| 1 |
14 |
jlechner |
/* Generic implementation of the PACK intrinsic
|
| 2 |
|
|
Copyright (C) 2002, 2004, 2005 Free Software Foundation, Inc.
|
| 3 |
|
|
Contributed by Paul Brook <paul@nowt.org>
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
| 6 |
|
|
|
| 7 |
|
|
Libgfortran is free software; you can redistribute it and/or
|
| 8 |
|
|
modify it under the terms of the GNU General Public
|
| 9 |
|
|
License as published by the Free Software Foundation; either
|
| 10 |
|
|
version 2 of the License, or (at your option) any later version.
|
| 11 |
|
|
|
| 12 |
|
|
In addition to the permissions in the GNU General Public License, the
|
| 13 |
|
|
Free Software Foundation gives you unlimited permission to link the
|
| 14 |
|
|
compiled version of this file into combinations with other programs,
|
| 15 |
|
|
and to distribute those combinations without any restriction coming
|
| 16 |
|
|
from the use of this file. (The General Public License restrictions
|
| 17 |
|
|
do apply in other respects; for example, they cover modification of
|
| 18 |
|
|
the file, and distribution when not linked into a combine
|
| 19 |
|
|
executable.)
|
| 20 |
|
|
|
| 21 |
|
|
Ligbfortran is distributed in the hope that it will be useful,
|
| 22 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 23 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 24 |
|
|
GNU General Public License for more details.
|
| 25 |
|
|
|
| 26 |
|
|
You should have received a copy of the GNU General Public
|
| 27 |
|
|
License along with libgfortran; see the file COPYING. If not,
|
| 28 |
|
|
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
| 29 |
|
|
Boston, MA 02110-1301, USA. */
|
| 30 |
|
|
|
| 31 |
|
|
#include "config.h"
|
| 32 |
|
|
#include <stdlib.h>
|
| 33 |
|
|
#include <assert.h>
|
| 34 |
|
|
#include <string.h>
|
| 35 |
|
|
#include "libgfortran.h"
|
| 36 |
|
|
|
| 37 |
|
|
/* PACK is specified as follows:
|
| 38 |
|
|
|
| 39 |
|
|
13.14.80 PACK (ARRAY, MASK, [VECTOR])
|
| 40 |
|
|
|
| 41 |
|
|
Description: Pack an array into an array of rank one under the
|
| 42 |
|
|
control of a mask.
|
| 43 |
|
|
|
| 44 |
|
|
Class: Transformational fucntion.
|
| 45 |
|
|
|
| 46 |
|
|
Arguments:
|
| 47 |
|
|
ARRAY may be of any type. It shall not be scalar.
|
| 48 |
|
|
MASK shall be of type LOGICAL. It shall be conformable with ARRAY.
|
| 49 |
|
|
VECTOR (optional) shall be of the same type and type parameters
|
| 50 |
|
|
as ARRAY. VECTOR shall have at least as many elements as
|
| 51 |
|
|
there are true elements in MASK. If MASK is a scalar
|
| 52 |
|
|
with the value true, VECTOR shall have at least as many
|
| 53 |
|
|
elements as there are in ARRAY.
|
| 54 |
|
|
|
| 55 |
|
|
Result Characteristics: The result is an array of rank one with the
|
| 56 |
|
|
same type and type parameters as ARRAY. If VECTOR is present, the
|
| 57 |
|
|
result size is that of VECTOR; otherwise, the result size is the
|
| 58 |
|
|
number /t/ of true elements in MASK unless MASK is scalar with the
|
| 59 |
|
|
value true, in which case the result size is the size of ARRAY.
|
| 60 |
|
|
|
| 61 |
|
|
Result Value: Element /i/ of the result is the element of ARRAY
|
| 62 |
|
|
that corresponds to the /i/th true element of MASK, taking elements
|
| 63 |
|
|
in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
|
| 64 |
|
|
present and has size /n/ > /t/, element /i/ of the result has the
|
| 65 |
|
|
value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.
|
| 66 |
|
|
|
| 67 |
|
|
Examples: The nonzero elements of an array M with the value
|
| 68 |
|
|
| 0 0 0 |
|
| 69 |
|
|
| 9 0 0 | may be "gathered" by the function PACK. The result of
|
| 70 |
|
|
| 0 0 7 |
|
| 71 |
|
|
PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
|
| 72 |
|
|
VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].
