1 |
12 |
jlechner |
/* Vector API for GNU compiler.
|
2 |
|
|
Copyright (C) 2004, 2005 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Nathan Sidwell <nathan@codesourcery.com>
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 2, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
19 |
|
|
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
20 |
|
|
02110-1301, USA. */
|
21 |
|
|
|
22 |
|
|
#ifndef GCC_VEC_H
|
23 |
|
|
#define GCC_VEC_H
|
24 |
|
|
|
25 |
|
|
/* The macros here implement a set of templated vector types and
|
26 |
|
|
associated interfaces. These templates are implemented with
|
27 |
|
|
macros, as we're not in C++ land. The interface functions are
|
28 |
|
|
typesafe and use static inline functions, sometimes backed by
|
29 |
|
|
out-of-line generic functions. The vectors are designed to
|
30 |
|
|
interoperate with the GTY machinery.
|
31 |
|
|
|
32 |
|
|
Because of the different behavior of structure objects, scalar
|
33 |
|
|
objects and of pointers, there are three flavors, one for each of
|
34 |
|
|
these variants. Both the structure object and pointer variants
|
35 |
|
|
pass pointers to objects around -- in the former case the pointers
|
36 |
|
|
are stored into the vector and in the latter case the pointers are
|
37 |
|
|
dereferenced and the objects copied into the vector. The scalar
|
38 |
|
|
object variant is suitable for int-like objects, and the vector
|
39 |
|
|
elements are returned by value.
|
40 |
|
|
|
41 |
|
|
There are both 'index' and 'iterate' accessors. The iterator
|
42 |
|
|
returns a boolean iteration condition and updates the iteration
|
43 |
|
|
variable passed by reference. Because the iterator will be
|
44 |
|
|
inlined, the address-of can be optimized away.
|
45 |
|
|
|
46 |
|
|
The vectors are implemented using the trailing array idiom, thus
|
47 |
|
|
they are not resizeable without changing the address of the vector
|
48 |
|
|
object itself. This means you cannot have variables or fields of
|
49 |
|
|
vector type -- always use a pointer to a vector. The one exception
|
50 |
|
|
is the final field of a structure, which could be a vector type.
|
51 |
|
|
You will have to use the embedded_size & embedded_init calls to
|
52 |
|
|
create such objects, and they will probably not be resizeable (so
|
53 |
|
|
don't use the 'safe' allocation variants). The trailing array
|
54 |
|
|
idiom is used (rather than a pointer to an array of data), because,
|
55 |
|
|
if we allow NULL to also represent an empty vector, empty vectors
|
56 |
|
|
occupy minimal space in the structure containing them.
|
57 |
|
|
|
58 |
|
|
Each operation that increases the number of active elements is
|
59 |
|
|
available in 'quick' and 'safe' variants. The former presumes that
|
60 |
|
|
there is sufficient allocated space for the operation to succeed
|
61 |
|
|
(it dies if there is not). The latter will reallocate the
|
62 |
|
|
vector, if needed. Reallocation causes an exponential increase in
|
63 |
|
|
vector size. If you know you will be adding N elements, it would
|
64 |
|
|
be more efficient to use the reserve operation before adding the
|
65 |
|
|
elements with the 'quick' operation. This will ensure there are at
|
66 |
|
|
least as many elements as you ask for, it will exponentially
|
67 |
|
|
increase if there are too few spare slots. If you want reserve a
|
68 |
|
|
specific number of slots, but do not want the exponential increase
|
69 |
|
|
(for instance, you know this is the last allocation), use a
|
70 |
|
|
negative number for reservation. You can also create a vector of a
|
71 |
|
|
specific size from the get go.
|
72 |
|
|
|
73 |
|
|
You should prefer the push and pop operations, as they append and
|
74 |
|
|
remove from the end of the vector. If you need to remove several
|
75 |
|
|
items in one go, use the truncate operation. The insert and remove
|
76 |
|
|
operations allow you to change elements in the middle of the
|
77 |
|
|
vector. There are two remove operations, one which preserves the
|
78 |
|
|
element ordering 'ordered_remove', and one which does not
|
79 |
|
|
'unordered_remove'. The latter function copies the end element
|
80 |
|
|
into the removed slot, rather than invoke a memmove operation. The
|
81 |
|
|
'lower_bound' function will determine where to place an item in the
|
82 |
|
|
array using insert that will maintain sorted order.
|
83 |
|
|
|
84 |
|
|
When a vector type is defined, first a non-memory managed version
|
85 |
|
|
is created. You can then define either or both garbage collected
|
86 |
|
|
and heap allocated versions. The allocation mechanism is specified
|
87 |
|
|
when the type is defined, and is therefore part of the type. If
|
88 |
|
|
you need both gc'd and heap allocated versions, you still must have
|
89 |
|
|
*exactly* one definition of the common non-memory managed base vector.
|
90 |
|
|
|
91 |
|
|
If you need to directly manipulate a vector, then the 'address'
|
92 |
|
|
accessor will return the address of the start of the vector. Also
|
93 |
|
|
the 'space' predicate will tell you whether there is spare capacity
|
94 |
|
|
in the vector. You will not normally need to use these two functions.
|
95 |
|
|
|
96 |
|
|
Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
|
97 |
|
|
get the non-memory allocation version, and then a
|
98 |
|
|
DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
|
99 |
|
|
vectors. Variables of vector type are declared using a
|
100 |
|
|
VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the
|
101 |
|
|
allocation strategy, and can be either 'gc' or 'heap' for garbage
|
102 |
|
|
collected and heap allocated respectively. It can be 'none' to get
|
103 |
|
|
a vector that must be explicitly allocated (for instance as a
|
104 |
|
|
trailing array of another structure). The characters O, P and I
|
105 |
|
|
indicate whether TYPEDEF is a pointer (P), object (O) or integral
|
106 |
|
|
(I) type. Be careful to pick the correct one, as you'll get an
|
107 |
|
|
awkward and inefficient API if you use the wrong one. There is a
|
108 |
|
|
check, which results in a compile-time warning, for the P and I
|
109 |
|
|
versions, but there is no check for the O versions, as that is not
|
110 |
|
|
possible in plain C. Due to the way GTY works, you must annotate
|
111 |
|
|
any structures you wish to insert or reference from a vector with a
|
112 |
|
|
GTY(()) tag. You need to do this even if you never declare the GC
|
113 |
|
|
allocated variants.
