2207 |
|
|
operand of the ASSERT_EXPR. Register the new name and the old one
|
2208 |
|
|
in the replacement table so that we can fix the SSA web after
|
2209 |
|
|
adding all the ASSERT_EXPRs. */
|
2210 |
|
|
register_new_name_mapping (n, v);
|
2211 |
|
|
|
2212 |
|
|
return assertion;
|
2213 |
|
|
}
|
2214 |
|
|
|
2215 |
|
|
|
2216 |
|
|
/* Return false if EXPR is a predicate expression involving floating
|
2217 |
|
|
point values. */
|
2218 |
|
|
|
2219 |
|
|
static inline bool
|
2220 |
|
|
fp_predicate (tree expr)
|
2221 |
|
|
{
|
2222 |
|
|
return (COMPARISON_CLASS_P (expr)
|
2223 |
|
|
&& FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
|
2224 |
|
|
}
|
2225 |
|
|
|
2226 |
|
|
|
2227 |
|
|
/* If the range of values taken by OP can be inferred after STMT executes,
|
2228 |
|
|
return the comparison code (COMP_CODE_P) and value (VAL_P) that
|
2229 |
|
|
describes the inferred range. Return true if a range could be
|
2230 |
|
|
inferred. */
|
2231 |
|
|
|
2232 |
|
|
static bool
|
2233 |
|
|
infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
|
2234 |
|
|
{
|
2235 |
|
|
*val_p = NULL_TREE;
|
2236 |
|
|
*comp_code_p = ERROR_MARK;
|
2237 |
|
|
|
2238 |
|
|
/* Do not attempt to infer anything in names that flow through
|
2239 |
|
|
abnormal edges. */
|
2240 |
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
|
2241 |
|
|
return false;
|
2242 |
|
|
|
2243 |
|
|
/* Similarly, don't infer anything from statements that may throw
|
2244 |
|
|
exceptions. */
|
2245 |
|
|
if (tree_could_throw_p (stmt))
|
2246 |
|
|
return false;
|
2247 |
|
|
|
2248 |
|
|
/* If STMT is the last statement of a basic block with no
|
2249 |
|
|
successors, there is no point inferring anything about any of its
|
2250 |
|
|
operands. We would not be able to find a proper insertion point
|
2251 |
|
|
for the assertion, anyway. */
|
2252 |
|
|
if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
|
2253 |
|
|
return false;
|
2254 |
|
|
|
2255 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (op)))
|
2256 |
|
|
{
|
2257 |
|
|
bool is_store;
|
2258 |
|
|
unsigned num_uses, num_derefs;
|
2259 |
|
|
|
2260 |
|
|
count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
|
2261 |
|
|
if (num_derefs > 0 && flag_delete_null_pointer_checks)
|
2262 |
|
|
{
|
2263 |
|
|
/* We can only assume that a pointer dereference will yield
|
2264 |
|
|
non-NULL if -fdelete-null-pointer-checks is enabled. */
|
2265 |
|
|
*val_p = build_int_cst (TREE_TYPE (op), 0);
|
2266 |
|
|
*comp_code_p = NE_EXPR;
|
2267 |
|
|
return true;
|
2268 |
|
|
}
|
2269 |
|
|
}
|
2270 |
|
|
|
2271 |
|
|
return false;
|
2272 |
|
|
}
|
2273 |
|
|
|
2274 |
|
|
|
2275 |
|
|
void dump_asserts_for (FILE *, tree);
|
2276 |
|
|
void debug_asserts_for (tree);
|
2277 |
|
|
void dump_all_asserts (FILE *);
|
2278 |
|
|
void debug_all_asserts (void);
|
2279 |
|
|
|
2280 |
|
|
/* Dump all the registered assertions for NAME to FILE. */
|
2281 |
|
|
|
2282 |
|
|
void
|
2283 |
|
|
dump_asserts_for (FILE *file, tree name)
|
2284 |
|
|
{
|
2285 |
|
|
assert_locus_t loc;
|
2286 |
|
|
|
2287 |
|
|
fprintf (file, "Assertions to be inserted for ");
|
2288 |
|
|
print_generic_expr (file, name, 0);
|
2289 |
|
|
fprintf (file, "\n");
|
2290 |
|
|
|
2291 |
|
|
loc = asserts_for[SSA_NAME_VERSION (name)];
|
2292 |
|
|
while (loc)
|
2293 |
|
|
{
|
2294 |
|
|
fprintf (file, "\t");
|
2295 |
|
|
print_generic_expr (file, bsi_stmt (loc->si), 0);
|
2296 |
|
|
fprintf (file, "\n\tBB #%d", loc->bb->index);
|
2297 |
|
|
if (loc->e)
|
2298 |
|
|
{
|
2299 |
|
|
fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
|
2300 |
|
|
loc->e->dest->index);
|
2301 |
|
|
dump_edge_info (file, loc->e, 0);
|
2302 |
|
|
}
|
2303 |
|
|
fprintf (file, "\n\tPREDICATE: ");
|
2304 |
|
|
print_generic_expr (file, name, 0);
|
2305 |
|
|
fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
|
2306 |
|
|
print_generic_expr (file, loc->val, 0);
|
2307 |
|
|
fprintf (file, "\n\n");
|
2308 |
|
|
loc = loc->next;
|
2309 |
|
|
}
|
2310 |
|
|
|
2311 |
|
|
fprintf (file, "\n");
|
2312 |
|
|
}
|
2313 |
|
|
|
2314 |
|
|
|
2315 |
|
|
/* Dump all the registered assertions for NAME to stderr. */
|
2316 |
|
|
|
2317 |
|
|
void
|
2318 |
|
|
debug_asserts_for (tree name)
|
2319 |
|
|
{
|
2320 |
|
|
dump_asserts_for (stderr, name);
|
2321 |
|
|
}
|
2322 |
|
|
|
2323 |
|
|
|
2324 |
|
|
/* Dump all the registered assertions for all the names to FILE. */
|
2325 |
|
|
|
2326 |
|
|
void
|
2327 |
|
|
dump_all_asserts (FILE *file)
|
2328 |
|
|
{
|
2329 |
|
|
unsigned i;
|
2330 |
|
|
bitmap_iterator bi;
|
2331 |
|
|
|
2332 |
|
|
fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
|
2333 |
|
|
EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
|
2334 |
|
|
dump_asserts_for (file, ssa_name (i));
|
2335 |
|
|
fprintf (file, "\n");
|
2336 |
|
|
}
|
2337 |
|
|
|
2338 |
|
|
|
2339 |
|
|
/* Dump all the registered assertions for all the names to stderr. */
|
2340 |
|
|
|
2341 |
|
|
void
|
2342 |
|
|
debug_all_asserts (void)
|
2343 |
|
|
{
|
2344 |
|
|
dump_all_asserts (stderr);
|
2345 |
|
|
}
|
2346 |
|
|
|
2347 |
|
|
|
2348 |
|
|
/* If NAME doesn't have an ASSERT_EXPR registered for asserting
|
2349 |
|
|
'NAME COMP_CODE VAL' at a location that dominates block BB or
|
2350 |
|
|
E->DEST, then register this location as a possible insertion point
|
2351 |
|
|
for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
|
2352 |
|
|
|
2353 |
|
|
BB, E and SI provide the exact insertion point for the new
|
2354 |
|
|
ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
|
2355 |
|
|
on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
|
2356 |
|
|
BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
|
2357 |
|
|
must not be NULL. */
|
2358 |
|
|
|
2359 |
|
|
static void
|
2360 |
|
|
register_new_assert_for (tree name,
|
2361 |
|
|
enum tree_code comp_code,
|
2362 |
|
|
tree val,
|
2363 |
|
|
basic_block bb,
|
2364 |
|
|
edge e,
|
2365 |
|
|
block_stmt_iterator si)
|
2366 |
|
|
{
|
2367 |
|
|
assert_locus_t n, loc, last_loc;
|
2368 |
|
|
bool found;
|
2369 |
|
|
basic_block dest_bb;
|
2370 |
|
|
|
2371 |
|
|
#if defined ENABLE_CHECKING
|
2372 |
|
|
gcc_assert (bb == NULL || e == NULL);
|
2373 |
|
|
|
2374 |
|
|
if (e == NULL)
|
2375 |
|
|
gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
|
2376 |
|
|
&& TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
|
2377 |
|
|
#endif
|
2378 |
|
|
|
2379 |
|
|
/* The new assertion A will be inserted at BB or E. We need to
|
2380 |
|
|
determine if the new location is dominated by a previously
|
2381 |
|
|
registered location for A. If we are doing an edge insertion,
|
2382 |
|
|
assume that A will be inserted at E->DEST. Note that this is not
|
2383 |
|
|
necessarily true.
|
2384 |
|
|
|
2385 |
|
|
If E is a critical edge, it will be split. But even if E is
|
2386 |
|
|
split, the new block will dominate the same set of blocks that
|
2387 |
|
|
E->DEST dominates.
|
2388 |
|
|
|
2389 |
|
|
The reverse, however, is not true, blocks dominated by E->DEST
|
2390 |
|
|
will not be dominated by the new block created to split E. So,
|
2391 |
|
|
if the insertion location is on a critical edge, we will not use
|
2392 |
|
|
the new location to move another assertion previously registered
|
2393 |
|
|
at a block dominated by E->DEST. */
|
2394 |
|
|
dest_bb = (bb) ? bb : e->dest;
|
2395 |
|
|
|
2396 |
|
|
/* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
|
2397 |
|
|
VAL at a block dominating DEST_BB, then we don't need to insert a new
|
2398 |
|
|
one. Similarly, if the same assertion already exists at a block
|
2399 |
|
|
dominated by DEST_BB and the new location is not on a critical
|
2400 |
|
|
edge, then update the existing location for the assertion (i.e.,
|
2401 |
|
|
move the assertion up in the dominance tree).
|
2402 |
|
|
|
2403 |
|
|
Note, this is implemented as a simple linked list because there
|
2404 |
|
|
should not be more than a handful of assertions registered per
|
2405 |
|
|
name. If this becomes a performance problem, a table hashed by
|
2406 |
|
|
COMP_CODE and VAL could be implemented. */
|
2407 |
|
|
loc = asserts_for[SSA_NAME_VERSION (name)];
|
2408 |
|
|
last_loc = loc;
|
2409 |
|
|
found = false;
|
2410 |
|
|
while (loc)
|
2411 |
|
|
{
|
2412 |
|
|
if (loc->comp_code == comp_code
|
2413 |
|
|
&& (loc->val == val
|
2414 |
|
|
|| operand_equal_p (loc->val, val, 0)))
|
2415 |
|
|
{
|
2416 |
|
|
/* If the assertion NAME COMP_CODE VAL has already been
|
2417 |
|
|
registered at a basic block that dominates DEST_BB, then
|
2418 |
|
|
we don't need to insert the same assertion again. Note
|
2419 |
|
|
that we don't check strict dominance here to avoid
|
2420 |
|
|
replicating the same assertion inside the same basic
|
2421 |
|
|
block more than once (e.g., when a pointer is
|
2422 |
|
|
dereferenced several times inside a block).
