OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [libjava/] [classpath/] [java/] [util/] [Hashtable.java] - Blame information for rev 14

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 14 jlechner
/* Hashtable.java -- a class providing a basic hashtable data structure,
2
   mapping Object --> Object
3
   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006
4
   Free Software Foundation, Inc.
5
 
6
This file is part of GNU Classpath.
7
 
8
GNU Classpath is free software; you can redistribute it and/or modify
9
it under the terms of the GNU General Public License as published by
10
the Free Software Foundation; either version 2, or (at your option)
11
any later version.
12
 
13
GNU Classpath is distributed in the hope that it will be useful, but
14
WITHOUT ANY WARRANTY; without even the implied warranty of
15
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
General Public License for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GNU Classpath; see the file COPYING.  If not, write to the
20
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21
02110-1301 USA.
22
 
23
Linking this library statically or dynamically with other modules is
24
making a combined work based on this library.  Thus, the terms and
25
conditions of the GNU General Public License cover the whole
26
combination.
27
 
28
As a special exception, the copyright holders of this library give you
29
permission to link this library with independent modules to produce an
30
executable, regardless of the license terms of these independent
31
modules, and to copy and distribute the resulting executable under
32
terms of your choice, provided that you also meet, for each linked
33
independent module, the terms and conditions of the license of that
34
module.  An independent module is a module which is not derived from
35
or based on this library.  If you modify this library, you may extend
36
this exception to your version of the library, but you are not
37
obligated to do so.  If you do not wish to do so, delete this
38
exception statement from your version. */
39
 
40
package java.util;
41
 
42
import java.io.IOException;
43
import java.io.ObjectInputStream;
44
import java.io.ObjectOutputStream;
45
import java.io.Serializable;
46
 
47
// NOTE: This implementation is very similar to that of HashMap. If you fix
48
// a bug in here, chances are you should make a similar change to the HashMap
49
// code.
50
 
51
/**
52
 * A class which implements a hashtable data structure.
53
 * <p>
54
 *
55
 * This implementation of Hashtable uses a hash-bucket approach. That is:
56
 * linear probing and rehashing is avoided; instead, each hashed value maps
57
 * to a simple linked-list which, in the best case, only has one node.
58
 * Assuming a large enough table, low enough load factor, and / or well
59
 * implemented hashCode() methods, Hashtable should provide O(1)
60
 * insertion, deletion, and searching of keys.  Hashtable is O(n) in
61
 * the worst case for all of these (if all keys hash to the same bucket).
62
 * <p>
63
 *
64
 * This is a JDK-1.2 compliant implementation of Hashtable.  As such, it
65
 * belongs, partially, to the Collections framework (in that it implements
66
 * Map).  For backwards compatibility, it inherits from the obsolete and
67
 * utterly useless Dictionary class.
68
 * <p>
69
 *
70
 * Being a hybrid of old and new, Hashtable has methods which provide redundant
71
 * capability, but with subtle and even crucial differences.
72
 * For example, one can iterate over various aspects of a Hashtable with
73
 * either an Iterator (which is the JDK-1.2 way of doing things) or with an
74
 * Enumeration.  The latter can end up in an undefined state if the Hashtable
75
 * changes while the Enumeration is open.
76
 * <p>
77
 *
78
 * Unlike HashMap, Hashtable does not accept `null' as a key value. Also,
79
 * all accesses are synchronized: in a single thread environment, this is
80
 * expensive, but in a multi-thread environment, this saves you the effort
81
 * of extra synchronization. However, the old-style enumerators are not
82
 * synchronized, because they can lead to unspecified behavior even if
83
 * they were synchronized. You have been warned.
84
 * <p>
85
 *
86
 * The iterators are <i>fail-fast</i>, meaning that any structural
87
 * modification, except for <code>remove()</code> called on the iterator
88
 * itself, cause the iterator to throw a
89
 * <code>ConcurrentModificationException</code> rather than exhibit
90
 * non-deterministic behavior.
91
 *
92
 * @author Jon Zeppieri
93
 * @author Warren Levy
94
 * @author Bryce McKinlay
95
 * @author Eric Blake (ebb9@email.byu.edu)
96
 * @see HashMap
97
 * @see TreeMap
98
 * @see IdentityHashMap
99
 * @see LinkedHashMap
100
 * @since 1.0
101
 * @status updated to 1.4
102
 */
103
public class Hashtable extends Dictionary
104
  implements Map, Cloneable, Serializable
105
{
106
  // WARNING: Hashtable is a CORE class in the bootstrap cycle. See the
107
  // comments in vm/reference/java/lang/Runtime for implications of this fact.
108
 
