| 1 |
14 |
jlechner |
/* CubicCurve2D.java -- represents a parameterized cubic curve in 2-D space
|
| 2 |
|
|
Copyright (C) 2002, 2003, 2004 Free Software Foundation
|
| 3 |
|
|
|
| 4 |
|
|
This file is part of GNU Classpath.
|
| 5 |
|
|
|
| 6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
| 7 |
|
|
it under the terms of the GNU General Public License as published by
|
| 8 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
| 9 |
|
|
any later version.
|
| 10 |
|
|
|
| 11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
| 12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 14 |
|
|
General Public License for more details.
|
| 15 |
|
|
|
| 16 |
|
|
You should have received a copy of the GNU General Public License
|
| 17 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
| 18 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
| 19 |
|
|
02110-1301 USA.
|
| 20 |
|
|
|
| 21 |
|
|
Linking this library statically or dynamically with other modules is
|
| 22 |
|
|
making a combined work based on this library. Thus, the terms and
|
| 23 |
|
|
conditions of the GNU General Public License cover the whole
|
| 24 |
|
|
combination.
|
| 25 |
|
|
|
| 26 |
|
|
As a special exception, the copyright holders of this library give you
|
| 27 |
|
|
permission to link this library with independent modules to produce an
|
| 28 |
|
|
executable, regardless of the license terms of these independent
|
| 29 |
|
|
modules, and to copy and distribute the resulting executable under
|
| 30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
| 31 |
|
|
independent module, the terms and conditions of the license of that
|
| 32 |
|
|
module. An independent module is a module which is not derived from
|
| 33 |
|
|
or based on this library. If you modify this library, you may extend
|
| 34 |
|
|
this exception to your version of the library, but you are not
|
| 35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
| 36 |
|
|
exception statement from your version. */
|
| 37 |
|
|
|
| 38 |
|
|
package java.awt.geom;
|
| 39 |
|
|
|
| 40 |
|
|
import java.awt.Rectangle;
|
| 41 |
|
|
import java.awt.Shape;
|
| 42 |
|
|
import java.util.NoSuchElementException;
|
| 43 |
|
|
|
| 44 |
|
|
|
| 45 |
|
|
/**
|
| 46 |
|
|
* A two-dimensional curve that is parameterized with a cubic
|
| 47 |
|
|
* function.
|
| 48 |
|
|
*
|
| 49 |
|
|
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
|
| 50 |
|
|
* alt="A drawing of a CubicCurve2D" />
|
| 51 |
|
|
*
|
| 52 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
| 53 |
|
|
* @author Graydon Hoare (graydon@redhat.com)
|
| 54 |
|
|
* @author Sascha Brawer (brawer@dandelis.ch)
|
| 55 |
|
|
* @author Sven de Marothy (sven@physto.se)
|
| 56 |
|
|
*
|
| 57 |
|
|
* @since 1.2
|
| 58 |
|
|
*/
|
| 59 |
|
|
public abstract class CubicCurve2D implements Shape, Cloneable
|
| 60 |
|
|
{
|
| 61 |
|
|
private static final double BIG_VALUE = java.lang.Double.MAX_VALUE / 10.0;
|
| 62 |
|
|
private static final double EPSILON = 1E-10;
|
| 63 |
|
|
|
| 64 |
|
|
/**
|
| 65 |
|
|
* Constructs a new CubicCurve2D. Typical users will want to
|
| 66 |
|
|
* construct instances of a subclass, such as {@link
|
| 67 |
|
|
* CubicCurve2D.Float} or {@link CubicCurve2D.Double}.
|
| 68 |
|
|
*/
|
| 69 |
|
|
protected CubicCurve2D()
|
| 70 |
|
|
{
|
| 71 |
|
|
}
|
| 72 |
|
|
|
| 73 |
|
|
/**
|
| 74 |
|
|
* Returns the <i>x</i> coordinate of the curve’s start
|
| 75 |
|
|
* point.
|
| 76 |
|
|
*/
|
| 77 |
|
|
public abstract double getX1();
|
| 78 |
|
|
|
| 79 |
|
|
/**
|
| 80 |
|
|
* Returns the <i>y</i> coordinate of the curve’s start
|
| 81 |
|
|
* point.
|
| 82 |
|
|
*/
|
| 83 |
|
|
public abstract double getY1();
|
| 84 |
|
|
|
| 85 |
|
|
/**
|
| 86 |
|
|
* Returns the curve’s start point.
|
| 87 |
|
|
*/
|
| 88 |
|
|
public abstract Point2D getP1();
|
| 89 |
|
|
|
| 90 |
|
|
/**
|
| 91 |
|
|
* Returns the <i>x</i> coordinate of the curve’s first
|
| 92 |
|
|
* control point.
|
| 93 |
|
|
*/
|
| 94 |
|
|
public abstract double getCtrlX1();
|
| 95 |
|
|
|
| 96 |
|
|
/**
|
| 97 |
|
|
* Returns the <i>y</i> coordinate of the curve’s first
|
| 98 |
|
|
* control point.
|
| 99 |
|
|
*/
|
| 100 |
|
|
public abstract double getCtrlY1();
|
| 101 |
|
|
|
| 102 |
|
|
/**
|
| 103 |
|
|
* Returns the curve’s first control point.
|
| 104 |
|
|
*/
|
| 105 |
|
|
public abstract Point2D getCtrlP1();
|
| 106 |
|
|
|
| 107 |
|
|
/**
|
| 108 |
|
|
* Returns the <i>x</i> coordinate of the curve’s second
|
| 109 |
|
|
* control point.
|
| 110 |
|
|
*/
|
| 111 |
|
|
public abstract double getCtrlX2();
|
| 112 |
|
|
|
| 113 |
|
|
/**
|
| 114 |
|
|
* Returns the <i>y</i> coordinate of the curve’s second
|
| 115 |
|
|
* control point.
|
| 116 |
|
|
*/
|
| 117 |
|
|
public abstract double getCtrlY2();
|
| 118 |
|
|
|
| 119 |
|
|
/**
|
| 120 |
|
|
* Returns the curve’s second control point.
|
| 121 |
|
|
*/
|
| 122 |
|
|
public abstract Point2D getCtrlP2();
|
| 123 |
|
|
|
| 124 |
|
|
/**
|
| 125 |
|
|
* Returns the <i>x</i> coordinate of the curve’s end
|
| 126 |
|
|
* point.
|
| 127 |
|
|
*/
|
| 128 |
|
|
public abstract double getX2();
|
| 129 |
|
|
|
| 130 |
|
|
/**
|
| 131 |
|
|
* Returns the <i>y</i> coordinate of the curve’s end
|
| 132 |
|
|
* point.
|
| 133 |
|
|
*/
|
| 134 |
|
|
public abstract double getY2();
|
| 135 |
|
|
|
| 136 |
|
|
/**
|
| 137 |
|
|
* Returns the curve’s end point.
|
| 138 |
|
|
*/
|
| 139 |
|
|
public abstract Point2D getP2();
|
| 140 |
|
|
|
| 141 |
|
|
/**
|
| 142 |
|
|
* Changes the curve geometry, separately specifying each coordinate
|
| 143 |
|
|
* value.
|
| 144 |
|
|
*
|
| 145 |
|
|
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
|
| 146 |
|
|
* alt="A drawing of a CubicCurve2D" />
|
| 147 |
|
|
*
|
| 148 |
|
|
* @param x1 the <i>x</i> coordinate of the curve’s new start
|
| 149 |
|
|
* point.
|
| 150 |
|
|
*
|
| 151 |
|
|
* @param y1 the <i>y</i> coordinate of the curve’s new start
|
| 152 |
|
|
* point.
|
| 153 |
|
|
*
|
| 154 |
|
|
* @param cx1 the <i>x</i> coordinate of the curve’s new
|
| 155 |
|
|
* first control point.
|
| 156 |
|
|
*
|
| 157 |
|
|
* @param cy1 the <i>y</i> coordinate of the curve’s new
|
| 158 |
|
|
* first control point.
|
| 159 |
|
|
*
|
| 160 |
|
|
* @param cx2 the <i>x</i> coordinate of the curve’s new
|
| 161 |
|
|
* second control point.
|
| 162 |
|
|
*
|
| 163 |
|
|
* @param cy2 the <i>y</i> coordinate of the curve’s new
|
| 164 |
|
|
* second control point.
|
| 165 |
|
|
*
|
| 166 |
|
|
* @param x2 the <i>x</i> coordinate of the curve’s new end
|
| 167 |
|
|
* point.
|
| 168 |
|
|
*
|
| 169 |
|
|
* @param y2 the <i>y</i> coordinate of the curve’s new end
|
| 170 |
|
|
* point.
|
| 171 |
|
|
*/
|
| 172 |
|
|
public abstract void setCurve(double x1, double y1, double cx1, double cy1,
|
| 173 |
|
|
double cx2, double cy2, double x2, double y2);
|
| 174 |
|
|
|
| 175 |
|
|
/**
|
| 176 |
|
|
* Changes the curve geometry, specifying coordinate values in an
|
| 177 |
|
|
* array.
|
| 178 |
|
|
*
|
| 179 |
|
|
* @param coords an array containing the new coordinate values. The
|
| 180 |
|
|
* <i>x</i> coordinate of the new start point is located at
|
| 181 |
|
|
* <code>coords[offset]</code>, its <i>y</i> coordinate at
|
| 182 |
|
|
* <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
|
| 183 |
|
|
* new first control point is located at <code>coords[offset +
|
| 184 |
|
|
* 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
|
| 185 |
|
|
* 3]</code>. The <i>x</i> coordinate of the new second control
|
| 186 |
|
|
* point is located at <code>coords[offset + 4]</code>, its <i>y</i>
|
| 187 |
|
|
* coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
|
| 188 |
|
|
* coordinate of the new end point is located at <code>coords[offset
|
| 189 |
|
|
* + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
|
| 190 |
|
|
* 7]</code>.
|
| 191 |
|
|
*
|
| 192 |
|
|
* @param offset the offset of the first coordinate value in
|
| 193 |
|
|
* <code>coords</code>.
|
| 194 |
|
|
*/
|
| 195 |
|
|
public void setCurve(double[] coords, int offset)
|
| 196 |
|
|
{
|
| 197 |
|
|
setCurve(coords[offset++], coords[offset++], coords[offset++],
|
| 198 |
|
|
coords[offset++], coords[offset++], coords[offset++],
|
| 199 |
|
|
coords[offset++], coords[offset++]);
|
| 200 |
|
|
}
|
| 201 |
|
|
|
| 202 |
|
|
/**
|
| 203 |
|
|
* Changes the curve geometry, specifying coordinate values in
|
| 204 |
|
|
* separate Point objects.
|
| 205 |
|
|
*
|
| 206 |
|
|
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
|
| 207 |
|
|
* alt="A drawing of a CubicCurve2D" />
|
| 208 |
|
|
*
|
| 209 |
|
|
* <p>The curve does not keep any reference to the passed point
|
| 210 |
|
|
* objects. Therefore, a later change to <code>p1</code>,
|
| 211 |
|
|
* <code>c1</code>, <code>c2</code> or <code>p2</code> will not
|
| 212 |
|
|
* affect the curve geometry.
|
| 213 |
|
|
*
|
| 214 |
|
|
* @param p1 the new start point.
|
| 215 |
|
|
* @param c1 the new first control point.
|
| 216 |
|
|
* @param c2 the new second control point.
|
| 217 |
|
|
* @param p2 the new end point.
|
| 218 |
|
|
*/
|
| 219 |
|
|
public void setCurve(Point2D p1, Point2D c1, Point2D c2, Point2D p2)
|
| 220 |
|
|
{
|
| 221 |
|
|
setCurve(p1.getX(), p1.getY(), c1.getX(), c1.getY(), c2.getX(), c2.getY(),
|
| 222 |
|
|
p2.getX(), p2.getY());
|
| 223 |
|
|
}
|
| 224 |
|
|
|
| 225 |
|
|
/**
|
| 226 |
|
|
* Changes the curve geometry, specifying coordinate values in an
|
| 227 |
|
|
* array of Point objects.
|
| 228 |
|
|
*
|
| 229 |
|
|
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
|
| 230 |
|
|
* alt="A drawing of a CubicCurve2D" />
|
| 231 |
|
|
*
|
| 232 |
|
|
* <p>The curve does not keep references to the passed point
|
| 233 |
|
|
* objects. Therefore, a later change to the <code>pts</code> array
|
| 234 |
|
|
* or any of its elements will not affect the curve geometry.