|
2423 |
|
|
|
2424 |
|
|
An exception to this rule are edge insertions. If the
|
2425 |
|
|
new assertion is to be inserted on edge E, then it will
|
2426 |
|
|
dominate all the other insertions that we may want to
|
2427 |
|
|
insert in DEST_BB. So, if we are doing an edge
|
2428 |
|
|
insertion, don't do this dominance check. */
|
2429 |
|
|
if (e == NULL
|
2430 |
|
|
&& dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
|
2431 |
|
|
return;
|
2432 |
|
|
|
2433 |
|
|
/* Otherwise, if E is not a critical edge and DEST_BB
|
2434 |
|
|
dominates the existing location for the assertion, move
|
2435 |
|
|
the assertion up in the dominance tree by updating its
|
2436 |
|
|
location information. */
|
2437 |
|
|
if ((e == NULL || !EDGE_CRITICAL_P (e))
|
2438 |
|
|
&& dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
|
2439 |
|
|
{
|
2440 |
|
|
loc->bb = dest_bb;
|
2441 |
|
|
loc->e = e;
|
2442 |
|
|
loc->si = si;
|
2443 |
|
|
return;
|
2444 |
|
|
}
|
2445 |
|
|
}
|
2446 |
|
|
|
2447 |
|
|
/* Update the last node of the list and move to the next one. */
|
2448 |
|
|
last_loc = loc;
|
2449 |
|
|
loc = loc->next;
|
2450 |
|
|
}
|
2451 |
|
|
|
2452 |
|
|
/* If we didn't find an assertion already registered for
|
2453 |
|
|
NAME COMP_CODE VAL, add a new one at the end of the list of
|
2454 |
|
|
assertions associated with NAME. */
|
2455 |
|
|
n = xmalloc (sizeof (*n));
|
2456 |
|
|
n->bb = dest_bb;
|
2457 |
|
|
n->e = e;
|
2458 |
|
|
n->si = si;
|
2459 |
|
|
n->comp_code = comp_code;
|
2460 |
|
|
n->val = val;
|
2461 |
|
|
n->next = NULL;
|
2462 |
|
|
|
2463 |
|
|
if (last_loc)
|
2464 |
|
|
last_loc->next = n;
|
2465 |
|
|
else
|
2466 |
|
|
asserts_for[SSA_NAME_VERSION (name)] = n;
|
2467 |
|
|
|
2468 |
|
|
bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
|
2469 |
|
|
}
|
2470 |
|
|
|
2471 |
|
|
|
2472 |
|
|
/* Try to register an edge assertion for SSA name NAME on edge E for
|
2473 |
|
|
the conditional jump pointed to by SI. Return true if an assertion
|
2474 |
|
|
for NAME could be registered. */
|
2475 |
|
|
|
2476 |
|
|
static bool
|
2477 |
|
|
register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
|
2478 |
|
|
{
|
2479 |
|
|
tree val, stmt;
|
2480 |
|
|
enum tree_code comp_code;
|
2481 |
|
|
|
2482 |
|
|
stmt = bsi_stmt (si);
|
2483 |
|
|
|
2484 |
|
|
/* Do not attempt to infer anything in names that flow through
|
2485 |
|
|
abnormal edges. */
|
2486 |
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
|
2487 |
|
|
return false;
|
2488 |
|
|
|
2489 |
|
|
/* If NAME was not found in the sub-graph reachable from E, then
|
2490 |
|
|
there's nothing to do. */
|
2491 |
|
|
if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
|
2492 |
|
|
return false;
|
2493 |
|
|
|
2494 |
|
|
/* We found a use of NAME in the sub-graph rooted at E->DEST.
|
2495 |
|
|
Register an assertion for NAME according to the value that NAME
|
2496 |
|
|
takes on edge E. */
|
2497 |
|
|
if (TREE_CODE (stmt) == COND_EXPR)
|
2498 |
|
|
{
|
2499 |
|
|
/* If BB ends in a COND_EXPR then NAME then we should insert
|
2500 |
|
|
the original predicate on EDGE_TRUE_VALUE and the
|
2501 |
|
|
opposite predicate on EDGE_FALSE_VALUE. */
|
2502 |
|
|
tree cond = COND_EXPR_COND (stmt);
|
2503 |
|
|
bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
|
2504 |
|
|
|
2505 |
|
|
/* Predicates may be a single SSA name or NAME OP VAL. */
|
2506 |
|
|
if (cond == name)
|
2507 |
|
|
{
|
2508 |
|
|
/* If the predicate is a name, it must be NAME, in which
|
2509 |
|
|
case we create the predicate NAME == true or
|
2510 |
|
|
NAME == false accordingly. */
|
2511 |
|
|
comp_code = EQ_EXPR;
|
2512 |
|
|
val = (is_else_edge) ? boolean_false_node : boolean_true_node;
|
2513 |
|
|
}
|
2514 |
|
|
else
|
2515 |
|
|
{
|
2516 |
|
|
/* Otherwise, we have a comparison of the form NAME COMP VAL
|
2517 |
|
|
or VAL COMP NAME. */
|
2518 |
|
|
if (name == TREE_OPERAND (cond, 1))
|
2519 |
|
|
{
|
2520 |
|
|
/* If the predicate is of the form VAL COMP NAME, flip
|
2521 |
|
|
COMP around because we need to register NAME as the
|
2522 |
|
|
first operand in the predicate. */
|
2523 |
|
|
comp_code = swap_tree_comparison (TREE_CODE (cond));
|
2524 |
|
|
val = TREE_OPERAND (cond, 0);
|
2525 |
|
|
}
|
2526 |
|
|
else
|
2527 |
|
|
{
|
2528 |
|
|
/* The comparison is of the form NAME COMP VAL, so the
|
2529 |
|
|
comparison code remains unchanged. */
|
2530 |
|
|
comp_code = TREE_CODE (cond);
|
2531 |
|
|
val = TREE_OPERAND (cond, 1);
|
2532 |
|
|
}
|
2533 |
|
|
|
2534 |
|
|
/* If we are inserting the assertion on the ELSE edge, we
|
2535 |
|
|
need to invert the sign comparison. */
|
2536 |
|
|
if (is_else_edge)
|
2537 |
|
|
comp_code = invert_tree_comparison (comp_code, 0);
|
2538 |
|
|
|
2539 |
|
|
/* Do not register always-false predicates. FIXME, this
|
2540 |
|
|
works around a limitation in fold() when dealing with
|
2541 |
|
|
enumerations. Given 'enum { N1, N2 } x;', fold will not
|
2542 |
|
|
fold 'if (x > N2)' to 'if (0)'. */
|
2543 |
|
|
if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
|
2544 |
|
|
&& (INTEGRAL_TYPE_P (TREE_TYPE (val))
|
2545 |
|
|
|| SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
|
2546 |
|
|
{
|
2547 |
|
|
tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
|
2548 |
|
|
tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
|
2549 |
|
|
|
2550 |
|
|
if (comp_code == GT_EXPR && compare_values (val, max) == 0)
|
2551 |
|
|
return false;
|
2552 |
|
|
|
2553 |
|
|
if (comp_code == LT_EXPR && compare_values (val, min) == 0)
|
2554 |
|
|
return false;
|
2555 |
|
|
}
|
2556 |
|
|
}
|
2557 |
|
|
}
|
2558 |
|
|
else
|
2559 |
|
|
{
|
2560 |
|
|
/* FIXME. Handle SWITCH_EXPR. */
|
2561 |
|
|
gcc_unreachable ();
|
2562 |
|
|
}
|
2563 |
|
|
|
2564 |
|
|
register_new_assert_for (name, comp_code, val, NULL, e, si);
|
2565 |
|
|
return true;
|
2566 |
|
|
}
|
2567 |
|
|
|
2568 |
|
|
|
2569 |
|
|
static bool find_assert_locations (basic_block bb);
|
2570 |
|
|
|
2571 |
|
|
/* Determine whether the outgoing edges of BB should receive an
|
2572 |
|
|
ASSERT_EXPR for each of the operands of BB's last statement. The
|
2573 |
|
|
last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
|
2574 |
|
|
|
2575 |
|
|
If any of the sub-graphs rooted at BB have an interesting use of
|
2576 |
|
|
the predicate operands, an assert location node is added to the
|
2577 |
|
|
list of assertions for the corresponding operands. */
|
2578 |
|
|
|
2579 |
|
|
static bool
|
2580 |
|
|
find_conditional_asserts (basic_block bb)
|
2581 |
|
|
{
|
2582 |
|
|
bool need_assert;
|
2583 |
|
|
block_stmt_iterator last_si;
|
2584 |
|
|
tree op, last;
|
2585 |
|
|
edge_iterator ei;
|
2586 |
|
|
edge e;
|
2587 |
|
|
ssa_op_iter iter;
|
2588 |
|
|
|
2589 |
|
|
need_assert = false;
|
2590 |
|
|
last_si = bsi_last (bb);
|
2591 |
|
|
last = bsi_stmt (last_si);
|
2592 |
|
|
|
2593 |
|
|
/* Look for uses of the operands in each of the sub-graphs
|
2594 |
|
|
rooted at BB. We need to check each of the outgoing edges
|
2595 |
|
|
separately, so that we know what kind of ASSERT_EXPR to
|
2596 |
|
|
insert. */
|
2597 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2598 |
|
|
{
|
2599 |
|
|
if (e->dest == bb)
|
2600 |
|
|
continue;
|
2601 |
|
|
|
2602 |
|
|
/* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
|
2603 |
|
|
Otherwise, when we finish traversing each of the sub-graphs, we
|
2604 |
|
|
won't know whether the variables were found in the sub-graphs or
|
2605 |
|
|
if they had been found in a block upstream from BB. */
|
2606 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
|
2607 |
|
|
RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
|
2608 |
|
|
|
2609 |
|
|
/* Traverse the strictly dominated sub-graph rooted at E->DEST
|
2610 |
|
|
to determine if any of the operands in the conditional
|
2611 |
|
|
predicate are used. */
|
2612 |
|
|
if (e->dest != bb)
|
2613 |
|
|
need_assert |= find_assert_locations (e->dest);
|
2614 |
|
|
|
2615 |
|
|
/* Register the necessary assertions for each operand in the
|
2616 |
|
|
conditional predicate. */
|
2617 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
|
2618 |
|
|
need_assert |= register_edge_assert_for (op, e, last_si);
|
2619 |
|
|
}
|
2620 |
|
|
|
2621 |
|
|
/* Finally, indicate that we have found the operands in the
|
2622 |
|
|
conditional. */
|
2623 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
|
2624 |
|
|
SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
|
2625 |
|
|
|
2626 |
|
|
return need_assert;
|
2627 |
|
|
}
|
2628 |
|
|
|
2629 |
|
|
|
2630 |
|
|
/* Traverse all the statements in block BB looking for statements that
|
2631 |
|
|
may generate useful assertions for the SSA names in their operand.
|
2632 |
|
|
If a statement produces a useful assertion A for name N_i, then the
|
2633 |
|
|
list of assertions already generated for N_i is scanned to
|
2634 |
|
|
determine if A is actually needed.
|
2635 |
|
|
|
2636 |
|
|
If N_i already had the assertion A at a location dominating the
|
2637 |
|
|
current location, then nothing needs to be done. Otherwise, the
|
2638 |
|
|
new location for A is recorded instead.
|
2639 |
|
|
|
2640 |
|
|
1- For every statement S in BB, all the variables used by S are
|
2641 |
|
|
added to bitmap FOUND_IN_SUBGRAPH.
|
2642 |
|
|
|
2643 |
|
|
2- If statement S uses an operand N in a way that exposes a known
|
2644 |
|
|
value range for N, then if N was not already generated by an
|
2645 |
|
|
ASSERT_EXPR, create a new assert location for N. For instance,
|
2646 |
|
|
if N is a pointer and the statement dereferences it, we can
|
2647 |
|
|
assume that N is not NULL.
|
2648 |
|
|
|
2649 |
|
|
3- COND_EXPRs are a special case of #2. We can derive range
|
2650 |
|
|
information from the predicate but need to insert different
|
2651 |
|
|
ASSERT_EXPRs for each of the sub-graphs rooted at the
|
2652 |
|
|
conditional block. If the last statement of BB is a conditional
|
2653 |
|
|
expression of the form 'X op Y', then
|
2654 |
|
|
|
2655 |
|
|
a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
|
2656 |
|
|
|
2657 |
|
|
b) If the conditional is the only entry point to the sub-graph
|
2658 |
|
|
corresponding to the THEN_CLAUSE, recurse into it. On
|
2659 |
|
|
return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
|
2660 |
|
|
an ASSERT_EXPR is added for the corresponding variable.
|
2661 |
|
|
|
2662 |
|
|
c) Repeat step (b) on the ELSE_CLAUSE.
|
2663 |
|
|
|
2664 |
|
|
d) Mark X and Y in FOUND_IN_SUBGRAPH.
|
2665 |
|
|
|
2666 |
|
|
For instance,
|
2667 |
|
|
|
2668 |
|
|
if (a == 9)
|
2669 |
|
|
b = a;
|
2670 |
|
|
else
|
2671 |
|
|
b = c + 1;
|
2672 |
|
|
|
2673 |
|
|
In this case, an assertion on the THEN clause is useful to
|
2674 |
|
|
determine that 'a' is always 9 on that edge. However, an assertion
|
2675 |
|
|
on the ELSE clause would be unnecessary.
|
2676 |
|
|
|
2677 |
|
|
4- If BB does not end in a conditional expression, then we recurse
|
2678 |
|
|
into BB's dominator children.
|
2679 |
|
|
|
2680 |
|
|
At the end of the recursive traversal, every SSA name will have a
|
2681 |
|
|
list of locations where ASSERT_EXPRs should be added. When a new
|
2682 |
|
|
location for name N is found, it is registered by calling
|
2683 |
|
|
register_new_assert_for. That function keeps track of all the
|
2684 |
|
|
registered assertions to prevent adding unnecessary assertions.
|
2685 |
|
|
For instance, if a pointer P_4 is dereferenced more than once in a
|
2686 |
|
|
dominator tree, only the location dominating all the dereference of
|
2687 |
|
|
P_4 will receive an ASSERT_EXPR.
|
2688 |
|
|
|
2689 |
|
|
If this function returns true, then it means that there are names
|
2690 |
|
|
for which we need to generate ASSERT_EXPRs. Those assertions are
|
2691 |
|
|
inserted by process_assert_insertions.