|
| 73 |
|
|
|
| 74 |
|
|
There are two variants of the PACK intrinsic: one, where MASK is
|
| 75 |
|
|
array valued, and the other one where MASK is scalar. */
|
| 76 |
|
|
|
| 77 |
|
|
static void
|
| 78 |
|
|
pack_internal (gfc_array_char *ret, const gfc_array_char *array,
|
| 79 |
|
|
const gfc_array_l4 *mask, const gfc_array_char *vector,
|
| 80 |
|
|
index_type size)
|
| 81 |
|
|
{
|
| 82 |
|
|
/* r.* indicates the return array. */
|
| 83 |
|
|
index_type rstride0;
|
| 84 |
|
|
char *rptr;
|
| 85 |
|
|
/* s.* indicates the source array. */
|
| 86 |
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
| 87 |
|
|
index_type sstride0;
|
| 88 |
|
|
const char *sptr;
|
| 89 |
|
|
/* m.* indicates the mask array. */
|
| 90 |
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
| 91 |
|
|
index_type mstride0;
|
| 92 |
|
|
const GFC_LOGICAL_4 *mptr;
|
| 93 |
|
|
|
| 94 |
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
| 95 |
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
| 96 |
|
|
index_type n;
|
| 97 |
|
|
index_type dim;
|
| 98 |
|
|
index_type nelem;
|
| 99 |
|
|
|
| 100 |
|
|
dim = GFC_DESCRIPTOR_RANK (array);
|
| 101 |
|
|
for (n = 0; n < dim; n++)
|
| 102 |
|
|
{
|
| 103 |
|
|
count[n] = 0;
|
| 104 |
|
|
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
| 105 |
|
|
sstride[n] = array->dim[n].stride * size;
|
| 106 |
|
|
mstride[n] = mask->dim[n].stride;
|
| 107 |
|
|
}
|
| 108 |
|
|
if (sstride[0] == 0)
|
| 109 |
|
|
sstride[0] = size;
|
| 110 |
|
|
if (mstride[0] == 0)
|
| 111 |
|
|
mstride[0] = 1;
|
| 112 |
|
|
|
| 113 |
|
|
sptr = array->data;
|
| 114 |
|
|
mptr = mask->data;
|
| 115 |
|
|
|
| 116 |
|
|
/* Use the same loop for both logical types. */
|
| 117 |
|
|
if (GFC_DESCRIPTOR_SIZE (mask) != 4)
|
| 118 |
|
|
{
|
| 119 |
|
|
if (GFC_DESCRIPTOR_SIZE (mask) != 8)
|
| 120 |
|
|
runtime_error ("Funny sized logical array");
|
| 121 |
|
|
for (n = 0; n < dim; n++)
|
| 122 |
|
|
mstride[n] <<= 1;
|
| 123 |
|
|
mptr = GFOR_POINTER_L8_TO_L4 (mptr);
|
| 124 |
|
|
}
|
| 125 |
|
|
|
| 126 |
|
|
if (ret->data == NULL)
|
| 127 |
|
|
{
|
| 128 |
|
|
/* Allocate the memory for the result. */
|
| 129 |
|
|
int total;
|
| 130 |
|
|
|
| 131 |
|
|
if (vector != NULL)
|
| 132 |
|
|
{
|
| 133 |
|
|
/* The return array will have as many
|
| 134 |
|
|
elements as there are in VECTOR. */
|
| 135 |
|
|
total = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
|
| 136 |
|
|
}
|
| 137 |
|
|
else
|
| 138 |
|
|
{
|
| 139 |
|
|
/* We have to count the true elements in MASK. */
|
| 140 |
|
|
|
| 141 |
|
|
/* TODO: We could speed up pack easily in the case of only
|
| 142 |
|
|
few .TRUE. entries in MASK, by keeping track of where we
|
| 143 |
|
|
would be in the source array during the initial traversal
|
| 144 |
|
|
of MASK, and caching the pointers to those elements. Then,
|
| 145 |
|
|
supposed the number of elements is small enough, we would
|
| 146 |
|
|
only have to traverse the list, and copy those elements
|
| 147 |
|
|
into the result array. In the case of datatypes which fit
|
| 148 |
|
|
in one of the integer types we could also cache the
|
| 149 |
|
|
value instead of a pointer to it.