|
| 235 |
|
|
*
|
| 236 |
|
|
* @param pts an array containing the points. The new start point
|
| 237 |
|
|
* is located at <code>pts[offset]</code>, the new first control
|
| 238 |
|
|
* point at <code>pts[offset + 1]</code>, the new second control
|
| 239 |
|
|
* point at <code>pts[offset + 2]</code>, and the new end point
|
| 240 |
|
|
* at <code>pts[offset + 3]</code>.
|
| 241 |
|
|
*
|
| 242 |
|
|
* @param offset the offset of the start point in <code>pts</code>.
|
| 243 |
|
|
*/
|
| 244 |
|
|
public void setCurve(Point2D[] pts, int offset)
|
| 245 |
|
|
{
|
| 246 |
|
|
setCurve(pts[offset].getX(), pts[offset++].getY(), pts[offset].getX(),
|
| 247 |
|
|
pts[offset++].getY(), pts[offset].getX(), pts[offset++].getY(),
|
| 248 |
|
|
pts[offset].getX(), pts[offset++].getY());
|
| 249 |
|
|
}
|
| 250 |
|
|
|
| 251 |
|
|
/**
|
| 252 |
|
|
* Changes the curve geometry to that of another curve.
|
| 253 |
|
|
*
|
| 254 |
|
|
* @param c the curve whose coordinates will be copied.
|
| 255 |
|
|
*/
|
| 256 |
|
|
public void setCurve(CubicCurve2D c)
|
| 257 |
|
|
{
|
| 258 |
|
|
setCurve(c.getX1(), c.getY1(), c.getCtrlX1(), c.getCtrlY1(),
|
| 259 |
|
|
c.getCtrlX2(), c.getCtrlY2(), c.getX2(), c.getY2());
|
| 260 |
|
|
}
|
| 261 |
|
|
|
| 262 |
|
|
/**
|
| 263 |
|
|
* Calculates the squared flatness of a cubic curve, directly
|
| 264 |
|
|
* specifying each coordinate value. The flatness is the maximal
|
| 265 |
|
|
* distance of a control point to the line between start and end
|
| 266 |
|
|
* point.
|
| 267 |
|
|
*
|
| 268 |
|
|
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
|
| 269 |
|
|
* alt="A drawing that illustrates the flatness" />
|
| 270 |
|
|
*
|
| 271 |
|
|
* <p>In the above drawing, the straight line connecting start point
|
| 272 |
|
|
* P1 and end point P2 is depicted in gray. In comparison to C1,
|
| 273 |
|
|
* control point C2 is father away from the gray line. Therefore,
|
| 274 |
|
|
* the result will be the square of the distance between C2 and the
|
| 275 |
|
|
* gray line, i.e. the squared length of the red line.
|
| 276 |
|
|
*
|
| 277 |
|
|
* @param x1 the <i>x</i> coordinate of the start point P1.
|
| 278 |
|
|
* @param y1 the <i>y</i> coordinate of the start point P1.
|
| 279 |
|
|
* @param cx1 the <i>x</i> coordinate of the first control point C1.
|
| 280 |
|
|
* @param cy1 the <i>y</i> coordinate of the first control point C1.
|
| 281 |
|
|
* @param cx2 the <i>x</i> coordinate of the second control point C2.
|
| 282 |
|
|
* @param cy2 the <i>y</i> coordinate of the second control point C2.
|
| 283 |
|
|
* @param x2 the <i>x</i> coordinate of the end point P2.
|
| 284 |
|
|
* @param y2 the <i>y</i> coordinate of the end point P2.
|
| 285 |
|
|
*/
|
| 286 |
|
|
public static double getFlatnessSq(double x1, double y1, double cx1,
|
| 287 |
|
|
double cy1, double cx2, double cy2,
|
| 288 |
|
|
double x2, double y2)
|
| 289 |
|
|
{
|
| 290 |
|
|
return Math.max(Line2D.ptSegDistSq(x1, y1, x2, y2, cx1, cy1),
|
| 291 |
|
|
Line2D.ptSegDistSq(x1, y1, x2, y2, cx2, cy2));
|
| 292 |
|
|
}
|
| 293 |
|
|
|
| 294 |
|
|
/**
|
| 295 |
|
|
* Calculates the flatness of a cubic curve, directly specifying
|
| 296 |
|
|
* each coordinate value. The flatness is the maximal distance of a
|
| 297 |
|
|
* control point to the line between start and end point.
|
| 298 |
|
|
*
|
| 299 |
|
|
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
|
| 300 |
|
|
* alt="A drawing that illustrates the flatness" />
|
| 301 |
|
|
*
|
| 302 |
|
|
* <p>In the above drawing, the straight line connecting start point
|
| 303 |
|
|
* P1 and end point P2 is depicted in gray. In comparison to C1,
|
| 304 |
|
|
* control point C2 is father away from the gray line. Therefore,
|
| 305 |
|
|
* the result will be the distance between C2 and the gray line,
|
| 306 |
|
|
* i.e. the length of the red line.
|
| 307 |
|
|
*
|
| 308 |
|
|
* @param x1 the <i>x</i> coordinate of the start point P1.
|
| 309 |
|
|
* @param y1 the <i>y</i> coordinate of the start point P1.
|
| 310 |
|
|
* @param cx1 the <i>x</i> coordinate of the first control point C1.
|
| 311 |
|
|
* @param cy1 the <i>y</i> coordinate of the first control point C1.
|
| 312 |
|
|
* @param cx2 the <i>x</i> coordinate of the second control point C2.
|
| 313 |
|
|
* @param cy2 the <i>y</i> coordinate of the second control point C2.
|
| 314 |
|
|
* @param x2 the <i>x</i> coordinate of the end point P2.
|
| 315 |
|
|
* @param y2 the <i>y</i> coordinate of the end point P2.
|
| 316 |
|
|
*/
|
| 317 |
|
|
public static double getFlatness(double x1, double y1, double cx1,
|
| 318 |
|
|
double cy1, double cx2, double cy2,
|
| 319 |
|
|
double x2, double y2)
|
| 320 |
|
|
{
|
| 321 |
|
|
return Math.sqrt(getFlatnessSq(x1, y1, cx1, cy1, cx2, cy2, x2, y2));
|
| 322 |
|
|
}
|
| 323 |
|
|
|
| 324 |
|
|
/**
|
| 325 |
|
|
* Calculates the squared flatness of a cubic curve, specifying the
|
| 326 |
|
|
* coordinate values in an array. The flatness is the maximal
|
| 327 |
|
|
* distance of a control point to the line between start and end
|
| 328 |
|
|
* point.
|
| 329 |
|
|
*
|
| 330 |
|
|
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
|
| 331 |
|
|
* alt="A drawing that illustrates the flatness" />
|
| 332 |
|
|
*
|
| 333 |
|
|
* <p>In the above drawing, the straight line connecting start point
|
| 334 |
|
|
* P1 and end point P2 is depicted in gray. In comparison to C1,
|
| 335 |
|
|
* control point C2 is father away from the gray line. Therefore,
|
| 336 |
|
|
* the result will be the square of the distance between C2 and the
|
| 337 |
|
|
* gray line, i.e. the squared length of the red line.
|
| 338 |
|
|
*
|
| 339 |
|
|
* @param coords an array containing the coordinate values. The
|
| 340 |
|
|
* <i>x</i> coordinate of the start point P1 is located at
|
| 341 |
|
|
* <code>coords[offset]</code>, its <i>y</i> coordinate at
|
| 342 |
|
|
* <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
|
| 343 |
|
|
* first control point C1 is located at <code>coords[offset +
|
| 344 |
|
|
* 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
|
| 345 |
|
|
* 3]</code>. The <i>x</i> coordinate of the second control point C2
|
| 346 |
|
|
* is located at <code>coords[offset + 4]</code>, its <i>y</i>
|
| 347 |
|
|
* coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
|
| 348 |
|
|
* coordinate of the end point P2 is located at <code>coords[offset
|
| 349 |
|
|
* + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
|
| 350 |
|
|
* 7]</code>.
|
| 351 |
|
|
*
|
| 352 |
|
|
* @param offset the offset of the first coordinate value in
|
| 353 |
|
|
* <code>coords</code>.
|
| 354 |
|
|
*/
|
| 355 |
|
|
public static double getFlatnessSq(double[] coords, int offset)
|
| 356 |
|
|
{
|
| 357 |
|
|
return getFlatnessSq(coords[offset++], coords[offset++], coords[offset++],
|
| 358 |
|
|
coords[offset++], coords[offset++], coords[offset++],
|
| 359 |
|
|
coords[offset++], coords[offset++]);
|
| 360 |
|
|
}
|
| 361 |
|
|
|
| 362 |
|
|
/**
|
| 363 |
|
|
* Calculates the flatness of a cubic curve, specifying the
|
| 364 |
|
|
* coordinate values in an array. The flatness is the maximal
|
| 365 |
|
|
* distance of a control point to the line between start and end
|
| 366 |
|
|
* point.
|
| 367 |
|
|
*
|
| 368 |
|
|
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
|
| 369 |
|
|
* alt="A drawing that illustrates the flatness" />
|
| 370 |
|
|
*
|
| 371 |
|
|
* <p>In the above drawing, the straight line connecting start point
|
| 372 |
|
|
* P1 and end point P2 is depicted in gray. In comparison to C1,
|
| 373 |
|
|
* control point C2 is father away from the gray line. Therefore,
|
| 374 |
|
|
* the result will be the distance between C2 and the gray line,
|
| 375 |
|
|
* i.e. the length of the red line.
|
| 376 |
|
|
*
|
| 377 |
|
|
* @param coords an array containing the coordinate values. The
|
| 378 |
|
|
* <i>x</i> coordinate of the start point P1 is located at
|
| 379 |
|
|
* <code>coords[offset]</code>, its <i>y</i> coordinate at
|
| 380 |
|
|
* <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
|
| 381 |
|
|
* first control point C1 is located at <code>coords[offset +
|
| 382 |
|
|
* 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
|
| 383 |
|
|
* 3]</code>. The <i>x</i> coordinate of the second control point C2
|
| 384 |
|
|
* is located at <code>coords[offset + 4]</code>, its <i>y</i>
|
| 385 |
|
|
* coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
|
| 386 |
|
|
* coordinate of the end point P2 is located at <code>coords[offset
|
| 387 |
|
|
* + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
|
| 388 |
|
|
* 7]</code>.
|
| 389 |
|
|
*
|
| 390 |
|
|
* @param offset the offset of the first coordinate value in
|
| 391 |
|
|
* <code>coords</code>.
|
| 392 |
|
|
*/
|
| 393 |
|
|
public static double getFlatness(double[] coords, int offset)
|
| 394 |
|
|
{
|
| 395 |
|
|
return Math.sqrt(getFlatnessSq(coords[offset++], coords[offset++],
|
| 396 |
|
|
coords[offset++], coords[offset++],
|
| 397 |
|
|
coords[offset++], coords[offset++],
|
| 398 |
|
|
coords[offset++], coords[offset++]));
|
| 399 |
|
|
}
|
| 400 |
|
|
|
| 401 |
|
|
/**
|
| 402 |
|
|
* Calculates the squared flatness of this curve. The flatness is
|
| 403 |
|
|
* the maximal distance of a control point to the line between start
|
| 404 |
|
|
* and end point.
|
| 405 |
|
|
*
|
| 406 |
|
|
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
|
| 407 |
|
|
* alt="A drawing that illustrates the flatness" />
|
| 408 |
|
|
*
|
| 409 |
|
|
* <p>In the above drawing, the straight line connecting start point
|
| 410 |
|
|
* P1 and end point P2 is depicted in gray. In comparison to C1,
|
| 411 |
|
|
* control point C2 is father away from the gray line. Therefore,
|
| 412 |
|
|
* the result will be the square of the distance between C2 and the
|
| 413 |
|
|
* gray line, i.e. the squared length of the red line.