|
2692 |
|
|
|
2693 |
|
|
TODO. Handle SWITCH_EXPR. */
|
2694 |
|
|
|
2695 |
|
|
static bool
|
2696 |
|
|
find_assert_locations (basic_block bb)
|
2697 |
|
|
{
|
2698 |
|
|
block_stmt_iterator si;
|
2699 |
|
|
tree last, phi;
|
2700 |
|
|
bool need_assert;
|
2701 |
|
|
basic_block son;
|
2702 |
|
|
|
2703 |
|
|
if (TEST_BIT (blocks_visited, bb->index))
|
2704 |
|
|
return false;
|
2705 |
|
|
|
2706 |
|
|
SET_BIT (blocks_visited, bb->index);
|
2707 |
|
|
|
2708 |
|
|
need_assert = false;
|
2709 |
|
|
|
2710 |
|
|
/* Traverse all PHI nodes in BB marking used operands. */
|
2711 |
|
|
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
2712 |
|
|
{
|
2713 |
|
|
use_operand_p arg_p;
|
2714 |
|
|
ssa_op_iter i;
|
2715 |
|
|
|
2716 |
|
|
FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
|
2717 |
|
|
{
|
2718 |
|
|
tree arg = USE_FROM_PTR (arg_p);
|
2719 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
2720 |
|
|
{
|
2721 |
|
|
gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
|
2722 |
|
|
SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
|
2723 |
|
|
}
|
2724 |
|
|
}
|
2725 |
|
|
}
|
2726 |
|
|
|
2727 |
|
|
/* Traverse all the statements in BB marking used names and looking
|
2728 |
|
|
for statements that may infer assertions for their used operands. */
|
2729 |
|
|
last = NULL_TREE;
|
2730 |
|
|
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
|
2731 |
|
|
{
|
2732 |
|
|
tree stmt, op;
|
2733 |
|
|
ssa_op_iter i;
|
2734 |
|
|
|
2735 |
|
|
stmt = bsi_stmt (si);
|
2736 |
|
|
|
2737 |
|
|
/* See if we can derive an assertion for any of STMT's operands. */
|
2738 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
|
2739 |
|
|
{
|
2740 |
|
|
tree value;
|
2741 |
|
|
enum tree_code comp_code;
|
2742 |
|
|
|
2743 |
|
|
/* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
|
2744 |
|
|
the sub-graph of a conditional block, when we return from
|
2745 |
|
|
this recursive walk, our parent will use the
|
2746 |
|
|
FOUND_IN_SUBGRAPH bitset to determine if one of the
|
2747 |
|
|
operands it was looking for was present in the sub-graph. */
|
2748 |
|
|
SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
|
2749 |
|
|
|
2750 |
|
|
/* If OP is used only once, namely in this STMT, don't
|
2751 |
|
|
bother creating an ASSERT_EXPR for it. Such an
|
2752 |
|
|
ASSERT_EXPR would do nothing but increase compile time.
|
2753 |
|
|
Experiments show that with this simple check, we can save
|
2754 |
|
|
more than 20% of ASSERT_EXPRs. */
|
2755 |
|
|
if (has_single_use (op))
|
2756 |
|
|
continue;
|
2757 |
|
|
|
2758 |
|
|
/* If OP is used in such a way that we can infer a value
|
2759 |
|
|
range for it, and we don't find a previous assertion for
|
2760 |
|
|
it, create a new assertion location node for OP. */
|
2761 |
|
|
if (infer_value_range (stmt, op, &comp_code, &value))
|
2762 |
|
|
{
|
2763 |
|
|
register_new_assert_for (op, comp_code, value, bb, NULL, si);
|
2764 |
|
|
need_assert = true;
|
2765 |
|
|
}
|
2766 |
|
|
}
|
2767 |
|
|
|
2768 |
|
|
/* Remember the last statement of the block. */
|
2769 |
|
|
last = stmt;
|
2770 |
|
|
}
|
2771 |
|
|
|
2772 |
|
|
/* If BB's last statement is a conditional expression
|
2773 |
|
|
involving integer operands, recurse into each of the sub-graphs
|
2774 |
|
|
rooted at BB to determine if we need to add ASSERT_EXPRs. */
|
2775 |
|
|
if (last
|
2776 |
|
|
&& TREE_CODE (last) == COND_EXPR
|
2777 |
|
|
&& !fp_predicate (COND_EXPR_COND (last))
|
2778 |
|
|
&& !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
|
2779 |
|
|
need_assert |= find_conditional_asserts (bb);
|
2780 |
|
|
|
2781 |
|
|
/* Recurse into the dominator children of BB. */
|
2782 |
|
|
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
2783 |
|
|
son;
|
2784 |
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
2785 |
|
|
need_assert |= find_assert_locations (son);
|
2786 |
|
|
|
2787 |
|
|
return need_assert;
|
2788 |
|
|
}
|
2789 |
|
|
|
2790 |
|
|
|
2791 |
|
|
/* Create an ASSERT_EXPR for NAME and insert it in the location
|
2792 |
|
|
indicated by LOC. Return true if we made any edge insertions. */
|
2793 |
|
|
|
2794 |
|
|
static bool
|
2795 |
|
|
process_assert_insertions_for (tree name, assert_locus_t loc)
|
2796 |
|
|
{
|
2797 |
|
|
/* Build the comparison expression NAME_i COMP_CODE VAL. */
|
2798 |
|
|
tree stmt, cond, assert_expr;
|
2799 |
|
|
edge_iterator ei;
|
2800 |
|
|
edge e;
|
2801 |
|
|
|
2802 |
|
|
cond = build (loc->comp_code, boolean_type_node, name, loc->val);
|
2803 |
|
|
assert_expr = build_assert_expr_for (cond, name);
|
2804 |
|
|
|
2805 |
|
|
if (loc->e)
|
2806 |
|
|
{
|
2807 |
|
|
/* We have been asked to insert the assertion on an edge. This
|
2808 |
|
|
is used only by COND_EXPR and SWITCH_EXPR assertions. */
|
2809 |
|
|
#if defined ENABLE_CHECKING
|
2810 |
|
|
gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
|
2811 |
|
|
|| TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
|
2812 |
|
|
#endif
|
2813 |
|
|
|
2814 |
|
|
bsi_insert_on_edge (loc->e, assert_expr);
|
2815 |
|
|
return true;
|
2816 |
|
|
}
|
2817 |
|
|
|
2818 |
|
|
/* Otherwise, we can insert right after LOC->SI iff the
|
2819 |
|
|
statement must not be the last statement in the block. */
|
2820 |
|
|
stmt = bsi_stmt (loc->si);
|
2821 |
|
|
if (!stmt_ends_bb_p (stmt))
|
2822 |
|
|
{
|
2823 |
|
|
bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
|
2824 |
|
|
return false;
|
2825 |
|
|
}
|
2826 |
|
|
|
2827 |
|
|
/* If STMT must be the last statement in BB, we can only insert new
|
2828 |
|
|
assertions on the non-abnormal edge out of BB. Note that since
|
2829 |
|
|
STMT is not control flow, there may only be one non-abnormal edge
|
2830 |
|
|
out of BB. */
|
2831 |
|
|
FOR_EACH_EDGE (e, ei, loc->bb->succs)
|
2832 |
|
|
if (!(e->flags & EDGE_ABNORMAL))
|
2833 |
|
|
{
|
2834 |
|
|
bsi_insert_on_edge (e, assert_expr);
|
2835 |
|
|
return true;
|
2836 |
|
|
}
|
2837 |
|
|
|
2838 |
|
|
gcc_unreachable ();
|
2839 |
|
|
}
|
2840 |
|
|
|
2841 |
|
|
|
2842 |
|
|
/* Process all the insertions registered for every name N_i registered
|
2843 |
|
|
in NEED_ASSERT_FOR. The list of assertions to be inserted are
|
2844 |
|
|
found in ASSERTS_FOR[i]. */
|
2845 |
|
|
|
2846 |
|
|
static void
|
2847 |
|
|
process_assert_insertions (void)
|
2848 |
|
|
{
|
2849 |
|
|
unsigned i;
|
2850 |
|
|
bitmap_iterator bi;
|
2851 |
|
|
bool update_edges_p = false;
|
2852 |
|
|
int num_asserts = 0;
|
2853 |
|
|
|
2854 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2855 |
|
|
dump_all_asserts (dump_file);
|
2856 |
|
|
|
2857 |
|
|
EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
|
2858 |
|
|
{
|
2859 |
|
|
assert_locus_t loc = asserts_for[i];
|
2860 |
|
|
gcc_assert (loc);
|
2861 |
|
|
|
2862 |
|
|
while (loc)
|
2863 |
|
|
{
|
2864 |
|
|
assert_locus_t next = loc->next;
|
2865 |
|
|
update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
|
2866 |
|
|
free (loc);
|
2867 |
|
|
loc = next;
|
2868 |
|
|
num_asserts++;
|
2869 |
|
|
}
|
2870 |
|
|
}
|
2871 |
|
|
|
2872 |
|
|
if (update_edges_p)
|
2873 |
|
|
bsi_commit_edge_inserts ();
|
2874 |
|
|
|
2875 |
|
|
if (dump_file && (dump_flags & TDF_STATS))
|
2876 |
|
|
fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
|
2877 |
|
|
num_asserts);
|
2878 |
|
|
}
|
2879 |
|
|
|
2880 |
|
|
|
2881 |
|
|
/* Traverse the flowgraph looking for conditional jumps to insert range
|
2882 |
|
|
expressions. These range expressions are meant to provide information
|
2883 |
|
|
to optimizations that need to reason in terms of value ranges. They
|
2884 |
|
|
will not be expanded into RTL. For instance, given:
|
2885 |
|
|
|
2886 |
|
|
x = ...
|
2887 |
|
|
y = ...
|
2888 |
|
|
if (x < y)
|
2889 |
|
|
y = x - 2;
|
2890 |
|
|
else
|
2891 |
|
|
x = y + 3;
|
2892 |
|
|
|
2893 |
|
|
this pass will transform the code into:
|
2894 |
|
|
|
2895 |
|
|
x = ...
|
2896 |
|
|
y = ...
|
2897 |
|
|
if (x < y)
|
2898 |
|
|
{
|
2899 |
|
|
x = ASSERT_EXPR <x, x < y>
|
2900 |
|
|
y = x - 2
|
2901 |
|
|
}
|
2902 |
|
|
else
|
2903 |
|
|
{
|
2904 |
|
|
y = ASSERT_EXPR <y, x <= y>
|
2905 |
|
|
x = y + 3
|
2906 |
|
|
}
|
2907 |
|
|
|
2908 |
|
|
The idea is that once copy and constant propagation have run, other
|
2909 |
|
|
optimizations will be able to determine what ranges of values can 'x'
|
2910 |
|
|
take in different paths of the code, simply by checking the reaching
|
2911 |
|
|
definition of 'x'. */
|
2912 |
|
|
|
2913 |
|
|
static void
|
2914 |
|
|
insert_range_assertions (void)
|
2915 |
|
|
{
|
2916 |
|
|
edge e;
|
2917 |
|
|
edge_iterator ei;
|
2918 |
|
|
bool update_ssa_p;
|
2919 |
|
|
|
2920 |
|
|
found_in_subgraph = sbitmap_alloc (num_ssa_names);
|
2921 |
|
|
sbitmap_zero (found_in_subgraph);
|
2922 |
|
|
|
2923 |
|
|
blocks_visited = sbitmap_alloc (last_basic_block);
|
2924 |
|
|
sbitmap_zero (blocks_visited);
|
2925 |
|
|
|
2926 |
|
|
need_assert_for = BITMAP_ALLOC (NULL);
|
2927 |
|
|
asserts_for = xmalloc (num_ssa_names * sizeof (assert_locus_t));
|
2928 |
|
|
memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
|
2929 |
|
|
|
2930 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
2931 |
|
|
|
2932 |
|
|
update_ssa_p = false;
|
2933 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
2934 |
|
|
if (find_assert_locations (e->dest))
|
2935 |
|
|
update_ssa_p = true;
|
2936 |
|
|
|
2937 |
|
|
if (update_ssa_p)
|
2938 |
|
|
{
|
2939 |
|
|
process_assert_insertions ();
|
2940 |
|
|
update_ssa (TODO_update_ssa_no_phi);
|
2941 |
|
|
}
|
2942 |
|
|
|
2943 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2944 |
|
|
{
|
2945 |
|
|
fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
|
2946 |
|
|
dump_function_to_file (current_function_decl, dump_file, dump_flags);
|
2947 |
|
|
}
|
2948 |
|
|
|
2949 |
|
|
sbitmap_free (found_in_subgraph);
|
2950 |
|
|
free (asserts_for);
|
2951 |
|
|
BITMAP_FREE (need_assert_for);
|
2952 |
|
|
}
|
2953 |
|
|
|
2954 |
|
|
|
2955 |
|
|
/* Convert range assertion expressions into the implied copies and
|
2956 |
|
|
copy propagate away the copies. Doing the trivial copy propagation
|
2957 |
|
|
here avoids the need to run the full copy propagation pass after
|
2958 |
|
|
VRP.