|
| 150 |
|
|
This approach might be bad from the point of view of
|
| 151 |
|
|
cache behavior in the case where our cache is not big
|
| 152 |
|
|
enough to hold all elements that have to be copied. */
|
| 153 |
|
|
|
| 154 |
|
|
const GFC_LOGICAL_4 *m = mptr;
|
| 155 |
|
|
|
| 156 |
|
|
total = 0;
|
| 157 |
|
|
|
| 158 |
|
|
while (m)
|
| 159 |
|
|
{
|
| 160 |
|
|
/* Test this element. */
|
| 161 |
|
|
if (*m)
|
| 162 |
|
|
total++;
|
| 163 |
|
|
|
| 164 |
|
|
/* Advance to the next element. */
|
| 165 |
|
|
m += mstride[0];
|
| 166 |
|
|
count[0]++;
|
| 167 |
|
|
n = 0;
|
| 168 |
|
|
while (count[n] == extent[n])
|
| 169 |
|
|
{
|
| 170 |
|
|
/* When we get to the end of a dimension, reset it
|
| 171 |
|
|
and increment the next dimension. */
|
| 172 |
|
|
count[n] = 0;
|
| 173 |
|
|
/* We could precalculate this product, but this is a
|
| 174 |
|
|
less frequently used path so proabably not worth
|
| 175 |
|
|
it. */
|
| 176 |
|
|
m -= mstride[n] * extent[n];
|
| 177 |
|
|
n++;
|
| 178 |
|
|
if (n >= dim)
|
| 179 |
|
|
{
|
| 180 |
|
|
/* Break out of the loop. */
|
| 181 |
|
|
m = NULL;
|
| 182 |
|
|
break;
|
| 183 |
|
|
}
|
| 184 |
|
|
else
|
| 185 |
|
|
{
|
| 186 |
|
|
count[n]++;
|
| 187 |
|
|
m += mstride[n];
|
| 188 |
|
|
}
|
| 189 |
|
|
}
|
| 190 |
|
|
}
|
| 191 |
|
|
}
|
| 192 |
|
|
|
| 193 |
|
|
/* Setup the array descriptor. */
|
| 194 |
|
|
ret->dim[0].lbound = 0;
|
| 195 |
|
|
ret->dim[0].ubound = total - 1;
|
| 196 |
|
|
ret->dim[0].stride = 1;
|
| 197 |
|
|
|
| 198 |
|
|
ret->data = internal_malloc_size (size * total);
|
| 199 |
|
|
ret->offset = 0;
|
| 200 |
|
|
|
| 201 |
|
|
if (total == 0)
|
| 202 |
|
|
/* In this case, nothing remains to be done. */
|
| 203 |
|
|
return;
|
| 204 |
|
|
}
|
| 205 |
|
|
|
| 206 |
|
|
rstride0 = ret->dim[0].stride * size;
|
| 207 |
|
|
if (rstride0 == 0)
|
| 208 |
|
|
rstride0 = size;
|
| 209 |
|
|
sstride0 = sstride[0];
|
| 210 |
|
|
mstride0 = mstride[0];
|
| 211 |
|
|
rptr = ret->data;
|
| 212 |
|
|
|
| 213 |
|
|
while (sptr)
|
| 214 |
|
|
{
|
| 215 |
|
|
/* Test this element. */
|
| 216 |
|
|
if (*mptr)
|
| 217 |
|
|
{
|
| 218 |
|
|
/* Add it. */
|
| 219 |
|
|
memcpy (rptr, sptr, size);
|
| 220 |
|
|
rptr += rstride0;
|
| 221 |
|
|
}
|
| 222 |
|
|
/* Advance to the next element. */
|
| 223 |
|
|
sptr += sstride0;
|
| 224 |
|
|
mptr += mstride0;
|
| 225 |
|
|
count[0]++;
|
| 226 |
|
|
n = 0;
|
| 227 |
|
|
while (count[n] == extent[n])
|
| 228 |
|
|
{
|
| 229 |
|
|
/* When we get to the end of a dimension, reset it and increment
|
| 230 |
|
|
the next dimension. */
|
| 231 |
|
|
count[n] = 0;
|
| 232 |
|
|
/* We could precalculate these products, but this is a less
|
