OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [libiberty/] [hashtab.c] - Blame information for rev 20

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 14 jlechner
/* An expandable hash tables datatype.
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3
   Free Software Foundation, Inc.
4
   Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
 
6
This file is part of the libiberty library.
7
Libiberty is free software; you can redistribute it and/or
8
modify it under the terms of the GNU Library General Public
9
License as published by the Free Software Foundation; either
10
version 2 of the License, or (at your option) any later version.
11
 
12
Libiberty is distributed in the hope that it will be useful,
13
but WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
Library General Public License for more details.
16
 
17
You should have received a copy of the GNU Library General Public
18
License along with libiberty; see the file COPYING.LIB.  If
19
not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20
Boston, MA 02110-1301, USA.  */
21
 
22
/* This package implements basic hash table functionality.  It is possible
23
   to search for an entry, create an entry and destroy an entry.
24
 
25
   Elements in the table are generic pointers.
26
 
27
   The size of the table is not fixed; if the occupancy of the table
28
   grows too high the hash table will be expanded.
29
 
30
   The abstract data implementation is based on generalized Algorithm D
31
   from Knuth's book "The art of computer programming".  Hash table is
32
   expanded by creation of new hash table and transferring elements from
33
   the old table to the new table. */
34
 
35
#ifdef HAVE_CONFIG_H
36
#include "config.h"
37
#endif
38
 
39
#include <sys/types.h>
40
 
41
#ifdef HAVE_STDLIB_H
42
#include <stdlib.h>
43
#endif
44
#ifdef HAVE_STRING_H
45
#include <string.h>
46
#endif
47
#ifdef HAVE_MALLOC_H
48
#include <malloc.h>
49
#endif
50
#ifdef HAVE_LIMITS_H
51
#include <limits.h>
52
#endif
53
#ifdef HAVE_STDINT_H
54
#include <stdint.h>
55
#endif
56
 
57
#include <stdio.h>
58
 
59
#include "libiberty.h"
60
#include "ansidecl.h"
61
#include "hashtab.h"
62
 
63
#ifndef CHAR_BIT
64
#define CHAR_BIT 8
65
#endif
66
 
67
static unsigned int higher_prime_index (unsigned long);
68
static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
69
static hashval_t htab_mod (hashval_t, htab_t);
70
static hashval_t htab_mod_m2 (hashval_t, htab_t);
71
static hashval_t hash_pointer (const void *);
72
static int eq_pointer (const void *, const void *);
73
static int htab_expand (htab_t);
74
static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
75
 
76
/* At some point, we could make these be NULL, and modify the
77
   hash-table routines to handle NULL specially; that would avoid
78
   function-call overhead for the common case of hashing pointers.  */
79
htab_hash htab_hash_pointer = hash_pointer;
80
htab_eq htab_eq_pointer = eq_pointer;
81
 
82
/* Table of primes and multiplicative inverses.
83
 
84
   Note that these are not minimally reduced inverses.  Unlike when generating
85
   code to divide by a constant, we want to be able to use the same algorithm
86
   all the time.  All of these inverses (are implied to) have bit 32 set.
87
 
88
   For the record, here's the function that computed the table; it's a
89
   vastly simplified version of the function of the same name from gcc.  */
90
 
91
#if 0
92
unsigned int
93
ceil_log2 (unsigned int x)
94
{
95
  int i;
96
  for (i = 31; i >= 0 ; --i)
97
    if (x > (1u << i))
98
      return i+1;
99
  abort ();
100
}
101
 
102
unsigned int
103
choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
104
{
105
  unsigned long long mhigh;
106
  double nx;
107
  int lgup, post_shift;
108
  int pow, pow2;
109
  int n = 32, precision = 32;
110
 
111
  lgup = ceil_log2 (d);
112
  pow = n + lgup;
113
  pow2 = n + lgup - precision;
114
 
115
  nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
116
  mhigh = nx / d;
117
 
118
  *shiftp = lgup - 1;
119
  *mlp = mhigh;
120
  return mhigh >> 32;
121
}
122
#endif
123
 
124
struct prime_ent
125
{
126
  hashval_t prime;
127
  hashval_t inv;
128
  hashval_t inv_m2;     /* inverse of prime-2 */
129
  hashval_t shift;
130
};
131
 