|
2959 |
|
|
|
2960 |
|
|
FIXME, this will eventually lead to copy propagation removing the
|
2961 |
|
|
names that had useful range information attached to them. For
|
2962 |
|
|
instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
|
2963 |
|
|
then N_i will have the range [3, +INF].
|
2964 |
|
|
|
2965 |
|
|
However, by converting the assertion into the implied copy
|
2966 |
|
|
operation N_i = N_j, we will then copy-propagate N_j into the uses
|
2967 |
|
|
of N_i and lose the range information. We may want to hold on to
|
2968 |
|
|
ASSERT_EXPRs a little while longer as the ranges could be used in
|
2969 |
|
|
things like jump threading.
|
2970 |
|
|
|
2971 |
|
|
The problem with keeping ASSERT_EXPRs around is that passes after
|
2972 |
|
|
VRP need to handle them appropriately.
|
2973 |
|
|
|
2974 |
|
|
Another approach would be to make the range information a first
|
2975 |
|
|
class property of the SSA_NAME so that it can be queried from
|
2976 |
|
|
any pass. This is made somewhat more complex by the need for
|
2977 |
|
|
multiple ranges to be associated with one SSA_NAME. */
|
2978 |
|
|
|
2979 |
|
|
static void
|
2980 |
|
|
remove_range_assertions (void)
|
2981 |
|
|
{
|
2982 |
|
|
basic_block bb;
|
2983 |
|
|
block_stmt_iterator si;
|
2984 |
|
|
|
2985 |
|
|
/* Note that the BSI iterator bump happens at the bottom of the
|
2986 |
|
|
loop and no bump is necessary if we're removing the statement
|
2987 |
|
|
referenced by the current BSI. */
|
2988 |
|
|
FOR_EACH_BB (bb)
|
2989 |
|
|
for (si = bsi_start (bb); !bsi_end_p (si);)
|
2990 |
|
|
{
|
2991 |
|
|
tree stmt = bsi_stmt (si);
|
2992 |
|
|
|
2993 |
|
|
if (TREE_CODE (stmt) == MODIFY_EXPR
|
2994 |
|
|
&& TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
|
2995 |
|
|
{
|
2996 |
|
|
tree rhs = TREE_OPERAND (stmt, 1);
|
2997 |
|
|
tree cond = fold (ASSERT_EXPR_COND (rhs));
|
2998 |
|
|
use_operand_p use_p;
|
2999 |
|
|
imm_use_iterator iter;
|
3000 |
|
|
|
3001 |
|
|
gcc_assert (cond != boolean_false_node);
|
3002 |
|
|
TREE_OPERAND (stmt, 1) = ASSERT_EXPR_VAR (rhs);
|
3003 |
|
|
update_stmt (stmt);
|
3004 |
|
|
|
3005 |
|
|
/* The statement is now a copy. Propagate the RHS into
|
3006 |
|
|
every use of the LHS. */
|
3007 |
|
|
FOR_EACH_IMM_USE_SAFE (use_p, iter, TREE_OPERAND (stmt, 0))
|
3008 |
|
|
{
|
3009 |
|
|
SET_USE (use_p, ASSERT_EXPR_VAR (rhs));
|
3010 |
|
|
update_stmt (USE_STMT (use_p));
|
3011 |
|
|
}
|
3012 |
|
|
|
3013 |
|
|
/* And finally, remove the copy, it is not needed. */
|
3014 |
|
|
bsi_remove (&si);
|
3015 |
|
|
}
|
3016 |
|
|
else
|
3017 |
|
|
bsi_next (&si);
|
3018 |
|
|
}
|
3019 |
|
|
|
3020 |
|
|
sbitmap_free (blocks_visited);
|
3021 |
|
|
}
|
3022 |
|
|
|
3023 |
|
|
|
3024 |
|
|
/* Return true if STMT is interesting for VRP. */
|
3025 |
|
|
|
3026 |
|
|
static bool
|
3027 |
|
|
stmt_interesting_for_vrp (tree stmt)
|
3028 |
|
|
{
|
3029 |
|
|
if (TREE_CODE (stmt) == PHI_NODE
|
3030 |
|
|
&& is_gimple_reg (PHI_RESULT (stmt))
|
3031 |
|
|
&& (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
|
3032 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
|
3033 |
|
|
return true;
|
3034 |
|
|
else if (TREE_CODE (stmt) == MODIFY_EXPR)
|
3035 |
|
|
{
|
3036 |
|
|
tree lhs = TREE_OPERAND (stmt, 0);
|
3037 |
|
|
|
3038 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
3039 |
|
|
&& (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
3040 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (lhs)))
|
3041 |
|
|
&& ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
|
3042 |
|
|
return true;
|
3043 |
|
|
}
|
3044 |
|
|
else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
|
3045 |
|
|
return true;
|
3046 |
|
|
|
3047 |
|
|
return false;
|
3048 |
|
|
}
|
3049 |
|
|
|
3050 |
|
|
|
3051 |
|
|
/* Initialize local data structures for VRP. */
|
3052 |
|
|
|
3053 |
|
|
static void
|
3054 |
|
|
vrp_initialize (void)
|
3055 |
|
|
{
|
3056 |
|
|
basic_block bb;
|
3057 |
|
|
|
3058 |
|
|
vr_value = xmalloc (num_ssa_names * sizeof (value_range_t *));
|
3059 |
|
|
memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
|
3060 |
|
|
|
3061 |
|
|
FOR_EACH_BB (bb)
|
3062 |
|
|
{
|
3063 |
|
|
block_stmt_iterator si;
|
3064 |
|
|
tree phi;
|
3065 |
|
|
|
3066 |
|
|
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
3067 |
|
|
{
|
3068 |
|
|
if (!stmt_interesting_for_vrp (phi))
|
3069 |
|
|
{
|
3070 |
|
|
tree lhs = PHI_RESULT (phi);
|
3071 |
|
|
set_value_range_to_varying (get_value_range (lhs));
|
3072 |
|
|
DONT_SIMULATE_AGAIN (phi) = true;
|
3073 |
|
|
}
|
3074 |
|
|
else
|
3075 |
|
|
DONT_SIMULATE_AGAIN (phi) = false;
|
3076 |
|
|
}
|
3077 |
|
|
|
3078 |
|
|
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
|
3079 |
|
|
{
|
3080 |
|
|
tree stmt = bsi_stmt (si);
|
3081 |
|
|
|
3082 |
|
|
if (!stmt_interesting_for_vrp (stmt))
|
3083 |
|
|
{
|
3084 |
|
|
ssa_op_iter i;
|
3085 |
|
|
tree def;
|
3086 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
|
3087 |
|
|
set_value_range_to_varying (get_value_range (def));
|
3088 |
|
|
DONT_SIMULATE_AGAIN (stmt) = true;
|
3089 |
|
|
}
|
3090 |
|
|
else
|
3091 |
|
|
{
|
3092 |
|
|
DONT_SIMULATE_AGAIN (stmt) = false;
|
3093 |
|
|
}
|
3094 |
|
|
}
|
3095 |
|
|
}
|
3096 |
|
|
}
|
3097 |
|
|
|
3098 |
|
|
|
3099 |
|
|
/* Visit assignment STMT. If it produces an interesting range, record
|
3100 |
|
|
the SSA name in *OUTPUT_P. */
|
3101 |
|
|
|
3102 |
|
|
static enum ssa_prop_result
|
3103 |
|
|
vrp_visit_assignment (tree stmt, tree *output_p)
|
3104 |
|
|
{
|
3105 |
|
|
tree lhs, rhs, def;
|
3106 |
|
|
ssa_op_iter iter;
|
3107 |
|
|
|
3108 |
|
|
lhs = TREE_OPERAND (stmt, 0);
|
3109 |
|
|
rhs = TREE_OPERAND (stmt, 1);
|
3110 |
|
|
|
3111 |
|
|
/* We only keep track of ranges in integral and pointer types. */
|
3112 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
3113 |
|
|
&& (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
3114 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (lhs))))
|
3115 |
|
|
{
|
3116 |
|
|
struct loop *l;
|
3117 |
|
|
value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
3118 |
|
|
|
3119 |
|
|
extract_range_from_expr (&new_vr, rhs);
|
3120 |
|
|
|
3121 |
|
|
/* If STMT is inside a loop, we may be able to know something
|
3122 |
|
|
else about the range of LHS by examining scalar evolution
|
3123 |
|
|
information. */
|
3124 |
|
|
if (cfg_loops && (l = loop_containing_stmt (stmt)))
|
3125 |
|
|
adjust_range_with_scev (&new_vr, l, stmt, lhs);
|
3126 |
|
|
|
3127 |
|
|
if (update_value_range (lhs, &new_vr))
|
3128 |
|
|
{
|
3129 |
|
|
*output_p = lhs;
|
3130 |
|
|
|
3131 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3132 |
|
|
{
|
3133 |
|
|
fprintf (dump_file, "Found new range for ");
|
3134 |
|
|
print_generic_expr (dump_file, lhs, 0);
|
3135 |
|
|
fprintf (dump_file, ": ");
|
3136 |
|
|
dump_value_range (dump_file, &new_vr);
|
3137 |
|
|
fprintf (dump_file, "\n\n");
|
3138 |
|
|
}
|
3139 |
|
|
|
3140 |
|
|
if (new_vr.type == VR_VARYING)
|
3141 |
|
|
return SSA_PROP_VARYING;
|
3142 |
|
|
|
3143 |
|
|
return SSA_PROP_INTERESTING;
|
3144 |
|
|
}
|
3145 |
|
|
|
3146 |
|
|
return SSA_PROP_NOT_INTERESTING;
|
3147 |
|
|
}
|
3148 |
|
|
|
3149 |
|
|
/* Every other statement produces no useful ranges. */
|
3150 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
|
3151 |
|
|
set_value_range_to_varying (get_value_range (def));
|
3152 |
|
|
|
3153 |
|
|
return SSA_PROP_VARYING;
|
3154 |
|
|
}
|
3155 |
|
|
|
3156 |
|
|
|
3157 |
|
|
/* Compare all the value ranges for names equivalent to VAR with VAL
|
3158 |
|
|
using comparison code COMP. Return the same value returned by
|
3159 |
|
|
compare_range_with_value. */
|
3160 |
|
|
|
3161 |
|
|
static tree
|
3162 |
|
|
compare_name_with_value (enum tree_code comp, tree var, tree val)
|
3163 |
|
|
{
|
3164 |
|
|
bitmap_iterator bi;
|
3165 |
|
|
unsigned i;
|
3166 |
|
|
bitmap e;
|
3167 |
|
|
tree retval, t;
|
3168 |
|
|
|
3169 |
|
|
t = retval = NULL_TREE;
|
3170 |
|
|
|
3171 |
|
|
/* Get the set of equivalences for VAR. */
|
3172 |
|
|
e = get_value_range (var)->equiv;
|
3173 |
|
|
|
3174 |
|
|
/* Add VAR to its own set of equivalences so that VAR's value range
|
3175 |
|
|
is processed by this loop (otherwise, we would have to replicate
|
3176 |
|
|
the body of the loop just to check VAR's value range). */
|
3177 |
|
|
bitmap_set_bit (e, SSA_NAME_VERSION (var));
|
3178 |
|
|
|
3179 |
|
|
EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
|
3180 |
|
|
{
|
3181 |
|
|
value_range_t equiv_vr = *(vr_value[i]);
|
3182 |
|
|
|
3183 |
|
|
/* If name N_i does not have a valid range, use N_i as its own
|
3184 |
|
|
range. This allows us to compare against names that may
|
3185 |
|
|
have N_i in their ranges. */
|
3186 |
|
|
if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
|
3187 |
|
|
{
|
3188 |
|
|
equiv_vr.type = VR_RANGE;
|
3189 |
|
|
equiv_vr.min = ssa_name (i);
|
3190 |
|
|
equiv_vr.max = ssa_name (i);
|
3191 |
|
|
}
|
3192 |
|
|
|
3193 |
|
|
t = compare_range_with_value (comp, &equiv_vr, val);
|
3194 |
|
|
if (t)
|
3195 |
|
|
{
|
3196 |
|
|
/* All the ranges should compare the same against VAL. */
|
3197 |
|
|
gcc_assert (retval == NULL || t == retval);
|
3198 |
|
|
retval = t;
|
3199 |
|
|
}
|
3200 |
|
|
}
|
3201 |
|
|
|
3202 |
|
|
/* Remove VAR from its own equivalence set. */
|
3203 |
|
|
bitmap_clear_bit (e, SSA_NAME_VERSION (var));
|
3204 |
|
|
|
3205 |
|
|
if (retval)
|
3206 |
|
|
return retval;
|
3207 |
|
|
|
3208 |
|
|
/* We couldn't find a non-NULL value for the predicate. */
|
3209 |
|
|
return NULL_TREE;
|
3210 |
|
|
}
|
3211 |
|
|
|
3212 |
|
|
|
3213 |
|
|
/* Given a comparison code COMP and names N1 and N2, compare all the
|
3214 |
|
|
ranges equivalent to N1 against all the ranges equivalent to N2
|
3215 |
|
|
to determine the value of N1 COMP N2. Return the same value
|
3216 |
|
|
returned by compare_ranges. */
|
3217 |
|
|