|
| 414 |
|
|
*/
|
| 415 |
|
|
public double getFlatnessSq()
|
| 416 |
|
|
{
|
| 417 |
|
|
return getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
|
| 418 |
|
|
getCtrlX2(), getCtrlY2(), getX2(), getY2());
|
| 419 |
|
|
}
|
| 420 |
|
|
|
| 421 |
|
|
/**
|
| 422 |
|
|
* Calculates the flatness of this curve. The flatness is the
|
| 423 |
|
|
* maximal distance of a control point to the line between start and
|
| 424 |
|
|
* end point.
|
| 425 |
|
|
*
|
| 426 |
|
|
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
|
| 427 |
|
|
* alt="A drawing that illustrates the flatness" />
|
| 428 |
|
|
*
|
| 429 |
|
|
* <p>In the above drawing, the straight line connecting start point
|
| 430 |
|
|
* P1 and end point P2 is depicted in gray. In comparison to C1,
|
| 431 |
|
|
* control point C2 is father away from the gray line. Therefore,
|
| 432 |
|
|
* the result will be the distance between C2 and the gray line,
|
| 433 |
|
|
* i.e. the length of the red line.
|
| 434 |
|
|
*/
|
| 435 |
|
|
public double getFlatness()
|
| 436 |
|
|
{
|
| 437 |
|
|
return Math.sqrt(getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
|
| 438 |
|
|
getCtrlX2(), getCtrlY2(), getX2(), getY2()));
|
| 439 |
|
|
}
|
| 440 |
|
|
|
| 441 |
|
|
/**
|
| 442 |
|
|
* Subdivides this curve into two halves.
|
| 443 |
|
|
*
|
| 444 |
|
|
* <p><img src="doc-files/CubicCurve2D-3.png" width="700"
|
| 445 |
|
|
* height="180" alt="A drawing that illustrates the effects of
|
| 446 |
|
|
* subdividing a CubicCurve2D" />
|
| 447 |
|
|
*
|
| 448 |
|
|
* @param left a curve whose geometry will be set to the left half
|
| 449 |
|
|
* of this curve, or <code>null</code> if the caller is not
|
| 450 |
|
|
* interested in the left half.
|
| 451 |
|
|
*
|
| 452 |
|
|
* @param right a curve whose geometry will be set to the right half
|
| 453 |
|
|
* of this curve, or <code>null</code> if the caller is not
|
| 454 |
|
|
* interested in the right half.
|
| 455 |
|
|
*/
|
| 456 |
|
|
public void subdivide(CubicCurve2D left, CubicCurve2D right)
|
| 457 |
|
|
{
|
| 458 |
|
|
// Use empty slots at end to share single array.
|
| 459 |
|
|
double[] d = new double[]
|
| 460 |
|
|
{
|
| 461 |
|
|
getX1(), getY1(), getCtrlX1(), getCtrlY1(), getCtrlX2(),
|
| 462 |
|
|
getCtrlY2(), getX2(), getY2(), 0, 0, 0, 0, 0, 0
|
| 463 |
|
|
};
|
| 464 |
|
|
subdivide(d, 0, d, 0, d, 6);
|
| 465 |
|
|
if (left != null)
|
| 466 |
|
|
left.setCurve(d, 0);
|
| 467 |
|
|
if (right != null)
|
| 468 |
|
|
right.setCurve(d, 6);
|
| 469 |
|
|
}
|
| 470 |
|
|
|
| 471 |
|
|
/**
|
| 472 |
|
|
* Subdivides a cubic curve into two halves.
|
| 473 |
|
|
*
|
| 474 |
|
|
* <p><img src="doc-files/CubicCurve2D-3.png" width="700"
|
| 475 |
|
|
* height="180" alt="A drawing that illustrates the effects of
|
| 476 |
|
|
* subdividing a CubicCurve2D" />
|
| 477 |
|
|
*
|
| 478 |
|
|
* @param src the curve to be subdivided.
|
| 479 |
|
|
*
|
| 480 |
|
|
* @param left a curve whose geometry will be set to the left half
|
| 481 |
|
|
* of <code>src</code>, or <code>null</code> if the caller is not
|
| 482 |
|
|
* interested in the left half.
|
| 483 |
|
|
*
|
| 484 |
|
|
* @param right a curve whose geometry will be set to the right half
|
| 485 |
|
|
* of <code>src</code>, or <code>null</code> if the caller is not
|
| 486 |
|
|
* interested in the right half.
|
| 487 |
|
|
*/
|
| 488 |
|
|
public static void subdivide(CubicCurve2D src, CubicCurve2D left,
|
| 489 |
|
|
CubicCurve2D right)
|
| 490 |
|
|
{
|
| 491 |
|
|
src.subdivide(left, right);
|
| 492 |
|
|
}
|
| 493 |
|
|
|
| 494 |
|
|
/**
|
| 495 |
|
|
* Subdivides a cubic curve into two halves, passing all coordinates
|
| 496 |
|
|
* in an array.
|
| 497 |
|
|
*
|
| 498 |
|
|
* <p><img src="doc-files/CubicCurve2D-3.png" width="700"
|
| 499 |
|
|
* height="180" alt="A drawing that illustrates the effects of
|
| 500 |
|
|
* subdividing a CubicCurve2D" />
|
| 501 |
|
|
*
|
| 502 |
|
|
* <p>The left end point and the right start point will always be
|
| 503 |
|
|
* identical. Memory-concious programmers thus may want to pass the
|
| 504 |
|
|
* same array for both <code>left</code> and <code>right</code>, and
|
| 505 |
|
|
* set <code>rightOff</code> to <code>leftOff + 6</code>.
|
| 506 |
|
|
*
|
| 507 |
|
|
* @param src an array containing the coordinates of the curve to be
|
| 508 |
|
|
* subdivided. The <i>x</i> coordinate of the start point P1 is
|
| 509 |
|
|
* located at <code>src[srcOff]</code>, its <i>y</i> at
|
| 510 |
|
|
* <code>src[srcOff + 1]</code>. The <i>x</i> coordinate of the
|
| 511 |
|
|
* first control point C1 is located at <code>src[srcOff +
|
| 512 |
|
|
* 2]</code>, its <i>y</i> at <code>src[srcOff + 3]</code>. The
|
| 513 |
|
|
* <i>x</i> coordinate of the second control point C2 is located at
|
| 514 |
|
|
* <code>src[srcOff + 4]</code>, its <i>y</i> at <code>src[srcOff +
|
| 515 |
|
|
* 5]</code>. The <i>x</i> coordinate of the end point is located at
|
| 516 |
|
|
* <code>src[srcOff + 6]</code>, its <i>y</i> at <code>src[srcOff +
|
| 517 |
|
|
* 7]</code>.
|
| 518 |
|
|
*
|
| 519 |
|
|
* @param srcOff an offset into <code>src</code>, specifying
|
| 520 |
|
|
* the index of the start point’s <i>x</i> coordinate.
|
| 521 |
|
|
*
|
| 522 |
|
|
* @param left an array that will receive the coordinates of the
|
| 523 |
|
|
* left half of <code>src</code>. It is acceptable to pass
|
| 524 |
|
|
* <code>src</code>. A caller who is not interested in the left half
|
| 525 |
|
|
* can pass <code>null</code>.
|
| 526 |
|
|
*
|
| 527 |
|
|
* @param leftOff an offset into <code>left</code>, specifying the
|
| 528 |
|
|
* index where the start point’s <i>x</i> coordinate will be
|
| 529 |
|
|
* stored.
|
| 530 |
|
|
*
|
| 531 |
|
|
* @param right an array that will receive the coordinates of the
|
| 532 |
|
|
* right half of <code>src</code>. It is acceptable to pass
|
| 533 |
|
|
* <code>src</code> or <code>left</code>. A caller who is not
|
| 534 |
|
|
* interested in the right half can pass <code>null</code>.
|
| 535 |
|
|
*
|
| 536 |
|
|
* @param rightOff an offset into <code>right</code>, specifying the
|
| 537 |
|
|
* index where the start point’s <i>x</i> coordinate will be
|
| 538 |
|
|
* stored.
|
| 539 |
|
|
*/
|
| 540 |
|
|
public static void subdivide(double[] src, int srcOff, double[] left,
|
| 541 |
|
|
int leftOff, double[] right, int rightOff)
|
| 542 |
|
|
{
|
| 543 |
|
|
// To understand this code, please have a look at the image
|
| 544 |
|
|
// "CubicCurve2D-3.png" in the sub-directory "doc-files".
|
| 545 |
|
|
double src_C1_x;
|
| 546 |
|
|
double src_C1_y;
|
| 547 |
|
|
double src_C2_x;
|
| 548 |
|
|
double src_C2_y;
|
| 549 |
|
|
double left_P1_x;
|
| 550 |
|
|
double left_P1_y;
|
| 551 |
|
|
double left_C1_x;
|
| 552 |
|
|
double left_C1_y;
|
| 553 |
|
|
double left_C2_x;
|
| 554 |
|
|
double left_C2_y;
|
| 555 |
|
|
double right_C1_x;
|
| 556 |
|
|
double right_C1_y;
|
| 557 |
|
|
double right_C2_x;
|
| 558 |
|
|
double right_C2_y;
|
| 559 |
|
|
double right_P2_x;
|
| 560 |
|
|
double right_P2_y;
|
| 561 |
|
|
double Mid_x; // Mid = left.P2 = right.P1
|
| 562 |
|
|
double Mid_y; // Mid = left.P2 = right.P1
|
| 563 |
|
|
|
| 564 |
|
|
left_P1_x = src[srcOff];
|
| 565 |
|
|
left_P1_y = src[srcOff + 1];
|
| 566 |
|
|
src_C1_x = src[srcOff + 2];
|
| 567 |
|
|
src_C1_y = src[srcOff + 3];
|
| 568 |
|
|
src_C2_x = src[srcOff + 4];
|
| 569 |
|
|
src_C2_y = src[srcOff + 5];
|
| 570 |
|
|
right_P2_x = src[srcOff + 6];
|
| 571 |
|
|
right_P2_y = src[srcOff + 7];
|
| 572 |
|
|
|
| 573 |
|
|
left_C1_x = (left_P1_x + src_C1_x) / 2;
|
| 574 |
|
|
left_C1_y = (left_P1_y + src_C1_y) / 2;
|
| 575 |
|
|
right_C2_x = (right_P2_x + src_C2_x) / 2;
|
| 576 |
|
|
right_C2_y = (right_P2_y + src_C2_y) / 2;
|
| 577 |
|
|
Mid_x = (src_C1_x + src_C2_x) / 2;
|
| 578 |
|
|
Mid_y = (src_C1_y + src_C2_y) / 2;
|
| 579 |
|
|
left_C2_x = (left_C1_x + Mid_x) / 2;
|
| 580 |
|
|
left_C2_y = (left_C1_y + Mid_y) / 2;
|
| 581 |
|
|
right_C1_x = (Mid_x + right_C2_x) / 2;
|
| 582 |
|
|
right_C1_y = (Mid_y + right_C2_y) / 2;
|
| 583 |
|
|
Mid_x = (left_C2_x + right_C1_x) / 2;
|
| 584 |
|
|
Mid_y = (left_C2_y + right_C1_y) / 2;
|
| 585 |
|
|
|
| 586 |
|
|
if (left != null)
|
| 587 |
|
|
{
|
| 588 |
|
|
left[leftOff] = left_P1_x;
|
| 589 |
|
|
left[leftOff + 1] = left_P1_y;
|
| 590 |
|
|
left[leftOff + 2] = left_C1_x;
|
| 591 |
|
|
left[leftOff + 3] = left_C1_y;
|
| 592 |
|
|
left[leftOff + 4] = left_C2_x;
|
| 593 |
|
|
left[leftOff + 5] = left_C2_y;
|
| 594 |
|
|
left[leftOff + 6] = Mid_x;
|
| 595 |
|
|
left[leftOff + 7] = Mid_y;
|
| 596 |
|
|
}
|
| 597 |
|
|
|
| 598 |
|
|
if (right != null)
|
| 599 |
|
|
{
|
| 600 |
|
|
right[rightOff] = Mid_x;
|
| 601 |
|
|
right[rightOff + 1] = Mid_y;
|
| 602 |
|
|
right[rightOff + 2] = right_C1_x;
|
| 603 |
|
|
right[rightOff + 3] = right_C1_y;
|
| 604 |
|
|
right[rightOff + 4] = right_C2_x;
|
| 605 |
|
|
right[rightOff + 5] = right_C2_y;
|
| 606 |
|
|
right[rightOff + 6] = right_P2_x;
|
| 607 |
|
|
right[rightOff + 7] = right_P2_y;
|
| 608 |
|
|
}
|
| 609 |
|
|
}
|
| 610 |
|
|
|
| 611 |
|
|
/**
|
| 612 |
|
|
* Finds the non-complex roots of a cubic equation, placing the
|
| 613 |
|
|
* results into the same array as the equation coefficients. The
|
| 614 |
|
|
* following equation is being solved:
|
| 615 |
|
|
*
|
| 616 |
|
|
* <blockquote><code>eqn[3]</code> · <i>x</i><sup>3</sup>
|
| 617 |
|
|
* + <code>eqn[2]</code> · <i>x</i><sup>2</sup>
|
| 618 |
|
|
* + <code>eqn[1]</code> · <i>x</i>
|
| 619 |
|
|
* + <code>eqn[0]</code>
|
| 620 |
|
|
* = 0
|
| 621 |
|
|
* </blockquote>
|
| 622 |
|
|
*
|
| 623 |
|
|
* <p>For some background about solving cubic equations, see the
|
| 624 |
|
|
* article <a
|
| 625 |
|
|
* href="http://planetmath.org/encyclopedia/CubicFormula.html"
|
| 626 |
|
|
* >“Cubic Formula”</a> in <a
|
| 627 |
|
|
* href="http://planetmath.org/" >PlanetMath</a>. For an extensive
|
| 628 |
|
|
* library of numerical algorithms written in the C programming
|
| 629 |
|
|
* language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
|
| 630 |
|
|
* Scientific Library</a>, from which this implementation was
|
| 631 |
|
|
* adapted.
