OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [libstdc++-v3/] [include/] [std/] [std_complex.h] - Blame information for rev 20

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 17 jlechner
// The template and inlines for the -*- C++ -*- complex number classes.
2
 
3
// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 2, or (at your option)
10
// any later version.
11
 
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
 
17
// You should have received a copy of the GNU General Public License along
18
// with this library; see the file COPYING.  If not, write to the Free
19
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20
// USA.
21
 
22
// As a special exception, you may use this file as part of a free software
23
// library without restriction.  Specifically, if other files instantiate
24
// templates or use macros or inline functions from this file, or you compile
25
// this file and link it with other files to produce an executable, this
26
// file does not by itself cause the resulting executable to be covered by
27
// the GNU General Public License.  This exception does not however
28
// invalidate any other reasons why the executable file might be covered by
29
// the GNU General Public License.
30
 
31
//
32
// ISO C++ 14882: 26.2  Complex Numbers
33
// Note: this is not a conforming implementation.
34
// Initially implemented by Ulrich Drepper <drepper@cygnus.com>
35
// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
36
//
37
 
38
/** @file complex
39
 *  This is a Standard C++ Library header.
40
 */
41
 
42
#ifndef _GLIBCXX_COMPLEX
43
#define _GLIBCXX_COMPLEX 1
44
 
45
#pragma GCC system_header
46
 
47
#include <bits/c++config.h>
48
#include <bits/cpp_type_traits.h>
49
#include <cmath>
50
#include <sstream>
51
 
52
namespace std
53
{
54
  // Forward declarations.
55
  template<typename _Tp> class complex;
56
  template<> class complex<float>;
57
  template<> class complex<double>;
58
  template<> class complex<long double>;
59
 
60
  ///  Return magnitude of @a z.
61
  template<typename _Tp> _Tp abs(const complex<_Tp>&);
62
  ///  Return phase angle of @a z.
63
  template<typename _Tp> _Tp arg(const complex<_Tp>&);
64
  ///  Return @a z magnitude squared.
65
  template<typename _Tp> _Tp norm(const complex<_Tp>&);
66
 
67
  ///  Return complex conjugate of @a z.
68
  template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);
69
  ///  Return complex with magnitude @a rho and angle @a theta.
70
  template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);
71
 
72
  // Transcendentals:
73
  /// Return complex cosine of @a z.
74
  template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);
75
  /// Return complex hyperbolic cosine of @a z.
76
  template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);
77
  /// Return complex base e exponential of @a z.
78
  template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);
79
  /// Return complex natural logarithm of @a z.
80
  template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);
81
  /// Return complex base 10 logarithm of @a z.
82
  template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);
83
  /// Return complex cosine of @a z.
84
  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);
85
  /// Return @a x to the @a y'th power.
86
  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);
87
  /// Return @a x to the @a y'th power.
88
  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&,
89
                                          const complex<_Tp>&);
90
  /// Return @a x to the @a y'th power.
91
  template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);
92
  /// Return complex sine of @a z.
93
  template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);
94
  /// Return complex hyperbolic sine of @a z.
95
  template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);
96
  /// Return complex square root of @a z.
97
  template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);
98
  /// Return complex tangent of @a z.
99
  template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);
100
  /// Return complex hyperbolic tangent of @a z.
101
  template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);
102
  //@}
103
 
104
 
105
  // 26.2.2  Primary template class complex
106
  /**
107
   *  Template to represent complex numbers.
108
   *
109
   *  Specializations for float, double, and long double are part of the
110
   *  library.  Results with any other type are not guaranteed.
111
   *
112
   *  @param  Tp  Type of real and imaginary values.
113
  */
114
  template<typename _Tp>
115
    struct complex
116
    {
117
      /// Value typedef.
118
      typedef _Tp value_type;
119
 
120
      ///  Default constructor.  First parameter is x, second parameter is y.
121
      ///  Unspecified parameters default to 0.
122
      complex(const _Tp& = _Tp(), const _Tp & = _Tp());
123
 
124
      // Lets the compiler synthesize the copy constructor   
125
      // complex (const complex<_Tp>&);
126
      ///  Copy constructor.
127
      template<typename _Up>
128
        complex(const complex<_Up>&);
129
 
130
      ///  Return real part of complex number.
131
      _Tp& real();
132
      ///  Return real part of complex number.
133
      const _Tp& real() const;
134
      ///  Return imaginary part of complex number.
135
      _Tp& imag();
136
      ///  Return imaginary part of complex number.
137
      const _Tp& imag() const;
138
 