|
114 |
|
|
|
115 |
|
|
An example of their use would be,
|
116 |
|
|
|
117 |
|
|
DEF_VEC_P(tree); // non-managed tree vector.
|
118 |
|
|
DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must
|
119 |
|
|
// appear at file scope.
|
120 |
|
|
|
121 |
|
|
struct my_struct {
|
122 |
|
|
VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers.
|
123 |
|
|
};
|
124 |
|
|
|
125 |
|
|
struct my_struct *s;
|
126 |
|
|
|
127 |
|
|
if (VEC_length(tree,s->v)) { we have some contents }
|
128 |
|
|
VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
|
129 |
|
|
for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
|
130 |
|
|
{ do something with elt }
|
131 |
|
|
|
132 |
|
|
*/
|
133 |
|
|
|
134 |
|
|
/* Macros to invoke API calls. A single macro works for both pointer
|
135 |
|
|
and object vectors, but the argument and return types might well be
|
136 |
|
|
different. In each macro, T is the typedef of the vector elements,
|
137 |
|
|
and A is the allocation strategy. The allocation strategy is only
|
138 |
|
|
present when it is required. Some of these macros pass the vector,
|
139 |
|
|
V, by reference (by taking its address), this is noted in the
|
140 |
|
|
descriptions. */
|
141 |
|
|
|
142 |
|
|
/* Length of vector
|
143 |
|
|
unsigned VEC_T_length(const VEC(T) *v);
|
144 |
|
|
|
145 |
|
|
Return the number of active elements in V. V can be NULL, in which
|
146 |
|
|
case zero is returned. */
|
147 |
|
|
|
148 |
|
|
#define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V)))
|
149 |
|
|
|
150 |
|
|
|
151 |
|
|
/* Check if vector is empty
|
152 |
|
|
int VEC_T_empty(const VEC(T) *v);
|
153 |
|
|
|
154 |
|
|
Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
|
155 |
|
|
|
156 |
|
|
#define VEC_empty(T,V) (VEC_length (T,V) == 0)
|
157 |
|
|
|
158 |
|
|
|
159 |
|
|
/* Get the final element of the vector.
|
160 |
|
|
T VEC_T_last(VEC(T) *v); // Integer
|
161 |
|
|
T VEC_T_last(VEC(T) *v); // Pointer
|
162 |
|
|
T *VEC_T_last(VEC(T) *v); // Object
|
163 |
|
|
|
164 |
|
|
Return the final element. V must not be empty. */
|
165 |
|
|
|
166 |
|
|
#define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
|
167 |
|
|
|
168 |
|
|
/* Index into vector
|
169 |
|
|
T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
|
170 |
|
|
T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
|
171 |
|
|
T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
|
172 |
|
|
|
173 |
|
|
Return the IX'th element. If IX must be in the domain of V. */
|
174 |
|
|
|
175 |
|
|
#define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
|
176 |
|
|
|
177 |
|
|
/* Iterate over vector
|
178 |
|
|
int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
|
179 |
|
|
int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
|
180 |
|
|
int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
|
181 |
|
|
|
182 |
|
|
Return iteration condition and update PTR to point to the IX'th
|
183 |
|
|
element. At the end of iteration, sets PTR to NULL. Use this to
|
184 |
|
|
iterate over the elements of a vector as follows,
|
185 |
|
|
|
186 |
|
|
for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
|
187 |
|
|
continue; */
|
188 |
|
|
|
189 |
|
|
#define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
|
190 |
|
|
|
191 |
|
|
/* Allocate new vector.
|
192 |
|
|
VEC(T,A) *VEC_T_A_alloc(int reserve);
|
193 |
|
|
|
194 |
|
|
Allocate a new vector with space for RESERVE objects. If RESERVE
|
195 |
|
|
is zero, NO vector is created. */
|
196 |
|
|
|
197 |
|
|
#define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
|
198 |
|
|
|
199 |
|
|
/* Free a vector.
|
200 |
|
|
void VEC_T_A_free(VEC(T,A) *&);
|
201 |
|
|
|
202 |
|
|
Free a vector and set it to NULL. */
|
203 |
|
|
|
204 |
|
|
#define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V))
|
205 |
|
|
|
206 |
|
|
/* Use these to determine the required size and initialization of a
|
207 |
|
|
vector embedded within another structure (as the final member).
|
208 |
|
|
|
209 |
|
|
size_t VEC_T_embedded_size(int reserve);
|
210 |
|
|
void VEC_T_embedded_init(VEC(T) *v, int reserve);
|
211 |
|
|
|
212 |
|
|
These allow the caller to perform the memory allocation. */
|
213 |
|
|
|
214 |
|
|
#define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N))
|
215 |
|
|
#define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
|
216 |
|
|
|
217 |
|
|
/* Copy a vector.
|
218 |
|
|
VEC(T,A) *VEC_T_A_copy(VEC(T) *);
|
219 |
|
|
|
220 |
|
|
Copy the live elements of a vector into a new vector. The new and
|
221 |
|
|
old vectors need not be allocated by the same mechanism. */
|
222 |
|
|
|
223 |
|
|
#define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))
|
224 |
|
|
|
225 |
|
|
/* Determine if a vector has additional capacity.
|
226 |
|
|
|
227 |
|
|
int VEC_T_space (VEC(T) *v,int reserve)
|
228 |
|
|
|
229 |
|
|
If V has space for RESERVE additional entries, return nonzero. You
|
230 |
|
|
usually only need to use this if you are doing your own vector
|
231 |
|
|
reallocation, for instance on an embedded vector. This returns
|
232 |
|
|
nonzero in exactly the same circumstances that VEC_T_reserve
|
233 |
|
|
will. */
|
234 |
|
|
|
235 |
|
|
#define VEC_space(T,V,R) \
|
236 |
|
|
(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
|
237 |
|
|
|
238 |
|
|
/* Reserve space.