132
static struct prime_ent const prime_tab[] = {
133
  {          7, 0x24924925, 0x9999999b, 2 },
134
  {         13, 0x3b13b13c, 0x745d1747, 3 },
135
  {         31, 0x08421085, 0x1a7b9612, 4 },
136
  {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
137
  {        127, 0x02040811, 0x0624dd30, 6 },
138
  {        251, 0x05197f7e, 0x073260a5, 7 },
139
  {        509, 0x01824366, 0x02864fc8, 8 },
140
  {       1021, 0x00c0906d, 0x014191f7, 9 },
141
  {       2039, 0x0121456f, 0x0161e69e, 10 },
142
  {       4093, 0x00300902, 0x00501908, 11 },
143
  {       8191, 0x00080041, 0x00180241, 12 },
144
  {      16381, 0x000c0091, 0x00140191, 13 },
145
  {      32749, 0x002605a5, 0x002a06e6, 14 },
146
  {      65521, 0x000f00e2, 0x00110122, 15 },
147
  {     131071, 0x00008001, 0x00018003, 16 },
148
  {     262139, 0x00014002, 0x0001c004, 17 },
149
  {     524287, 0x00002001, 0x00006001, 18 },
150
  {    1048573, 0x00003001, 0x00005001, 19 },
151
  {    2097143, 0x00004801, 0x00005801, 20 },
152
  {    4194301, 0x00000c01, 0x00001401, 21 },
153
  {    8388593, 0x00001e01, 0x00002201, 22 },
154
  {   16777213, 0x00000301, 0x00000501, 23 },
155
  {   33554393, 0x00001381, 0x00001481, 24 },
156
  {   67108859, 0x00000141, 0x000001c1, 25 },
157
  {  134217689, 0x000004e1, 0x00000521, 26 },
158
  {  268435399, 0x00000391, 0x000003b1, 27 },
159
  {  536870909, 0x00000019, 0x00000029, 28 },
160
  { 1073741789, 0x0000008d, 0x00000095, 29 },
161
  { 2147483647, 0x00000003, 0x00000007, 30 },
162
  /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
163
  { 0xfffffffb, 0x00000006, 0x00000008, 31 }
164
};
165
 
166
/* The following function returns an index into the above table of the
167
   nearest prime number which is greater than N, and near a power of two. */
168
 
169
static unsigned int
170
higher_prime_index (unsigned long n)
171
{
172
  unsigned int low = 0;
173
  unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
174
 
175
  while (low != high)
176
    {
177
      unsigned int mid = low + (high - low) / 2;
178
      if (n > prime_tab[mid].prime)
179
        low = mid + 1;
180
      else
181
        high = mid;
182
    }
183
 
184
  /* If we've run out of primes, abort.  */
185
  if (n > prime_tab[low].prime)
186
    {
187
      fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
188
      abort ();
189
    }
190
 
191
  return low;
192
}
193
 
194
/* Returns a hash code for P.  */
195
 
196
static hashval_t
197
hash_pointer (const PTR p)
198
{
199
  return (hashval_t) ((long)p >> 3);
200
}
201
 
202
/* Returns non-zero if P1 and P2 are equal.  */
203
 
204
static int
205
eq_pointer (const PTR p1, const PTR p2)
206
{
207
  return p1 == p2;
208
}
209
 
210
 
211
/* The parens around the function names in the next two definitions
212
   are essential in order to prevent macro expansions of the name.
213
   The bodies, however, are expanded as expected, so they are not
214
   recursive definitions.  */
215
 
216
/* Return the current size of given hash table.  */
217
 
218
#define htab_size(htab)  ((htab)->size)
219
 
220
size_t
221
(htab_size) (htab_t htab)
222
{
223
  return htab_size (htab);
224
}
225
 
226
/* Return the current number of elements in given hash table. */
227
 
228
#define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
229
 
230
size_t
231
(htab_elements) (htab_t htab)
232
{
233
  return htab_elements (htab);
234
}
235
 
236
/* Return X % Y.  */
237
 
238
static inline hashval_t
239
htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
240
{
241
  /* The multiplicative inverses computed above are for 32-bit types, and
242
     requires that we be able to compute a highpart multiply.  */
243
#ifdef UNSIGNED_64BIT_TYPE
244
  __extension__ typedef UNSIGNED_64BIT_TYPE ull;
245
  if (sizeof (hashval_t) * CHAR_BIT <= 32)
246
    {
247
      hashval_t t1, t2, t3, t4, q, r;
248
 