139
      /// Assign this complex number to scalar @a t.
140
      complex<_Tp>& operator=(const _Tp&);
141
      /// Add @a t to this complex number.
142
      complex<_Tp>& operator+=(const _Tp&);
143
      /// Subtract @a t from this complex number.
144
      complex<_Tp>& operator-=(const _Tp&);
145
      /// Multiply this complex number by @a t.
146
      complex<_Tp>& operator*=(const _Tp&);
147
      /// Divide this complex number by @a t.
148
      complex<_Tp>& operator/=(const _Tp&);
149
 
150
      // Lets the compiler synthesize the
151
      // copy and assignment operator
152
      // complex<_Tp>& operator= (const complex<_Tp>&);
153
      /// Assign this complex number to complex @a z.
154
      template<typename _Up>
155
        complex<_Tp>& operator=(const complex<_Up>&);
156
      /// Add @a z to this complex number.
157
      template<typename _Up>
158
        complex<_Tp>& operator+=(const complex<_Up>&);
159
      /// Subtract @a z from this complex number.
160
      template<typename _Up>
161
        complex<_Tp>& operator-=(const complex<_Up>&);
162
      /// Multiply this complex number by @a z.
163
      template<typename _Up>
164
        complex<_Tp>& operator*=(const complex<_Up>&);
165
      /// Divide this complex number by @a z.
166
      template<typename _Up>
167
        complex<_Tp>& operator/=(const complex<_Up>&);
168
 
169
      const complex& __rep() const;
170
 
171
    private:
172
      _Tp _M_real;
173
      _Tp _M_imag;
174
    };
175
 
176
  template<typename _Tp>
177
    inline _Tp&
178
    complex<_Tp>::real() { return _M_real; }
179
 
180
  template<typename _Tp>
181
    inline const _Tp&
182
    complex<_Tp>::real() const { return _M_real; }
183
 
184
  template<typename _Tp>
185
    inline _Tp&
186
    complex<_Tp>::imag() { return _M_imag; }
187
 
188
  template<typename _Tp>
189
    inline const _Tp&
190
    complex<_Tp>::imag() const { return _M_imag; }
191
 
192
  template<typename _Tp>
193
    inline
194
    complex<_Tp>::complex(const _Tp& __r, const _Tp& __i)
195
    : _M_real(__r), _M_imag(__i) { }
196
 
197
  template<typename _Tp>
198
    template<typename _Up>
199
    inline
200
    complex<_Tp>::complex(const complex<_Up>& __z)
201
    : _M_real(__z.real()), _M_imag(__z.imag()) { }
202
 
203
  template<typename _Tp>
204
    complex<_Tp>&
205
    complex<_Tp>::operator=(const _Tp& __t)
206
    {
207
     _M_real = __t;
208
     _M_imag = _Tp();
209
     return *this;
210
    }
211
 
212
  // 26.2.5/1
213
  template<typename _Tp>
214
    inline complex<_Tp>&
215
    complex<_Tp>::operator+=(const _Tp& __t)
216
    {
217
      _M_real += __t;
218
      return *this;
219
    }
220
 
221
  // 26.2.5/3
222
  template<typename _Tp>
223
    inline complex<_Tp>&
224
    complex<_Tp>::operator-=(const _Tp& __t)
225
    {
226
      _M_real -= __t;
227
      return *this;
228
    }
229
 
230
  // 26.2.5/5
231
  template<typename _Tp>
232
    complex<_Tp>&
233
    complex<_Tp>::operator*=(const _Tp& __t)
234
    {
235
      _M_real *= __t;
236
      _M_imag *= __t;
237
      return *this;
238
    }
239
 
240
  // 26.2.5/7
241
  template<typename _Tp>
242
    complex<_Tp>&
243
    complex<_Tp>::operator/=(const _Tp& __t)
244
    {
245
      _M_real /= __t;
246
      _M_imag /= __t;
247
      return *this;
248
    }
249
 
250
  template<typename _Tp>
251
    template<typename _Up>
252
    complex<_Tp>&
253
    complex<_Tp>::operator=(const complex<_Up>& __z)
254
    {
255
      _M_real = __z.real();
256
      _M_imag = __z.imag();
257
      return *this;
258
    }
259
 
260
  // 26.2.5/9
261
  template<typename _Tp>
262
    template<typename _Up>
263
    complex<_Tp>&
264
    complex<_Tp>::operator+=(const complex<_Up>& __z)
265
    {
266
      _M_real += __z.real();
267
      _M_imag += __z.imag();
268
      return *this;
269
    }
270
 
271
  // 26.2.5/11
272
  template<typename _Tp>
273
    template<typename _Up>
274
    complex<_Tp>&
275
    complex<_Tp>::operator-=(const complex<_Up>& __z)
276
    {
277
      _M_real -= __z.real();
278
      _M_imag -= __z.imag();
279
      return *this;
280
    }
281
 