|
239 |
|
|
int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
|
240 |
|
|
|
241 |
|
|
Ensure that V has at least abs(RESERVE) slots available. The
|
242 |
|
|
signedness of RESERVE determines the reallocation behavior. A
|
243 |
|
|
negative value will not create additional headroom beyond that
|
244 |
|
|
requested. A positive value will create additional headroom. Note
|
245 |
|
|
this can cause V to be reallocated. Returns nonzero iff
|
246 |
|
|
reallocation actually occurred. */
|
247 |
|
|
|
248 |
|
|
#define VEC_reserve(T,A,V,R) \
|
249 |
|
|
(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
|
250 |
|
|
|
251 |
|
|
/* Push object with no reallocation
|
252 |
|
|
T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
|
253 |
|
|
T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
|
254 |
|
|
T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
|
255 |
|
|
|
256 |
|
|
Push a new element onto the end, returns a pointer to the slot
|
257 |
|
|
filled in. For object vectors, the new value can be NULL, in which
|
258 |
|
|
case NO initialization is performed. There must
|
259 |
|
|
be sufficient space in the vector. */
|
260 |
|
|
|
261 |
|
|
#define VEC_quick_push(T,V,O) \
|
262 |
|
|
(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
|
263 |
|
|
|
264 |
|
|
/* Push object with reallocation
|
265 |
|
|
T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
|
266 |
|
|
T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
|
267 |
|
|
T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
|
268 |
|
|
|
269 |
|
|
Push a new element onto the end, returns a pointer to the slot
|
270 |
|
|
filled in. For object vectors, the new value can be NULL, in which
|
271 |
|
|
case NO initialization is performed. Reallocates V, if needed. */
|
272 |
|
|
|
273 |
|
|
#define VEC_safe_push(T,A,V,O) \
|
274 |
|
|
(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
|
275 |
|
|
|
276 |
|
|
/* Pop element off end
|
277 |
|
|
T VEC_T_pop (VEC(T) *v); // Integer
|
278 |
|
|
T VEC_T_pop (VEC(T) *v); // Pointer
|
279 |
|
|
void VEC_T_pop (VEC(T) *v); // Object
|
280 |
|
|
|
281 |
|
|
Pop the last element off the end. Returns the element popped, for
|
282 |
|
|
pointer vectors. */
|
283 |
|
|
|
284 |
|
|
#define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
|
285 |
|
|
|
286 |
|
|
/* Truncate to specific length
|
287 |
|
|
void VEC_T_truncate (VEC(T) *v, unsigned len);
|
288 |
|
|
|
289 |
|
|
Set the length as specified. The new length must be less than or
|
290 |
|
|
equal to the current length. This is an O(1) operation. */
|
291 |
|
|
|
292 |
|
|
#define VEC_truncate(T,V,I) \
|
293 |
|
|
(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
|
294 |
|
|
|
295 |
|
|
/* Grow to a specific length.
|
296 |
|
|
void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
|
297 |
|
|
|
298 |
|
|
Grow the vector to a specific length. The LEN must be as
|
299 |
|
|
long or longer than the current length. The new elements are
|
300 |
|
|
uninitialized. */
|
301 |
|
|
|
302 |
|
|
#define VEC_safe_grow(T,A,V,I) \
|
303 |
|
|
(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
|
304 |
|
|
|
305 |
|
|
/* Replace element
|
306 |
|
|
T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
|
307 |
|
|
T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
|
308 |
|
|
T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
|
309 |
|
|
|
310 |
|
|
Replace the IXth element of V with a new value, VAL. For pointer
|
311 |
|
|
vectors returns the original value. For object vectors returns a
|
312 |
|
|
pointer to the new value. For object vectors the new value can be
|
313 |
|
|
NULL, in which case no overwriting of the slot is actually
|
314 |
|
|
performed. */
|
315 |
|
|
|
316 |
|
|
#define VEC_replace(T,V,I,O) \
|
317 |
|
|
(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
|
318 |
|
|
|
319 |
|
|
/* Insert object with no reallocation
|
320 |
|
|
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
|
321 |
|
|
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
|
322 |
|
|
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
|
323 |
|
|
|
324 |
|
|
Insert an element, VAL, at the IXth position of V. Return a pointer
|
325 |
|
|
to the slot created. For vectors of object, the new value can be
|
326 |
|
|
NULL, in which case no initialization of the inserted slot takes
|
327 |
|
|
place. There must be sufficient space. */
|
328 |
|
|
|
329 |
|
|
#define VEC_quick_insert(T,V,I,O) \
|
330 |
|
|
(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
|
331 |
|
|
|
332 |
|
|
/* Insert object with reallocation
|
333 |
|
|
T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
|
334 |
|
|
T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
|
335 |
|
|
T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
|
336 |
|
|
|
337 |
|
|
Insert an element, VAL, at the IXth position of V. Return a pointer
|
338 |
|
|
to the slot created. For vectors of object, the new value can be
|
339 |
|
|
NULL, in which case no initialization of the inserted slot takes
|
340 |
|
|
place. Reallocate V, if necessary. */
|
341 |
|
|
|
342 |
|
|
#define VEC_safe_insert(T,A,V,I,O) \
|
343 |
|
|
(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
|
344 |
|
|
|
345 |
|
|
/* Remove element retaining order
|
346 |
|
|
T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
|
347 |
|
|
T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
|
348 |
|
|
void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
|
349 |
|
|
|
350 |
|
|
Remove an element from the IXth position of V. Ordering of
|
351 |
|
|
remaining elements is preserved. For pointer vectors returns the
|
352 |
|
|
removed object. This is an O(N) operation due to a memmove. */
|
353 |
|
|
|
354 |
|
|
#define VEC_ordered_remove(T,V,I) \
|
355 |
|
|
(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
|
356 |
|
|
|
357 |
|
|
/* Remove element destroying order
|
358 |
|
|
T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
|
359 |
|
|
T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
|
360 |
|
|
void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
|
361 |
|
|
|
362 |
|
|
Remove an element from the IXth position of V. Ordering of
|
363 |
|
|
remaining elements is destroyed. For pointer vectors returns the
|
364 |
|
|
removed object. This is an O(1) operation. */
|
365 |
|
|
|
366 |
|
|
#define VEC_unordered_remove(T,V,I) \
|
367 |
|
|
(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
|
368 |
|
|
|
369 |
|
|
/* Get the address of the array of elements
|
370 |
|
|
T *VEC_T_address (VEC(T) v)
|
371 |
|
|
|
372 |
|
|
If you need to directly manipulate the array (for instance, you
|
373 |
|
|
want to feed it to qsort), use this accessor. */
|
374 |
|
|
|
375 |
|
|
#define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V)))
|
376 |
|
|
|
377 |
|
|
/* Find the first index in the vector not less than the object.