| 233 |
|
|
frequently used path so proabably not worth it. */
|
| 234 |
|
|
sptr -= sstride[n] * extent[n];
|
| 235 |
|
|
mptr -= mstride[n] * extent[n];
|
| 236 |
|
|
n++;
|
| 237 |
|
|
if (n >= dim)
|
| 238 |
|
|
{
|
| 239 |
|
|
/* Break out of the loop. */
|
| 240 |
|
|
sptr = NULL;
|
| 241 |
|
|
break;
|
| 242 |
|
|
}
|
| 243 |
|
|
else
|
| 244 |
|
|
{
|
| 245 |
|
|
count[n]++;
|
| 246 |
|
|
sptr += sstride[n];
|
| 247 |
|
|
mptr += mstride[n];
|
| 248 |
|
|
}
|
| 249 |
|
|
}
|
| 250 |
|
|
}
|
| 251 |
|
|
|
| 252 |
|
|
/* Add any remaining elements from VECTOR. */
|
| 253 |
|
|
if (vector)
|
| 254 |
|
|
{
|
| 255 |
|
|
n = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
|
| 256 |
|
|
nelem = ((rptr - ret->data) / rstride0);
|
| 257 |
|
|
if (n > nelem)
|
| 258 |
|
|
{
|
| 259 |
|
|
sstride0 = vector->dim[0].stride * size;
|
| 260 |
|
|
if (sstride0 == 0)
|
| 261 |
|
|
sstride0 = size;
|
| 262 |
|
|
|
| 263 |
|
|
sptr = vector->data + sstride0 * nelem;
|
| 264 |
|
|
n -= nelem;
|
| 265 |
|
|
while (n--)
|
| 266 |
|
|
{
|
| 267 |
|
|
memcpy (rptr, sptr, size);
|
| 268 |
|
|
rptr += rstride0;
|
| 269 |
|
|
sptr += sstride0;
|
| 270 |
|
|
}
|
| 271 |
|
|
}
|
| 272 |
|
|
}
|
| 273 |
|
|
}
|
| 274 |
|
|
|
| 275 |
|
|
extern void pack (gfc_array_char *, const gfc_array_char *,
|
| 276 |
|
|
const gfc_array_l4 *, const gfc_array_char *);
|
| 277 |
|
|
export_proto(pack);
|
| 278 |
|
|
|
| 279 |
|
|
void
|
| 280 |
|
|
pack (gfc_array_char *ret, const gfc_array_char *array,
|
| 281 |
|
|
const gfc_array_l4 *mask, const gfc_array_char *vector)
|
| 282 |
|
|
{
|
| 283 |
|
|
pack_internal (ret, array, mask, vector, GFC_DESCRIPTOR_SIZE (array));
|
| 284 |
|
|
}
|
| 285 |
|
|
|
| 286 |
|
|
extern void pack_char (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *,
|
| 287 |
|
|
const gfc_array_l4 *, const gfc_array_char *,
|
| 288 |
|
|
GFC_INTEGER_4, GFC_INTEGER_4);
|
| 289 |
|
|
export_proto(pack_char);
|
| 290 |
|
|
|
| 291 |
|
|
void
|
| 292 |
|
|
pack_char (gfc_array_char *ret,
|
| 293 |
|
|
GFC_INTEGER_4 ret_length __attribute__((unused)),
|
| 294 |
|
|
const gfc_array_char *array, const gfc_array_l4 *mask,
|
| 295 |
|
|
const gfc_array_char *vector, GFC_INTEGER_4 array_length,
|
| 296 |
|
|
GFC_INTEGER_4 vector_length __attribute__((unused)))
|
| 297 |
|
|
{
|
| 298 |
|
|
pack_internal (ret, array, mask, vector, array_length);
|
| 299 |
|
|
}
|
| 300 |
|
|
|
| 301 |
|
|
static void
|
| 302 |
|
|
pack_s_internal (gfc_array_char *ret, const gfc_array_char *array,
|
| 303 |
|
|
const GFC_LOGICAL_4 *mask, const gfc_array_char *vector,
|
| 304 |
|
|
index_type size)
|
| 305 |
|
|
{
|
| 306 |
|
|
/* r.* indicates the return array. */