282
  // 26.2.5/13
283
  // XXX: This is a grammar school implementation.
284
  template<typename _Tp>
285
    template<typename _Up>
286
    complex<_Tp>&
287
    complex<_Tp>::operator*=(const complex<_Up>& __z)
288
    {
289
      const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();
290
      _M_imag = _M_real * __z.imag() + _M_imag * __z.real();
291
      _M_real = __r;
292
      return *this;
293
    }
294
 
295
  // 26.2.5/15
296
  // XXX: This is a grammar school implementation.
297
  template<typename _Tp>
298
    template<typename _Up>
299
    complex<_Tp>&
300
    complex<_Tp>::operator/=(const complex<_Up>& __z)
301
    {
302
      const _Tp __r =  _M_real * __z.real() + _M_imag * __z.imag();
303
      const _Tp __n = std::norm(__z);
304
      _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;
305
      _M_real = __r / __n;
306
      return *this;
307
    }
308
 
309
  template<typename _Tp>
310
    inline const complex<_Tp>&
311
    complex<_Tp>::__rep() const { return *this; }
312
 
313
  // Operators:
314
  //@{
315
  ///  Return new complex value @a x plus @a y.
316
  template<typename _Tp>
317
    inline complex<_Tp>
318
    operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)
319
    {
320
      complex<_Tp> __r = __x;
321
      __r += __y;
322
      return __r;
323
    }
324
 
325
  template<typename _Tp>
326
    inline complex<_Tp>
327
    operator+(const complex<_Tp>& __x, const _Tp& __y)
328
    {
329
      complex<_Tp> __r = __x;
330
      __r.real() += __y;
331
      return __r;
332
    }
333
 
334
  template<typename _Tp>
335
    inline complex<_Tp>
336
    operator+(const _Tp& __x, const complex<_Tp>& __y)
337
    {
338
      complex<_Tp> __r = __y;
339
      __r.real() += __x;
340
      return __r;
341
    }
342
  //@}
343
 
344
  //@{
345
  ///  Return new complex value @a x minus @a y.
346
  template<typename _Tp>
347
    inline complex<_Tp>
348
    operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)
349
    {
350
      complex<_Tp> __r = __x;
351
      __r -= __y;
352
      return __r;
353
    }
354
 
355
  template<typename _Tp>
356
    inline complex<_Tp>
357
    operator-(const complex<_Tp>& __x, const _Tp& __y)
358
    {
359
      complex<_Tp> __r = __x;
360
      __r.real() -= __y;
361
      return __r;
362
    }
363
 
364
  template<typename _Tp>
365
    inline complex<_Tp>
366
    operator-(const _Tp& __x, const complex<_Tp>& __y)
367
    {
368
      complex<_Tp> __r(__x, -__y.imag());
369
      __r.real() -= __y.real();
370
      return __r;
371
    }
372
  //@}
373
 
374
  //@{
375
  ///  Return new complex value @a x times @a y.
376
  template<typename _Tp>
377
    inline complex<_Tp>
378
    operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)
379
    {
380
      complex<_Tp> __r = __x;
381
      __r *= __y;
382
      return __r;
383
    }
384
 
385
  template<typename _Tp>
386
    inline complex<_Tp>
387
    operator*(const complex<_Tp>& __x, const _Tp& __y)
388
    {
389
      complex<_Tp> __r = __x;
390
      __r *= __y;
391
      return __r;
392
    }
393
 
394
  template<typename _Tp>
395
    inline complex<_Tp>
396
    operator*(const _Tp& __x, const complex<_Tp>& __y)
397
    {
398
      complex<_Tp> __r = __y;
399
      __r *= __x;
400
      return __r;
401
    }
402
  //@}
403
 
404
  //@{
405
  ///  Return new complex value @a x divided by @a y.
406
  template<typename _Tp>
407
    inline complex<_Tp>
408
    operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)
409
    {
410
      complex<_Tp> __r = __x;
411
      __r /= __y;
412
      return __r;
413
    }
414
 
415
  template<typename _Tp>
416
    inline complex<_Tp>
417
    operator/(const complex<_Tp>& __x, const _Tp& __y)
418
    {
419
      complex<_Tp> __r = __x;
420
      __r /= __y;
421
      return __r;
422
    }
423
 
424
  template<typename _Tp>
425
    inline complex<_Tp>
426
    operator/(const _Tp& __x, const complex<_Tp>& __y)
427
    {
428
      complex<_Tp> __r = __x;
429
      __r /= __y;
430
      return __r;
431
    }
432
  //@}
433
 
434
  ///  Return @a x.
435
  template<typename _Tp>
436
    inline complex<_Tp>
437
    operator+(const complex<_Tp>& __x)
438
    { return __x; }
439
 
440
  ///  Return complex negation of @a x.
441
  template<typename _Tp>
442
    inline complex<_Tp>
443
    operator-(const complex<_Tp>& __x)
444
    {  return complex<_Tp>(-__x.real(), -__x.imag()); }
445
 