|
378 |
|
|
unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
|
379 |
|
|
bool (*lessthan) (const T, const T)); // Integer
|
380 |
|
|
unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
|
381 |
|
|
bool (*lessthan) (const T, const T)); // Pointer
|
382 |
|
|
unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
|
383 |
|
|
bool (*lessthan) (const T*, const T*)); // Object
|
384 |
|
|
|
385 |
|
|
Find the first position in which VAL could be inserted without
|
386 |
|
|
changing the ordering of V. LESSTHAN is a function that returns
|
387 |
|
|
true if the first argument is strictly less than the second. */
|
388 |
|
|
|
389 |
|
|
#define VEC_lower_bound(T,V,O,LT) \
|
390 |
|
|
(VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
|
391 |
|
|
|
392 |
|
|
#if !IN_GENGTYPE
|
393 |
|
|
/* Reallocate an array of elements with prefix. */
|
394 |
|
|
extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
|
395 |
|
|
extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
|
396 |
|
|
extern void ggc_free (void *);
|
397 |
|
|
#define vec_gc_free(V) ggc_free (V)
|
398 |
|
|
extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
|
399 |
|
|
extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
|
400 |
|
|
#define vec_heap_free(V) free (V)
|
401 |
|
|
|
402 |
|
|
#if ENABLE_CHECKING
|
403 |
|
|
#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
|
404 |
|
|
#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
|
405 |
|
|
#define VEC_CHECK_PASS ,file_,line_,function_
|
406 |
|
|
|
407 |
|
|
#define VEC_ASSERT(EXPR,OP,T,A) \
|
408 |
|
|
(void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
|
409 |
|
|
|
410 |
|
|
extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
|
411 |
|
|
ATTRIBUTE_NORETURN;
|
412 |
|
|
#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
|
413 |
|
|
#else
|
414 |
|
|
#define VEC_CHECK_INFO
|
415 |
|
|
#define VEC_CHECK_DECL
|
416 |
|
|
#define VEC_CHECK_PASS
|
417 |
|
|
#define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
|
418 |
|
|
#endif
|
419 |
|
|
|
420 |
|
|
#define VEC(T,A) VEC_##T##_##A
|
421 |
|
|
#define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
|
422 |
|
|
#else /* IN_GENGTYPE */
|
423 |
|
|
#define VEC(T,A) VEC_ T _ A
|
424 |
|
|
#define VEC_STRINGIFY(X) VEC_STRINGIFY_(X)
|
425 |
|
|
#define VEC_STRINGIFY_(X) #X
|
426 |
|
|
#undef GTY
|
427 |
|
|
#endif /* IN_GENGTYPE */
|
428 |
|
|
|
429 |
|
|
/* Base of vector type, not user visible. */
|
430 |
|
|
#define VEC_T(T,B) \
|
431 |
|
|
typedef struct VEC(T,B) \
|
432 |
|
|
{ \
|
433 |
|
|
unsigned num; \
|
434 |
|
|
unsigned alloc; \
|
435 |
|
|
T vec[1]; \
|
436 |
|
|
} VEC(T,B)
|
437 |
|
|
|
438 |
|
|
#define VEC_T_GTY(T,B) \
|
439 |
|
|
typedef struct VEC(T,B) GTY(()) \
|
440 |
|
|
{ \
|
441 |
|
|
unsigned num; \
|
442 |
|
|
unsigned alloc; \
|
443 |
|
|
T GTY ((length ("%h.num"))) vec[1]; \
|
444 |
|
|
} VEC(T,B)
|
445 |
|
|
|
446 |
|
|
/* Derived vector type, user visible. */
|
447 |
|
|
#define VEC_TA_GTY(T,B,A,GTY) \
|
448 |
|
|
typedef struct VEC(T,A) GTY \
|
449 |
|
|
{ \
|
450 |
|
|
VEC(T,B) base; \
|
451 |
|
|
} VEC(T,A)
|
452 |
|
|
|
453 |
|
|
/* Convert to base type. */
|
454 |
|
|
#define VEC_BASE(P) ((P) ? &(P)->base : 0)
|
455 |
|
|
|
456 |
|
|
/* Vector of integer-like object. */
|
457 |
|
|
#if IN_GENGTYPE
|
458 |
|
|
{"DEF_VEC_I", VEC_STRINGIFY (VEC_T(#0,#1)) ";", "none"},
|
459 |
|
|
{"DEF_VEC_ALLOC_I", VEC_STRINGIFY (VEC_TA (#0,#1,#2,#3)) ";", NULL},
|
460 |
|
|
#else
|
461 |
|
|
#define DEF_VEC_I(T) \
|
462 |
|
|
static inline void VEC_OP (T,must_be,integral_type) (void) \
|
463 |
|
|
{ \
|
464 |
|
|
(void)~(T)0; \
|
465 |
|
|
} \
|
466 |
|
|
\
|
467 |
|
|
VEC_T(T,base); \
|
468 |
|
|
VEC_TA_GTY(T,base,none,); \
|
469 |
|
|
DEF_VEC_FUNC_P(T) \
|
470 |
|
|
struct vec_swallow_trailing_semi
|
471 |
|
|
#define DEF_VEC_ALLOC_I(T,A) \
|
472 |
|
|
VEC_TA_GTY(T,base,A,); \
|
473 |
|
|
DEF_VEC_ALLOC_FUNC_P(T,A) \
|
474 |
|
|
struct vec_swallow_trailing_semi
|
475 |
|
|
#endif
|
476 |
|
|
|
477 |
|
|
/* Vector of pointer to object. */
|
478 |
|
|
#if IN_GENGTYPE
|
479 |
|
|
{"DEF_VEC_P", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
|
480 |
|
|
{"DEF_VEC_ALLOC_P", VEC_STRINGIFY (VEC_TA_GTY (#0,#1,#2,#3)) ";", NULL},
|
481 |
|
|
#else
|
482 |
|
|
#define DEF_VEC_P(T) \
|
483 |
|
|
static inline void VEC_OP (T,must_be,pointer_type) (void) \
|
484 |
|
|
{ \
|
485 |
|
|
(void)((T)1 == (void *)1); \
|
486 |
|
|
} \
|
487 |
|
|
\
|
488 |
|
|
VEC_T_GTY(T,base); \
|
489 |
|
|
VEC_TA_GTY(T,base,none,); \
|
490 |
|
|
DEF_VEC_FUNC_P(T) \