|
| 307 |
|
|
index_type rstride0;
|
| 308 |
|
|
char *rptr;
|
| 309 |
|
|
/* s.* indicates the source array. */
|
| 310 |
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
| 311 |
|
|
index_type sstride0;
|
| 312 |
|
|
const char *sptr;
|
| 313 |
|
|
|
| 314 |
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
| 315 |
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
| 316 |
|
|
index_type n;
|
| 317 |
|
|
index_type dim;
|
| 318 |
|
|
index_type nelem;
|
| 319 |
|
|
|
| 320 |
|
|
dim = GFC_DESCRIPTOR_RANK (array);
|
| 321 |
|
|
for (n = 0; n < dim; n++)
|
| 322 |
|
|
{
|
| 323 |
|
|
count[n] = 0;
|
| 324 |
|
|
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
| 325 |
|
|
sstride[n] = array->dim[n].stride * size;
|
| 326 |
|
|
}
|
| 327 |
|
|
if (sstride[0] == 0)
|
| 328 |
|
|
sstride[0] = size;
|
| 329 |
|
|
|
| 330 |
|
|
sstride0 = sstride[0];
|
| 331 |
|
|
sptr = array->data;
|
| 332 |
|
|
|
| 333 |
|
|
if (ret->data == NULL)
|
| 334 |
|
|
{
|
| 335 |
|
|
/* Allocate the memory for the result. */
|
| 336 |
|
|
int total;
|
| 337 |
|
|
|
| 338 |
|
|
if (vector != NULL)
|
| 339 |
|
|
{
|
| 340 |
|
|
/* The return array will have as many elements as there are
|
| 341 |
|
|
in vector. */
|
| 342 |
|
|
total = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
|
| 343 |
|
|
}
|
| 344 |
|
|
else
|
| 345 |
|
|
{
|
| 346 |
|
|
if (*mask)
|
| 347 |
|
|
{
|
| 348 |
|
|
/* The result array will have as many elements as the input
|
| 349 |
|
|
array. */
|
| 350 |
|
|
total = extent[0];
|
| 351 |
|
|
for (n = 1; n < dim; n++)
|
| 352 |
|
|
total *= extent[n];
|
| 353 |
|
|
}
|
| 354 |
|
|
else
|
| 355 |
|
|
{
|
| 356 |
|
|
/* The result array will be empty. */
|
| 357 |
|
|
ret->dim[0].lbound = 0;
|
| 358 |
|
|
ret->dim[0].ubound = -1;
|
| 359 |
|
|
ret->dim[0].stride = 1;
|
| 360 |
|
|
ret->data = internal_malloc_size (0);
|
| 361 |
|
|
ret->offset = 0;
|
| 362 |
|
|
|
| 363 |
|
|
return;
|
| 364 |
|
|
}
|
| 365 |
|
|
}
|
| 366 |
|
|
|
| 367 |
|
|
/* Setup the array descriptor. */
|
| 368 |
|
|
ret->dim[0].lbound = 0;
|
| 369 |
|
|
ret->dim[0].ubound = total - 1;
|
| 370 |
|
|
ret->dim[0].stride = 1;
|
| 371 |
|
|
|
| 372 |
|
|
ret->data = internal_malloc_size (size * total);
|
| 373 |
|
|
ret->offset = 0;
|
| 374 |
|
|
}
|
| 375 |
|
|
|
| 376 |
|
|
rstride0 = ret->dim[0].stride * size;
|
| 377 |
|
|
if (rstride0 == 0)
|
| 378 |
|
|
rstride0 = size;
|
| 379 |
|
|
rptr = ret->data;
|
| 380 |
|
|
|
| 381 |
|
|
/* The remaining possibilities are now:
|
| 382 |
|
|
If MASK is .TRUE., we have to copy the source array into the
|
| 383 |
|
|
result array. We then have to fill it up with elements from VECTOR.