446
  //@{
447
  ///  Return true if @a x is equal to @a y.
448
  template<typename _Tp>
449
    inline bool
450
    operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)
451
    { return __x.real() == __y.real() && __x.imag() == __y.imag(); }
452
 
453
  template<typename _Tp>
454
    inline bool
455
    operator==(const complex<_Tp>& __x, const _Tp& __y)
456
    { return __x.real() == __y && __x.imag() == _Tp(); }
457
 
458
  template<typename _Tp>
459
    inline bool
460
    operator==(const _Tp& __x, const complex<_Tp>& __y)
461
    { return __x == __y.real() && _Tp() == __y.imag(); }
462
  //@}
463
 
464
  //@{
465
  ///  Return false if @a x is equal to @a y.
466
  template<typename _Tp>
467
    inline bool
468
    operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)
469
    { return __x.real() != __y.real() || __x.imag() != __y.imag(); }
470
 
471
  template<typename _Tp>
472
    inline bool
473
    operator!=(const complex<_Tp>& __x, const _Tp& __y)
474
    { return __x.real() != __y || __x.imag() != _Tp(); }
475
 
476
  template<typename _Tp>
477
    inline bool
478
    operator!=(const _Tp& __x, const complex<_Tp>& __y)
479
    { return __x != __y.real() || _Tp() != __y.imag(); }
480
  //@}
481
 
482
  ///  Extraction operator for complex values.
483
  template<typename _Tp, typename _CharT, class _Traits>
484
    basic_istream<_CharT, _Traits>&
485
    operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x)
486
    {
487
      _Tp __re_x, __im_x;
488
      _CharT __ch;
489
      __is >> __ch;
490
      if (__ch == '(')
491
        {
492
          __is >> __re_x >> __ch;
493
          if (__ch == ',')
494
            {
495
              __is >> __im_x >> __ch;
496
              if (__ch == ')')
497
                __x = complex<_Tp>(__re_x, __im_x);
498
              else
499
                __is.setstate(ios_base::failbit);
500
            }
501
          else if (__ch == ')')
502
            __x = __re_x;
503
          else
504
            __is.setstate(ios_base::failbit);
505
        }
506
      else
507
        {
508
          __is.putback(__ch);
509
          __is >> __re_x;
510
          __x = __re_x;
511
        }
512
      return __is;
513
    }
514
 
515
  ///  Insertion operator for complex values.
516
  template<typename _Tp, typename _CharT, class _Traits>
517
    basic_ostream<_CharT, _Traits>&
518
    operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)
519
    {
520
      basic_ostringstream<_CharT, _Traits> __s;
521
      __s.flags(__os.flags());
522
      __s.imbue(__os.getloc());
523
      __s.precision(__os.precision());
524
      __s << '(' << __x.real() << ',' << __x.imag() << ')';
525
      return __os << __s.str();
526
    }
527
 
528
  // Values
529
  template<typename _Tp>
530
    inline _Tp&
531
    real(complex<_Tp>& __z)
532
    { return __z.real(); }
533
 
534
  template<typename _Tp>
535
    inline const _Tp&
536
    real(const complex<_Tp>& __z)
537
    { return __z.real(); }
538
 
539
  template<typename _Tp>
540
    inline _Tp&
541
    imag(complex<_Tp>& __z)
542
    { return __z.imag(); }
543
 
544
  template<typename _Tp>
545
    inline const _Tp&
546
    imag(const complex<_Tp>& __z)
547
    { return __z.imag(); }
548
 
549
  // 26.2.7/3 abs(__z):  Returns the magnitude of __z.
550
  template<typename _Tp>
551
    inline _Tp
552
    __complex_abs(const complex<_Tp>& __z)
553
    {
554
      _Tp __x = __z.real();
555
      _Tp __y = __z.imag();
556
      const _Tp __s = std::max(abs(__x), abs(__y));
557
      if (__s == _Tp())  // well ...
558
        return __s;
559
      __x /= __s;
560
      __y /= __s;
561
      return __s * sqrt(__x * __x + __y * __y);
562
    }
563
 
564
#if _GLIBCXX_USE_C99_COMPLEX
565
  inline float
566
  __complex_abs(__complex__ float __z) { return __builtin_cabsf(__z); }
567
 
568
  inline double
569
  __complex_abs(__complex__ double __z) { return __builtin_cabs(__z); }
570
 
571
  inline long double
572
  __complex_abs(const __complex__ long double& __z)
573
  { return __builtin_cabsl(__z); }
574
 
575
  template<typename _Tp>
576
    inline _Tp
577
    abs(const complex<_Tp>& __z) { return __complex_abs(__z.__rep()); }
578
#else
579
  template<typename _Tp>
580
    inline _Tp
581
    abs(const complex<_Tp>& __z) { return __complex_abs(__z); }
582
#endif  
583
 