|
491 |
|
|
struct vec_swallow_trailing_semi
|
492 |
|
|
#define DEF_VEC_ALLOC_P(T,A) \
|
493 |
|
|
VEC_TA_GTY(T,base,A,); \
|
494 |
|
|
DEF_VEC_ALLOC_FUNC_P(T,A) \
|
495 |
|
|
struct vec_swallow_trailing_semi
|
496 |
|
|
#endif
|
497 |
|
|
|
498 |
|
|
#define DEF_VEC_FUNC_P(T) \
|
499 |
|
|
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
|
500 |
|
|
{ \
|
501 |
|
|
return vec_ ? vec_->num : 0; \
|
502 |
|
|
} \
|
503 |
|
|
\
|
504 |
|
|
static inline T VEC_OP (T,base,last) \
|
505 |
|
|
(const VEC(T,base) *vec_ VEC_CHECK_DECL) \
|
506 |
|
|
{ \
|
507 |
|
|
VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
|
508 |
|
|
\
|
509 |
|
|
return vec_->vec[vec_->num - 1]; \
|
510 |
|
|
} \
|
511 |
|
|
\
|
512 |
|
|
static inline T VEC_OP (T,base,index) \
|
513 |
|
|
(const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
|
514 |
|
|
{ \
|
515 |
|
|
VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
|
516 |
|
|
\
|
517 |
|
|
return vec_->vec[ix_]; \
|
518 |
|
|
} \
|
519 |
|
|
\
|
520 |
|
|
static inline int VEC_OP (T,base,iterate) \
|
521 |
|
|
(const VEC(T,base) *vec_, unsigned ix_, T *ptr) \
|
522 |
|
|
{ \
|
523 |
|
|
if (vec_ && ix_ < vec_->num) \
|
524 |
|
|
{ \
|
525 |
|
|
*ptr = vec_->vec[ix_]; \
|
526 |
|
|
return 1; \
|
527 |
|
|
} \
|
528 |
|
|
else \
|
529 |
|
|
{ \
|
530 |
|
|
*ptr = 0; \
|
531 |
|
|
return 0; \
|
532 |
|
|
} \
|
533 |
|
|
} \
|
534 |
|
|
\
|
535 |
|
|
static inline size_t VEC_OP (T,base,embedded_size) \
|
536 |
|
|
(int alloc_) \
|
537 |
|
|
{ \
|
538 |
|
|
return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
|
539 |
|
|
} \
|
540 |
|
|
\
|
541 |
|
|
static inline void VEC_OP (T,base,embedded_init) \
|
542 |
|
|
(VEC(T,base) *vec_, int alloc_) \
|
543 |
|
|
{ \
|
544 |
|
|
vec_->num = 0; \
|
545 |
|
|
vec_->alloc = alloc_; \
|
546 |
|
|
} \
|
547 |
|
|
\
|
548 |
|
|
static inline int VEC_OP (T,base,space) \
|
549 |
|
|
(VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
|
550 |
|
|
{ \
|
551 |
|
|
VEC_ASSERT (alloc_ >= 0, "space", T, base); \
|
552 |
|
|
return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
|
553 |
|
|
} \
|
554 |
|
|
\
|
555 |
|
|
static inline T *VEC_OP (T,base,quick_push) \
|
556 |
|
|
(VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \
|
557 |
|
|
{ \
|
558 |
|
|
T *slot_; \
|
559 |
|
|
\
|
560 |
|
|
VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
|
561 |
|
|
slot_ = &vec_->vec[vec_->num++]; \
|
562 |
|
|
*slot_ = obj_; \
|
563 |
|
|
\
|
564 |
|
|
return slot_; \
|
565 |
|
|
} \
|
566 |
|
|
\
|
567 |
|
|
static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
|
568 |
|
|
{ \
|
569 |
|
|
T obj_; \
|
570 |
|
|
\
|
571 |
|
|
VEC_ASSERT (vec_->num, "pop", T, base); \
|
572 |
|
|
obj_ = vec_->vec[--vec_->num]; \
|
573 |
|
|
\
|
574 |
|
|
return obj_; \
|
575 |
|
|
} \
|
576 |
|
|
\
|
577 |
|
|
static inline void VEC_OP (T,base,truncate) \
|
578 |
|
|
(VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
|
579 |
|
|
{ \
|
580 |
|
|
VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
|
581 |
|
|
if (vec_) \
|
582 |
|
|
vec_->num = size_; \
|
583 |
|
|
} \
|
584 |
|
|
\
|
585 |
|
|
static inline T VEC_OP (T,base,replace) \
|
586 |
|
|
(VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
|
587 |
|
|
{ \
|
588 |
|
|
T old_obj_; \
|
589 |
|
|
\
|
590 |
|
|
VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
|
591 |
|
|
old_obj_ = vec_->vec[ix_]; \
|
592 |
|
|
vec_->vec[ix_] = obj_; \
|
593 |
|
|
\
|
594 |
|
|
return old_obj_; \
|
595 |
|
|
} \
|
596 |
|
|
\
|
597 |
|
|
static inline T *VEC_OP (T,base,quick_insert) \
|
598 |
|
|
(VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
|
599 |
|
|
{ \
|
600 |
|
|
T *slot_; \
|
601 |
|
|
\
|
602 |
|
|
VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
|
603 |
|
|
VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
|
604 |
|
|
slot_ = &vec_->vec[ix_]; \
|
605 |
|
|
memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
|
606 |
|
|
*slot_ = obj_; \
|
607 |
|
|
\
|
608 |
|
|
return slot_; \
|
609 |
|
|
} \
|
610 |
|
|
\
|
611 |
|
|
static inline T VEC_OP (T,base,ordered_remove) \
|
612 |
|
|
(VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
|
613 |
|
|
{ \
|
614 |
|
|
T *slot_; \
|
615 |
|
|
T obj_; \
|
616 |
|
|
\
|
617 |
|
|
VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
|
618 |
|
|
slot_ = &vec_->vec[ix_]; \
|
619 |
|
|
obj_ = *slot_; \
|
620 |
|
|
memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
|
621 |
|
|
\
|
622 |
|
|
return obj_; \
|
623 |
|
|
} \
|
624 |
|
|
\
|
625 |
|
|