|
| 632 |
|
|
*
|
| 633 |
|
|
* @param eqn an array with the coefficients of the equation. When
|
| 634 |
|
|
* this procedure has returned, <code>eqn</code> will contain the
|
| 635 |
|
|
* non-complex solutions of the equation, in no particular order.
|
| 636 |
|
|
*
|
| 637 |
|
|
* @return the number of non-complex solutions. A result of 0
|
| 638 |
|
|
* indicates that the equation has no non-complex solutions. A
|
| 639 |
|
|
* result of -1 indicates that the equation is constant (i.e.,
|
| 640 |
|
|
* always or never zero).
|
| 641 |
|
|
*
|
| 642 |
|
|
* @see #solveCubic(double[], double[])
|
| 643 |
|
|
* @see QuadCurve2D#solveQuadratic(double[],double[])
|
| 644 |
|
|
*
|
| 645 |
|
|
* @author Brian Gough (bjg@network-theory.com)
|
| 646 |
|
|
* (original C implementation in the <a href=
|
| 647 |
|
|
* "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
|
| 648 |
|
|
*
|
| 649 |
|
|
* @author Sascha Brawer (brawer@dandelis.ch)
|
| 650 |
|
|
* (adaptation to Java)
|
| 651 |
|
|
*/
|
| 652 |
|
|
public static int solveCubic(double[] eqn)
|
| 653 |
|
|
{
|
| 654 |
|
|
return solveCubic(eqn, eqn);
|
| 655 |
|
|
}
|
| 656 |
|
|
|
| 657 |
|
|
/**
|
| 658 |
|
|
* Finds the non-complex roots of a cubic equation. The following
|
| 659 |
|
|
* equation is being solved:
|
| 660 |
|
|
*
|
| 661 |
|
|
* <blockquote><code>eqn[3]</code> · <i>x</i><sup>3</sup>
|
| 662 |
|
|
* + <code>eqn[2]</code> · <i>x</i><sup>2</sup>
|
| 663 |
|
|
* + <code>eqn[1]</code> · <i>x</i>
|
| 664 |
|
|
* + <code>eqn[0]</code>
|
| 665 |
|
|
* = 0
|
| 666 |
|
|
* </blockquote>
|
| 667 |
|
|
*
|
| 668 |
|
|
* <p>For some background about solving cubic equations, see the
|
| 669 |
|
|
* article <a
|
| 670 |
|
|
* href="http://planetmath.org/encyclopedia/CubicFormula.html"
|
| 671 |
|
|
* >“Cubic Formula”</a> in <a
|
| 672 |
|
|
* href="http://planetmath.org/" >PlanetMath</a>. For an extensive
|
| 673 |
|
|
* library of numerical algorithms written in the C programming
|
| 674 |
|
|
* language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
|
| 675 |
|
|
* Scientific Library</a>, from which this implementation was
|
| 676 |
|
|
* adapted.
|
| 677 |
|
|
*
|
| 678 |
|
|
* @see QuadCurve2D#solveQuadratic(double[],double[])
|
| 679 |
|
|
*
|
| 680 |
|
|
* @param eqn an array with the coefficients of the equation.
|
| 681 |
|
|
*
|
| 682 |
|
|
* @param res an array into which the non-complex roots will be
|
| 683 |
|
|
* stored. The results may be in an arbitrary order. It is safe to
|
| 684 |
|
|
* pass the same array object reference for both <code>eqn</code>
|
| 685 |
|
|
* and <code>res</code>.
|
| 686 |
|
|
*
|
| 687 |
|
|
* @return the number of non-complex solutions. A result of 0
|
| 688 |
|
|
* indicates that the equation has no non-complex solutions. A
|
| 689 |
|
|
* result of -1 indicates that the equation is constant (i.e.,
|
| 690 |
|
|
* always or never zero).
|
| 691 |
|
|
*
|
| 692 |
|
|
* @author Brian Gough (bjg@network-theory.com)
|
| 693 |
|
|
* (original C implementation in the <a href=
|
| 694 |
|
|
* "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
|
| 695 |
|
|
*
|
| 696 |
|
|
* @author Sascha Brawer (brawer@dandelis.ch)
|
| 697 |
|
|
* (adaptation to Java)
|
| 698 |
|
|
*/
|
| 699 |
|
|
public static int solveCubic(double[] eqn, double[] res)
|
| 700 |
|
|
{
|
| 701 |
|
|
// Adapted from poly/solve_cubic.c in the GNU Scientific Library
|
| 702 |
|
|
// (GSL), revision 1.7 of 2003-07-26. For the original source, see
|
| 703 |
|
|
// http://www.gnu.org/software/gsl/
|
| 704 |
|
|
//
|
| 705 |
|
|
// Brian Gough, the author of that code, has granted the
|
| 706 |
|
|
// permission to use it in GNU Classpath under the GNU Classpath
|
| 707 |
|
|
// license, and has assigned the copyright to the Free Software
|
| 708 |
|
|
// Foundation.
|
| 709 |
|
|
//
|
| 710 |
|
|
// The Java implementation is very similar to the GSL code, but
|
| 711 |
|
|
// not a strict one-to-one copy. For example, GSL would sort the
|
| 712 |
|
|
// result.
|
| 713 |
|
|
|
| 714 |
|
|
double a;
|
| 715 |
|
|
double b;
|
| 716 |
|
|
double c;
|
| 717 |
|
|
double q;
|
| 718 |
|
|
double r;
|
| 719 |
|
|
double Q;
|
| 720 |
|
|
double R;
|
| 721 |
|
|
double c3;
|
| 722 |
|
|
double Q3;
|
| 723 |
|
|
double R2;
|
| 724 |
|
|
double CR2;
|
| 725 |
|
|
double CQ3;
|
| 726 |
|
|
|
| 727 |
|
|
// If the cubic coefficient is zero, we have a quadratic equation.
|
| 728 |
|
|
c3 = eqn[3];
|
| 729 |
|
|
if (c3 == 0)
|
| 730 |
|
|
return QuadCurve2D.solveQuadratic(eqn, res);
|
| 731 |
|
|
|
| 732 |
|
|
// Divide the equation by the cubic coefficient.
|
| 733 |
|
|
c = eqn[0] / c3;
|
| 734 |
|
|
b = eqn[1] / c3;
|
| 735 |
|
|
a = eqn[2] / c3;
|
| 736 |
|
|
|
| 737 |
|
|
// We now need to solve x^3 + ax^2 + bx + c = 0.
|
| 738 |
|
|
q = a * a - 3 * b;
|
| 739 |
|
|
r = 2 * a * a * a - 9 * a * b + 27 * c;
|
| 740 |
|
|
|
| 741 |
|
|
Q = q / 9;
|
| 742 |
|
|
R = r / 54;
|
| 743 |
|
|
|
| 744 |
|
|
Q3 = Q * Q * Q;
|
| 745 |
|
|
R2 = R * R;
|
| 746 |
|
|
|
| 747 |
|
|
CR2 = 729 * r * r;
|
| 748 |
|
|
CQ3 = 2916 * q * q * q;
|
| 749 |
|
|
|
| 750 |
|
|
if (R == 0 && Q == 0)
|
| 751 |
|
|
{
|
| 752 |
|
|
// The GNU Scientific Library would return three identical
|
| 753 |
|
|
// solutions in this case.
|
| 754 |
|
|
res[0] = -a / 3;
|
| 755 |
|
|
return 1;
|
| 756 |
|
|
}
|
| 757 |
|
|
|
| 758 |
|
|
if (CR2 == CQ3)
|
| 759 |
|
|
{
|
| 760 |
|
|
/* this test is actually R2 == Q3, written in a form suitable
|
| 761 |
|
|
for exact computation with integers */
|
| 762 |
|
|
/* Due to finite precision some double roots may be missed, and
|
| 763 |
|
|
considered to be a pair of complex roots z = x +/- epsilon i
|
| 764 |
|
|
close to the real axis. */
|
| 765 |
|
|
double sqrtQ = Math.sqrt(Q);
|
| 766 |
|
|
|
| 767 |
|
|
if (R > 0)
|
| 768 |
|
|
{
|
| 769 |
|
|
res[0] = -2 * sqrtQ - a / 3;
|
| 770 |
|
|
res[1] = sqrtQ - a / 3;
|
| 771 |
|
|
}
|
| 772 |
|
|
else
|
| 773 |
|
|
{
|
| 774 |
|
|
res[0] = -sqrtQ - a / 3;
|
| 775 |
|
|
res[1] = 2 * sqrtQ - a / 3;
|
| 776 |
|
|
}
|
| 777 |
|
|
return 2;
|
| 778 |
|
|
}
|
| 779 |
|
|
|
| 780 |
|
|
if (CR2 < CQ3) /* equivalent to R2 < Q3 */
|
| 781 |
|
|
{
|
| 782 |
|
|
double sqrtQ = Math.sqrt(Q);
|
| 783 |
|
|
double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
|
| 784 |
|
|
double theta = Math.acos(R / sqrtQ3);
|
| 785 |
|
|
double norm = -2 * sqrtQ;
|
| 786 |
|
|
res[0] = norm * Math.cos(theta / 3) - a / 3;
|
| 787 |
|
|
res[1] = norm * Math.cos((theta + 2.0 * Math.PI) / 3) - a / 3;
|
| 788 |
|
|
res[2] = norm * Math.cos((theta - 2.0 * Math.PI) / 3) - a / 3;
|
| 789 |
|
|
|
| 790 |
|
|
// The GNU Scientific Library sorts the results. We don't.
|
| 791 |
|
|
return 3;
|
| 792 |
|
|
}
|
| 793 |
|
|
|
| 794 |
|
|
double sgnR = (R >= 0 ? 1 : -1);
|
| 795 |
|
|
double A = -sgnR * Math.pow(Math.abs(R) + Math.sqrt(R2 - Q3), 1.0 / 3.0);
|
| 796 |
|
|
double B = Q / A;
|
| 797 |
|
|
res[0] = A + B - a / 3;
|
| 798 |
|
|
return 1;
|
| 799 |
|
|
}
|
| 800 |
|
|
|
| 801 |
|
|
/**
|
| 802 |
|
|
* Determines whether a position lies inside the area bounded
|
| 803 |
|
|
* by the curve and the straight line connecting its end points.
|
| 804 |
|
|
*
|
| 805 |
|
|
* <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
|
| 806 |
|
|
* alt="A drawing of the area spanned by the curve" />
|
| 807 |
|
|
*
|
| 808 |
|
|
* <p>The above drawing illustrates in which area points are
|
| 809 |
|
|
* considered “inside” a CubicCurve2D.