109
  /** Default number of buckets. This is the value the JDK 1.3 uses. Some
110
   * early documentation specified this value as 101. That is incorrect.
111
   */
112
  private static final int DEFAULT_CAPACITY = 11;
113
 
114
  /** An "enum" of iterator types. */
115
  // Package visible for use by nested classes.
116
  static final int KEYS = 0,
117
                   VALUES = 1,
118
                   ENTRIES = 2;
119
 
120
  /**
121
   * The default load factor; this is explicitly specified by the spec.
122
   */
123
  private static final float DEFAULT_LOAD_FACTOR = 0.75f;
124
 
125
  /**
126
   * Compatible with JDK 1.0+.
127
   */
128
  private static final long serialVersionUID = 1421746759512286392L;
129
 
130
  /**
131
   * The rounded product of the capacity and the load factor; when the number
132
   * of elements exceeds the threshold, the Hashtable calls
133
   * <code>rehash()</code>.
134
   * @serial
135
   */
136
  private int threshold;
137
 
138
  /**
139
   * Load factor of this Hashtable:  used in computing the threshold.
140
   * @serial
141
   */
142
  private final float loadFactor;
143
 
144
  /**
145
   * Array containing the actual key-value mappings.
146
   */
147
  // Package visible for use by nested classes.
148
  transient HashEntry[] buckets;
149
 
150
  /**
151
   * Counts the number of modifications this Hashtable has undergone, used
152
   * by Iterators to know when to throw ConcurrentModificationExceptions.
153
   */
154
  // Package visible for use by nested classes.
155
  transient int modCount;
156
 
157
  /**
158
   * The size of this Hashtable:  denotes the number of key-value pairs.
159
   */
160
  // Package visible for use by nested classes.
161
  transient int size;
162
 
163
  /**
164
   * The cache for {@link #keySet()}.
165
   */
166
  private transient Set keys;
167
 
168
  /**
169
   * The cache for {@link #values()}.
170
   */
171
  private transient Collection values;
172
 
173
  /**
174
   * The cache for {@link #entrySet()}.
175
   */
176
  private transient Set entries;
177
 
178
  /**
179
   * Class to represent an entry in the hash table. Holds a single key-value
180
   * pair. A Hashtable Entry is identical to a HashMap Entry, except that
181
   * `null' is not allowed for keys and values.
182
   */
183
  private static final class HashEntry extends AbstractMap.BasicMapEntry
184
  {
185
    /** The next entry in the linked list. */
186
    HashEntry next;
187
 
188
    /**
189
     * Simple constructor.
190
     * @param key the key, already guaranteed non-null
191
     * @param value the value, already guaranteed non-null
192
     */
193
    HashEntry(Object key, Object value)
194
    {
195
      super(key, value);
196
    }
197
 
198
    /**
199
     * Resets the value.
200
     * @param newVal the new value
201
     * @return the prior value
202
     * @throws NullPointerException if <code>newVal</code> is null
203
     */
204
    public Object setValue(Object newVal)
205
    {
206
      if (newVal == null)
207
        throw new NullPointerException();
208
      return super.setValue(newVal);
209
    }
210
  }
211
 
212
  /**
213
   * Construct a new Hashtable with the default capacity (11) and the default
214
   * load factor (0.75).
215
   */
216
  public Hashtable()
217
  {
218
    this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
219
  }
220
 
221
  /**
222
   * Construct a new Hashtable from the given Map, with initial capacity
223
   * the greater of the size of <code>m</code> or the default of 11.
224
   * <p>
225
   *
226
   * Every element in Map m will be put into this new Hashtable.
227
   *
228
   * @param m a Map whose key / value pairs will be put into
229
   *          the new Hashtable.  <b>NOTE: key / value pairs
230
   *          are not cloned in this constructor.</b>
231
   * @throws NullPointerException if m is null, or if m contains a mapping
232
   *         to or from `null'.
233
   * @since 1.2
234
   */
235
  public Hashtable(Map m)
236
  {
237
    this(Math.max(m.size() * 2, DEFAULT_CAPACITY), DEFAULT_LOAD_FACTOR);
238
    putAll(m);
239
  }
240
 
241
  /**
242
   * Construct a new Hashtable with a specific inital capacity and
243
   * default load factor of 0.75.
244
   *
245
   * @param initialCapacity the initial capacity of this Hashtable (&gt;= 0)
246
   * @throws IllegalArgumentException if (initialCapacity &lt; 0)
247
   */
248
  public Hashtable(int initialCapacity)
249
  {
250
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
251
  }
252
 