static inline T VEC_OP (T,base,unordered_remove) \
|
626 |
|
|
(VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
|
627 |
|
|
{ \
|
628 |
|
|
T *slot_; \
|
629 |
|
|
T obj_; \
|
630 |
|
|
\
|
631 |
|
|
VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
|
632 |
|
|
slot_ = &vec_->vec[ix_]; \
|
633 |
|
|
obj_ = *slot_; \
|
634 |
|
|
*slot_ = vec_->vec[--vec_->num]; \
|
635 |
|
|
\
|
636 |
|
|
return obj_; \
|
637 |
|
|
} \
|
638 |
|
|
\
|
639 |
|
|
static inline T *VEC_OP (T,base,address) \
|
640 |
|
|
(VEC(T,base) *vec_) \
|
641 |
|
|
{ \
|
642 |
|
|
return vec_ ? vec_->vec : 0; \
|
643 |
|
|
} \
|
644 |
|
|
\
|
645 |
|
|
static inline unsigned VEC_OP (T,base,lower_bound) \
|
646 |
|
|
(VEC(T,base) *vec_, const T obj_, \
|
647 |
|
|
bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \
|
648 |
|
|
{ \
|
649 |
|
|
unsigned int len_ = VEC_OP (T,base, length) (vec_); \
|
650 |
|
|
unsigned int half_, middle_; \
|
651 |
|
|
unsigned int first_ = 0; \
|
652 |
|
|
while (len_ > 0) \
|
653 |
|
|
{ \
|
654 |
|
|
T middle_elem_; \
|
655 |
|
|
half_ = len_ >> 1; \
|
656 |
|
|
middle_ = first_; \
|
657 |
|
|
middle_ += half_; \
|
658 |
|
|
middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
|
659 |
|
|
if (lessthan_ (middle_elem_, obj_)) \
|
660 |
|
|
{ \
|
661 |
|
|
first_ = middle_; \
|
662 |
|
|
++first_; \
|
663 |
|
|
len_ = len_ - half_ - 1; \
|
664 |
|
|
} \
|
665 |
|
|
else \
|
666 |
|
|
len_ = half_; \
|
667 |
|
|
} \
|
668 |
|
|
return first_; \
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
#define DEF_VEC_ALLOC_FUNC_P(T,A) \
|
672 |
|
|
static inline VEC(T,A) *VEC_OP (T,A,alloc) \
|
673 |
|
|
(int alloc_ MEM_STAT_DECL) \
|
674 |
|
|
{ \
|
675 |
|
|
/* We must request exact size allocation, hence the negation. */ \
|
676 |
|
|
return (VEC(T,A) *) vec_##A##_p_reserve (NULL, -alloc_ PASS_MEM_STAT); \
|
677 |
|
|
} \
|
678 |
|
|
\
|
679 |
|
|
static inline void VEC_OP (T,A,free) \
|
680 |
|
|
(VEC(T,A) **vec_) \
|
681 |
|
|
{ \
|
682 |
|
|
if (*vec_) \
|
683 |
|
|
vec_##A##_free (*vec_); \
|
684 |
|
|
*vec_ = NULL; \
|
685 |
|
|
} \
|
686 |
|
|
\
|
687 |
|
|
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
|
688 |
|
|
{ \
|
689 |
|
|
size_t len_ = vec_ ? vec_->num : 0; \
|
690 |
|
|
VEC (T,A) *new_vec_ = NULL; \
|
691 |
|
|
\
|
692 |
|
|
if (len_) \
|
693 |
|
|
{ \
|
694 |
|
|
/* We must request exact size allocation, hence the negation. */ \
|
695 |
|
|
new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve \
|
696 |
|
|
(NULL, -len_ PASS_MEM_STAT)); \
|
697 |
|
|
\
|
698 |
|
|
new_vec_->base.num = len_; \
|
699 |
|
|
memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
|
700 |
|
|
} \
|
701 |
|
|
return new_vec_; \
|
702 |
|
|
} \
|
703 |
|
|
\
|
704 |
|
|
static inline int VEC_OP (T,A,reserve) \
|
705 |
|
|
(VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
|
706 |
|
|
{ \
|
707 |
|
|
int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), \
|
708 |
|
|
alloc_ < 0 ? -alloc_ : alloc_ \
|
709 |
|
|
VEC_CHECK_PASS); \
|
710 |
|
|
\
|
711 |
|
|
if (extend) \
|
712 |
|
|
*vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
|
713 |
|
|
\
|
714 |
|
|
return extend; \
|
715 |
|
|
} \
|
716 |
|
|
\
|
717 |
|
|
static inline void VEC_OP (T,A,safe_grow) \
|
718 |
|
|
(VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
|
719 |
|
|
{ \
|
720 |
|
|
VEC_ASSERT (size_ >= 0 \
|
721 |
|
|
&& VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
|
722 |
|
|
"grow", T, A); \
|
723 |
|
|
VEC_OP (T,A,reserve) (vec_, (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) - size_ \
|
724 |
|
|
VEC_CHECK_PASS PASS_MEM_STAT); \
|
725 |
|
|
VEC_BASE (*vec_)->num = size_; \
|
726 |
|
|
} \
|
727 |
|
|
\
|
728 |
|
|
static inline T *VEC_OP (T,A,safe_push) \
|
729 |
|
|
(VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
|
730 |
|
|
{ \
|
731 |
|
|
VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
|
732 |
|
|
\
|
733 |
|
|
return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
|
734 |
|
|
} \
|
735 |
|
|
\
|
736 |
|
|
static inline T *VEC_OP (T,A,safe_insert) \
|
737 |
|
|
(VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
|
738 |
|
|
{ \
|
739 |
|
|
VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
|
740 |
|
|
\
|
741 |
|
|
return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
|
742 |
|
|
VEC_CHECK_PASS); \
|
743 |
|
|
}
|
744 |
|
|
|
745 |
|
|
/* Vector of object. */
|
746 |
|
|
#if IN_GENGTYPE
|
747 |
|
|
{"DEF_VEC_O", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
|
748 |
|
|
{"DEF_VEC_ALLOC_O", VEC_STRINGIFY (VEC_TA_GTY(#0,#1,#2,#3)) ";", NULL},