249
      t1 = ((ull)x * inv) >> 32;
250
      t2 = x - t1;
251
      t3 = t2 >> 1;
252
      t4 = t1 + t3;
253
      q  = t4 >> shift;
254
      r  = x - (q * y);
255
 
256
      return r;
257
    }
258
#endif
259
 
260
  /* Otherwise just use the native division routines.  */
261
  return x % y;
262
}
263
 
264
/* Compute the primary hash for HASH given HTAB's current size.  */
265
 
266
static inline hashval_t
267
htab_mod (hashval_t hash, htab_t htab)
268
{
269
  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
270
  return htab_mod_1 (hash, p->prime, p->inv, p->shift);
271
}
272
 
273
/* Compute the secondary hash for HASH given HTAB's current size.  */
274
 
275
static inline hashval_t
276
htab_mod_m2 (hashval_t hash, htab_t htab)
277
{
278
  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279
  return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
280
}
281
 
282
/* This function creates table with length slightly longer than given
283
   source length.  Created hash table is initiated as empty (all the
284
   hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
285
   created hash table, or NULL if memory allocation fails.  */
286
 
287
htab_t
288
htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
289
                   htab_del del_f, htab_alloc alloc_f, htab_free free_f)
290
{
291
  htab_t result;
292
  unsigned int size_prime_index;
293
 
294
  size_prime_index = higher_prime_index (size);
295
  size = prime_tab[size_prime_index].prime;
296
 
297
  result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
298
  if (result == NULL)
299
    return NULL;
300
  result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
301
  if (result->entries == NULL)
302
    {
303
      if (free_f != NULL)
304
        (*free_f) (result);
305
      return NULL;
306
    }
307
  result->size = size;
308
  result->size_prime_index = size_prime_index;
309
  result->hash_f = hash_f;
310
  result->eq_f = eq_f;
311
  result->del_f = del_f;
312
  result->alloc_f = alloc_f;
313
  result->free_f = free_f;
314
  return result;
315
}
316
 
317
/* As above, but use the variants of alloc_f and free_f which accept
318
   an extra argument.  */
319
 
320
htab_t
321
htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
322
                      htab_del del_f, void *alloc_arg,
323
                      htab_alloc_with_arg alloc_f,
324
                      htab_free_with_arg free_f)
325
{
326
  htab_t result;
327
  unsigned int size_prime_index;
328
 
329
  size_prime_index = higher_prime_index (size);
330
  size = prime_tab[size_prime_index].prime;
331
 
332
  result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
333
  if (result == NULL)
334
    return NULL;
335
  result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
336
  if (result->entries == NULL)
337
    {
338
      if (free_f != NULL)
339
        (*free_f) (alloc_arg, result);
340
      return NULL;
341
    }
342
  result->size = size;
343
  result->size_prime_index = size_prime_index;
344
  result->hash_f = hash_f;
345
  result->eq_f = eq_f;
346
  result->del_f = del_f;
347
  result->alloc_arg = alloc_arg;
348
  result->alloc_with_arg_f = alloc_f;
349
  result->free_with_arg_f = free_f;
350
  return result;
351
}
352
 
353
/* Update the function pointers and allocation parameter in the htab_t.  */
354
 
355
void
356
htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
357
                       htab_del del_f, PTR alloc_arg,
358
                       htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
359
{
360
  htab->hash_f = hash_f;
361
  htab->eq_f = eq_f;
362
  htab->del_f = del_f;
363
  htab->alloc_arg = alloc_arg;
364
  htab->alloc_with_arg_f = alloc_f;
365
  htab->free_with_arg_f = free_f;
366
}
367
 
368
/* These functions exist solely for backward compatibility.  */
369
 
370
#undef htab_create
371
htab_t
372
htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
373
{
374
  return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
375
}
376
 
377
htab_t
378
htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
379
{
380
  return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
381
}
382
 
383
/* This function frees all memory allocated for given hash table.
384
   Naturally the hash table must already exist. */
385
 
386
void
387
htab_delete (htab_t htab)
388
{
389
  size_t size = htab_size (htab);
390
  PTR *entries = htab->entries;
391
  int i;
392
 
393
  if (htab->del_f)
394
    for (i = size - 1; i >= 0; i--)
395
      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
396
        (*htab->del_f) (entries[i]);
397
 