584
 
585
  // 26.2.7/4: arg(__z): Returns the phase angle of __z.
586
  template<typename _Tp>
587
    inline _Tp
588
    __complex_arg(const complex<_Tp>& __z)
589
    { return  atan2(__z.imag(), __z.real()); }
590
 
591
#if _GLIBCXX_USE_C99_COMPLEX
592
  inline float
593
  __complex_arg(__complex__ float __z) { return __builtin_cargf(__z); }
594
 
595
  inline double
596
  __complex_arg(__complex__ double __z) { return __builtin_carg(__z); }
597
 
598
  inline long double
599
  __complex_arg(const __complex__ long double& __z)
600
  { return __builtin_cargl(__z); }
601
 
602
  template<typename _Tp>
603
    inline _Tp
604
    arg(const complex<_Tp>& __z) { return __complex_arg(__z.__rep()); }
605
#else
606
  template<typename _Tp>
607
    inline _Tp
608
    arg(const complex<_Tp>& __z) { return __complex_arg(__z); }
609
#endif
610
 
611
  // 26.2.7/5: norm(__z) returns the squared magintude of __z.
612
  //     As defined, norm() is -not- a norm is the common mathematical
613
  //     sens used in numerics.  The helper class _Norm_helper<> tries to
614
  //     distinguish between builtin floating point and the rest, so as
615
  //     to deliver an answer as close as possible to the real value.
616
  template<bool>
617
    struct _Norm_helper
618
    {
619
      template<typename _Tp>
620
        static inline _Tp _S_do_it(const complex<_Tp>& __z)
621
        {
622
          const _Tp __x = __z.real();
623
          const _Tp __y = __z.imag();
624
          return __x * __x + __y * __y;
625
        }
626
    };
627
 
628
  template<>
629
    struct _Norm_helper<true>
630
    {
631
      template<typename _Tp>
632
        static inline _Tp _S_do_it(const complex<_Tp>& __z)
633
        {
634
          _Tp __res = std::abs(__z);
635
          return __res * __res;
636
        }
637
    };
638
 
639
  template<typename _Tp>
640
    inline _Tp
641
    norm(const complex<_Tp>& __z)
642
    {
643
      return _Norm_helper<__is_floating<_Tp>::__value
644
        && !_GLIBCXX_FAST_MATH>::_S_do_it(__z);
645
    }
646
 
647
  template<typename _Tp>
648
    inline complex<_Tp>
649
    polar(const _Tp& __rho, const _Tp& __theta)
650
    { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }
651
 
652
  template<typename _Tp>
653
    inline complex<_Tp>
654
    conj(const complex<_Tp>& __z)
655
    { return complex<_Tp>(__z.real(), -__z.imag()); }
656
 
657
  // Transcendentals
658
 
659
  // 26.2.8/1 cos(__z):  Returns the cosine of __z.
660
  template<typename _Tp>
661
    inline complex<_Tp>
662
    __complex_cos(const complex<_Tp>& __z)
663
    {
664
      const _Tp __x = __z.real();
665
      const _Tp __y = __z.imag();
666
      return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));
667
    }
668
 
669
#if _GLIBCXX_USE_C99_COMPLEX
670
  inline __complex__ float
671
  __complex_cos(__complex__ float __z) { return __builtin_ccosf(__z); }
672
 
673
  inline __complex__ double
674
  __complex_cos(__complex__ double __z) { return __builtin_ccos(__z); }
675
 
676
  inline __complex__ long double
677
  __complex_cos(const __complex__ long double& __z)
678
  { return __builtin_ccosl(__z); }
679
 
680
  template<typename _Tp>
681
    inline complex<_Tp>
682
    cos(const complex<_Tp>& __z) { return __complex_cos(__z.__rep()); }
683
#else
684
  template<typename _Tp>
685
    inline complex<_Tp>
686
    cos(const complex<_Tp>& __z) { return __complex_cos(__z); }
687
#endif
688
 
689
  // 26.2.8/2 cosh(__z): Returns the hyperbolic cosine of __z.
690
  template<typename _Tp>
691
    inline complex<_Tp>
692
    __complex_cosh(const complex<_Tp>& __z)
693
    {
694
      const _Tp __x = __z.real();
695
      const _Tp __y = __z.imag();
696
      return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
697
    }
698
 
699
#if _GLIBCXX_USE_C99_COMPLEX
700
  inline __complex__ float
701
  __complex_cosh(__complex__ float __z) { return __builtin_ccoshf(__z); }
702
 
703
  inline __complex__ double
704
  __complex_cosh(__complex__ double __z) { return __builtin_ccosh(__z); }
705
 