253
  /**
254
   * Construct a new Hashtable with a specific initial capacity and
255
   * load factor.
256
   *
257
   * @param initialCapacity the initial capacity (&gt;= 0)
258
   * @param loadFactor the load factor (&gt; 0, not NaN)
259
   * @throws IllegalArgumentException if (initialCapacity &lt; 0) ||
260
   *                                     ! (loadFactor &gt; 0.0)
261
   */
262
  public Hashtable(int initialCapacity, float loadFactor)
263
  {
264
    if (initialCapacity < 0)
265
      throw new IllegalArgumentException("Illegal Capacity: "
266
                                         + initialCapacity);
267
    if (! (loadFactor > 0)) // check for NaN too
268
      throw new IllegalArgumentException("Illegal Load: " + loadFactor);
269
 
270
    if (initialCapacity == 0)
271
      initialCapacity = 1;
272
    buckets = new HashEntry[initialCapacity];
273
    this.loadFactor = loadFactor;
274
    threshold = (int) (initialCapacity * loadFactor);
275
  }
276
 
277
  /**
278
   * Returns the number of key-value mappings currently in this hashtable.
279
   * @return the size
280
   */
281
  public synchronized int size()
282
  {
283
    return size;
284
  }
285
 
286
  /**
287
   * Returns true if there are no key-value mappings currently in this table.
288
   * @return <code>size() == 0</code>
289
   */
290
  public synchronized boolean isEmpty()
291
  {
292
    return size == 0;
293
  }
294
 
295
  /**
296
   * Return an enumeration of the keys of this table. There's no point
297
   * in synchronizing this, as you have already been warned that the
298
   * enumeration is not specified to be thread-safe.
299
   *
300
   * @return the keys
301
   * @see #elements()
302
   * @see #keySet()
303
   */
304
  public Enumeration keys()
305
  {
306
    return new Enumerator(KEYS);
307
  }
308
 
309
  /**
310
   * Return an enumeration of the values of this table. There's no point
311
   * in synchronizing this, as you have already been warned that the
312
   * enumeration is not specified to be thread-safe.
313
   *
314
   * @return the values
315
   * @see #keys()
316
   * @see #values()
317
   */
318
  public Enumeration elements()
319
  {
320
    return new Enumerator(VALUES);
321
  }
322
 
323
  /**
324
   * Returns true if this Hashtable contains a value <code>o</code>,
325
   * such that <code>o.equals(value)</code>.  This is the same as
326
   * <code>containsValue()</code>, and is O(n).
327
   * <p>
328
   *
329
   * @param value the value to search for in this Hashtable
330
   * @return true if at least one key maps to the value
331
   * @throws NullPointerException if <code>value</code> is null
332
   * @see #containsValue(Object)
333
   * @see #containsKey(Object)
334
   */
335
  public synchronized boolean contains(Object value)
336
  {
337
    if (value == null)
338
      throw new NullPointerException();
339
 
340
    for (int i = buckets.length - 1; i >= 0; i--)
341
      {
342
        HashEntry e = buckets[i];
343
        while (e != null)
344
          {
345
            if (e.value.equals(value))
346
              return true;
347
            e = e.next;
348
          }
349
      }
350
 
351
    return false;
352
  }
353
 
354
  /**
355
   * Returns true if this Hashtable contains a value <code>o</code>, such that
356
   * <code>o.equals(value)</code>. This is the new API for the old
357
   * <code>contains()</code>.
358
   *
359
   * @param value the value to search for in this Hashtable
360
   * @return true if at least one key maps to the value
361
   * @see #contains(Object)
362
   * @see #containsKey(Object)
363
   * @throws NullPointerException if <code>value</code> is null
364
   * @since 1.2
365
   */
366
  public boolean containsValue(Object value)
367
  {
368
    // Delegate to older method to make sure code overriding it continues 
369
    // to work.
370
    return contains(value);
371
  }
372
 
373
  /**
374
   * Returns true if the supplied object <code>equals()</code> a key
375
   * in this Hashtable.
376
   *
377
   * @param key the key to search for in this Hashtable
378
   * @return true if the key is in the table
379
   * @throws NullPointerException if key is null
380
   * @see #containsValue(Object)
381
   */
382
  public synchronized boolean containsKey(Object key)
383
  {
384
    int idx = hash(key);
385
    HashEntry e = buckets[idx];
386
    while (e != null)
387
      {
388
        if (e.key.equals(key))
389
          return true;
390
        e = e.next;
391
      }
392
    return false;
393
  }
394
 
395
  /**
396
   * Return the value in this Hashtable associated with the supplied key,
397
   * or <code>null</code> if the key maps to nothing.
398
   *
399
   * @param key the key for which to fetch an associated value
400
   * @return what the key maps to, if present
401
   * @throws NullPointerException if key is null
402
   * @see #put(Object, Object)
403
   * @see #containsKey(Object)
404
   */
405
  public synchronized Object get(Object key)
406
  {
407
    int idx = hash(key);
408
    HashEntry e = buckets[idx];
409
    while (e != null)
410
      {
411
        if (e.key.equals(key))
412
          return e.value;
413
        e = e.next;
414
      }
415
    return null;
416
  }
417
 