|
3218 |
|
|
static tree
|
3219 |
|
|
compare_names (enum tree_code comp, tree n1, tree n2)
|
3220 |
|
|
{
|
3221 |
|
|
tree t, retval;
|
3222 |
|
|
bitmap e1, e2;
|
3223 |
|
|
bitmap_iterator bi1, bi2;
|
3224 |
|
|
unsigned i1, i2;
|
3225 |
|
|
|
3226 |
|
|
/* Compare the ranges of every name equivalent to N1 against the
|
3227 |
|
|
ranges of every name equivalent to N2. */
|
3228 |
|
|
e1 = get_value_range (n1)->equiv;
|
3229 |
|
|
e2 = get_value_range (n2)->equiv;
|
3230 |
|
|
|
3231 |
|
|
/* Add N1 and N2 to their own set of equivalences to avoid
|
3232 |
|
|
duplicating the body of the loop just to check N1 and N2
|
3233 |
|
|
ranges. */
|
3234 |
|
|
bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
|
3235 |
|
|
bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
|
3236 |
|
|
|
3237 |
|
|
/* If the equivalence sets have a common intersection, then the two
|
3238 |
|
|
names can be compared without checking their ranges. */
|
3239 |
|
|
if (bitmap_intersect_p (e1, e2))
|
3240 |
|
|
{
|
3241 |
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
3242 |
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
3243 |
|
|
|
3244 |
|
|
return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
|
3245 |
|
|
? boolean_true_node
|
3246 |
|
|
: boolean_false_node;
|
3247 |
|
|
}
|
3248 |
|
|
|
3249 |
|
|
/* Otherwise, compare all the equivalent ranges. First, add N1 and
|
3250 |
|
|
N2 to their own set of equivalences to avoid duplicating the body
|
3251 |
|
|
of the loop just to check N1 and N2 ranges. */
|
3252 |
|
|
EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
|
3253 |
|
|
{
|
3254 |
|
|
value_range_t vr1 = *(vr_value[i1]);
|
3255 |
|
|
|
3256 |
|
|
/* If the range is VARYING or UNDEFINED, use the name itself. */
|
3257 |
|
|
if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
|
3258 |
|
|
{
|
3259 |
|
|
vr1.type = VR_RANGE;
|
3260 |
|
|
vr1.min = ssa_name (i1);
|
3261 |
|
|
vr1.max = ssa_name (i1);
|
3262 |
|
|
}
|
3263 |
|
|
|
3264 |
|
|
t = retval = NULL_TREE;
|
3265 |
|
|
EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
|
3266 |
|
|
{
|
3267 |
|
|
value_range_t vr2 = *(vr_value[i2]);
|
3268 |
|
|
|
3269 |
|
|
if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
|
3270 |
|
|
{
|
3271 |
|
|
vr2.type = VR_RANGE;
|
3272 |
|
|
vr2.min = ssa_name (i2);
|
3273 |
|
|
vr2.max = ssa_name (i2);
|
3274 |
|
|
}
|
3275 |
|
|
|
3276 |
|
|
t = compare_ranges (comp, &vr1, &vr2);
|
3277 |
|
|
if (t)
|
3278 |
|
|
{
|
3279 |
|
|
/* All the ranges in the equivalent sets should compare
|
3280 |
|
|
the same. */
|
3281 |
|
|
gcc_assert (retval == NULL || t == retval);
|
3282 |
|
|
retval = t;
|
3283 |
|
|
}
|
3284 |
|
|
}
|
3285 |
|
|
|
3286 |
|
|
if (retval)
|
3287 |
|
|
{
|
3288 |
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
3289 |
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
3290 |
|
|
return retval;
|
3291 |
|
|
}
|
3292 |
|
|
}
|
3293 |
|
|
|
3294 |
|
|
/* None of the equivalent ranges are useful in computing this
|
3295 |
|
|
comparison. */
|
3296 |
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
3297 |
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
3298 |
|
|
return NULL_TREE;
|
3299 |
|
|
}
|
3300 |
|
|
|
3301 |
|
|
|
3302 |
|
|
/* Given a conditional predicate COND, try to determine if COND yields
|
3303 |
|
|
true or false based on the value ranges of its operands. Return
|
3304 |
|
|
BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
|
3305 |
|
|
BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
|
3306 |
|
|
NULL if the conditional cannot be evaluated at compile time.
|
3307 |
|
|
|
3308 |
|
|
If USE_EQUIV_P is true, the ranges of all the names equivalent with
|
3309 |
|
|
the operands in COND are used when trying to compute its value.
|
3310 |
|
|
This is only used during final substitution. During propagation,
|
3311 |
|
|
we only check the range of each variable and not its equivalents. */
|
3312 |
|
|
|
3313 |
|
|
tree
|
3314 |
|
|
vrp_evaluate_conditional (tree cond, bool use_equiv_p)
|
3315 |
|
|
{
|
3316 |
|
|
gcc_assert (TREE_CODE (cond) == SSA_NAME
|
3317 |
|
|
|| TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
|
3318 |
|
|
|
3319 |
|
|
if (TREE_CODE (cond) == SSA_NAME)
|
3320 |
|
|
{
|
3321 |
|
|
value_range_t *vr;
|
3322 |
|
|
tree retval;
|
3323 |
|
|
|
3324 |
|
|
if (use_equiv_p)
|
3325 |
|
|
retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
|
3326 |
|
|
else
|
3327 |
|
|
{
|
3328 |
|
|
value_range_t *vr = get_value_range (cond);
|
3329 |
|
|
retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
|
3330 |
|
|
}
|
3331 |
|
|
|
3332 |
|
|
/* If COND has a known boolean range, return it. */
|
3333 |
|
|
if (retval)
|
3334 |
|
|
return retval;
|
3335 |
|
|
|
3336 |
|
|
/* Otherwise, if COND has a symbolic range of exactly one value,
|
3337 |
|
|
return it. */
|
3338 |
|
|
vr = get_value_range (cond);
|
3339 |
|
|
if (vr->type == VR_RANGE && vr->min == vr->max)
|
3340 |
|
|
return vr->min;
|
3341 |
|
|
}
|
3342 |
|
|
else
|
3343 |
|
|
{
|
3344 |
|
|
tree op0 = TREE_OPERAND (cond, 0);
|
3345 |
|
|
tree op1 = TREE_OPERAND (cond, 1);
|
3346 |
|
|
|
3347 |
|
|
/* We only deal with integral and pointer types. */
|
3348 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
|
3349 |
|
|
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
|
3350 |
|
|
return NULL_TREE;
|
3351 |
|
|
|
3352 |
|
|
if (use_equiv_p)
|
3353 |
|
|
{
|
3354 |
|
|
if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
|
3355 |
|
|
return compare_names (TREE_CODE (cond), op0, op1);
|
3356 |
|
|
else if (TREE_CODE (op0) == SSA_NAME)
|
3357 |
|
|
return compare_name_with_value (TREE_CODE (cond), op0, op1);
|
3358 |
|
|
else if (TREE_CODE (op1) == SSA_NAME)
|
3359 |
|
|
return compare_name_with_value (
|
3360 |
|
|
swap_tree_comparison (TREE_CODE (cond)), op1, op0);
|
3361 |
|
|
}
|
3362 |
|
|
else
|
3363 |
|
|
{
|
3364 |
|
|
value_range_t *vr0, *vr1;
|
3365 |
|
|
|
3366 |
|
|
vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
|
3367 |
|
|
vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
|
3368 |
|
|
|
3369 |
|
|
if (vr0 && vr1)
|
3370 |
|
|
return compare_ranges (TREE_CODE (cond), vr0, vr1);
|
3371 |
|
|
else if (vr0 && vr1 == NULL)
|
3372 |
|
|
return compare_range_with_value (TREE_CODE (cond), vr0, op1);
|
3373 |
|
|
else if (vr0 == NULL && vr1)
|
3374 |
|
|
return compare_range_with_value (
|
3375 |
|
|
swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
|
3376 |
|
|
}
|
3377 |
|
|
}
|
3378 |
|
|
|
3379 |
|
|
/* Anything else cannot be computed statically. */
|
3380 |
|
|
return NULL_TREE;
|
3381 |
|
|
}
|
3382 |
|
|
|
3383 |
|
|
|
3384 |
|
|
/* Visit conditional statement STMT. If we can determine which edge
|
3385 |
|
|
will be taken out of STMT's basic block, record it in
|
3386 |
|
|
*TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
|
3387 |
|
|
SSA_PROP_VARYING. */
|
3388 |
|
|
|
3389 |
|
|
static enum ssa_prop_result
|
3390 |
|
|
vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
|
3391 |
|
|
{
|
3392 |
|
|
tree cond, val;
|
3393 |
|
|
|
3394 |
|
|
*taken_edge_p = NULL;
|
3395 |
|
|
|
3396 |
|
|
/* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
|
3397 |
|
|
add ASSERT_EXPRs for them. */
|
3398 |
|
|
if (TREE_CODE (stmt) == SWITCH_EXPR)
|
3399 |
|
|
return SSA_PROP_VARYING;
|
3400 |
|
|
|
3401 |
|
|
cond = COND_EXPR_COND (stmt);
|
3402 |
|
|
|
3403 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3404 |
|
|
{
|
3405 |
|
|
tree use;
|
3406 |
|
|
ssa_op_iter i;
|
3407 |
|
|
|
3408 |
|
|
fprintf (dump_file, "\nVisiting conditional with predicate: ");
|
3409 |
|
|
print_generic_expr (dump_file, cond, 0);
|
3410 |
|
|
fprintf (dump_file, "\nWith known ranges\n");
|
3411 |
|
|
|
3412 |
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
|
3413 |
|
|
{
|
3414 |
|
|
fprintf (dump_file, "\t");
|
3415 |
|
|
print_generic_expr (dump_file, use, 0);
|
3416 |
|
|
fprintf (dump_file, ": ");
|
3417 |
|
|
dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
|
3418 |
|
|
}
|
3419 |
|
|
|
3420 |
|
|
fprintf (dump_file, "\n");
|
3421 |
|
|
}
|
3422 |
|
|
|
3423 |
|
|
/* Compute the value of the predicate COND by checking the known
|
3424 |
|
|
ranges of each of its operands.
|
3425 |
|
|
|
3426 |
|
|
Note that we cannot evaluate all the equivalent ranges here
|
3427 |
|
|
because those ranges may not yet be final and with the current
|
3428 |
|
|
propagation strategy, we cannot determine when the value ranges
|
3429 |
|
|
of the names in the equivalence set have changed.
|
3430 |
|
|
|
3431 |
|
|
For instance, given the following code fragment
|
3432 |
|
|
|
3433 |
|
|
i_5 = PHI <8, i_13>
|
3434 |
|
|
...
|
3435 |
|
|
i_14 = ASSERT_EXPR <i_5, i_5 != 0>
|
3436 |
|
|
if (i_14 == 1)
|
3437 |
|
|
...
|
3438 |
|
|
|
3439 |
|
|
Assume that on the first visit to i_14, i_5 has the temporary
|
3440 |
|
|
range [8, 8] because the second argument to the PHI function is
|
3441 |
|
|
not yet executable. We derive the range ~[0, 0] for i_14 and the
|
3442 |
|
|
equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
|
3443 |
|
|
the first time, since i_14 is equivalent to the range [8, 8], we
|
3444 |
|
|
determine that the predicate is always false.
|
3445 |
|
|
|
3446 |
|
|
On the next round of propagation, i_13 is determined to be
|
3447 |
|
|
VARYING, which causes i_5 to drop down to VARYING. So, another
|
3448 |
|
|
visit to i_14 is scheduled. In this second visit, we compute the
|
3449 |
|
|
exact same range and equivalence set for i_14, namely ~[0, 0] and
|
3450 |
|
|
{ i_5 }. But we did not have the previous range for i_5
|
3451 |
|
|
registered, so vrp_visit_assignment thinks that the range for
|
3452 |
|
|
i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
|
3453 |
|
|
is not visited again, which stops propagation from visiting
|
3454 |
|
|
statements in the THEN clause of that if().