706
  inline __complex__ long double
707
  __complex_cosh(const __complex__ long double& __z)
708
  { return __builtin_ccoshl(__z); }
709
 
710
  template<typename _Tp>
711
    inline complex<_Tp>
712
    cosh(const complex<_Tp>& __z) { return __complex_cosh(__z.__rep()); }
713
#else
714
  template<typename _Tp>
715
    inline complex<_Tp>
716
    cosh(const complex<_Tp>& __z) { return __complex_cosh(__z); }
717
#endif
718
 
719
  // 26.2.8/3 exp(__z): Returns the complex base e exponential of x
720
  template<typename _Tp>
721
    inline complex<_Tp>
722
    __complex_exp(const complex<_Tp>& __z)
723
    { return std::polar(exp(__z.real()), __z.imag()); }
724
 
725
#if _GLIBCXX_USE_C99_COMPLEX
726
  inline __complex__ float
727
  __complex_exp(__complex__ float __z) { return __builtin_cexpf(__z); }
728
 
729
  inline __complex__ double
730
  __complex_exp(__complex__ double __z) { return __builtin_cexp(__z); }
731
 
732
  inline __complex__ long double
733
  __complex_exp(const __complex__ long double& __z)
734
  { return __builtin_cexpl(__z); }
735
 
736
  template<typename _Tp>
737
    inline complex<_Tp>
738
    exp(const complex<_Tp>& __z) { return __complex_exp(__z.__rep()); }
739
#else
740
  template<typename _Tp>
741
    inline complex<_Tp>
742
    exp(const complex<_Tp>& __z) { return __complex_exp(__z); }
743
#endif
744
 
745
  // 26.2.8/5 log(__z): Reurns the natural complex logaritm of __z.
746
  //                    The branch cut is along the negative axis.
747
  template<typename _Tp>
748
    inline complex<_Tp>
749
    __complex_log(const complex<_Tp>& __z)
750
    { return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); }
751
 
752
#if _GLIBCXX_USE_C99_COMPLEX
753
  inline __complex__ float
754
  __complex_log(__complex__ float __z) { return __builtin_clogf(__z); }
755
 
756
  inline __complex__ double
757
  __complex_log(__complex__ double __z) { return __builtin_clog(__z); }
758
 
759
  inline __complex__ long double
760
  __complex_log(const __complex__ long double& __z)
761
  { return __builtin_clogl(__z); }
762
 
763
  template<typename _Tp>
764
    inline complex<_Tp>
765
    log(const complex<_Tp>& __z) { return __complex_log(__z.__rep()); }
766
#else
767
  template<typename _Tp>
768
    inline complex<_Tp>
769
    log(const complex<_Tp>& __z) { return __complex_log(__z); }
770
#endif
771
 
772
  template<typename _Tp>
773
    inline complex<_Tp>
774
    log10(const complex<_Tp>& __z)
775
    { return std::log(__z) / log(_Tp(10.0)); }
776
 
777
  // 26.2.8/10 sin(__z): Returns the sine of __z.
778
  template<typename _Tp>
779
    inline complex<_Tp>
780
    __complex_sin(const complex<_Tp>& __z)
781
    {
782
      const _Tp __x = __z.real();
783
      const _Tp __y = __z.imag();
784
      return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y));
785
    }
786
 
787
#if _GLIBCXX_USE_C99_COMPLEX
788
  inline __complex__ float
789
  __complex_sin(__complex__ float __z) { return __builtin_csinf(__z); }
790
 
791
  inline __complex__ double
792
  __complex_sin(__complex__ double __z) { return __builtin_csin(__z); }
793
 
794
  inline __complex__ long double
795
  __complex_sin(const __complex__ long double& __z)
796
  { return __builtin_csinl(__z); }
797
 
798
  template<typename _Tp>
799
    inline complex<_Tp>
800
    sin(const complex<_Tp>& __z) { return __complex_sin(__z.__rep()); }
801
#else
802
  template<typename _Tp>
803
    inline complex<_Tp>
804
    sin(const complex<_Tp>& __z) { return __complex_sin(__z); }
805
#endif
806
 
807
  // 26.2.8/11 sinh(__z): Returns the hyperbolic sine of __z.
808
  template<typename _Tp>
809
    inline complex<_Tp>
810
    __complex_sinh(const complex<_Tp>& __z)
811
    {
812
      const _Tp __x = __z.real();
813
      const _Tp  __y = __z.imag();
814
      return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));
815
    }
816
 
817
#if _GLIBCXX_USE_C99_COMPLEX
818
  inline __complex__ float
819
  __complex_sinh(__complex__ float __z) { return __builtin_csinhf(__z); }
820
 
821
  inline __complex__ double
822
  __complex_sinh(__complex__ double __z) { return __builtin_csinh(__z); }
823
 