398
  if (htab->free_f != NULL)
399
    {
400
      (*htab->free_f) (entries);
401
      (*htab->free_f) (htab);
402
    }
403
  else if (htab->free_with_arg_f != NULL)
404
    {
405
      (*htab->free_with_arg_f) (htab->alloc_arg, entries);
406
      (*htab->free_with_arg_f) (htab->alloc_arg, htab);
407
    }
408
}
409
 
410
/* This function clears all entries in the given hash table.  */
411
 
412
void
413
htab_empty (htab_t htab)
414
{
415
  size_t size = htab_size (htab);
416
  PTR *entries = htab->entries;
417
  int i;
418
 
419
  if (htab->del_f)
420
    for (i = size - 1; i >= 0; i--)
421
      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
422
        (*htab->del_f) (entries[i]);
423
 
424
  memset (entries, 0, size * sizeof (PTR));
425
}
426
 
427
/* Similar to htab_find_slot, but without several unwanted side effects:
428
    - Does not call htab->eq_f when it finds an existing entry.
429
    - Does not change the count of elements/searches/collisions in the
430
      hash table.
431
   This function also assumes there are no deleted entries in the table.
432
   HASH is the hash value for the element to be inserted.  */
433
 
434
static PTR *
435
find_empty_slot_for_expand (htab_t htab, hashval_t hash)
436
{
437
  hashval_t index = htab_mod (hash, htab);
438
  size_t size = htab_size (htab);
439
  PTR *slot = htab->entries + index;
440
  hashval_t hash2;
441
 
442
  if (*slot == HTAB_EMPTY_ENTRY)
443
    return slot;
444
  else if (*slot == HTAB_DELETED_ENTRY)
445
    abort ();
446
 
447
  hash2 = htab_mod_m2 (hash, htab);
448
  for (;;)
449
    {
450
      index += hash2;
451
      if (index >= size)
452
        index -= size;
453
 
454
      slot = htab->entries + index;
455
      if (*slot == HTAB_EMPTY_ENTRY)
456
        return slot;
457
      else if (*slot == HTAB_DELETED_ENTRY)
458
        abort ();
459
    }
460
}
461
 
462
/* The following function changes size of memory allocated for the
463
   entries and repeatedly inserts the table elements.  The occupancy
464
   of the table after the call will be about 50%.  Naturally the hash
465
   table must already exist.  Remember also that the place of the
466
   table entries is changed.  If memory allocation failures are allowed,
467
   this function will return zero, indicating that the table could not be
468
   expanded.  If all goes well, it will return a non-zero value.  */
469
 
470
static int
471
htab_expand (htab_t htab)
472
{
473
  PTR *oentries;
474
  PTR *olimit;
475
  PTR *p;
476
  PTR *nentries;
477
  size_t nsize, osize, elts;
478
  unsigned int oindex, nindex;
479
 
480
  oentries = htab->entries;
481
  oindex = htab->size_prime_index;
482
  osize = htab->size;
483
  olimit = oentries + osize;
484
  elts = htab_elements (htab);
485
 
486
  /* Resize only when table after removal of unused elements is either
487
     too full or too empty.  */
488
  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
489
    {
490
      nindex = higher_prime_index (elts * 2);
491
      nsize = prime_tab[nindex].prime;
492
    }
493
  else
494
    {
495
      nindex = oindex;
496
      nsize = osize;
497
    }
498
 
499
  if (htab->alloc_with_arg_f != NULL)
500
    nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
501
                                                  sizeof (PTR *));
502
  else
503
    nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
504
  if (nentries == NULL)
505
    return 0;
506
  htab->entries = nentries;
507
  htab->size = nsize;
508
  htab->size_prime_index = nindex;
509
  htab->n_elements -= htab->n_deleted;
510
  htab->n_deleted = 0;
511
 
512
  p = oentries;
513
  do
514
    {
515
      PTR x = *p;
516
 
517
      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
518
        {
519
          PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
520
 
521
          *q = x;
522
        }
523
 
524
      p++;
525
    }
526
  while (p < olimit);
527
 
528
  if (htab->free_f != NULL)
529
    (*htab->free_f) (oentries);
530
  else if (htab->free_with_arg_f != NULL)
531
    (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
532
  return 1;
533
}
534
 
535
/* This function searches for a hash table entry equal to the given
536
   element.  It cannot be used to insert or delete an element.  */
537
 
538
PTR
539
htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
540
{
541
  hashval_t index, hash2;
542
  size_t size;
543
  PTR entry;
544
 