|
3455 |
|
|
|
3456 |
|
|
To properly fix this we would need to keep the previous range
|
3457 |
|
|
value for the names in the equivalence set. This way we would've
|
3458 |
|
|
discovered that from one visit to the other i_5 changed from
|
3459 |
|
|
range [8, 8] to VR_VARYING.
|
3460 |
|
|
|
3461 |
|
|
However, fixing this apparent limitation may not be worth the
|
3462 |
|
|
additional checking. Testing on several code bases (GCC, DLV,
|
3463 |
|
|
MICO, TRAMP3D and SPEC2000) showed that doing this results in
|
3464 |
|
|
4 more predicates folded in SPEC. */
|
3465 |
|
|
val = vrp_evaluate_conditional (cond, false);
|
3466 |
|
|
if (val)
|
3467 |
|
|
*taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
|
3468 |
|
|
|
3469 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3470 |
|
|
{
|
3471 |
|
|
fprintf (dump_file, "\nPredicate evaluates to: ");
|
3472 |
|
|
if (val == NULL_TREE)
|
3473 |
|
|
fprintf (dump_file, "DON'T KNOW\n");
|
3474 |
|
|
else
|
3475 |
|
|
print_generic_stmt (dump_file, val, 0);
|
3476 |
|
|
}
|
3477 |
|
|
|
3478 |
|
|
return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
|
3479 |
|
|
}
|
3480 |
|
|
|
3481 |
|
|
|
3482 |
|
|
/* Evaluate statement STMT. If the statement produces a useful range,
|
3483 |
|
|
return SSA_PROP_INTERESTING and record the SSA name with the
|
3484 |
|
|
interesting range into *OUTPUT_P.
|
3485 |
|
|
|
3486 |
|
|
If STMT is a conditional branch and we can determine its truth
|
3487 |
|
|
value, the taken edge is recorded in *TAKEN_EDGE_P.
|
3488 |
|
|
|
3489 |
|
|
If STMT produces a varying value, return SSA_PROP_VARYING. */
|
3490 |
|
|
|
3491 |
|
|
static enum ssa_prop_result
|
3492 |
|
|
vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
|
3493 |
|
|
{
|
3494 |
|
|
tree def;
|
3495 |
|
|
ssa_op_iter iter;
|
3496 |
|
|
stmt_ann_t ann;
|
3497 |
|
|
|
3498 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3499 |
|
|
{
|
3500 |
|
|
fprintf (dump_file, "\nVisiting statement:\n");
|
3501 |
|
|
print_generic_stmt (dump_file, stmt, dump_flags);
|
3502 |
|
|
fprintf (dump_file, "\n");
|
3503 |
|
|
}
|
3504 |
|
|
|
3505 |
|
|
ann = stmt_ann (stmt);
|
3506 |
|
|
if (TREE_CODE (stmt) == MODIFY_EXPR
|
3507 |
|
|
&& ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
|
3508 |
|
|
return vrp_visit_assignment (stmt, output_p);
|
3509 |
|
|
else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
|
3510 |
|
|
return vrp_visit_cond_stmt (stmt, taken_edge_p);
|
3511 |
|
|
|
3512 |
|
|
/* All other statements produce nothing of interest for VRP, so mark
|
3513 |
|
|
their outputs varying and prevent further simulation. */
|
3514 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
|
3515 |
|
|
set_value_range_to_varying (get_value_range (def));
|
3516 |
|
|
|
3517 |
|
|
return SSA_PROP_VARYING;
|
3518 |
|
|
}
|
3519 |
|
|
|
3520 |
|
|
|
3521 |
|
|
/* Meet operation for value ranges. Given two value ranges VR0 and
|
3522 |
|
|
VR1, store in VR0 the result of meeting VR0 and VR1.
|
3523 |
|
|
|
3524 |
|
|
The meeting rules are as follows:
|
3525 |
|
|
|
3526 |
|
|
1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
|
3527 |
|
|
|
3528 |
|
|
2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
|
3529 |
|
|
union of VR0 and VR1. */
|
3530 |
|
|
|
3531 |
|
|
static void
|
3532 |
|
|
vrp_meet (value_range_t *vr0, value_range_t *vr1)
|
3533 |
|
|
{
|
3534 |
|
|
if (vr0->type == VR_UNDEFINED)
|
3535 |
|
|
{
|
3536 |
|
|
copy_value_range (vr0, vr1);
|
3537 |
|
|
return;
|
3538 |
|
|
}
|
3539 |
|
|
|
3540 |
|
|
if (vr1->type == VR_UNDEFINED)
|
3541 |
|
|
{
|
3542 |
|
|
/* Nothing to do. VR0 already has the resulting range. */
|
3543 |
|
|
return;
|
3544 |
|
|
}
|
3545 |
|
|
|
3546 |
|
|
if (vr0->type == VR_VARYING)
|
3547 |
|
|
{
|
3548 |
|
|
/* Nothing to do. VR0 already has the resulting range. */
|
3549 |
|
|
return;
|
3550 |
|
|
}
|
3551 |
|
|
|
3552 |
|
|
if (vr1->type == VR_VARYING)
|
3553 |
|
|
{
|
3554 |
|
|
set_value_range_to_varying (vr0);
|
3555 |
|
|
return;
|
3556 |
|
|
}
|
3557 |
|
|
|
3558 |
|
|
if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
|
3559 |
|
|
{
|
3560 |
|
|
/* If VR0 and VR1 have a non-empty intersection, compute the
|
3561 |
|
|
union of both ranges. */
|
3562 |
|
|
if (value_ranges_intersect_p (vr0, vr1))
|
3563 |
|
|
{
|
3564 |
|
|
int cmp;
|
3565 |
|
|
tree min, max;
|
3566 |
|
|
|
3567 |
|
|
/* The lower limit of the new range is the minimum of the
|
3568 |
|
|
two ranges. If they cannot be compared, the result is
|
3569 |
|
|
VARYING. */
|
3570 |
|
|
cmp = compare_values (vr0->min, vr1->min);
|
3571 |
|
|
if (cmp == 0 || cmp == 1)
|
3572 |
|
|
min = vr1->min;
|
3573 |
|
|
else if (cmp == -1)
|
3574 |
|
|
min = vr0->min;
|
3575 |
|
|
else
|
3576 |
|
|
{
|
3577 |
|
|
set_value_range_to_varying (vr0);
|
3578 |
|
|
return;
|
3579 |
|
|
}
|
3580 |
|
|
|
3581 |
|
|
/* Similarly, the upper limit of the new range is the
|
3582 |
|
|
maximum of the two ranges. If they cannot be compared,
|
3583 |
|
|
the result is VARYING. */
|
3584 |
|
|
cmp = compare_values (vr0->max, vr1->max);
|
3585 |
|
|
if (cmp == 0 || cmp == -1)
|
3586 |
|
|
max = vr1->max;
|
3587 |
|
|
else if (cmp == 1)
|
3588 |
|
|
max = vr0->max;
|
3589 |
|
|
else
|
3590 |
|
|
{
|
3591 |
|
|
set_value_range_to_varying (vr0);
|
3592 |
|
|
return;
|
3593 |
|
|
}
|
3594 |
|
|
|
3595 |
|
|
/* The resulting set of equivalences is the intersection of
|
3596 |
|
|
the two sets. */
|
3597 |
|
|
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
|
3598 |
|
|
bitmap_and_into (vr0->equiv, vr1->equiv);
|
3599 |
|
|
else if (vr0->equiv && !vr1->equiv)
|
3600 |
|
|
bitmap_clear (vr0->equiv);
|
3601 |
|
|
|
3602 |
|
|
set_value_range (vr0, vr0->type, min, max, vr0->equiv);
|
3603 |
|
|
}
|
3604 |
|
|
else
|
3605 |
|
|
goto no_meet;
|
3606 |
|
|
}
|
3607 |
|
|
else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
|
3608 |
|
|
{
|
3609 |
|
|
/* Two anti-ranges meet only if they are both identical. */
|
3610 |
|
|
if (compare_values (vr0->min, vr1->min) == 0
|
3611 |
|
|
&& compare_values (vr0->max, vr1->max) == 0
|
3612 |
|
|
&& compare_values (vr0->min, vr0->max) == 0)
|
3613 |
|
|
{
|
3614 |
|
|
/* The resulting set of equivalences is the intersection of
|
3615 |
|
|
the two sets. */
|
3616 |
|
|
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
|
3617 |
|
|
bitmap_and_into (vr0->equiv, vr1->equiv);
|
3618 |
|
|
else if (vr0->equiv && !vr1->equiv)
|
3619 |
|
|
bitmap_clear (vr0->equiv);
|
3620 |
|
|
}
|
3621 |
|
|
else
|
3622 |
|
|
goto no_meet;
|
3623 |
|
|
}
|
3624 |
|
|
else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
|
3625 |
|
|
{
|
3626 |
|
|
/* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
|
3627 |
|
|
meet only if the ranges have an empty intersection. The
|
3628 |
|
|
result of the meet operation is the anti-range. */
|
3629 |
|
|
if (!symbolic_range_p (vr0)
|
3630 |
|
|
&& !symbolic_range_p (vr1)
|
3631 |
|
|
&& !value_ranges_intersect_p (vr0, vr1))
|
3632 |
|
|
{
|
3633 |
|
|
/* Copy most of VR1 into VR0. Don't copy VR1's equivalence
|
3634 |
|
|
set. We need to compute the intersection of the two
|
3635 |
|
|
equivalence sets. */
|
3636 |
|
|
if (vr1->type == VR_ANTI_RANGE)
|
3637 |
|
|
set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
|
3638 |
|
|
|
3639 |
|
|
/* The resulting set of equivalences is the intersection of
|
3640 |
|
|
the two sets. */
|
3641 |
|
|
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
|
3642 |
|
|
bitmap_and_into (vr0->equiv, vr1->equiv);
|
3643 |
|
|
else if (vr0->equiv && !vr1->equiv)
|
3644 |
|
|
bitmap_clear (vr0->equiv);
|
3645 |
|
|
}
|
3646 |
|
|
else
|
3647 |
|
|
goto no_meet;
|
3648 |
|
|
}
|
3649 |
|
|
else
|
3650 |
|
|
gcc_unreachable ();
|
3651 |
|
|
|
3652 |
|
|
return;
|
3653 |
|
|
|
3654 |
|
|
no_meet:
|
3655 |
|
|
/* The two range VR0 and VR1 do not meet. Before giving up and
|
3656 |
|
|
setting the result to VARYING, see if we can at least derive a
|
3657 |
|
|
useful anti-range. FIXME, all this nonsense about distinguishing
|
3658 |
|
|
anti-ranges from ranges is necessary because of the odd
|
3659 |
|
|
semantics of range_includes_zero_p and friends. */
|
3660 |
|
|
if (!symbolic_range_p (vr0)
|
3661 |
|
|
&& ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
|
3662 |
|
|
|| (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
|
3663 |
|
|
&& !symbolic_range_p (vr1)
|
3664 |
|
|
&& ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
|
3665 |
|
|
|| (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
|
3666 |
|
|
{
|
3667 |
|
|
set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
|
3668 |
|
|
|
3669 |
|
|
/* Since this meet operation did not result from the meeting of
|
3670 |
|
|
two equivalent names, VR0 cannot have any equivalences. */
|
3671 |
|
|
if (vr0->equiv)
|
3672 |
|
|
bitmap_clear (vr0->equiv);
|
3673 |
|
|
}
|
3674 |
|
|
else
|
3675 |
|
|
set_value_range_to_varying (vr0);
|
3676 |
|
|
}
|
3677 |
|
|
|
3678 |
|
|
|
3679 |
|
|
/* Visit all arguments for PHI node PHI that flow through executable
|
3680 |
|
|
edges. If a valid value range can be derived from all the incoming
|
3681 |
|
|
value ranges, set a new range for the LHS of PHI. */
|
3682 |
|
|
|
3683 |
|
|
static enum ssa_prop_result
|
3684 |
|
|
vrp_visit_phi_node (tree phi)
|
3685 |
|
|
{
|
3686 |
|
|
int i;
|
3687 |
|
|
tree lhs = PHI_RESULT (phi);
|
3688 |
|
|
value_range_t *lhs_vr = get_value_range (lhs);
|
3689 |
|
|
value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
3690 |
|
|
|
3691 |
|
|
copy_value_range (&vr_result, lhs_vr);
|
3692 |
|
|
|
3693 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3694 |
|
|
{
|
3695 |
|
|
fprintf (dump_file, "\nVisiting PHI node: ");
|
3696 |
|
|
print_generic_expr (dump_file, phi, dump_flags);
|
3697 |
|
|
}
|
3698 |
|
|
|
3699 |
|
|
for (i = 0; i < PHI_NUM_ARGS (phi); i++)
|
3700 |
|
|
{
|
3701 |
|
|
edge e = PHI_ARG_EDGE (phi, i);
|
3702 |
|
|
|
3703 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3704 |
|
|
{
|
3705 |
|
|
fprintf (dump_file,
|
3706 |
|
|
"\n Argument #%d (%d -> %d %sexecutable)\n",
|
3707 |
|
|
i, e->src->index, e->dest->index,
|
3708 |
|
|
(e->flags & EDGE_EXECUTABLE) ? "" : "not ");
|
3709 |
|
|
}
|
3710 |
|
|
|
3711 |
|
|
if (e->flags & EDGE_EXECUTABLE)
|
3712 |
|
|
{
|
3713 |
|
|
tree arg = PHI_ARG_DEF (phi, i);
|
3714 |
|
|
value_range_t vr_arg;
|
3715 |
|
|
|
3716 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
3717 |
|
|
vr_arg = *(get_value_range (arg));
|
3718 |
|
|
else
|
3719 |
|
|
{
|
3720 |
|
|
vr_arg.type = VR_RANGE;
|
3721 |
|
|
vr_arg.min = arg;
|
3722 |
|
|
vr_arg.max = arg;
|
3723 |
|
|
vr_arg.equiv = NULL;
|
3724 |
|
|
}
|
3725 |
|
|
|
3726 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3727 |
|
|
{
|
3728 |
|
|
fprintf (dump_file, "\t");
|
3729 |
|
|
print_generic_expr (dump_file, arg, dump_flags);
|
3730 |
|
|
fprintf (dump_file, "\n\tValue: ");
|
3731 |
|
|
dump_value_range (dump_file, &vr_arg);
|
3732 |
|
|
fprintf (dump_file, "\n");
|
3733 |
|
|
}
|
3734 |
|
|
|
3735 |
|
|
vrp_meet (&vr_result, &vr_arg);
|
3736 |
|
|
|
3737 |
|
|
if (vr_result.type == VR_VARYING)
|
3738 |
|
|
break;
|
3739 |
|
|
}
|
3740 |
|
|
}
|
3741 |
|
|
|
3742 |
|
|
if (vr_result.type == VR_VARYING)
|
3743 |
|
|
goto varying;
|
3744 |
|
|
|
3745 |
|
|
/* To prevent infinite iterations in the algorithm, derive ranges
|
3746 |
|
|
when the new value is slightly bigger or smaller than the
|
3747 |
|
|
previous one. */
|
3748 |
|
|
if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
|
3749 |
|
|
{
|
3750 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
|
3751 |
|
|
{
|
3752 |
|
|
int cmp_min = compare_values (lhs_vr->min, vr_result.min);
|
3753 |
|
|
int cmp_max = compare_values (lhs_vr->max, vr_result.max);
|
3754 |
|
|
|
3755 |
|
|
/* If the new minimum is smaller or larger than the previous
|
3756 |
|
|
one, go all the way to -INF. In the first case, to avoid
|
3757 |
|
|
iterating millions of times to reach -INF, and in the
|
3758 |
|
|
other case to avoid infinite bouncing between different
|
3759 |
|
|
minimums. */
|
3760 |
|
|
if (cmp_min > 0 || cmp_min < 0)
|
3761 |
|
|
vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
|
3762 |
|
|
|
3763 |
|
|
/* Similarly, if the new maximum is smaller or larger than
|
3764 |
|
|
the previous one, go all the way to +INF. */
|
3765 |
|
|
if (cmp_max < 0 || cmp_max > 0)
|
3766 |
|
|
vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
|
3767 |
|
|
|
3768 |
|
|
/* If we ended up with a (-INF, +INF) range, set it to
|
3769 |
|
|
VARYING. */
|
3770 |
|
|
if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
|
3771 |
|
|
&& vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
|
3772 |
|
|
goto varying;
|
3773 |
|
|
}
|
3774 |
|
|
}
|
3775 |
|
|
|
3776 |
|
|
/* If the new range is different than the previous value, keep
|
3777 |
|
|
iterating. */
|
3778 |
|
|
if (update_value_range (lhs, &vr_result))
|
3779 |
|
|
return SSA_PROP_INTERESTING;
|
3780 |
|
|
|
3781 |
|
|
/* Nothing changed, don't add outgoing edges. */
|
3782 |
|
|
return SSA_PROP_NOT_INTERESTING;
|
3783 |
|
|
|
3784 |
|
|
/* No match found. Set the LHS to VARYING. */
|
3785 |
|
|
varying:
|
3786 |
|
|
set_value_range_to_varying (lhs_vr);
|
3787 |
|
|
return SSA_PROP_VARYING;
|
3788 |
|
|
}
|
3789 |
|
|
|
3790 |
|
|
/* Simplify a division or modulo operator to a right shift or
|
3791 |
|
|
bitwise and if the first operand is unsigned or is greater
|
3792 |
|
|
than zero and the second operand is an exact power of two. */
|
3793 |
|
|
|
3794 |
|
|
static void
|
3795 |
|
|
simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
|
3796 |
|
|
{
|
3797 |
|
|
tree val = NULL;
|
3798 |
|
|
tree op = TREE_OPERAND (rhs, 0);
|
3799 |
|
|
value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
|
3800 |
|
|
|
3801 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (op)))
|
3802 |
|
|
{
|
3803 |
|
|
val = integer_one_node;
|
3804 |
|
|
}
|
3805 |
|
|
else
|
3806 |
|
|
{
|
3807 |
|
|
val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
|
3808 |
|
|
}
|
3809 |
|
|
|
3810 |
|
|
if (val && integer_onep (val))
|
3811 |
|
|
{
|
3812 |
|
|
tree t;
|
3813 |
|
|
tree op0 = TREE_OPERAND (rhs, 0);
|
3814 |
|
|
tree op1 = TREE_OPERAND (rhs, 1);
|
3815 |
|
|
|
3816 |
|
|
if (rhs_code == TRUNC_DIV_EXPR)
|
3817 |
|
|
{
|
3818 |
|
|
t = build_int_cst (NULL_TREE, tree_log2 (op1));
|
3819 |
|
|
t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
|
3820 |
|
|
}
|
3821 |
|
|
else
|
3822 |
|
|
{
|
3823 |
|
|
t = build_int_cst (TREE_TYPE (op1), 1);
|
3824 |
|
|
t = int_const_binop (MINUS_EXPR, op1, t, 0);
|
3825 |
|
|
t = fold_convert (TREE_TYPE (op0), t);
|
3826 |
|
|
t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
|
3827 |
|
|
}
|
3828 |
|
|
|
3829 |
|
|
TREE_OPERAND (stmt, 1) = t;
|
3830 |
|
|
update_stmt (stmt);
|
3831 |
|
|
}
|
3832 |
|
|
}
|
3833 |
|
|
|
3834 |
|
|
/* If the operand to an ABS_EXPR is >= 0, then eliminate the
|
3835 |
|
|
ABS_EXPR. If the operand is <= 0, then simplify the
|
3836 |
|
|
ABS_EXPR into a NEGATE_EXPR. */
|
3837 |
|
|
|
3838 |
|
|
static void
|
3839 |
|
|
simplify_abs_using_ranges (tree stmt, tree rhs)
|
3840 |
|
|
{
|
3841 |
|
|
tree val = NULL;
|
3842 |
|
|
tree op = TREE_OPERAND (rhs, 0);
|
3843 |
|
|
tree type = TREE_TYPE (op);
|
3844 |
|
|
value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
|
3845 |
|
|
|
3846 |
|
|
if (TYPE_UNSIGNED (type))
|
3847 |
|
|
{
|
3848 |
|
|
val = integer_zero_node;
|
3849 |
|
|
}
|
3850 |
|
|
else if (vr)
|
3851 |
|
|
{
|
3852 |
|
|
val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
|
3853 |
|
|
if (!val)
|
3854 |
|
|
{
|
3855 |
|
|
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
|
3856 |
|
|
|
3857 |
|
|
if (val)
|
3858 |
|
|
{
|
3859 |
|
|
if (integer_zerop (val))
|
3860 |
|
|
val = integer_one_node;
|
3861 |
|
|
else if (integer_onep (val))
|
3862 |
|
|
val = integer_zero_node;
|
3863 |
|
|
}
|
3864 |
|
|
}
|
3865 |
|
|
|
3866 |
|
|
if (val
|
3867 |
|
|
&& (integer_onep (val) || integer_zerop (val)))
|
3868 |
|
|
{
|
3869 |
|
|
tree t;
|
3870 |
|
|
|
3871 |
|
|
if (integer_onep (val))
|
3872 |
|
|
t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
|
3873 |
|
|
else
|
3874 |
|
|
t = op;
|
3875 |
|
|
|
3876 |
|
|
TREE_OPERAND (stmt, 1) = t;
|
3877 |
|
|
update_stmt (stmt);
|
3878 |
|
|
}
|
3879 |
|
|
}
|
3880 |
|
|
}
|
3881 |
|
|
|
3882 |
|
|
/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
|
3883 |
|
|
a known value range VR.