|
| 810 |
|
|
*/
|
| 811 |
|
|
public boolean contains(double x, double y)
|
| 812 |
|
|
{
|
| 813 |
|
|
if (! getBounds2D().contains(x, y))
|
| 814 |
|
|
return false;
|
| 815 |
|
|
|
| 816 |
|
|
return ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0);
|
| 817 |
|
|
}
|
| 818 |
|
|
|
| 819 |
|
|
/**
|
| 820 |
|
|
* Determines whether a point lies inside the area bounded
|
| 821 |
|
|
* by the curve and the straight line connecting its end points.
|
| 822 |
|
|
*
|
| 823 |
|
|
* <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
|
| 824 |
|
|
* alt="A drawing of the area spanned by the curve" />
|
| 825 |
|
|
*
|
| 826 |
|
|
* <p>The above drawing illustrates in which area points are
|
| 827 |
|
|
* considered “inside” a CubicCurve2D.
|
| 828 |
|
|
*/
|
| 829 |
|
|
public boolean contains(Point2D p)
|
| 830 |
|
|
{
|
| 831 |
|
|
return contains(p.getX(), p.getY());
|
| 832 |
|
|
}
|
| 833 |
|
|
|
| 834 |
|
|
/**
|
| 835 |
|
|
* Determines whether any part of a rectangle is inside the area bounded
|
| 836 |
|
|
* by the curve and the straight line connecting its end points.
|
| 837 |
|
|
*
|
| 838 |
|
|
* <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
|
| 839 |
|
|
* alt="A drawing of the area spanned by the curve" />
|
| 840 |
|
|
*
|
| 841 |
|
|
* <p>The above drawing illustrates in which area points are
|
| 842 |
|
|
* considered “inside” in a CubicCurve2D.
|
| 843 |
|
|
* @see #contains(double, double)
|
| 844 |
|
|
*/
|
| 845 |
|
|
public boolean intersects(double x, double y, double w, double h)
|
| 846 |
|
|
{
|
| 847 |
|
|
if (! getBounds2D().contains(x, y, w, h))
|
| 848 |
|
|
return false;
|
| 849 |
|
|
|
| 850 |
|
|
/* Does any edge intersect? */
|
| 851 |
|
|
if (getAxisIntersections(x, y, true, w) != 0 /* top */
|
| 852 |
|
|
|| getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
|
| 853 |
|
|
|| getAxisIntersections(x + w, y, false, h) != 0 /* right */
|
| 854 |
|
|
|| getAxisIntersections(x, y, false, h) != 0) /* left */
|
| 855 |
|
|
return true;
|
| 856 |
|
|
|
| 857 |
|
|
/* No intersections, is any point inside? */
|
| 858 |
|
|
if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
|
| 859 |
|
|
return true;
|
| 860 |
|
|
|
| 861 |
|
|
return false;
|
| 862 |
|
|
}
|
| 863 |
|
|
|
| 864 |
|
|
/**
|
| 865 |
|
|
* Determines whether any part of a Rectangle2D is inside the area bounded
|
| 866 |
|
|
* by the curve and the straight line connecting its end points.
|
| 867 |
|
|
* @see #intersects(double, double, double, double)
|
| 868 |
|
|
*/
|
| 869 |
|
|
public boolean intersects(Rectangle2D r)
|
| 870 |
|
|
{
|
| 871 |
|
|
return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
| 872 |
|
|
}
|
| 873 |
|
|
|
| 874 |
|
|
/**
|
| 875 |
|
|
* Determine whether a rectangle is entirely inside the area that is bounded
|
| 876 |
|
|
* by the curve and the straight line connecting its end points.
|
| 877 |
|
|
*
|
| 878 |
|
|
* <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
|
| 879 |
|
|
* alt="A drawing of the area spanned by the curve" />
|
| 880 |
|
|
*
|
| 881 |
|
|
* <p>The above drawing illustrates in which area points are
|
| 882 |
|
|
* considered “inside” a CubicCurve2D.
|
| 883 |
|
|
* @see #contains(double, double)
|
| 884 |
|
|
*/
|
| 885 |
|
|
public boolean contains(double x, double y, double w, double h)
|
| 886 |
|
|
{
|
| 887 |
|
|
if (! getBounds2D().intersects(x, y, w, h))
|
| 888 |
|
|
return false;
|
| 889 |
|
|
|
| 890 |
|
|
/* Does any edge intersect? */
|
| 891 |
|
|
if (getAxisIntersections(x, y, true, w) != 0 /* top */
|
| 892 |
|
|
|| getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
|
| 893 |
|
|
|| getAxisIntersections(x + w, y, false, h) != 0 /* right */
|
| 894 |
|
|
|| getAxisIntersections(x, y, false, h) != 0) /* left */
|
| 895 |
|
|
return false;
|
| 896 |
|
|
|
| 897 |
|
|
/* No intersections, is any point inside? */
|
| 898 |
|
|
if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
|
| 899 |
|
|
return true;
|
| 900 |
|
|
|
| 901 |
|
|
return false;
|
| 902 |
|
|
}
|
| 903 |
|
|
|
| 904 |
|
|
/**
|
| 905 |
|
|
* Determine whether a Rectangle2D is entirely inside the area that is
|
| 906 |
|
|
* bounded by the curve and the straight line connecting its end points.
|
| 907 |
|
|
*
|
| 908 |
|
|
* <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
|
| 909 |
|
|
* alt="A drawing of the area spanned by the curve" />
|
| 910 |
|
|
*
|
| 911 |
|
|
* <p>The above drawing illustrates in which area points are
|
| 912 |
|
|
* considered “inside” a CubicCurve2D.
|
| 913 |
|
|
* @see #contains(double, double)
|
| 914 |
|
|
*/
|
| 915 |
|
|
public boolean contains(Rectangle2D r)
|
| 916 |
|
|
{
|
| 917 |
|
|
return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
| 918 |
|
|
}
|
| 919 |
|
|
|
| 920 |
|
|
/**
|
| 921 |
|
|
* Determines the smallest rectangle that encloses the
|
| 922 |
|
|
* curve’s start, end and control points.
|
| 923 |
|
|
*/
|
| 924 |
|
|
public Rectangle getBounds()
|
| 925 |
|
|
{
|
| 926 |
|
|
return getBounds2D().getBounds();
|
| 927 |
|
|
}
|
| 928 |
|
|
|
| 929 |
|
|
public PathIterator getPathIterator(final AffineTransform at)
|
| 930 |
|
|
{
|
| 931 |
|
|
return new PathIterator()
|
| 932 |
|
|
{
|
| 933 |
|
|
/** Current coordinate. */
|
| 934 |
|
|
private int current = 0;
|
| 935 |
|
|
|
| 936 |
|
|
public int getWindingRule()
|
| 937 |
|
|
{
|
| 938 |
|
|
return WIND_NON_ZERO;
|
| 939 |
|
|
}
|
| 940 |
|
|
|
| 941 |
|
|
public boolean isDone()
|
| 942 |
|
|
{
|
| 943 |
|
|
return current >= 2;
|
| 944 |
|
|
}
|
| 945 |
|
|
|
| 946 |
|
|
public void next()
|
| 947 |
|
|
{
|
| 948 |
|
|
current++;
|
| 949 |
|
|
}
|
| 950 |
|
|
|
| 951 |
|
|
public int currentSegment(float[] coords)
|
| 952 |
|
|
{
|
| 953 |
|
|
int result;
|
| 954 |
|
|
switch (current)
|
| 955 |
|
|
{
|
| 956 |
|
|
case 0:
|
| 957 |
|
|
coords[0] = (float) getX1();
|
| 958 |
|
|
coords[1] = (float) getY1();
|
| 959 |
|
|
result = SEG_MOVETO;
|
| 960 |
|
|
break;
|
| 961 |
|
|
case 1:
|
| 962 |
|
|
coords[0] = (float) getCtrlX1();
|
| 963 |
|
|
coords[1] = (float) getCtrlY1();
|
| 964 |
|
|
coords[2] = (float) getCtrlX2();
|
| 965 |
|
|
coords[3] = (float) getCtrlY2();
|
| 966 |
|
|
coords[4] = (float) getX2();
|
| 967 |
|
|
coords[5] = (float) getY2();
|
| 968 |
|
|
result = SEG_CUBICTO;
|
| 969 |
|
|
break;
|
| 970 |
|
|
default:
|
| 971 |
|
|
throw new NoSuchElementException("cubic iterator out of bounds");
|
| 972 |
|
|
}
|
| 973 |
|
|
if (at != null)
|
| 974 |
|
|
at.transform(coords, 0, coords, 0, 3);
|
| 975 |
|
|
return result;
|
| 976 |
|
|
}
|
| 977 |
|
|
|
| 978 |
|
|
public int currentSegment(double[] coords)
|
| 979 |
|
|
{
|
| 980 |
|
|
int result;
|
| 981 |
|
|
switch (current)
|
| 982 |
|
|
{
|
| 983 |
|
|
case 0:
|
| 984 |
|
|
coords[0] = getX1();
|
| 985 |
|
|
coords[1] = getY1();
|
| 986 |
|
|
result = SEG_MOVETO;
|
| 987 |
|
|
break;
|
| 988 |
|
|
case 1:
|
| 989 |
|
|
coords[0] = getCtrlX1();
|
| 990 |
|
|
coords[1] = getCtrlY1();
|
| 991 |
|
|
coords[2] = getCtrlX2();
|
| 992 |
|
|
coords[3] = getCtrlY2();
|
| 993 |
|
|
coords[4] = getX2();
|
| 994 |
|
|
coords[5] = getY2();
|
| 995 |
|
|
result = SEG_CUBICTO;
|
| 996 |
|
|
break;
|
| 997 |
|
|
default:
|
| 998 |
|
|
throw new NoSuchElementException("cubic iterator out of bounds");
|
| 999 |
|
|
}
|
| 1000 |
|
|
if (at != null)
|
| 1001 |
|
|
at.transform(coords, 0, coords, 0, 3);
|
| 1002 |
|
|
return result;
|
| 1003 |
|
|
}
|
| 1004 |
|
|
};
|
| 1005 |
|
|
}
|
| 1006 |
|
|
|
| 1007 |
|
|
public PathIterator getPathIterator(AffineTransform at, double flatness)
|
| 1008 |
|
|
{
|
| 1009 |
|
|
return new FlatteningPathIterator(getPathIterator(at), flatness);
|
| 1010 |
|
|
}
|
| 1011 |
|
|
|
| 1012 |
|
|
/**
|
| 1013 |
|
|
* Create a new curve with the same contents as this one.
|
| 1014 |
|
|
*
|
| 1015 |
|
|
* @return the clone.
|
| 1016 |
|
|
*/
|
| 1017 |
|
|
public Object clone()
|
| 1018 |
|
|
{
|
| 1019 |
|
|
try
|
| 1020 |
|
|
{
|
| 1021 |
|
|
return super.clone();
|
| 1022 |
|
|
}
|
| 1023 |
|
|
catch (CloneNotSupportedException e)
|
| 1024 |
|
|
{
|
| 1025 |
|
|
throw (Error) new InternalError().initCause(e); // Impossible
|
| 1026 |
|
|
}
|
| 1027 |
|
|
}
|
| 1028 |
|
|
|
| 1029 |
|
|
/**
|
| 1030 |
|
|
* Helper method used by contains() and intersects() methods, that
|
| 1031 |
|
|
* returns the number of curve/line intersections on a given axis
|
| 1032 |
|
|
* extending from a certain point.
|
| 1033 |
|
|
*
|
| 1034 |
|
|
* @param x x coordinate of the origin point
|
| 1035 |
|
|
* @param y y coordinate of the origin point
|
| 1036 |
|
|
* @param useYaxis axis used, if true the positive Y axis is used,
|
| 1037 |
|
|
* false uses the positive X axis.
|
| 1038 |
|
|
*
|
| 1039 |
|
|
* This is an implementation of the line-crossings algorithm,
|
| 1040 |
|
|
* Detailed in an article on Eric Haines' page:
|
| 1041 |
|
|
* http://www.acm.org/tog/editors/erich/ptinpoly/
|
| 1042 |
|
|
*
|
| 1043 |
|
|
* A special-case not adressed in this code is self-intersections
|
| 1044 |
|
|
* of the curve, e.g. if the axis intersects the self-itersection,
|
| 1045 |
|
|
* the degenerate roots of the polynomial will erroneously count as
|
| 1046 |
|
|
* a single intersection of the curve, and not two.