545
  htab->searches++;
546
  size = htab_size (htab);
547
  index = htab_mod (hash, htab);
548
 
549
  entry = htab->entries[index];
550
  if (entry == HTAB_EMPTY_ENTRY
551
      || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
552
    return entry;
553
 
554
  hash2 = htab_mod_m2 (hash, htab);
555
  for (;;)
556
    {
557
      htab->collisions++;
558
      index += hash2;
559
      if (index >= size)
560
        index -= size;
561
 
562
      entry = htab->entries[index];
563
      if (entry == HTAB_EMPTY_ENTRY
564
          || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
565
        return entry;
566
    }
567
}
568
 
569
/* Like htab_find_slot_with_hash, but compute the hash value from the
570
   element.  */
571
 
572
PTR
573
htab_find (htab_t htab, const PTR element)
574
{
575
  return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
576
}
577
 
578
/* This function searches for a hash table slot containing an entry
579
   equal to the given element.  To delete an entry, call this with
580
   insert=NO_INSERT, then call htab_clear_slot on the slot returned
581
   (possibly after doing some checks).  To insert an entry, call this
582
   with insert=INSERT, then write the value you want into the returned
583
   slot.  When inserting an entry, NULL may be returned if memory
584
   allocation fails.  */
585
 
586
PTR *
587
htab_find_slot_with_hash (htab_t htab, const PTR element,
588
                          hashval_t hash, enum insert_option insert)
589
{
590
  PTR *first_deleted_slot;
591
  hashval_t index, hash2;
592
  size_t size;
593
  PTR entry;
594
 
595
  size = htab_size (htab);
596
  if (insert == INSERT && size * 3 <= htab->n_elements * 4)
597
    {
598
      if (htab_expand (htab) == 0)
599
        return NULL;
600
      size = htab_size (htab);
601
    }
602
 
603
  index = htab_mod (hash, htab);
604
 
605
  htab->searches++;
606
  first_deleted_slot = NULL;
607
 
608
  entry = htab->entries[index];
609
  if (entry == HTAB_EMPTY_ENTRY)
610
    goto empty_entry;
611
  else if (entry == HTAB_DELETED_ENTRY)
612
    first_deleted_slot = &htab->entries[index];
613
  else if ((*htab->eq_f) (entry, element))
614
    return &htab->entries[index];
615
 
616
  hash2 = htab_mod_m2 (hash, htab);
617
  for (;;)
618
    {
619
      htab->collisions++;
620
      index += hash2;
621
      if (index >= size)
622
        index -= size;
623
 
624
      entry = htab->entries[index];
625
      if (entry == HTAB_EMPTY_ENTRY)
626
        goto empty_entry;
627
      else if (entry == HTAB_DELETED_ENTRY)
628
        {
629
          if (!first_deleted_slot)
630
            first_deleted_slot = &htab->entries[index];
631
        }
632
      else if ((*htab->eq_f) (entry, element))
633
        return &htab->entries[index];
634
    }
635
 
636
 empty_entry:
637
  if (insert == NO_INSERT)
638
    return NULL;
639
 
640
  if (first_deleted_slot)
641
    {
642
      htab->n_deleted--;
643
      *first_deleted_slot = HTAB_EMPTY_ENTRY;
644
      return first_deleted_slot;
645
    }
646
 
647
  htab->n_elements++;
648
  return &htab->entries[index];
649
}
650
 
651
/* Like htab_find_slot_with_hash, but compute the hash value from the
652
   element.  */
653
 
654
PTR *
655
htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
656
{
657
  return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
658
                                   insert);
659
}
660
 
661
/* This function deletes an element with the given value from hash
662
   table (the hash is computed from the element).  If there is no matching
663
   element in the hash table, this function does nothing.  */
664
 
665
void
666
htab_remove_elt (htab_t htab, PTR element)
667
{
668
  htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
669
}
670
 
671
 
672
/* This function deletes an element with the given value from hash
673
   table.  If there is no matching element in the hash table, this
674
   function does nothing.  */
675
 
676
void
677
htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
678
{
679
  PTR *slot;
680
 
681
  slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
682
  if (*slot == HTAB_EMPTY_ENTRY)
683
    return;
684
 
685
  if (htab->del_f)
686
    (*htab->del_f) (*slot);
687
 
688
  *slot = HTAB_DELETED_ENTRY;
689
  htab->n_deleted++;
690
}
691
 
692
/* This function clears a specified slot in a hash table.  It is
693
   useful when you've already done the lookup and don't want to do it
694
   again.  */
695
 