418
  /**
419
   * Puts the supplied value into the Map, mapped by the supplied key.
420
   * Neither parameter may be null.  The value may be retrieved by any
421
   * object which <code>equals()</code> this key.
422
   *
423
   * @param key the key used to locate the value
424
   * @param value the value to be stored in the table
425
   * @return the prior mapping of the key, or null if there was none
426
   * @throws NullPointerException if key or value is null
427
   * @see #get(Object)
428
   * @see Object#equals(Object)
429
   */
430
  public synchronized Object put(Object key, Object value)
431
  {
432
    int idx = hash(key);
433
    HashEntry e = buckets[idx];
434
 
435
    // Check if value is null since it is not permitted.
436
    if (value == null)
437
      throw new NullPointerException();
438
 
439
    while (e != null)
440
      {
441
        if (e.key.equals(key))
442
          {
443
            // Bypass e.setValue, since we already know value is non-null.
444
            Object r = e.value;
445
            e.value = value;
446
            return r;
447
          }
448
        else
449
          {
450
            e = e.next;
451
          }
452
      }
453
 
454
    // At this point, we know we need to add a new entry.
455
    modCount++;
456
    if (++size > threshold)
457
      {
458
        rehash();
459
        // Need a new hash value to suit the bigger table.
460
        idx = hash(key);
461
      }
462
 
463
    e = new HashEntry(key, value);
464
 
465
    e.next = buckets[idx];
466
    buckets[idx] = e;
467
 
468
    return null;
469
  }
470
 
471
  /**
472
   * Removes from the table and returns the value which is mapped by the
473
   * supplied key. If the key maps to nothing, then the table remains
474
   * unchanged, and <code>null</code> is returned.
475
   *
476
   * @param key the key used to locate the value to remove
477
   * @return whatever the key mapped to, if present
478
   */
479
  public synchronized Object remove(Object key)
480
  {
481
    int idx = hash(key);
482
    HashEntry e = buckets[idx];
483
    HashEntry last = null;
484
 
485
    while (e != null)
486
      {
487
        if (e.key.equals(key))
488
          {
489
            modCount++;
490
            if (last == null)
491
              buckets[idx] = e.next;
492
            else
493
              last.next = e.next;
494
            size--;
495
            return e.value;
496
          }
497
        last = e;
498
        e = e.next;
499
      }
500
    return null;
501
  }
502
 
503
  /**
504
   * Copies all elements of the given map into this hashtable.  However, no
505
   * mapping can contain null as key or value.  If this table already has
506
   * a mapping for a key, the new mapping replaces the current one.
507
   *
508
   * @param m the map to be hashed into this
509
   * @throws NullPointerException if m is null, or contains null keys or values
510
   */
511
  public synchronized void putAll(Map m)
512
  {
513
    Iterator itr = m.entrySet().iterator();
514
 
515
    while (itr.hasNext())
516
      {
517
        Map.Entry e = (Map.Entry) itr.next();
518
        // Optimize in case the Entry is one of our own.
519
        if (e instanceof AbstractMap.BasicMapEntry)
520
          {
521
            AbstractMap.BasicMapEntry entry = (AbstractMap.BasicMapEntry) e;
522
            put(entry.key, entry.value);
523
          }
524
        else
525
          {
526
            put(e.getKey(), e.getValue());
527
          }
528
      }
529
  }
530
 
531
  /**
532
   * Clears the hashtable so it has no keys.  This is O(1).
533
   */
534
  public synchronized void clear()
535
  {
536
    if (size > 0)
537
      {
538
        modCount++;
539
        Arrays.fill(buckets, null);
540
        size = 0;
541
      }
542
  }
543
 
544
  /**
545
   * Returns a shallow clone of this Hashtable. The Map itself is cloned,
546
   * but its contents are not.  This is O(n).
547
   *
548
   * @return the clone
549
   */
550
  public synchronized Object clone()
551
  {
552
    Hashtable copy = null;
553
    try
554
      {
555
        copy = (Hashtable) super.clone();
556
      }
557
    catch (CloneNotSupportedException x)
558
      {
559
        // This is impossible.
560
      }
561
    copy.buckets = new HashEntry[buckets.length];
562
    copy.putAllInternal(this);
563
    // Clear the caches.
564
    copy.keys = null;
565
    copy.values = null;
566
    copy.entries = null;
567
    return copy;
568
  }
569
 