|
| 1047 |
|
|
*/
|
| 1048 |
|
|
private int getAxisIntersections(double x, double y, boolean useYaxis,
|
| 1049 |
|
|
double distance)
|
| 1050 |
|
|
{
|
| 1051 |
|
|
int nCrossings = 0;
|
| 1052 |
|
|
double a0;
|
| 1053 |
|
|
double a1;
|
| 1054 |
|
|
double a2;
|
| 1055 |
|
|
double a3;
|
| 1056 |
|
|
double b0;
|
| 1057 |
|
|
double b1;
|
| 1058 |
|
|
double b2;
|
| 1059 |
|
|
double b3;
|
| 1060 |
|
|
double[] r = new double[4];
|
| 1061 |
|
|
int nRoots;
|
| 1062 |
|
|
|
| 1063 |
|
|
a0 = a3 = 0.0;
|
| 1064 |
|
|
|
| 1065 |
|
|
if (useYaxis)
|
| 1066 |
|
|
{
|
| 1067 |
|
|
a0 = getY1() - y;
|
| 1068 |
|
|
a1 = getCtrlY1() - y;
|
| 1069 |
|
|
a2 = getCtrlY2() - y;
|
| 1070 |
|
|
a3 = getY2() - y;
|
| 1071 |
|
|
b0 = getX1() - x;
|
| 1072 |
|
|
b1 = getCtrlX1() - x;
|
| 1073 |
|
|
b2 = getCtrlX2() - x;
|
| 1074 |
|
|
b3 = getX2() - x;
|
| 1075 |
|
|
}
|
| 1076 |
|
|
else
|
| 1077 |
|
|
{
|
| 1078 |
|
|
a0 = getX1() - x;
|
| 1079 |
|
|
a1 = getCtrlX1() - x;
|
| 1080 |
|
|
a2 = getCtrlX2() - x;
|
| 1081 |
|
|
a3 = getX2() - x;
|
| 1082 |
|
|
b0 = getY1() - y;
|
| 1083 |
|
|
b1 = getCtrlY1() - y;
|
| 1084 |
|
|
b2 = getCtrlY2() - y;
|
| 1085 |
|
|
b3 = getY2() - y;
|
| 1086 |
|
|
}
|
| 1087 |
|
|
|
| 1088 |
|
|
/* If the axis intersects a start/endpoint, shift it up by some small
|
| 1089 |
|
|
amount to guarantee the line is 'inside'
|
| 1090 |
|
|
If this is not done, bad behaviour may result for points on that axis.*/
|
| 1091 |
|
|
if (a0 == 0.0 || a3 == 0.0)
|
| 1092 |
|
|
{
|
| 1093 |
|
|
double small = getFlatness() * EPSILON;
|
| 1094 |
|
|
if (a0 == 0.0)
|
| 1095 |
|
|
a0 -= small;
|
| 1096 |
|
|
if (a3 == 0.0)
|
| 1097 |
|
|
a3 -= small;
|
| 1098 |
|
|
}
|
| 1099 |
|
|
|
| 1100 |
|
|
if (useYaxis)
|
| 1101 |
|
|
{
|
| 1102 |
|
|
if (Line2D.linesIntersect(b0, a0, b3, a3, EPSILON, 0.0, distance, 0.0))
|
| 1103 |
|
|
nCrossings++;
|
| 1104 |
|
|
}
|
| 1105 |
|
|
else
|
| 1106 |
|
|
{
|
| 1107 |
|
|
if (Line2D.linesIntersect(a0, b0, a3, b3, 0.0, EPSILON, 0.0, distance))
|
| 1108 |
|
|
nCrossings++;
|
| 1109 |
|
|
}
|
| 1110 |
|
|
|
| 1111 |
|
|
r[0] = a0;
|
| 1112 |
|
|
r[1] = 3 * (a1 - a0);
|
| 1113 |
|
|
r[2] = 3 * (a2 + a0 - 2 * a1);
|
| 1114 |
|
|
r[3] = a3 - 3 * a2 + 3 * a1 - a0;
|
| 1115 |
|
|
|
| 1116 |
|
|
if ((nRoots = solveCubic(r)) != 0)
|
| 1117 |
|
|
for (int i = 0; i < nRoots; i++)
|
| 1118 |
|
|
{
|
| 1119 |
|
|
double t = r[i];
|
| 1120 |
|
|
if (t >= 0.0 && t <= 1.0)
|
| 1121 |
|
|
{
|
| 1122 |
|
|
double crossing = -(t * t * t) * (b0 - 3 * b1 + 3 * b2 - b3)
|
| 1123 |
|
|
+ 3 * t * t * (b0 - 2 * b1 + b2)
|
| 1124 |
|
|
+ 3 * t * (b1 - b0) + b0;
|
| 1125 |
|
|
if (crossing > 0.0 && crossing <= distance)
|
| 1126 |
|
|
nCrossings++;
|
| 1127 |
|
|
}
|
| 1128 |
|
|
}
|
| 1129 |
|
|
|
| 1130 |
|
|
return (nCrossings);
|
| 1131 |
|
|
}
|
| 1132 |
|
|
|
| 1133 |
|
|
/**
|
| 1134 |
|
|
* A two-dimensional curve that is parameterized with a cubic
|
| 1135 |
|
|
* function and stores coordinate values in double-precision
|
| 1136 |
|
|
* floating-point format.
|
| 1137 |
|
|
*
|
| 1138 |
|
|
* @see CubicCurve2D.Float
|
| 1139 |
|
|
*
|
| 1140 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
| 1141 |
|
|
* @author Sascha Brawer (brawer@dandelis.ch)
|
| 1142 |
|
|
*/
|
| 1143 |
|
|
public static class Double extends CubicCurve2D
|
| 1144 |
|
|
{
|
| 1145 |
|
|
/**
|
| 1146 |
|
|
* The <i>x</i> coordinate of the curve’s start point.
|
| 1147 |
|
|
*/
|
| 1148 |
|
|
public double x1;
|
| 1149 |
|
|
|
| 1150 |
|
|
/**
|
| 1151 |
|
|
* The <i>y</i> coordinate of the curve’s start point.
|
| 1152 |
|
|
*/
|
| 1153 |
|
|
public double y1;
|
| 1154 |
|
|
|
| 1155 |
|
|
/**
|
| 1156 |
|
|
* The <i>x</i> coordinate of the curve’s first control point.
|
| 1157 |
|
|
*/
|
| 1158 |
|
|
public double ctrlx1;
|
| 1159 |
|
|
|
| 1160 |
|
|
/**
|
| 1161 |
|
|
* The <i>y</i> coordinate of the curve’s first control point.
|
| 1162 |
|
|
*/
|
| 1163 |
|
|
public double ctrly1;
|
| 1164 |
|
|
|
| 1165 |
|
|
/**
|
| 1166 |
|
|
* The <i>x</i> coordinate of the curve’s second control point.
|
| 1167 |
|
|
*/
|
| 1168 |
|
|
public double ctrlx2;
|
| 1169 |
|
|
|
| 1170 |
|
|
/**
|
| 1171 |
|
|
* The <i>y</i> coordinate of the curve’s second control point.
|
| 1172 |
|
|
*/
|
| 1173 |
|
|
public double ctrly2;
|
| 1174 |
|
|
|
| 1175 |
|
|
/**
|
| 1176 |
|
|
* The <i>x</i> coordinate of the curve’s end point.
|
| 1177 |
|
|
*/
|
| 1178 |
|
|
public double x2;
|
| 1179 |
|
|
|
| 1180 |
|
|
/**
|
| 1181 |
|
|
* The <i>y</i> coordinate of the curve’s end point.
|
| 1182 |
|
|
*/
|
| 1183 |
|
|
public double y2;
|
| 1184 |
|
|
|
| 1185 |
|
|
/**
|
| 1186 |
|
|
* Constructs a new CubicCurve2D that stores its coordinate values
|
| 1187 |
|
|
* in double-precision floating-point format. All points are
|
| 1188 |
|
|
* initially at position (0, 0).
|
| 1189 |
|
|
*/
|
| 1190 |
|
|
public Double()
|
| 1191 |
|
|
{
|
| 1192 |
|
|
}
|
| 1193 |
|
|
|
| 1194 |
|
|
/**
|
| 1195 |
|
|
* Constructs a new CubicCurve2D that stores its coordinate values
|
| 1196 |
|
|
* in double-precision floating-point format, specifying the
|
| 1197 |
|
|
* initial position of each point.
|
| 1198 |
|
|
*
|
| 1199 |
|
|
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
|
| 1200 |
|
|
* alt="A drawing of a CubicCurve2D" />
|
| 1201 |
|
|
*
|
| 1202 |
|
|
* @param x1 the <i>x</i> coordinate of the curve’s start
|
| 1203 |
|
|
* point.
|
| 1204 |
|
|
*
|
| 1205 |
|
|
* @param y1 the <i>y</i> coordinate of the curve’s start
|
| 1206 |
|
|
* point.
|
| 1207 |
|
|
*
|
| 1208 |
|
|
* @param cx1 the <i>x</i> coordinate of the curve’s first
|
| 1209 |
|
|
* control point.
|
| 1210 |
|
|
*
|
| 1211 |
|
|
* @param cy1 the <i>y</i> coordinate of the curve’s first
|
| 1212 |
|
|
* control point.
|
| 1213 |
|
|
*
|
| 1214 |
|
|
* @param cx2 the <i>x</i> coordinate of the curve’s second
|
| 1215 |
|
|
* control point.
|
| 1216 |
|
|
*
|
| 1217 |
|
|
* @param cy2 the <i>y</i> coordinate of the curve’s second
|
| 1218 |
|
|
* control point.
|
| 1219 |
|
|
*
|
| 1220 |
|
|
* @param x2 the <i>x</i> coordinate of the curve’s end
|
| 1221 |
|
|
* point.
|
| 1222 |
|
|
*
|
| 1223 |
|
|
* @param y2 the <i>y</i> coordinate of the curve’s end
|
| 1224 |
|
|
* point.
|
| 1225 |
|
|
*/
|
| 1226 |
|
|
public Double(double x1, double y1, double cx1, double cy1, double cx2,
|
| 1227 |
|
|
double cy2, double x2, double y2)
|
| 1228 |
|
|
{
|
| 1229 |
|
|
this.x1 = x1;
|
| 1230 |
|
|
this.y1 = y1;
|
| 1231 |
|
|
ctrlx1 = cx1;
|
| 1232 |
|
|
ctrly1 = cy1;
|
| 1233 |
|
|
ctrlx2 = cx2;
|
| 1234 |
|
|
ctrly2 = cy2;
|
| 1235 |
|
|
this.x2 = x2;
|
| 1236 |
|
|
this.y2 = y2;
|
| 1237 |
|
|
}
|
| 1238 |
|
|
|
| 1239 |
|
|
/**
|
| 1240 |
|
|
* Returns the <i>x</i> coordinate of the curve’s start
|
| 1241 |
|
|
* point.
|
| 1242 |
|
|
*/
|
| 1243 |
|
|
public double getX1()
|
| 1244 |
|
|
{
|
| 1245 |
|
|
return x1;
|
| 1246 |
|
|
}
|
| 1247 |
|
|
|
| 1248 |
|
|
/**
|
| 1249 |
|
|
* Returns the <i>y</i> coordinate of the curve’s start
|
| 1250 |
|
|
* point.
|
| 1251 |
|
|
*/
|
| 1252 |
|
|
public double getY1()
|
| 1253 |
|
|
{
|
| 1254 |
|
|
return y1;
|
| 1255 |
|
|
}
|
| 1256 |
|
|
|
| 1257 |
|
|
/**
|
| 1258 |
|
|
* Returns the curve’s start point.
|
| 1259 |
|
|
*/
|
| 1260 |
|
|
public Point2D getP1()
|
| 1261 |
|
|
{
|
| 1262 |
|
|
return new Point2D.Double(x1, y1);
|
| 1263 |
|
|
}
|
| 1264 |
|
|
|
| 1265 |
|
|
/**
|
| 1266 |
|
|
* Returns the <i>x</i> coordinate of the curve’s first
|
| 1267 |
|
|
* control point.