696
void
697
htab_clear_slot (htab_t htab, PTR *slot)
698
{
699
  if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
700
      || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
701
    abort ();
702
 
703
  if (htab->del_f)
704
    (*htab->del_f) (*slot);
705
 
706
  *slot = HTAB_DELETED_ENTRY;
707
  htab->n_deleted++;
708
}
709
 
710
/* This function scans over the entire hash table calling
711
   CALLBACK for each live entry.  If CALLBACK returns false,
712
   the iteration stops.  INFO is passed as CALLBACK's second
713
   argument.  */
714
 
715
void
716
htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
717
{
718
  PTR *slot;
719
  PTR *limit;
720
 
721
  slot = htab->entries;
722
  limit = slot + htab_size (htab);
723
 
724
  do
725
    {
726
      PTR x = *slot;
727
 
728
      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
729
        if (!(*callback) (slot, info))
730
          break;
731
    }
732
  while (++slot < limit);
733
}
734
 
735
/* Like htab_traverse_noresize, but does resize the table when it is
736
   too empty to improve effectivity of subsequent calls.  */
737
 
738
void
739
htab_traverse (htab_t htab, htab_trav callback, PTR info)
740
{
741
  if (htab_elements (htab) * 8 < htab_size (htab))
742
    htab_expand (htab);
743
 
744
  htab_traverse_noresize (htab, callback, info);
745
}
746
 
747
/* Return the fraction of fixed collisions during all work with given
748
   hash table. */
749
 
750
double
751
htab_collisions (htab_t htab)
752
{
753
  if (htab->searches == 0)
754
    return 0.0;
755
 
756
  return (double) htab->collisions / (double) htab->searches;
757
}
758
 
759
/* Hash P as a null-terminated string.
760
 
761
   Copied from gcc/hashtable.c.  Zack had the following to say with respect
762
   to applicability, though note that unlike hashtable.c, this hash table
763
   implementation re-hashes rather than chain buckets.
764
 
765
   http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
766
   From: Zack Weinberg <zackw@panix.com>
767
   Date: Fri, 17 Aug 2001 02:15:56 -0400
768
 
769
   I got it by extracting all the identifiers from all the source code
770
   I had lying around in mid-1999, and testing many recurrences of
771
   the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
772
   prime numbers or the appropriate identity.  This was the best one.
773
   I don't remember exactly what constituted "best", except I was
774
   looking at bucket-length distributions mostly.
775
 
776
   So it should be very good at hashing identifiers, but might not be
777
   as good at arbitrary strings.
778
 
779
   I'll add that it thoroughly trounces the hash functions recommended
780
   for this use at http://burtleburtle.net/bob/hash/index.html, both
781
   on speed and bucket distribution.  I haven't tried it against the
782
   function they just started using for Perl's hashes.  */
783
 
784
hashval_t
785
htab_hash_string (const PTR p)
786
{
787
  const unsigned char *str = (const unsigned char *) p;
788
  hashval_t r = 0;
789
  unsigned char c;
790
 
791
  while ((c = *str++) != 0)
792
    r = r * 67 + c - 113;
793
 
794
  return r;
795
}
796
 
797
/* DERIVED FROM:
798
--------------------------------------------------------------------
799
lookup2.c, by Bob Jenkins, December 1996, Public Domain.
800
hash(), hash2(), hash3, and mix() are externally useful functions.
801
Routines to test the hash are included if SELF_TEST is defined.
802
You can use this free for any purpose.  It has no warranty.
803
--------------------------------------------------------------------
804
*/
805
 