570
  /**
571
   * Converts this Hashtable to a String, surrounded by braces, and with
572
   * key/value pairs listed with an equals sign between, separated by a
573
   * comma and space. For example, <code>"{a=1, b=2}"</code>.<p>
574
   *
575
   * NOTE: if the <code>toString()</code> method of any key or value
576
   * throws an exception, this will fail for the same reason.
577
   *
578
   * @return the string representation
579
   */
580
  public synchronized String toString()
581
  {
582
    // Since we are already synchronized, and entrySet().iterator()
583
    // would repeatedly re-lock/release the monitor, we directly use the
584
    // unsynchronized HashIterator instead.
585
    Iterator entries = new HashIterator(ENTRIES);
586
    StringBuffer r = new StringBuffer("{");
587
    for (int pos = size; pos > 0; pos--)
588
      {
589
        r.append(entries.next());
590
        if (pos > 1)
591
          r.append(", ");
592
      }
593
    r.append("}");
594
    return r.toString();
595
  }
596
 
597
  /**
598
   * Returns a "set view" of this Hashtable's keys. The set is backed by
599
   * the hashtable, so changes in one show up in the other.  The set supports
600
   * element removal, but not element addition.  The set is properly
601
   * synchronized on the original hashtable.  Sun has not documented the
602
   * proper interaction of null with this set, but has inconsistent behavior
603
   * in the JDK. Therefore, in this implementation, contains, remove,
604
   * containsAll, retainAll, removeAll, and equals just ignore a null key
605
   * rather than throwing a {@link NullPointerException}.
606
   *
607
   * @return a set view of the keys
608
   * @see #values()
609
   * @see #entrySet()
610
   * @since 1.2
611
   */
612
  public Set keySet()
613
  {
614
    if (keys == null)
615
      {
616
        // Create a synchronized AbstractSet with custom implementations of
617
        // those methods that can be overridden easily and efficiently.
618
        Set r = new AbstractSet()
619
        {
620
          public int size()
621
          {
622
            return size;
623
          }
624
 
625
          public Iterator iterator()
626
          {
627
            return new HashIterator(KEYS);
628
          }
629
 
630
          public void clear()
631
          {
632
            Hashtable.this.clear();
633
          }
634
 
635
          public boolean contains(Object o)
636
          {
637
            if (o == null)
638
              return false;
639
            return containsKey(o);
640
          }
641
 
642
          public boolean remove(Object o)
643
          {
644
            return Hashtable.this.remove(o) != null;
645
          }
646
        };
647
        // We must specify the correct object to synchronize upon, hence the
648
        // use of a non-public API
649
        keys = new Collections.SynchronizedSet(this, r);
650
      }
651
    return keys;
652
  }
653
 
654
  /**
655
   * Returns a "collection view" (or "bag view") of this Hashtable's values.
656
   * The collection is backed by the hashtable, so changes in one show up
657
   * in the other.  The collection supports element removal, but not element
658
   * addition.  The collection is properly synchronized on the original
659
   * hashtable.  Sun has not documented the proper interaction of null with
660
   * this set, but has inconsistent behavior in the JDK. Therefore, in this
661
   * implementation, contains, remove, containsAll, retainAll, removeAll, and
662
   * equals just ignore a null value rather than throwing a
663
   * {@link NullPointerException}.
664
   *
665
   * @return a bag view of the values
666
   * @see #keySet()
667
   * @see #entrySet()
668
   * @since 1.2
669
   */
670
  public Collection values()
671
  {
672
    if (values == null)
673
      {
674
        // We don't bother overriding many of the optional methods, as doing so
675
        // wouldn't provide any significant performance advantage.
676
        Collection r = new AbstractCollection()
677
        {
678
          public int size()
679
          {
680
            return size;
681
          }
682
 
683
          public Iterator iterator()
684
          {
685
            return new HashIterator(VALUES);
686
          }
687
 
688
          public void clear()
689
          {
690
            Hashtable.this.clear();
691
          }
692
        };
693
        // We must specify the correct object to synchronize upon, hence the
694
        // use of a non-public API
695
        values = new Collections.SynchronizedCollection(this, r);
696
      }
697
    return values;
698
  }
699
 
700
  /**
701
   * Returns a "set view" of this Hashtable's entries. The set is backed by
702
   * the hashtable, so changes in one show up in the other.  The set supports
703
   * element removal, but not element addition.  The set is properly
704
   * synchronized on the original hashtable.  Sun has not documented the
705
   * proper interaction of null with this set, but has inconsistent behavior
706
   * in the JDK. Therefore, in this implementation, contains, remove,
707
   * containsAll, retainAll, removeAll, and equals just ignore a null entry,
708
   * or an entry with a null key or value, rather than throwing a
709
   * {@link NullPointerException}. However, calling entry.setValue(null)
710
   * will fail.
711
   * <p>
712
   *
713
   * Note that the iterators for all three views, from keySet(), entrySet(),
714
   * and values(), traverse the hashtable in the same sequence.
715
   *
716
   * @return a set view of the entries
717
   * @see #keySet()
718
   * @see #values()
719
   * @see Map.Entry
720
   * @since 1.2
721
   */
722
  public Set entrySet()
723
  {
724
    if (entries == null)
725
      {
726
        // Create an AbstractSet with custom implementations of those methods
727
        // that can be overridden easily and efficiently.
728
        Set r = new AbstractSet()
729
        {
730
          public int size()
731
          {
732
            return size;
733
          }
734
 
