OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [libgfortran/] [generated/] [matmul_l4.c] - Blame information for rev 14

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 14 jlechner
/* Implementation of the MATMUL intrinsic
2
   Copyright 2002, 2005 Free Software Foundation, Inc.
3
   Contributed by Paul Brook <paul@nowt.org>
4
 
5
This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
 
7
Libgfortran is free software; you can redistribute it and/or
8
modify it under the terms of the GNU General Public
9
License as published by the Free Software Foundation; either
10
version 2 of the License, or (at your option) any later version.
11
 
12
In addition to the permissions in the GNU General Public License, the
13
Free Software Foundation gives you unlimited permission to link the
14
compiled version of this file into combinations with other programs,
15
and to distribute those combinations without any restriction coming
16
from the use of this file.  (The General Public License restrictions
17
do apply in other respects; for example, they cover modification of
18
the file, and distribution when not linked into a combine
19
executable.)
20
 
21
Libgfortran is distributed in the hope that it will be useful,
22
but WITHOUT ANY WARRANTY; without even the implied warranty of
23
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24
GNU General Public License for more details.
25
 
26
You should have received a copy of the GNU General Public
27
License along with libgfortran; see the file COPYING.  If not,
28
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29
Boston, MA 02110-1301, USA.  */
30
 
31
#include "config.h"
32
#include <stdlib.h>
33
#include <assert.h>
34
#include "libgfortran.h"
35
 
36
#if defined (HAVE_GFC_LOGICAL_4)
37
 
38
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
39
   Either a or b can be rank 1.  In this case x or y is 1.  */
40
 
41
extern void matmul_l4 (gfc_array_l4 * const restrict,
42
        gfc_array_l4 * const restrict, gfc_array_l4 * const restrict);
43
export_proto(matmul_l4);
44
 
45
void
46
matmul_l4 (gfc_array_l4 * const restrict retarray,
47
        gfc_array_l4 * const restrict a, gfc_array_l4 * const restrict b)
48
{
49
  const GFC_INTEGER_4 * restrict abase;
50
  const GFC_INTEGER_4 * restrict bbase;
51
  GFC_LOGICAL_4 * restrict dest;
52
  index_type rxstride;
53
  index_type rystride;
54
  index_type xcount;
55
  index_type ycount;
56
  index_type xstride;
57
  index_type ystride;
58
  index_type x;
59
  index_type y;
60
 
61
  const GFC_INTEGER_4 * restrict pa;
62
  const GFC_INTEGER_4 * restrict pb;
63
  index_type astride;
64
  index_type bstride;
65
  index_type count;
66
  index_type n;
67
 
68
  assert (GFC_DESCRIPTOR_RANK (a) == 2
69
          || GFC_DESCRIPTOR_RANK (b) == 2);
70
 
71
  if (retarray->data == NULL)
72
    {
73
      if (GFC_DESCRIPTOR_RANK (a) == 1)
74
        {
75
          retarray->dim[0].lbound = 0;
76
          retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
77
          retarray->dim[0].stride = 1;
78
        }
79
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
80
        {
81
          retarray->dim[0].lbound = 0;
82
          retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
83
          retarray->dim[0].stride = 1;
84
        }
85
      else
86
        {
87
          retarray->dim[0].lbound = 0;
88
          retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
89
          retarray->dim[0].stride = 1;
90
 
91
          retarray->dim[1].lbound = 0;
92
          retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
93
          retarray->dim[1].stride = retarray->dim[0].ubound+1;
94
        }
95
 
96
      retarray->data
97
        = internal_malloc_size (sizeof (GFC_LOGICAL_4) * size0 ((array_t *) retarray));
98
      retarray->offset = 0;
99
    }
100
 
101
  abase = a->data;
102
  if (GFC_DESCRIPTOR_SIZE (a) != 4)
103
    {
104
      assert (GFC_DESCRIPTOR_SIZE (a) == 8);
105
      abase = GFOR_POINTER_L8_TO_L4 (abase);
106
    }
107
  bbase = b->data;
108
  if (GFC_DESCRIPTOR_SIZE (b) != 4)
109
    {
110
      assert (GFC_DESCRIPTOR_SIZE (b) == 8);
111
      bbase = GFOR_POINTER_L8_TO_L4 (bbase);
112
    }
113
  dest = retarray->data;
114
 
115
  if (retarray->dim[0].stride == 0)
116
    retarray->dim[0].stride = 1;
117
  if (a->dim[0].stride == 0)
118
    a->dim[0].stride = 1;
119
  if (b->dim[0].stride == 0)
120
    b->dim[0].stride = 1;
121
 
122
 
123
  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
124
    {
125
      rxstride = retarray->dim[0].stride;
126
      rystride = rxstride;
127
    }
128
  else
129
    {
130
      rxstride = retarray->dim[0].stride;
131
      rystride = retarray->dim[1].stride;
132
    }
133
 
134
  /* If we have rank 1 parameters, zero the absent stride, and set the size to
135
     one.  */
136
  if (GFC_DESCRIPTOR_RANK (a) == 1)
137
    {
138
      astride = a->dim[0].stride;
139
      count = a->dim[0].ubound + 1 - a->dim[0].lbound;
140
      xstride = 0;
141
      rxstride = 0;
142
      xcount = 1;
143
    }
144
  else
145
    {
146
      astride = a->dim[1].stride;
147
      count = a->dim[1].ubound + 1 - a->dim[1].lbound;
148
      xstride = a->dim[0].stride;
149
      xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
150
    }
151
  if (GFC_DESCRIPTOR_RANK (b) == 1)
152
    {
153
      bstride = b->dim[0].stride;
154
      assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
155
      ystride = 0;
156
      rystride = 0;
157
      ycount = 1;
158
    }
159
  else
160
    {
161
      bstride = b->dim[0].stride;
162
      assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
163
      ystride = b->dim[1].stride;
164
      ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
165
    }
166
 
167
  for (y = 0; y < ycount; y++)
168
    {
169
      for (x = 0; x < xcount; x++)
170
        {
171
          /* Do the summation for this element.  For real and integer types
172
             this is the same as DOT_PRODUCT.  For complex types we use do
173
             a*b, not conjg(a)*b.  */
174
          pa = abase;
175
          pb = bbase;
176
          *dest = 0;
177
 
178
          for (n = 0; n < count; n++)
179
            {
180
              if (*pa && *pb)
181
                {
182
                  *dest = 1;
183
                  break;
184
                }
185
              pa += astride;
186
              pb += bstride;
187
            }
188
 
189
          dest += rxstride;
190
          abase += xstride;
191
        }
192
      abase -= xstride * xcount;
193
      bbase += ystride;
194
      dest += rystride - (rxstride * xcount);
195
    }
196
}
197
 
198
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.