|
749 |
|
|
#else
|
750 |
|
|
#define DEF_VEC_O(T) \
|
751 |
|
|
VEC_T_GTY(T,base); \
|
752 |
|
|
VEC_TA_GTY(T,base,none,); \
|
753 |
|
|
DEF_VEC_FUNC_O(T) \
|
754 |
|
|
struct vec_swallow_trailing_semi
|
755 |
|
|
#define DEF_VEC_ALLOC_O(T,A) \
|
756 |
|
|
VEC_TA_GTY(T,base,A,); \
|
757 |
|
|
DEF_VEC_ALLOC_FUNC_O(T,A) \
|
758 |
|
|
struct vec_swallow_trailing_semi
|
759 |
|
|
#endif
|
760 |
|
|
|
761 |
|
|
#define DEF_VEC_FUNC_O(T) \
|
762 |
|
|
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
|
763 |
|
|
{ \
|
764 |
|
|
return vec_ ? vec_->num : 0; \
|
765 |
|
|
} \
|
766 |
|
|
\
|
767 |
|
|
static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
|
768 |
|
|
{ \
|
769 |
|
|
VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
|
770 |
|
|
\
|
771 |
|
|
return &vec_->vec[vec_->num - 1]; \
|
772 |
|
|
} \
|
773 |
|
|
\
|
774 |
|
|
static inline T *VEC_OP (T,base,index) \
|
775 |
|
|
(VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
|
776 |
|
|
{ \
|
777 |
|
|
VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
|
778 |
|
|
\
|
779 |
|
|
return &vec_->vec[ix_]; \
|
780 |
|
|
} \
|
781 |
|
|
\
|
782 |
|
|
static inline int VEC_OP (T,base,iterate) \
|
783 |
|
|
(VEC(T,base) *vec_, unsigned ix_, T **ptr) \
|
784 |
|
|
{ \
|
785 |
|
|
if (vec_ && ix_ < vec_->num) \
|
786 |
|
|
{ \
|
787 |
|
|
*ptr = &vec_->vec[ix_]; \
|
788 |
|
|
return 1; \
|
789 |
|
|
} \
|
790 |
|
|
else \
|
791 |
|
|
{ \
|
792 |
|
|
*ptr = 0; \
|
793 |
|
|
return 0; \
|
794 |
|
|
} \
|
795 |
|
|
} \
|
796 |
|
|
\
|
797 |
|
|
static inline size_t VEC_OP (T,base,embedded_size) \
|
798 |
|
|
(int alloc_) \
|
799 |
|
|
{ \
|
800 |
|
|
return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
|
801 |
|
|
} \
|
802 |
|
|
\
|
803 |
|
|
static inline void VEC_OP (T,base,embedded_init) \
|
804 |
|
|
(VEC(T,base) *vec_, int alloc_) \
|
805 |
|
|
{ \
|
806 |
|
|
vec_->num = 0; \
|
807 |
|
|
vec_->alloc = alloc_; \
|
808 |
|
|
} \
|
809 |
|
|
\
|
810 |
|
|
static inline int VEC_OP (T,base,space) \
|
811 |
|
|
(VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
|
812 |
|
|
{ \
|
813 |
|
|
VEC_ASSERT (alloc_ >= 0, "space", T, base); \
|
814 |
|
|
return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
|
815 |
|
|
} \
|
816 |
|
|
\
|
817 |
|
|
static inline T *VEC_OP (T,base,quick_push) \
|
818 |
|
|
(VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \
|
819 |
|
|
{ \
|
820 |
|
|
T *slot_; \
|
821 |
|
|
\
|
822 |
|
|
VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
|
823 |
|
|
slot_ = &vec_->vec[vec_->num++]; \
|
824 |
|
|
if (obj_) \
|
825 |
|
|
*slot_ = *obj_; \
|
826 |
|
|
\
|
827 |
|
|
return slot_; \
|
828 |
|
|
} \
|
829 |
|
|
\
|
830 |
|
|
static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
|
831 |
|
|
{ \
|
832 |
|
|
VEC_ASSERT (vec_->num, "pop", T, base); \
|
833 |
|
|
--vec_->num; \
|
834 |
|
|
} \
|
835 |
|
|
\
|
836 |
|
|
static inline void VEC_OP (T,base,truncate) \
|
837 |
|
|
(VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
|
838 |
|
|
{ \
|
839 |
|
|
VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
|
840 |
|
|
if (vec_) \
|
841 |
|
|
vec_->num = size_; \
|
842 |
|
|
} \
|
843 |
|
|
\
|
844 |
|
|
static inline T *VEC_OP (T,base,replace) \
|
845 |
|
|
(VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
|
846 |
|
|
{ \
|
847 |
|
|
T *slot_; \
|
848 |
|
|
\
|
849 |
|
|
VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
|
850 |
|
|
slot_ = &vec_->vec[ix_]; \
|
851 |
|
|
if (obj_) \
|
852 |
|
|
*slot_ = *obj_; \
|
853 |
|
|
\
|
854 |
|
|
return slot_; \
|
855 |
|
|
} \
|
856 |
|
|
\
|
857 |
|
|
static inline T *VEC_OP (T,base,quick_insert) \
|
858 |
|
|
(VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
|
859 |
|
|
{ \
|
860 |
|
|
T *slot_; \
|
861 |
|
|
\
|
862 |
|
|
VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
|
863 |
|
|
VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
|
864 |
|
|
slot_ = &vec_->vec[ix_]; \
|
865 |
|
|
memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
|
866 |
|
|
if (obj_) \
|
867 |
|
|
*slot_ = *obj_; \
|
868 |
|
|
\
|
869 |
|
|
return slot_; \
|
870 |
|
|
} \
|
871 |
|
|
\
|
872 |
|
|
static inline void VEC_OP (T,base,ordered_remove) \
|
873 |
|
|
(VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
|
874 |
|
|
{ \
|
875 |
|
|
T *slot_; \
|
876 |
|
|
\
|
877 |
|
|
VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
|
878 |
|
|
slot_ = &vec_->vec[ix_]; \
|
879 |
|
|
memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
|
880 |
|
|
} \
|
881 |
|
|
\
|
882 |
|
|