735
          public Iterator iterator()
736
          {
737
            return new HashIterator(ENTRIES);
738
          }
739
 
740
          public void clear()
741
          {
742
            Hashtable.this.clear();
743
          }
744
 
745
          public boolean contains(Object o)
746
          {
747
            return getEntry(o) != null;
748
          }
749
 
750
          public boolean remove(Object o)
751
          {
752
            HashEntry e = getEntry(o);
753
            if (e != null)
754
              {
755
                Hashtable.this.remove(e.key);
756
                return true;
757
              }
758
            return false;
759
          }
760
        };
761
        // We must specify the correct object to synchronize upon, hence the
762
        // use of a non-public API
763
        entries = new Collections.SynchronizedSet(this, r);
764
      }
765
    return entries;
766
  }
767
 
768
  /**
769
   * Returns true if this Hashtable equals the supplied Object <code>o</code>.
770
   * As specified by Map, this is:
771
   * <code>
772
   * (o instanceof Map) && entrySet().equals(((Map) o).entrySet());
773
   * </code>
774
   *
775
   * @param o the object to compare to
776
   * @return true if o is an equal map
777
   * @since 1.2
778
   */
779
  public boolean equals(Object o)
780
  {
781
    // no need to synchronize, entrySet().equals() does that
782
    if (o == this)
783
      return true;
784
    if (!(o instanceof Map))
785
      return false;
786
 
787
    return entrySet().equals(((Map) o).entrySet());
788
  }
789
 
790
  /**
791
   * Returns the hashCode for this Hashtable.  As specified by Map, this is
792
   * the sum of the hashCodes of all of its Map.Entry objects
793
   *
794
   * @return the sum of the hashcodes of the entries
795
   * @since 1.2
796
   */
797
  public synchronized int hashCode()
798
  {
799
    // Since we are already synchronized, and entrySet().iterator()
800
    // would repeatedly re-lock/release the monitor, we directly use the
801
    // unsynchronized HashIterator instead.
802
    Iterator itr = new HashIterator(ENTRIES);
803
    int hashcode = 0;
804
    for (int pos = size; pos > 0; pos--)
805
      hashcode += itr.next().hashCode();
806
 
807
    return hashcode;
808
  }
809
 
810
  /**
811
   * Helper method that returns an index in the buckets array for `key'
812
   * based on its hashCode().
813
   *
814
   * @param key the key
815
   * @return the bucket number
816
   * @throws NullPointerException if key is null
817
   */
818
  private int hash(Object key)
819
  {
820
    // Note: Inline Math.abs here, for less method overhead, and to avoid
821
    // a bootstrap dependency, since Math relies on native methods.
822
    int hash = key.hashCode() % buckets.length;
823
    return hash < 0 ? -hash : hash;
824
  }
825
 
826
  /**
827
   * Helper method for entrySet(), which matches both key and value
828
   * simultaneously. Ignores null, as mentioned in entrySet().
829
   *
830
   * @param o the entry to match
831
   * @return the matching entry, if found, or null
832
   * @see #entrySet()
833
   */
834
  // Package visible, for use in nested classes.
835
  HashEntry getEntry(Object o)
836
  {
837
    if (! (o instanceof Map.Entry))
838
      return null;
839
    Object key = ((Map.Entry) o).getKey();
840
    if (key == null)
841
      return null;
842
 
843
    int idx = hash(key);
844
    HashEntry e = buckets[idx];
845
    while (e != null)
846
      {
847
        if (e.equals(o))
848
          return e;
849
        e = e.next;
850
      }
851
    return null;
852
  }
853
 
854
  /**
855
   * A simplified, more efficient internal implementation of putAll(). clone()
856
   * should not call putAll or put, in order to be compatible with the JDK
857
   * implementation with respect to subclasses.
858
   *
859
   * @param m the map to initialize this from
860
   */
861
  void putAllInternal(Map m)
862
  {
863
    Iterator itr = m.entrySet().iterator();
864
    size = 0;
865
 
866
    while (itr.hasNext())
867
      {
868
        size++;
869
        Map.Entry e = (Map.Entry) itr.next();
870
        Object key = e.getKey();
871
        int idx = hash(key);
872
        HashEntry he = new HashEntry(key, e.getValue());
873
        he.next = buckets[idx];
874
        buckets[idx] = he;
875
      }
876
  }
877
 