|
| 1268 |
|
|
*/
|
| 1269 |
|
|
public double getCtrlX1()
|
| 1270 |
|
|
{
|
| 1271 |
|
|
return ctrlx1;
|
| 1272 |
|
|
}
|
| 1273 |
|
|
|
| 1274 |
|
|
/**
|
| 1275 |
|
|
* Returns the <i>y</i> coordinate of the curve’s first
|
| 1276 |
|
|
* control point.
|
| 1277 |
|
|
*/
|
| 1278 |
|
|
public double getCtrlY1()
|
| 1279 |
|
|
{
|
| 1280 |
|
|
return ctrly1;
|
| 1281 |
|
|
}
|
| 1282 |
|
|
|
| 1283 |
|
|
/**
|
| 1284 |
|
|
* Returns the curve’s first control point.
|
| 1285 |
|
|
*/
|
| 1286 |
|
|
public Point2D getCtrlP1()
|
| 1287 |
|
|
{
|
| 1288 |
|
|
return new Point2D.Double(ctrlx1, ctrly1);
|
| 1289 |
|
|
}
|
| 1290 |
|
|
|
| 1291 |
|
|
/**
|
| 1292 |
|
|
* Returns the <i>x</i> coordinate of the curve’s second
|
| 1293 |
|
|
* control point.
|
| 1294 |
|
|
*/
|
| 1295 |
|
|
public double getCtrlX2()
|
| 1296 |
|
|
{
|
| 1297 |
|
|
return ctrlx2;
|
| 1298 |
|
|
}
|
| 1299 |
|
|
|
| 1300 |
|
|
/**
|
| 1301 |
|
|
* Returns the <i>y</i> coordinate of the curve’s second
|
| 1302 |
|
|
* control point.
|
| 1303 |
|
|
*/
|
| 1304 |
|
|
public double getCtrlY2()
|
| 1305 |
|
|
{
|
| 1306 |
|
|
return ctrly2;
|
| 1307 |
|
|
}
|
| 1308 |
|
|
|
| 1309 |
|
|
/**
|
| 1310 |
|
|
* Returns the curve’s second control point.
|
| 1311 |
|
|
*/
|
| 1312 |
|
|
public Point2D getCtrlP2()
|
| 1313 |
|
|
{
|
| 1314 |
|
|
return new Point2D.Double(ctrlx2, ctrly2);
|
| 1315 |
|
|
}
|
| 1316 |
|
|
|
| 1317 |
|
|
/**
|
| 1318 |
|
|
* Returns the <i>x</i> coordinate of the curve’s end
|
| 1319 |
|
|
* point.
|
| 1320 |
|
|
*/
|
| 1321 |
|
|
public double getX2()
|
| 1322 |
|
|
{
|
| 1323 |
|
|
return x2;
|
| 1324 |
|
|
}
|
| 1325 |
|
|
|
| 1326 |
|
|
/**
|
| 1327 |
|
|
* Returns the <i>y</i> coordinate of the curve’s end
|
| 1328 |
|
|
* point.
|
| 1329 |
|
|
*/
|
| 1330 |
|
|
public double getY2()
|
| 1331 |
|
|
{
|
| 1332 |
|
|
return y2;
|
| 1333 |
|
|
}
|
| 1334 |
|
|
|
| 1335 |
|
|
/**
|
| 1336 |
|
|
* Returns the curve’s end point.
|
| 1337 |
|
|
*/
|
| 1338 |
|
|
public Point2D getP2()
|
| 1339 |
|
|
{
|
| 1340 |
|
|
return new Point2D.Double(x2, y2);
|
| 1341 |
|
|
}
|
| 1342 |
|
|
|
| 1343 |
|
|
/**
|
| 1344 |
|
|
* Changes the curve geometry, separately specifying each coordinate
|
| 1345 |
|
|
* value.
|
| 1346 |
|
|
*
|
| 1347 |
|
|
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
|
| 1348 |
|
|
* alt="A drawing of a CubicCurve2D" />
|
| 1349 |
|
|
*
|
| 1350 |
|
|
* @param x1 the <i>x</i> coordinate of the curve’s new start
|
| 1351 |
|
|
* point.
|
| 1352 |
|
|
*
|
| 1353 |
|
|
* @param y1 the <i>y</i> coordinate of the curve’s new start
|
| 1354 |
|
|
* point.
|
| 1355 |
|
|
*
|
| 1356 |
|
|
* @param cx1 the <i>x</i> coordinate of the curve’s new
|
| 1357 |
|
|
* first control point.
|
| 1358 |
|
|
*
|
| 1359 |
|
|
* @param cy1 the <i>y</i> coordinate of the curve’s new
|
| 1360 |
|
|
* first control point.
|
| 1361 |
|
|
*
|
| 1362 |
|
|
* @param cx2 the <i>x</i> coordinate of the curve’s new
|
| 1363 |
|
|
* second control point.
|
| 1364 |
|
|
*
|
| 1365 |
|
|
* @param cy2 the <i>y</i> coordinate of the curve’s new
|
| 1366 |
|
|
* second control point.
|
| 1367 |
|
|
*
|
| 1368 |
|
|
* @param x2 the <i>x</i> coordinate of the curve’s new end
|
| 1369 |
|
|
* point.
|
| 1370 |
|
|
*
|
| 1371 |
|
|
* @param y2 the <i>y</i> coordinate of the curve’s new end
|
| 1372 |
|
|
* point.
|
| 1373 |
|
|
*/
|
| 1374 |
|
|
public void setCurve(double x1, double y1, double cx1, double cy1,
|
| 1375 |
|
|
double cx2, double cy2, double x2, double y2)
|
| 1376 |
|
|
{
|
| 1377 |
|
|
this.x1 = x1;
|
| 1378 |
|
|
this.y1 = y1;
|
| 1379 |
|
|
ctrlx1 = cx1;
|
| 1380 |
|
|
ctrly1 = cy1;
|
| 1381 |
|
|
ctrlx2 = cx2;
|
| 1382 |
|
|
ctrly2 = cy2;
|
| 1383 |
|
|
this.x2 = x2;
|
| 1384 |
|
|
this.y2 = y2;
|
| 1385 |
|
|
}
|
| 1386 |
|
|
|
| 1387 |
|
|
/**
|
| 1388 |
|
|
* Determines the smallest rectangle that encloses the
|
| 1389 |
|
|
* curve’s start, end and control points. As the
|
| 1390 |
|
|
* illustration below shows, the invisible control points may cause
|
| 1391 |
|
|
* the bounds to be much larger than the area that is actually
|
| 1392 |
|
|
* covered by the curve.
|
| 1393 |
|
|
*
|
| 1394 |
|
|
* <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
|
| 1395 |
|
|
* alt="An illustration of the bounds of a CubicCurve2D" />
|
| 1396 |
|
|
*/
|
| 1397 |
|
|
public Rectangle2D getBounds2D()
|
| 1398 |
|
|
{
|
| 1399 |
|
|
double nx1 = Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2));
|
| 1400 |
|
|
double ny1 = Math.min(Math.min(y1, ctrly1), Math.min(ctrly2, y2));
|
| 1401 |
|
|
double nx2 = Math.max(Math.max(x1, ctrlx1), Math.max(ctrlx2, x2));
|
| 1402 |
|
|
double ny2 = Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2));
|
| 1403 |
|
|
return new Rectangle2D.Double(nx1, ny1, nx2 - nx1, ny2 - ny1);
|
| 1404 |
|
|
}
|
| 1405 |
|
|
}
|
| 1406 |
|
|
|
| 1407 |
|
|
/**
|
| 1408 |
|
|
* A two-dimensional curve that is parameterized with a cubic
|
| 1409 |
|
|
* function and stores coordinate values in single-precision
|
| 1410 |
|
|
* floating-point format.
|
| 1411 |
|
|
*
|
| 1412 |
|
|
* @see CubicCurve2D.Float
|
| 1413 |
|
|
*
|
| 1414 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
| 1415 |
|
|
* @author Sascha Brawer (brawer@dandelis.ch)
|
| 1416 |
|
|
*/
|
| 1417 |
|
|
public static class Float extends CubicCurve2D
|
| 1418 |
|
|
{
|
| 1419 |
|
|
/**
|
| 1420 |
|
|
* The <i>x</i> coordinate of the curve’s start point.
|
| 1421 |
|
|
*/
|
| 1422 |
|
|
public float x1;
|
| 1423 |
|
|
|
| 1424 |
|
|
/**
|
| 1425 |
|
|
* The <i>y</i> coordinate of the curve’s start point.
|
| 1426 |
|
|
*/
|
| 1427 |
|
|
public float y1;
|
| 1428 |
|
|
|
| 1429 |
|
|
/**
|
| 1430 |
|
|
* The <i>x</i> coordinate of the curve’s first control point.
|
| 1431 |
|
|
*/
|
| 1432 |
|
|
public float ctrlx1;
|
| 1433 |
|
|
|
| 1434 |
|
|
/**
|
| 1435 |
|
|
* The <i>y</i> coordinate of the curve’s first control point.
|
| 1436 |
|
|
*/
|
| 1437 |
|
|
public float ctrly1;
|
| 1438 |
|
|
|
| 1439 |
|
|
/**
|
| 1440 |
|
|
* The <i>x</i> coordinate of the curve’s second control point.
|
| 1441 |
|
|
*/
|
| 1442 |
|
|
public float ctrlx2;
|
| 1443 |
|
|
|
| 1444 |
|
|
/**
|
| 1445 |
|
|
* The <i>y</i> coordinate of the curve’s second control point.
|
| 1446 |
|
|
*/
|
| 1447 |
|
|
public float ctrly2;
|
| 1448 |
|
|
|
| 1449 |
|
|
/**
|
| 1450 |
|
|
* The <i>x</i> coordinate of the curve’s end point.
|
| 1451 |
|
|
*/
|
| 1452 |
|
|
public float x2;
|
| 1453 |
|
|
|
| 1454 |
|
|
/**
|
| 1455 |
|
|
* The <i>y</i> coordinate of the curve’s end point.
|
| 1456 |
|
|
*/
|
| 1457 |
|
|
public float y2;
|
| 1458 |
|
|
|
| 1459 |
|
|
/**
|
| 1460 |
|
|
* Constructs a new CubicCurve2D that stores its coordinate values
|
| 1461 |
|
|
* in single-precision floating-point format. All points are
|
| 1462 |
|
|
* initially at position (0, 0).
|
| 1463 |
|
|
*/
|
| 1464 |
|
|
public Float()
|
| 1465 |
|
|
{
|
| 1466 |
|
|
}
|
| 1467 |
|
|
|
| 1468 |
|
|
/**
|
| 1469 |
|
|
* Constructs a new CubicCurve2D that stores its coordinate values
|
| 1470 |
|
|
* in single-precision floating-point format, specifying the
|
| 1471 |
|
|
* initial position of each point.
|
| 1472 |
|
|
*
|
| 1473 |
|
|
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
|
| 1474 |
|
|
* alt="A drawing of a CubicCurve2D" />
|
| 1475 |
|
|
*
|
| 1476 |
|
|
* @param x1 the <i>x</i> coordinate of the curve’s start
|
| 1477 |
|
|
* point.
|
| 1478 |
|
|
*
|
| 1479 |
|
|
* @param y1 the <i>y</i> coordinate of the curve’s start
|
| 1480 |
|
|
* point.
|
| 1481 |
|
|
*
|
| 1482 |
|
|
* @param cx1 the <i>x</i> coordinate of the curve’s first
|
| 1483 |
|
|
* control point.
|
| 1484 |
|
|
*
|
| 1485 |
|
|
* @param cy1 the <i>y</i> coordinate of the curve’s first
|
| 1486 |
|
|
* control point.
|
| 1487 |
|
|
*
|
| 1488 |
|
|
* @param cx2 the <i>x</i> coordinate of the curve’s second
|
| 1489 |
|
|
* control point.
|
| 1490 |
|
|
*
|
| 1491 |
|
|
* @param cy2 the <i>y</i> coordinate of the curve’s second
|
| 1492 |
|
|
* control point.
|
| 1493 |
|
|
*
|
| 1494 |
|
|
* @param x2 the <i>x</i> coordinate of the curve’s end
|
| 1495 |
|
|
* point.
|
| 1496 |
|
|
*
|
| 1497 |
|
|
* @param y2 the <i>y</i> coordinate of the curve’s end
|
| 1498 |
|
|
* point.