824
  inline __complex__ long double
825
  __complex_sinh(const __complex__ long double& __z)
826
  { return __builtin_csinhl(__z); }
827
 
828
  template<typename _Tp>
829
    inline complex<_Tp>
830
    sinh(const complex<_Tp>& __z) { return __complex_sinh(__z.__rep()); }
831
#else
832
  template<typename _Tp>
833
    inline complex<_Tp>
834
    sinh(const complex<_Tp>& __z) { return __complex_sinh(__z); }
835
#endif
836
 
837
  // 26.2.8/13 sqrt(__z): Returns the complex square root of __z.
838
  //                     The branch cut is on the negative axis.
839
  template<typename _Tp>
840
    complex<_Tp>
841
    __complex_sqrt(const complex<_Tp>& __z)
842
    {
843
      _Tp __x = __z.real();
844
      _Tp __y = __z.imag();
845
 
846
      if (__x == _Tp())
847
        {
848
          _Tp __t = sqrt(abs(__y) / 2);
849
          return complex<_Tp>(__t, __y < _Tp() ? -__t : __t);
850
        }
851
      else
852
        {
853
          _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x)));
854
          _Tp __u = __t / 2;
855
          return __x > _Tp()
856
            ? complex<_Tp>(__u, __y / __t)
857
            : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u);
858
        }
859
    }
860
 
861
#if _GLIBCXX_USE_C99_COMPLEX
862
  inline __complex__ float
863
  __complex_sqrt(__complex__ float __z) { return __builtin_csqrtf(__z); }
864
 
865
  inline __complex__ double
866
  __complex_sqrt(__complex__ double __z) { return __builtin_csqrt(__z); }
867
 
868
  inline __complex__ long double
869
  __complex_sqrt(const __complex__ long double& __z)
870
  { return __builtin_csqrtl(__z); }
871
 
872
  template<typename _Tp>
873
    inline complex<_Tp>
874
    sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z.__rep()); }
875
#else
876
  template<typename _Tp>
877
    inline complex<_Tp>
878
    sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z); }
879
#endif
880
 
881
  // 26.2.8/14 tan(__z):  Return the complex tangent of __z.
882
 
883
  template<typename _Tp>
884
    inline complex<_Tp>
885
    __complex_tan(const complex<_Tp>& __z)
886
    { return std::sin(__z) / std::cos(__z); }
887
 
888
#if _GLIBCXX_USE_C99_COMPLEX
889
  inline __complex__ float
890
  __complex_tan(__complex__ float __z) { return __builtin_ctanf(__z); }
891
 
892
  inline __complex__ double
893
  __complex_tan(__complex__ double __z) { return __builtin_ctan(__z); }
894
 
895
  inline __complex__ long double
896
  __complex_tan(const __complex__ long double& __z)
897
  { return __builtin_ctanl(__z); }
898
 
899
  template<typename _Tp>
900
    inline complex<_Tp>
901
    tan(const complex<_Tp>& __z) { return __complex_tan(__z.__rep()); }
902
#else
903
  template<typename _Tp>
904
    inline complex<_Tp>
905
    tan(const complex<_Tp>& __z) { return __complex_tan(__z); }
906
#endif
907
 
908
 
909
  // 26.2.8/15 tanh(__z):  Returns the hyperbolic tangent of __z.
910
 
911
  template<typename _Tp>
912
    inline complex<_Tp>
913
    __complex_tanh(const complex<_Tp>& __z)
914
    { return std::sinh(__z) / std::cosh(__z); }
915
 
916
#if _GLIBCXX_USE_C99_COMPLEX
917
  inline __complex__ float
918
  __complex_tanh(__complex__ float __z) { return __builtin_ctanhf(__z); }
919
 
920
  inline __complex__ double
921
  __complex_tanh(__complex__ double __z) { return __builtin_ctanh(__z); }
922
 
923
  inline __complex__ long double
924
  __complex_tanh(const __complex__ long double& __z)
925
  { return __builtin_ctanhl(__z); }
926
 
927
  template<typename _Tp>
928
    inline complex<_Tp>
929
    tanh(const complex<_Tp>& __z) { return __complex_tanh(__z.__rep()); }
930
#else
931
  template<typename _Tp>
932
    inline complex<_Tp>
933
    tanh(const complex<_Tp>& __z) { return __complex_tanh(__z); }
934
#endif
935
 
936
 
937
  // 26.2.8/9  pow(__x, __y): Returns the complex power base of __x
938
  //                          raised to the __y-th power.  The branch
939
  //                          cut is on the negative axis.
940
  template<typename _Tp>
941
    inline complex<_Tp>
942
    pow(const complex<_Tp>& __z, int __n)
943
    { return std::__pow_helper(__z, __n); }
944
 