878
  /**
879
   * Increases the size of the Hashtable and rehashes all keys to new array
880
   * indices; this is called when the addition of a new value would cause
881
   * size() &gt; threshold. Note that the existing Entry objects are reused in
882
   * the new hash table.
883
   * <p>
884
   *
885
   * This is not specified, but the new size is twice the current size plus
886
   * one; this number is not always prime, unfortunately. This implementation
887
   * is not synchronized, as it is only invoked from synchronized methods.
888
   */
889
  protected void rehash()
890
  {
891
    HashEntry[] oldBuckets = buckets;
892
 
893
    int newcapacity = (buckets.length * 2) + 1;
894
    threshold = (int) (newcapacity * loadFactor);
895
    buckets = new HashEntry[newcapacity];
896
 
897
    for (int i = oldBuckets.length - 1; i >= 0; i--)
898
      {
899
        HashEntry e = oldBuckets[i];
900
        while (e != null)
901
          {
902
            int idx = hash(e.key);
903
            HashEntry dest = buckets[idx];
904
 
905
            if (dest != null)
906
              {
907
                while (dest.next != null)
908
                  dest = dest.next;
909
                dest.next = e;
910
              }
911
            else
912
              {
913
                buckets[idx] = e;
914
              }
915
 
916
            HashEntry next = e.next;
917
            e.next = null;
918
            e = next;
919
          }
920
      }
921
  }
922
 
923
  /**
924
   * Serializes this object to the given stream.
925
   *
926
   * @param s the stream to write to
927
   * @throws IOException if the underlying stream fails
928
   * @serialData the <i>capacity</i> (int) that is the length of the
929
   *             bucket array, the <i>size</i> (int) of the hash map
930
   *             are emitted first.  They are followed by size entries,
931
   *             each consisting of a key (Object) and a value (Object).
932
   */
933
  private synchronized void writeObject(ObjectOutputStream s)
934
    throws IOException
935
  {
936
    // Write the threshold and loadFactor fields.
937
    s.defaultWriteObject();
938
 
939
    s.writeInt(buckets.length);
940
    s.writeInt(size);
941
    // Since we are already synchronized, and entrySet().iterator()
942
    // would repeatedly re-lock/release the monitor, we directly use the
943
    // unsynchronized HashIterator instead.
944
    Iterator it = new HashIterator(ENTRIES);
945
    while (it.hasNext())
946
      {
947
        HashEntry entry = (HashEntry) it.next();
948
        s.writeObject(entry.key);
949
        s.writeObject(entry.value);
950
      }
951
  }
952
 
953
  /**
954
   * Deserializes this object from the given stream.
955
   *
956
   * @param s the stream to read from
957
   * @throws ClassNotFoundException if the underlying stream fails
958
   * @throws IOException if the underlying stream fails
959
   * @serialData the <i>capacity</i> (int) that is the length of the
960
   *             bucket array, the <i>size</i> (int) of the hash map
961
   *             are emitted first.  They are followed by size entries,
962
   *             each consisting of a key (Object) and a value (Object).
963
   */
964
  private void readObject(ObjectInputStream s)
965
    throws IOException, ClassNotFoundException
966
  {
967
    // Read the threshold and loadFactor fields.
968
    s.defaultReadObject();
969
 
970
    // Read and use capacity.
971
    buckets = new HashEntry[s.readInt()];
972
    int len = s.readInt();
973
 
974
    // Read and use key/value pairs.
975
    // TODO: should we be defensive programmers, and check for illegal nulls?
976
    while (--len >= 0)
977
      put(s.readObject(), s.readObject());
978
  }
979
 
980
  /**
981
   * A class which implements the Iterator interface and is used for
982
   * iterating over Hashtables.
983
   * This implementation is parameterized to give a sequential view of
984
   * keys, values, or entries; it also allows the removal of elements,
985
   * as per the Javasoft spec.  Note that it is not synchronized; this is
986
   * a performance enhancer since it is never exposed externally and is
987
   * only used within synchronized blocks above.
988
   *
989
   * @author Jon Zeppieri
990
   */
991
  private final class HashIterator implements Iterator
992
  {
993
    /**
994
     * The type of this Iterator: {@link #KEYS}, {@link #VALUES},
995
     * or {@link #ENTRIES}.
996
     */
997
    final int type;
998
    /**
999
     * The number of modifications to the backing Hashtable that we know about.
1000
     */
1001
    int knownMod = modCount;
1002
    /** The number of elements remaining to be returned by next(). */
1003
    int count = size;
1004
    /** Current index in the physical hash table. */
1005
    int idx = buckets.length;
1006
    /** The last Entry returned by a next() call. */
1007
    HashEntry last;
1008
    /**
1009
     * The next entry that should be returned by next(). It is set to something
1010
     * if we're iterating through a bucket that contains multiple linked
1011
     * entries. It is null if next() needs to find a new bucket.
1012
     */
1013
    HashEntry next;
1014
 