static inline void VEC_OP (T,base,unordered_remove) \
|
883 |
|
|
(VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
|
884 |
|
|
{ \
|
885 |
|
|
VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
|
886 |
|
|
vec_->vec[ix_] = vec_->vec[--vec_->num]; \
|
887 |
|
|
} \
|
888 |
|
|
\
|
889 |
|
|
static inline T *VEC_OP (T,base,address) \
|
890 |
|
|
(VEC(T,base) *vec_) \
|
891 |
|
|
{ \
|
892 |
|
|
return vec_ ? vec_->vec : 0; \
|
893 |
|
|
} \
|
894 |
|
|
\
|
895 |
|
|
static inline unsigned VEC_OP (T,base,lower_bound) \
|
896 |
|
|
(VEC(T,base) *vec_, const T *obj_, \
|
897 |
|
|
bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \
|
898 |
|
|
{ \
|
899 |
|
|
unsigned int len_ = VEC_OP (T, base, length) (vec_); \
|
900 |
|
|
unsigned int half_, middle_; \
|
901 |
|
|
unsigned int first_ = 0; \
|
902 |
|
|
while (len_ > 0) \
|
903 |
|
|
{ \
|
904 |
|
|
T *middle_elem_; \
|
905 |
|
|
half_ = len_ >> 1; \
|
906 |
|
|
middle_ = first_; \
|
907 |
|
|
middle_ += half_; \
|
908 |
|
|
middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
|
909 |
|
|
if (lessthan_ (middle_elem_, obj_)) \
|
910 |
|
|
{ \
|
911 |
|
|
first_ = middle_; \
|
912 |
|
|
++first_; \
|
913 |
|
|
len_ = len_ - half_ - 1; \
|
914 |
|
|
} \
|
915 |
|
|
else \
|
916 |
|
|
len_ = half_; \
|
917 |
|
|
} \
|
918 |
|
|
return first_; \
|
919 |
|
|
}
|
920 |
|
|
|
921 |
|
|
#define DEF_VEC_ALLOC_FUNC_O(T,A) \
|
922 |
|
|
static inline VEC(T,A) *VEC_OP (T,A,alloc) \
|
923 |
|
|
(int alloc_ MEM_STAT_DECL) \
|
924 |
|
|
{ \
|
925 |
|
|
/* We must request exact size allocation, hence the negation. */ \
|
926 |
|
|
return (VEC(T,A) *) vec_##A##_o_reserve (NULL, -alloc_, \
|
927 |
|
|
offsetof (VEC(T,A),base.vec), \
|
928 |
|
|
sizeof (T) \
|
929 |
|
|
PASS_MEM_STAT); \
|
930 |
|
|
} \
|
931 |
|
|
\
|
932 |
|
|
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
|
933 |
|
|
{ \
|
934 |
|
|
size_t len_ = vec_ ? vec_->num : 0; \
|
935 |
|
|
VEC (T,A) *new_vec_ = NULL; \
|
936 |
|
|
\
|
937 |
|
|
if (len_) \
|
938 |
|
|
{ \
|
939 |
|
|
/* We must request exact size allocation, hence the negation. */ \
|
940 |
|
|
new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve \
|
941 |
|
|
(NULL, -len_, \
|
942 |
|
|
offsetof (VEC(T,A),base.vec), sizeof (T) \
|
943 |
|
|
PASS_MEM_STAT)); \
|
944 |
|
|
\
|
945 |
|
|
new_vec_->base.num = len_; \
|
946 |
|
|
memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
|
947 |
|
|
} \
|
948 |
|
|
return new_vec_; \
|
949 |
|
|
} \
|
950 |
|
|
\
|
951 |
|
|
static inline void VEC_OP (T,A,free) \
|
952 |
|
|
(VEC(T,A) **vec_) \
|
953 |
|
|
{ \
|
954 |
|
|
if (*vec_) \
|
955 |
|
|
vec_##A##_free (*vec_); \
|
956 |
|
|
*vec_ = NULL; \
|
957 |
|
|
} \
|
958 |
|
|
\
|
959 |
|
|
static inline int VEC_OP (T,A,reserve) \
|
960 |
|
|
(VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
|
961 |
|
|
{ \
|
962 |
|
|
int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), \
|
963 |
|
|
alloc_ < 0 ? -alloc_ : alloc_ \
|
964 |
|
|
VEC_CHECK_PASS); \
|
965 |
|
|
\
|
966 |
|
|
if (extend) \
|
967 |
|
|
*vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
|
968 |
|
|
offsetof (VEC(T,A),base.vec),\
|
969 |
|
|
sizeof (T) \
|
970 |
|
|
PASS_MEM_STAT); \
|
971 |
|
|
\
|
972 |
|
|
return extend; \
|
973 |
|
|
} \
|
974 |
|
|
\
|
975 |
|
|
static inline void VEC_OP (T,A,safe_grow) \
|
976 |
|
|
(VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
|
977 |
|
|
{ \
|
978 |
|
|
VEC_ASSERT (size_ >= 0 \
|
979 |
|
|
&& VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
|
980 |
|
|
"grow", T, A); \
|
981 |
|
|
VEC_OP (T,A,reserve) (vec_, (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) - size_ \
|
982 |
|
|
VEC_CHECK_PASS PASS_MEM_STAT); \
|
983 |
|
|
VEC_BASE (*vec_)->num = size_; \
|
984 |
|
|
VEC_BASE (*vec_)->num = size_; \
|
985 |
|
|
} \
|
986 |
|
|
\
|
987 |
|
|
static inline T *VEC_OP (T,A,safe_push) \
|
988 |
|
|
(VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
|
989 |
|
|
{ \
|
990 |
|
|
VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
|
991 |
|
|
\
|
992 |
|
|
return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
|
993 |
|
|
} \
|
994 |
|
|
\
|
995 |
|
|
static inline T *VEC_OP (T,A,safe_insert) \
|
996 |
|
|
(VEC(T,A) **vec_, unsigned ix_, const T *obj_ \
|
997 |
|
|
VEC_CHECK_DECL MEM_STAT_DECL) \
|
998 |
|
|
{ \
|
999 |
|
|
VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
|
1000 |
|
|
\
|
1001 |
|
|
return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
|
1002 |
|
|
VEC_CHECK_PASS); \
|
1003 |
|
|
}
|
1004 |
|
|
#endif /* GCC_VEC_H */
|