|
| 1499 |
|
|
*/
|
| 1500 |
|
|
public Float(float x1, float y1, float cx1, float cy1, float cx2,
|
| 1501 |
|
|
float cy2, float x2, float y2)
|
| 1502 |
|
|
{
|
| 1503 |
|
|
this.x1 = x1;
|
| 1504 |
|
|
this.y1 = y1;
|
| 1505 |
|
|
ctrlx1 = cx1;
|
| 1506 |
|
|
ctrly1 = cy1;
|
| 1507 |
|
|
ctrlx2 = cx2;
|
| 1508 |
|
|
ctrly2 = cy2;
|
| 1509 |
|
|
this.x2 = x2;
|
| 1510 |
|
|
this.y2 = y2;
|
| 1511 |
|
|
}
|
| 1512 |
|
|
|
| 1513 |
|
|
/**
|
| 1514 |
|
|
* Returns the <i>x</i> coordinate of the curve’s start
|
| 1515 |
|
|
* point.
|
| 1516 |
|
|
*/
|
| 1517 |
|
|
public double getX1()
|
| 1518 |
|
|
{
|
| 1519 |
|
|
return x1;
|
| 1520 |
|
|
}
|
| 1521 |
|
|
|
| 1522 |
|
|
/**
|
| 1523 |
|
|
* Returns the <i>y</i> coordinate of the curve’s start
|
| 1524 |
|
|
* point.
|
| 1525 |
|
|
*/
|
| 1526 |
|
|
public double getY1()
|
| 1527 |
|
|
{
|
| 1528 |
|
|
return y1;
|
| 1529 |
|
|
}
|
| 1530 |
|
|
|
| 1531 |
|
|
/**
|
| 1532 |
|
|
* Returns the curve’s start point.
|
| 1533 |
|
|
*/
|
| 1534 |
|
|
public Point2D getP1()
|
| 1535 |
|
|
{
|
| 1536 |
|
|
return new Point2D.Float(x1, y1);
|
| 1537 |
|
|
}
|
| 1538 |
|
|
|
| 1539 |
|
|
/**
|
| 1540 |
|
|
* Returns the <i>x</i> coordinate of the curve’s first
|
| 1541 |
|
|
* control point.
|
| 1542 |
|
|
*/
|
| 1543 |
|
|
public double getCtrlX1()
|
| 1544 |
|
|
{
|
| 1545 |
|
|
return ctrlx1;
|
| 1546 |
|
|
}
|
| 1547 |
|
|
|
| 1548 |
|
|
/**
|
| 1549 |
|
|
* Returns the <i>y</i> coordinate of the curve’s first
|
| 1550 |
|
|
* control point.
|
| 1551 |
|
|
*/
|
| 1552 |
|
|
public double getCtrlY1()
|
| 1553 |
|
|
{
|
| 1554 |
|
|
return ctrly1;
|
| 1555 |
|
|
}
|
| 1556 |
|
|
|
| 1557 |
|
|
/**
|
| 1558 |
|
|
* Returns the curve’s first control point.
|
| 1559 |
|
|
*/
|
| 1560 |
|
|
public Point2D getCtrlP1()
|
| 1561 |
|
|
{
|
| 1562 |
|
|
return new Point2D.Float(ctrlx1, ctrly1);
|
| 1563 |
|
|
}
|
| 1564 |
|
|
|
| 1565 |
|
|
/**
|
| 1566 |
|
|
* Returns the <i>s</i> coordinate of the curve’s second
|
| 1567 |
|
|
* control point.
|
| 1568 |
|
|
*/
|
| 1569 |
|
|
public double getCtrlX2()
|
| 1570 |
|
|
{
|
| 1571 |
|
|
return ctrlx2;
|
| 1572 |
|
|
}
|
| 1573 |
|
|
|
| 1574 |
|
|
/**
|
| 1575 |
|
|
* Returns the <i>y</i> coordinate of the curve’s second
|
| 1576 |
|
|
* control point.
|
| 1577 |
|
|
*/
|
| 1578 |
|
|
public double getCtrlY2()
|
| 1579 |
|
|
{
|
| 1580 |
|
|
return ctrly2;
|
| 1581 |
|
|
}
|
| 1582 |
|
|
|
| 1583 |
|
|
/**
|
| 1584 |
|
|
* Returns the curve’s second control point.
|
| 1585 |
|
|
*/
|
| 1586 |
|
|
public Point2D getCtrlP2()
|
| 1587 |
|
|
{
|
| 1588 |
|
|
return new Point2D.Float(ctrlx2, ctrly2);
|
| 1589 |
|
|
}
|
| 1590 |
|
|
|
| 1591 |
|
|
/**
|
| 1592 |
|
|
* Returns the <i>x</i> coordinate of the curve’s end
|
| 1593 |
|
|
* point.
|
| 1594 |
|
|
*/
|
| 1595 |
|
|
public double getX2()
|
| 1596 |
|
|
{
|
| 1597 |
|
|
return x2;
|
| 1598 |
|
|
}
|
| 1599 |
|
|
|
| 1600 |
|
|
/**
|
| 1601 |
|
|
* Returns the <i>y</i> coordinate of the curve’s end
|
| 1602 |
|
|
* point.
|
| 1603 |
|
|
*/
|
| 1604 |
|
|
public double getY2()
|
| 1605 |
|
|
{
|
| 1606 |
|
|
return y2;
|
| 1607 |
|
|
}
|
| 1608 |
|
|
|
| 1609 |
|
|
/**
|
| 1610 |
|
|
* Returns the curve’s end point.
|
| 1611 |
|
|
*/
|
| 1612 |
|
|
public Point2D getP2()
|
| 1613 |
|
|
{
|
| 1614 |
|
|
return new Point2D.Float(x2, y2);
|
| 1615 |
|
|
}
|
| 1616 |
|
|
|
| 1617 |
|
|
/**
|
| 1618 |
|
|
* Changes the curve geometry, separately specifying each coordinate
|
| 1619 |
|
|
* value as a double-precision floating-point number.
|
| 1620 |
|
|
*
|
| 1621 |
|
|
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
|
| 1622 |
|
|
* alt="A drawing of a CubicCurve2D" />
|
| 1623 |
|
|
*
|
| 1624 |
|
|
* @param x1 the <i>x</i> coordinate of the curve’s new start
|
| 1625 |
|
|
* point.
|
| 1626 |
|
|
*
|
| 1627 |
|
|
* @param y1 the <i>y</i> coordinate of the curve’s new start
|
| 1628 |
|
|
* point.
|
| 1629 |
|
|
*
|
| 1630 |
|
|
* @param cx1 the <i>x</i> coordinate of the curve’s new
|
| 1631 |
|
|
* first control point.
|
| 1632 |
|
|
*
|
| 1633 |
|
|
* @param cy1 the <i>y</i> coordinate of the curve’s new
|
| 1634 |
|
|
* first control point.
|
| 1635 |
|
|
*
|
| 1636 |
|
|
* @param cx2 the <i>x</i> coordinate of the curve’s new
|
| 1637 |
|
|
* second control point.
|
| 1638 |
|
|
*
|
| 1639 |
|
|
* @param cy2 the <i>y</i> coordinate of the curve’s new
|
| 1640 |
|
|
* second control point.
|
| 1641 |
|
|
*
|
| 1642 |
|
|
* @param x2 the <i>x</i> coordinate of the curve’s new end
|
| 1643 |
|
|
* point.
|
| 1644 |
|
|
*
|
| 1645 |
|
|
* @param y2 the <i>y</i> coordinate of the curve’s new end
|
| 1646 |
|
|
* point.
|
| 1647 |
|
|
*/
|
| 1648 |
|
|
public void setCurve(double x1, double y1, double cx1, double cy1,
|
| 1649 |
|
|
double cx2, double cy2, double x2, double y2)
|
| 1650 |
|
|
{
|
| 1651 |
|
|
this.x1 = (float) x1;
|
| 1652 |
|
|
this.y1 = (float) y1;
|
| 1653 |
|
|
ctrlx1 = (float) cx1;
|
| 1654 |
|
|
ctrly1 = (float) cy1;
|
| 1655 |
|
|
ctrlx2 = (float) cx2;
|
| 1656 |
|
|
ctrly2 = (float) cy2;
|
| 1657 |
|
|
this.x2 = (float) x2;
|
| 1658 |
|
|
this.y2 = (float) y2;
|
| 1659 |
|
|
}
|
| 1660 |
|
|
|
| 1661 |
|
|
/**
|
| 1662 |
|
|
* Changes the curve geometry, separately specifying each coordinate
|
| 1663 |
|
|
* value as a single-precision floating-point number.
|
| 1664 |
|
|
*
|
| 1665 |
|
|
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
|
| 1666 |
|
|
* alt="A drawing of a CubicCurve2D" />
|
| 1667 |
|
|
*
|
| 1668 |
|
|
* @param x1 the <i>x</i> coordinate of the curve’s new start
|
| 1669 |
|
|
* point.
|
| 1670 |
|
|
*
|
| 1671 |
|
|
* @param y1 the <i>y</i> coordinate of the curve’s new start
|
| 1672 |
|
|
* point.
|
| 1673 |
|
|
*
|
| 1674 |
|
|
* @param cx1 the <i>x</i> coordinate of the curve’s new
|
| 1675 |
|
|
* first control point.
|
| 1676 |
|
|
*
|
| 1677 |
|
|
* @param cy1 the <i>y</i> coordinate of the curve’s new
|
| 1678 |
|
|
* first control point.
|
| 1679 |
|
|
*
|
| 1680 |
|
|
* @param cx2 the <i>x</i> coordinate of the curve’s new
|
| 1681 |
|
|
* second control point.
|
| 1682 |
|
|
*
|
| 1683 |
|
|
* @param cy2 the <i>y</i> coordinate of the curve’s new
|
| 1684 |
|
|
* second control point.
|
| 1685 |
|
|
*
|
| 1686 |
|
|
* @param x2 the <i>x</i> coordinate of the curve’s new end
|
| 1687 |
|
|
* point.
|
| 1688 |
|
|
*
|
| 1689 |
|
|
* @param y2 the <i>y</i> coordinate of the curve’s new end
|
| 1690 |
|
|
* point.
|
| 1691 |
|
|
*/
|
| 1692 |
|
|
public void setCurve(float x1, float y1, float cx1, float cy1, float cx2,
|
| 1693 |
|
|
float cy2, float x2, float y2)
|
| 1694 |
|
|
{
|
| 1695 |
|
|
this.x1 = x1;
|
| 1696 |
|
|
this.y1 = y1;
|
| 1697 |
|
|
ctrlx1 = cx1;
|
| 1698 |
|
|
ctrly1 = cy1;
|
| 1699 |
|
|
ctrlx2 = cx2;
|
| 1700 |
|
|
ctrly2 = cy2;
|
| 1701 |
|
|
this.x2 = x2;
|
| 1702 |
|
|
this.y2 = y2;
|
| 1703 |
|
|
}
|
| 1704 |
|
|
|
| 1705 |
|
|
/**
|
| 1706 |
|
|
* Determines the smallest rectangle that encloses the
|
| 1707 |
|
|
* curve’s start, end and control points. As the
|
| 1708 |
|
|
* illustration below shows, the invisible control points may cause
|
| 1709 |
|
|
* the bounds to be much larger than the area that is actually
|
| 1710 |
|
|
* covered by the curve.
|
| 1711 |
|
|
*
|
| 1712 |
|
|
* <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
|
| 1713 |
|
|
* alt="An illustration of the bounds of a CubicCurve2D" />
|
| 1714 |
|
|
*/
|
| 1715 |
|
|
public Rectangle2D getBounds2D()
|
| 1716 |
|
|
{
|
| 1717 |
|
|
float nx1 = (float) Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2));
|
| 1718 |
|
|
float ny1 = (float) Math.min(Math.min(y1, ctrly1), Math.min(ctrly2, y2));
|
| 1719 |
|
|
float nx2 = (float) Math.max(Math.max(x1, ctrlx1), Math.max(ctrlx2, x2));
|
| 1720 |
|
|
float ny2 = (float) Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2));
|
| 1721 |
|
|
return new Rectangle2D.Float(nx1, ny1, nx2 - nx1, ny2 - ny1);
|
| 1722 |
|
|
}
|
| 1723 |
|
|
}
|
| 1724 |
|
|
}
|