1015
    /**
1016
     * Construct a new HashIterator with the supplied type.
1017
     * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
1018
     */
1019
    HashIterator(int type)
1020
    {
1021
      this.type = type;
1022
    }
1023
 
1024
    /**
1025
     * Returns true if the Iterator has more elements.
1026
     * @return true if there are more elements
1027
     */
1028
    public boolean hasNext()
1029
    {
1030
      return count > 0;
1031
    }
1032
 
1033
    /**
1034
     * Returns the next element in the Iterator's sequential view.
1035
     * @return the next element
1036
     * @throws ConcurrentModificationException if the hashtable was modified
1037
     * @throws NoSuchElementException if there is none
1038
     */
1039
    public Object next()
1040
    {
1041
      if (knownMod != modCount)
1042
        throw new ConcurrentModificationException();
1043
      if (count == 0)
1044
        throw new NoSuchElementException();
1045
      count--;
1046
      HashEntry e = next;
1047
 
1048
      while (e == null)
1049
        e = buckets[--idx];
1050
 
1051
      next = e.next;
1052
      last = e;
1053
      if (type == VALUES)
1054
        return e.value;
1055
      if (type == KEYS)
1056
        return e.key;
1057
      return e;
1058
    }
1059
 
1060
    /**
1061
     * Removes from the backing Hashtable the last element which was fetched
1062
     * with the <code>next()</code> method.
1063
     * @throws ConcurrentModificationException if the hashtable was modified
1064
     * @throws IllegalStateException if called when there is no last element
1065
     */
1066
    public void remove()
1067
    {
1068
      if (knownMod != modCount)
1069
        throw new ConcurrentModificationException();
1070
      if (last == null)
1071
        throw new IllegalStateException();
1072
 
1073
      Hashtable.this.remove(last.key);
1074
      last = null;
1075
      knownMod++;
1076
    }
1077
  } // class HashIterator
1078
 
1079
 
1080
  /**
1081
   * Enumeration view of this Hashtable, providing sequential access to its
1082
   * elements; this implementation is parameterized to provide access either
1083
   * to the keys or to the values in the Hashtable.
1084
   *
1085
   * <b>NOTE</b>: Enumeration is not safe if new elements are put in the table
1086
   * as this could cause a rehash and we'd completely lose our place.  Even
1087
   * without a rehash, it is undetermined if a new element added would
1088
   * appear in the enumeration.  The spec says nothing about this, but
1089
   * the "Java Class Libraries" book infers that modifications to the
1090
   * hashtable during enumeration causes indeterminate results.  Don't do it!
1091
   *
1092
   * @author Jon Zeppieri
1093
   */
1094
  private final class Enumerator implements Enumeration
1095
  {
1096
    /**
1097
     * The type of this Iterator: {@link #KEYS} or {@link #VALUES}.
1098
     */
1099
    final int type;
1100
    /** The number of elements remaining to be returned by next(). */
1101
    int count = size;
1102
    /** Current index in the physical hash table. */
1103
    int idx = buckets.length;
1104
    /**
1105
     * Entry which will be returned by the next nextElement() call. It is
1106
     * set if we are iterating through a bucket with multiple entries, or null
1107
     * if we must look in the next bucket.
1108
     */
1109
    HashEntry next;
1110
 
1111
    /**
1112
     * Construct the enumeration.
1113
     * @param type either {@link #KEYS} or {@link #VALUES}.
1114
     */
1115
    Enumerator(int type)
1116
    {
1117
      this.type = type;
1118
    }
1119
 
1120
    /**
1121
     * Checks whether more elements remain in the enumeration.
1122
     * @return true if nextElement() will not fail.
1123
     */
1124
    public boolean hasMoreElements()
1125
    {
1126
      return count > 0;
1127
    }
1128
 
1129
    /**
1130
     * Returns the next element.
1131
     * @return the next element
1132
     * @throws NoSuchElementException if there is none.
1133
     */
1134
    public Object nextElement()
1135
    {
1136
      if (count == 0)
1137
        throw new NoSuchElementException("Hashtable Enumerator");
1138
      count--;
1139
      HashEntry e = next;
1140
 
1141
      while (e == null)
1142
        e = buckets[--idx];
1143
 
1144
      next = e.next;
1145
      return type == VALUES ? e.value : e.key;
1146
    }
1147
  } // class Enumerator
1148
} // class Hashtable

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.