806
/*
807
--------------------------------------------------------------------
808
mix -- mix 3 32-bit values reversibly.
809
For every delta with one or two bit set, and the deltas of all three
810
  high bits or all three low bits, whether the original value of a,b,c
811
  is almost all zero or is uniformly distributed,
812
* If mix() is run forward or backward, at least 32 bits in a,b,c
813
  have at least 1/4 probability of changing.
814
* If mix() is run forward, every bit of c will change between 1/3 and
815
  2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
816
mix() was built out of 36 single-cycle latency instructions in a
817
  structure that could supported 2x parallelism, like so:
818
      a -= b;
819
      a -= c; x = (c>>13);
820
      b -= c; a ^= x;
821
      b -= a; x = (a<<8);
822
      c -= a; b ^= x;
823
      c -= b; x = (b>>13);
824
      ...
825
  Unfortunately, superscalar Pentiums and Sparcs can't take advantage
826
  of that parallelism.  They've also turned some of those single-cycle
827
  latency instructions into multi-cycle latency instructions.  Still,
828
  this is the fastest good hash I could find.  There were about 2^^68
829
  to choose from.  I only looked at a billion or so.
830
--------------------------------------------------------------------
831
*/
832
/* same, but slower, works on systems that might have 8 byte hashval_t's */
833
#define mix(a,b,c) \
834
{ \
835
  a -= b; a -= c; a ^= (c>>13); \
836
  b -= c; b -= a; b ^= (a<< 8); \
837
  c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
838
  a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
839
  b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
840
  c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
841
  a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
842
  b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
843
  c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
844
}
845
 
846
/*
847
--------------------------------------------------------------------
848
hash() -- hash a variable-length key into a 32-bit value
849
  k     : the key (the unaligned variable-length array of bytes)
850
  len   : the length of the key, counting by bytes
851
  level : can be any 4-byte value
852
Returns a 32-bit value.  Every bit of the key affects every bit of
853
the return value.  Every 1-bit and 2-bit delta achieves avalanche.
854
About 36+6len instructions.
855
 
856
The best hash table sizes are powers of 2.  There is no need to do
857
mod a prime (mod is sooo slow!).  If you need less than 32 bits,
858
use a bitmask.  For example, if you need only 10 bits, do
859
  h = (h & hashmask(10));
860
In which case, the hash table should have hashsize(10) elements.
861
 
862
If you are hashing n strings (ub1 **)k, do it like this:
863
  for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
864
 
865
By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
866
code any way you wish, private, educational, or commercial.  It's free.
867
 
868
See http://burtleburtle.net/bob/hash/evahash.html
869
Use for hash table lookup, or anything where one collision in 2^32 is
870
acceptable.  Do NOT use for cryptographic purposes.
871
--------------------------------------------------------------------
872
*/
873
 
874
hashval_t
875
iterative_hash (const PTR k_in /* the key */,
876
                register size_t  length /* the length of the key */,
877
                register hashval_t initval /* the previous hash, or
878
                                              an arbitrary value */)
879
{
880
  register const unsigned char *k = (const unsigned char *)k_in;
881
  register hashval_t a,b,c,len;
882
 
883
  /* Set up the internal state */
884
  len = length;
885
  a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
886
  c = initval;           /* the previous hash value */
887
 
888
  /*---------------------------------------- handle most of the key */
889
#ifndef WORDS_BIGENDIAN
890
  /* On a little-endian machine, if the data is 4-byte aligned we can hash
891
     by word for better speed.  This gives nondeterministic results on
892
     big-endian machines.  */
893
  if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
894
    while (len >= 12)    /* aligned */
895
      {
896
        a += *(hashval_t *)(k+0);
897
        b += *(hashval_t *)(k+4);
898
        c += *(hashval_t *)(k+8);
899
        mix(a,b,c);
900
        k += 12; len -= 12;
901
      }
902
  else /* unaligned */
903
#endif
904
    while (len >= 12)
905
      {
906
        a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
907
        b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
908
        c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
909
        mix(a,b,c);
910
        k += 12; len -= 12;
911
      }
912
 
913
  /*------------------------------------- handle the last 11 bytes */
914
  c += length;
915
  switch(len)              /* all the case statements fall through */
916
    {
917
    case 11: c+=((hashval_t)k[10]<<24);
918
    case 10: c+=((hashval_t)k[9]<<16);
919
    case 9 : c+=((hashval_t)k[8]<<8);
920
      /* the first byte of c is reserved for the length */
921
    case 8 : b+=((hashval_t)k[7]<<24);
922
    case 7 : b+=((hashval_t)k[6]<<16);
923
    case 6 : b+=((hashval_t)k[5]<<8);
924
    case 5 : b+=k[4];
925
    case 4 : a+=((hashval_t)k[3]<<24);
926
    case 3 : a+=((hashval_t)k[2]<<16);
927
    case 2 : a+=((hashval_t)k[1]<<8);
928
    case 1 : a+=k[0];
929
      /* case 0: nothing left to add */
930
    }
931
  mix(a,b,c);
932
  /*-------------------------------------------- report the result */
933
  return c;
934
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.