|
| 384 |
|
|
If MASK is .FALSE., we have to copy VECTOR into the result
|
| 385 |
|
|
array. If VECTOR were not present we would have already returned. */
|
| 386 |
|
|
|
| 387 |
|
|
if (*mask)
|
| 388 |
|
|
{
|
| 389 |
|
|
while (sptr)
|
| 390 |
|
|
{
|
| 391 |
|
|
/* Add this element. */
|
| 392 |
|
|
memcpy (rptr, sptr, size);
|
| 393 |
|
|
rptr += rstride0;
|
| 394 |
|
|
|
| 395 |
|
|
/* Advance to the next element. */
|
| 396 |
|
|
sptr += sstride0;
|
| 397 |
|
|
count[0]++;
|
| 398 |
|
|
n = 0;
|
| 399 |
|
|
while (count[n] == extent[n])
|
| 400 |
|
|
{
|
| 401 |
|
|
/* When we get to the end of a dimension, reset it and
|
| 402 |
|
|
increment the next dimension. */
|
| 403 |
|
|
count[n] = 0;
|
| 404 |
|
|
/* We could precalculate these products, but this is a
|
| 405 |
|
|
less frequently used path so proabably not worth it. */
|
| 406 |
|
|
sptr -= sstride[n] * extent[n];
|
| 407 |
|
|
n++;
|
| 408 |
|
|
if (n >= dim)
|
| 409 |
|
|
{
|
| 410 |
|
|
/* Break out of the loop. */
|
| 411 |
|
|
sptr = NULL;
|
| 412 |
|
|
break;
|
| 413 |
|
|
}
|
| 414 |
|
|
else
|
| 415 |
|
|
{
|
| 416 |
|
|
count[n]++;
|
| 417 |
|
|
sptr += sstride[n];
|
| 418 |
|
|
}
|
| 419 |
|
|
}
|
| 420 |
|
|
}
|
| 421 |
|
|
}
|
| 422 |
|
|
|
| 423 |
|
|
/* Add any remaining elements from VECTOR. */
|
| 424 |
|
|
if (vector)
|
| 425 |
|
|
{
|
| 426 |
|
|
n = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
|
| 427 |
|
|
nelem = ((rptr - ret->data) / rstride0);
|
| 428 |
|
|
if (n > nelem)
|
| 429 |
|
|
{
|
| 430 |
|
|
sstride0 = vector->dim[0].stride * size;
|
| 431 |
|
|
if (sstride0 == 0)
|
| 432 |
|
|
sstride0 = size;
|
| 433 |
|
|
|
| 434 |
|
|
sptr = vector->data + sstride0 * nelem;
|
| 435 |
|
|
n -= nelem;
|
| 436 |
|
|
while (n--)
|
| 437 |
|
|
{
|
| 438 |
|
|
memcpy (rptr, sptr, size);
|
| 439 |
|
|
rptr += rstride0;
|
| 440 |
|
|
sptr += sstride0;
|
| 441 |
|
|
}
|
| 442 |
|
|
}
|
| 443 |
|
|
}
|
| 444 |
|
|
}
|
| 445 |
|
|
|
| 446 |
|
|
extern void pack_s (gfc_array_char *ret, const gfc_array_char *array,
|
| 447 |
|
|
const GFC_LOGICAL_4 *, const gfc_array_char *);
|
| 448 |
|
|
export_proto(pack_s);
|
| 449 |
|
|
|
| 450 |
|
|
void
|
| 451 |
|
|
pack_s (gfc_array_char *ret, const gfc_array_char *array,
|
| 452 |
|
|
const GFC_LOGICAL_4 *mask, const gfc_array_char *vector)
|
| 453 |
|
|
{
|
| 454 |
|
|
pack_s_internal (ret, array, mask, vector, GFC_DESCRIPTOR_SIZE (array));
|
| 455 |
|
|
}
|
| 456 |
|
|
|
| 457 |
|
|
extern void pack_s_char (gfc_array_char *ret, GFC_INTEGER_4,
|
| 458 |
|
|
const gfc_array_char *array, const GFC_LOGICAL_4 *,
|
| 459 |
|
|
const gfc_array_char *, GFC_INTEGER_4,
|
| 460 |
|
|
GFC_INTEGER_4);
|
| 461 |
|
|
export_proto(pack_s_char);
|
| 462 |
|
|
|
| 463 |
|
|
void
|
| 464 |
|
|
pack_s_char (gfc_array_char *ret,
|
| 465 |
|
|
GFC_INTEGER_4 ret_length __attribute__((unused)),
|
| 466 |
|
|
const gfc_array_char *array, const GFC_LOGICAL_4 *mask,
|
| 467 |
|
|
const gfc_array_char *vector, GFC_INTEGER_4 array_length,
|
| 468 |
|
|
GFC_INTEGER_4 vector_length __attribute__((unused)))
|
| 469 |
|
|
{
|
| 470 |
|
|
pack_s_internal (ret, array, mask, vector, array_length);
|
| 471 |
|
|
}
|