|
3884 |
|
|
|
3885 |
|
|
If there is one and only one value which will satisfy the
|
3886 |
|
|
conditional, then return that value. Else return NULL. */
|
3887 |
|
|
|
3888 |
|
|
static tree
|
3889 |
|
|
test_for_singularity (enum tree_code cond_code, tree op0,
|
3890 |
|
|
tree op1, value_range_t *vr)
|
3891 |
|
|
{
|
3892 |
|
|
tree min = NULL;
|
3893 |
|
|
tree max = NULL;
|
3894 |
|
|
|
3895 |
|
|
/* Extract minimum/maximum values which satisfy the
|
3896 |
|
|
the conditional as it was written. */
|
3897 |
|
|
if (cond_code == LE_EXPR || cond_code == LT_EXPR)
|
3898 |
|
|
{
|
3899 |
|
|
min = TYPE_MIN_VALUE (TREE_TYPE (op0));
|
3900 |
|
|
|
3901 |
|
|
max = op1;
|
3902 |
|
|
if (cond_code == LT_EXPR)
|
3903 |
|
|
{
|
3904 |
|
|
tree one = build_int_cst (TREE_TYPE (op0), 1);
|
3905 |
|
|
max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
|
3906 |
|
|
}
|
3907 |
|
|
}
|
3908 |
|
|
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
|
3909 |
|
|
{
|
3910 |
|
|
max = TYPE_MAX_VALUE (TREE_TYPE (op0));
|
3911 |
|
|
|
3912 |
|
|
min = op1;
|
3913 |
|
|
if (cond_code == GT_EXPR)
|
3914 |
|
|
{
|
3915 |
|
|
tree one = build_int_cst (TREE_TYPE (op0), 1);
|
3916 |
|
|
max = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), max, one);
|
3917 |
|
|
}
|
3918 |
|
|
}
|
3919 |
|
|
|
3920 |
|
|
/* Now refine the minimum and maximum values using any
|
3921 |
|
|
value range information we have for op0. */
|
3922 |
|
|
if (min && max)
|
3923 |
|
|
{
|
3924 |
|
|
if (compare_values (vr->min, min) == -1)
|
3925 |
|
|
min = min;
|
3926 |
|
|
else
|
3927 |
|
|
min = vr->min;
|
3928 |
|
|
if (compare_values (vr->max, max) == 1)
|
3929 |
|
|
max = max;
|
3930 |
|
|
else
|
3931 |
|
|
max = vr->max;
|
3932 |
|
|
|
3933 |
|
|
/* If the new min/max values have converged to a
|
3934 |
|
|
single value, then there is only one value which
|
3935 |
|
|
can satisfy the condition, return that value. */
|
3936 |
|
|
if (min == max && is_gimple_min_invariant (min))
|
3937 |
|
|
return min;
|
3938 |
|
|
}
|
3939 |
|
|
return NULL;
|
3940 |
|
|
}
|
3941 |
|
|
|
3942 |
|
|
/* Simplify a conditional using a relational operator to an equality
|
3943 |
|
|
test if the range information indicates only one value can satisfy
|
3944 |
|
|
the original conditional. */
|
3945 |
|
|
|
3946 |
|
|
static void
|
3947 |
|
|
simplify_cond_using_ranges (tree stmt)
|
3948 |
|
|
{
|
3949 |
|
|
tree cond = COND_EXPR_COND (stmt);
|
3950 |
|
|
tree op0 = TREE_OPERAND (cond, 0);
|
3951 |
|
|
tree op1 = TREE_OPERAND (cond, 1);
|
3952 |
|
|
enum tree_code cond_code = TREE_CODE (cond);
|
3953 |
|
|
|
3954 |
|
|
if (cond_code != NE_EXPR
|
3955 |
|
|
&& cond_code != EQ_EXPR
|
3956 |
|
|
&& TREE_CODE (op0) == SSA_NAME
|
3957 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (op0))
|
3958 |
|
|
&& is_gimple_min_invariant (op1))
|
3959 |
|
|
{
|
3960 |
|
|
value_range_t *vr = get_value_range (op0);
|
3961 |
|
|
|
3962 |
|
|
/* If we have range information for OP0, then we might be
|
3963 |
|
|
able to simplify this conditional. */
|
3964 |
|
|
if (vr->type == VR_RANGE)
|
3965 |
|
|
{
|
3966 |
|
|
tree new = test_for_singularity (cond_code, op0, op1, vr);
|
3967 |
|
|
|
3968 |
|
|
if (new)
|
3969 |
|
|
{
|
3970 |
|
|
if (dump_file)
|
3971 |
|
|
{
|
3972 |
|
|
fprintf (dump_file, "Simplified relational ");
|
3973 |
|
|
print_generic_expr (dump_file, cond, 0);
|
3974 |
|
|
fprintf (dump_file, " into ");
|
3975 |
|
|
}
|
3976 |
|
|
|
3977 |
|
|
COND_EXPR_COND (stmt)
|
3978 |
|
|
= build (EQ_EXPR, boolean_type_node, op0, new);
|
3979 |
|
|
update_stmt (stmt);
|
3980 |
|
|
|
3981 |
|
|
if (dump_file)
|
3982 |
|
|
{
|
3983 |
|
|
print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
|
3984 |
|
|
fprintf (dump_file, "\n");
|
3985 |
|
|
}
|
3986 |
|
|
return;
|
3987 |
|
|
|
3988 |
|
|
}
|
3989 |
|
|
|
3990 |
|
|
/* Try again after inverting the condition. We only deal
|
3991 |
|
|
with integral types here, so no need to worry about
|
3992 |
|
|
issues with inverting FP comparisons. */
|
3993 |
|
|
cond_code = invert_tree_comparison (cond_code, false);
|
3994 |
|
|
new = test_for_singularity (cond_code, op0, op1, vr);
|
3995 |
|
|
|
3996 |
|
|
if (new)
|
3997 |
|
|
{
|
3998 |
|
|
if (dump_file)
|
3999 |
|
|
{
|
4000 |
|
|
fprintf (dump_file, "Simplified relational ");
|
4001 |
|
|
print_generic_expr (dump_file, cond, 0);
|
4002 |
|
|
fprintf (dump_file, " into ");
|
4003 |
|
|
}
|
4004 |
|
|
|
4005 |
|
|
COND_EXPR_COND (stmt)
|
4006 |
|
|
= build (NE_EXPR, boolean_type_node, op0, new);
|
4007 |
|
|
update_stmt (stmt);
|
4008 |
|
|
|
4009 |
|
|
if (dump_file)
|
4010 |
|
|
{
|
4011 |
|
|
print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
|
4012 |
|
|
fprintf (dump_file, "\n");
|
4013 |
|
|
}
|
4014 |
|
|
return;
|
4015 |
|
|
|
4016 |
|
|
}
|
4017 |
|
|
}
|
4018 |
|
|
}
|
4019 |
|
|
}
|
4020 |
|
|
|
4021 |
|
|
/* Simplify STMT using ranges if possible. */
|
4022 |
|
|
|
4023 |
|
|
void
|
4024 |
|
|
simplify_stmt_using_ranges (tree stmt)
|
4025 |
|
|
{
|
4026 |
|
|
if (TREE_CODE (stmt) == MODIFY_EXPR)
|
4027 |
|
|
{
|
4028 |
|
|
tree rhs = TREE_OPERAND (stmt, 1);
|
4029 |
|
|
enum tree_code rhs_code = TREE_CODE (rhs);
|
4030 |
|
|
|
4031 |
|
|
/* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
|
4032 |
|
|
and BIT_AND_EXPR respectively if the first operand is greater
|
4033 |
|
|
than zero and the second operand is an exact power of two. */
|
4034 |
|
|
if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
|
4035 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
|
4036 |
|
|
&& integer_pow2p (TREE_OPERAND (rhs, 1)))
|
4037 |
|
|
simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
|
4038 |
|
|
|
4039 |
|
|
/* Transform ABS (X) into X or -X as appropriate. */
|
4040 |
|
|
if (rhs_code == ABS_EXPR
|
4041 |
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
|
4042 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
|
4043 |
|
|
simplify_abs_using_ranges (stmt, rhs);
|
4044 |
|
|
}
|
4045 |
|
|
else if (TREE_CODE (stmt) == COND_EXPR
|
4046 |
|
|
&& COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
|
4047 |
|
|
{
|
4048 |
|
|
simplify_cond_using_ranges (stmt);
|
4049 |
|
|
}
|
4050 |
|
|
}
|
4051 |
|
|
|
4052 |
|
|
|
4053 |
|
|
|
4054 |
|
|
/* Traverse all the blocks folding conditionals with known ranges. */
|
4055 |
|
|
|
4056 |
|
|
static void
|
4057 |
|
|
vrp_finalize (void)
|
4058 |
|
|
{
|
4059 |
|
|
size_t i;
|
4060 |
|
|
prop_value_t *single_val_range;
|
4061 |
|
|
bool do_value_subst_p;
|
4062 |
|
|
|
4063 |
|
|
if (dump_file)
|
4064 |
|
|
{
|
4065 |
|
|
fprintf (dump_file, "\nValue ranges after VRP:\n\n");
|
4066 |
|
|
dump_all_value_ranges (dump_file);
|
4067 |
|
|
fprintf (dump_file, "\n");
|
4068 |
|
|
}
|
4069 |
|
|
|
4070 |
|
|
/* We may have ended with ranges that have exactly one value. Those
|
4071 |
|
|
values can be substituted as any other copy/const propagated
|
4072 |
|
|
value using substitute_and_fold. */
|
4073 |
|
|
single_val_range = xmalloc (num_ssa_names * sizeof (*single_val_range));
|
4074 |
|
|
memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
|
4075 |
|
|
|
4076 |
|
|
do_value_subst_p = false;
|
4077 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
4078 |
|
|
if (vr_value[i]
|
4079 |
|
|
&& vr_value[i]->type == VR_RANGE
|
4080 |
|
|
&& vr_value[i]->min == vr_value[i]->max)
|
4081 |
|
|
{
|
4082 |
|
|
single_val_range[i].value = vr_value[i]->min;
|
4083 |
|
|
do_value_subst_p = true;
|
4084 |
|
|
}
|
4085 |
|
|
|
4086 |
|
|
if (!do_value_subst_p)
|
4087 |
|
|
{
|
4088 |
|
|
/* We found no single-valued ranges, don't waste time trying to
|
4089 |
|
|
do single value substitution in substitute_and_fold. */
|
4090 |
|
|
free (single_val_range);
|
4091 |
|
|
single_val_range = NULL;
|
4092 |
|
|
}
|
4093 |
|
|
|
4094 |
|
|
substitute_and_fold (single_val_range, true);
|
4095 |
|
|
|
4096 |
|
|
/* Free allocated memory. */
|
4097 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
4098 |
|
|
if (vr_value[i])
|
4099 |
|
|
{
|
4100 |
|
|
BITMAP_FREE (vr_value[i]->equiv);
|
4101 |
|
|
free (vr_value[i]);
|
4102 |
|
|
}
|
4103 |
|
|
|
4104 |
|
|
free (single_val_range);
|
4105 |
|
|
free (vr_value);
|
4106 |
|
|
}
|
4107 |
|
|
|
4108 |
|
|
|
4109 |
|
|
/* Main entry point to VRP (Value Range Propagation). This pass is
|
4110 |
|
|
loosely based on J. R. C. Patterson, ``Accurate Static Branch
|
4111 |
|
|
Prediction by Value Range Propagation,'' in SIGPLAN Conference on
|
4112 |
|
|
Programming Language Design and Implementation, pp. 67-78, 1995.
|
4113 |
|
|
Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
|
4114 |
|
|
|
4115 |
|
|
This is essentially an SSA-CCP pass modified to deal with ranges
|
4116 |
|
|
instead of constants.
|
4117 |
|
|
|
4118 |
|
|
While propagating ranges, we may find that two or more SSA name
|
4119 |
|
|
have equivalent, though distinct ranges. For instance,
|
4120 |
|
|
|
4121 |
|
|
1 x_9 = p_3->a;
|
4122 |
|
|
2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
|
4123 |
|
|
3 if (p_4 == q_2)
|
4124 |
|
|
4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
|
4125 |
|
|
5 endif
|
4126 |
|
|
6 if (q_2)
|
4127 |
|
|
|
4128 |
|
|
In the code above, pointer p_5 has range [q_2, q_2], but from the
|
4129 |
|
|
code we can also determine that p_5 cannot be NULL and, if q_2 had
|
4130 |
|
|
a non-varying range, p_5's range should also be compatible with it.
|
4131 |
|
|
|
4132 |
|
|
These equivalences are created by two expressions: ASSERT_EXPR and
|
4133 |
|
|
copy operations. Since p_5 is an assertion on p_4, and p_4 was the
|
4134 |
|
|
result of another assertion, then we can use the fact that p_5 and
|
4135 |
|
|
p_4 are equivalent when evaluating p_5's range.
|
4136 |
|
|
|
4137 |
|
|
Together with value ranges, we also propagate these equivalences
|
4138 |
|
|
between names so that we can take advantage of information from
|
4139 |
|
|
multiple ranges when doing final replacement. Note that this
|
4140 |
|
|
equivalency relation is transitive but not symmetric.
|
4141 |
|
|
|
4142 |
|
|
In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
|
4143 |
|
|
cannot assert that q_2 is equivalent to p_5 because q_2 may be used
|
4144 |
|
|
in contexts where that assertion does not hold (e.g., in line 6).
|
4145 |
|
|
|
4146 |
|
|
TODO, the main difference between this pass and Patterson's is that
|
4147 |
|
|
we do not propagate edge probabilities. We only compute whether
|
4148 |
|
|
edges can be taken or not. That is, instead of having a spectrum
|
4149 |
|
|
of jump probabilities between 0 and 1, we only deal with 0, 1 and
|
4150 |
|
|
DON'T KNOW. In the future, it may be worthwhile to propagate
|
4151 |
|
|
probabilities to aid branch prediction. */
|
4152 |
|
|
|
4153 |
|
|
static void
|
4154 |
|
|
execute_vrp (void)
|
4155 |
|
|
{
|
4156 |
|
|
insert_range_assertions ();
|
4157 |
|
|
|
4158 |
|
|
cfg_loops = loop_optimizer_init (NULL);
|
4159 |
|
|
if (cfg_loops)
|
4160 |
|
|
scev_initialize (cfg_loops);
|
4161 |
|
|
|
4162 |
|
|
vrp_initialize ();
|
4163 |
|
|
ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
|
4164 |
|
|
vrp_finalize ();
|
4165 |
|
|
|
4166 |
|
|
if (cfg_loops)
|
4167 |
|
|
{
|
4168 |
|
|
scev_finalize ();
|
4169 |
|
|
loop_optimizer_finalize (cfg_loops, NULL);
|
4170 |
|
|
current_loops = NULL;
|
4171 |
|
|
}
|
4172 |
|
|
|
4173 |
|
|
remove_range_assertions ();
|
4174 |
|
|
}
|
4175 |
|
|
|
4176 |
|
|
static bool
|
4177 |
|
|
gate_vrp (void)
|
4178 |
|
|
{
|
4179 |
|
|
return flag_tree_vrp != 0;
|
4180 |
|
|
}
|
4181 |
|
|
|
4182 |
|
|
struct tree_opt_pass pass_vrp =
|
4183 |
|
|
{
|
4184 |
|
|
"vrp", /* name */
|
4185 |
|
|
gate_vrp, /* gate */
|
4186 |
|
|
execute_vrp, /* execute */
|
4187 |
|
|
NULL, /* sub */
|
4188 |
|
|
NULL, /* next */
|
4189 |
|
|
0, /* static_pass_number */
|
4190 |
|
|
TV_TREE_VRP, /* tv_id */
|
4191 |
|
|
PROP_ssa | PROP_alias, /* properties_required */
|
4192 |
|
|
0, /* properties_provided */
|
4193 |
|
|
0, /* properties_destroyed */
|
4194 |
|
|
0, /* todo_flags_start */
|
4195 |
|
|
TODO_cleanup_cfg
|
4196 |
|
|
| TODO_ggc_collect
|
4197 |
|
|
| TODO_verify_ssa
|
4198 |
|
|
| TODO_dump_func
|
4199 |
|
|
| TODO_update_ssa, /* todo_flags_finish */
|
4200 |
|
|
|
4201 |
|
|
};
|