945
  template<typename _Tp>
946
    complex<_Tp>
947
    pow(const complex<_Tp>& __x, const _Tp& __y)
948
    {
949
#ifndef _GLIBCXX_USE_C99_COMPLEX
950
      if (__x == _Tp())
951
        return _Tp();
952
#endif
953
      if (__x.imag() == _Tp() && __x.real() > _Tp())
954
        return pow(__x.real(), __y);
955
 
956
      complex<_Tp> __t = std::log(__x);
957
      return std::polar(exp(__y * __t.real()), __y * __t.imag());
958
    }
959
 
960
  template<typename _Tp>
961
    inline complex<_Tp>
962
    __complex_pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
963
    { return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x)); }
964
 
965
#if _GLIBCXX_USE_C99_COMPLEX
966
  inline __complex__ float
967
  __complex_pow(__complex__ float __x, __complex__ float __y)
968
  { return __builtin_cpowf(__x, __y); }
969
 
970
  inline __complex__ double
971
  __complex_pow(__complex__ double __x, __complex__ double __y)
972
  { return __builtin_cpow(__x, __y); }
973
 
974
  inline __complex__ long double
975
  __complex_pow(const __complex__ long double& __x,
976
                const __complex__ long double& __y)
977
  { return __builtin_cpowl(__x, __y); }
978
 
979
  template<typename _Tp>
980
    inline complex<_Tp>
981
    pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
982
    { return __complex_pow(__x.__rep(), __y.__rep()); }
983
#else
984
  template<typename _Tp>
985
    inline complex<_Tp>
986
    pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
987
    { return __complex_pow(__x, __y); }
988
#endif
989
 
990
  template<typename _Tp>
991
    inline complex<_Tp>
992
    pow(const _Tp& __x, const complex<_Tp>& __y)
993
    {
994
      return __x > _Tp() ? std::polar(pow(__x, __y.real()),
995
                                      __y.imag() * log(__x))
996
                         : std::pow(complex<_Tp>(__x, _Tp()), __y);
997
    }
998
 
999
  // 26.2.3  complex specializations
1000
  // complex<float> specialization
1001
  template<>
1002
    struct complex<float>
1003
    {
1004
      typedef float value_type;
1005
      typedef __complex__ float _ComplexT;
1006
 
1007
      complex(_ComplexT __z) : _M_value(__z) { }
1008
 
1009
      complex(float = 0.0f, float = 0.0f);
1010
 
1011
      explicit complex(const complex<double>&);
1012
      explicit complex(const complex<long double>&);
1013
 
1014
      float& real();
1015
      const float& real() const;
1016
      float& imag();
1017
      const float& imag() const;
1018
 
1019
      complex<float>& operator=(float);
1020
      complex<float>& operator+=(float);
1021
      complex<float>& operator-=(float);
1022
      complex<float>& operator*=(float);
1023
      complex<float>& operator/=(float);
1024
 
1025
      // Let's the compiler synthetize the copy and assignment
1026
      // operator.  It always does a pretty good job.
1027
      // complex& operator= (const complex&);
1028
      template<typename _Tp>
1029
        complex<float>&operator=(const complex<_Tp>&);
1030
      template<typename _Tp>
1031
        complex<float>& operator+=(const complex<_Tp>&);
1032
      template<class _Tp>
1033
        complex<float>& operator-=(const complex<_Tp>&);
1034
      template<class _Tp>
1035
        complex<float>& operator*=(const complex<_Tp>&);
1036
      template<class _Tp>
1037
        complex<float>&operator/=(const complex<_Tp>&);
1038
 
1039
      const _ComplexT& __rep() const { return _M_value; }
1040
 
1041
    private:
1042
      _ComplexT _M_value;
1043
    };
1044
 
1045
  inline float&
1046
  complex<float>::real()
1047
  { return __real__ _M_value; }
1048
 
1049
  inline const float&
1050
  complex<float>::real() const
1051
  { return __real__ _M_value; }
1052
 
1053
  inline float&
1054
  complex<float>::imag()
1055
  { return __imag__ _M_value; }
1056
 
1057
  inline const float&
1058
  complex<float>::imag() const
1059
  { return __imag__ _M_value; }
1060
 
1061
  inline
1062
  complex<float>::complex(float r, float i)
1063
  {
1064
    __real__ _M_value = r;
1065
    __imag__ _M_value = i;
1066
  }
1067
 
1068
  inline complex<float>&
1069
  complex<float>::operator=(float __f)
1070
  {
1071
    __real__ _M_value = __f;
1072
    __imag__ _M_value = 0.0f;
1073
    return *this;
1074
  }
1075
 
1076
  inline complex<float>&
1077
  complex<float>::operator+=(float __f)
1078
  {
1079
    __real__ _M_value += __f;
1080
    return *this;
1081
  }
1082
 
1083
  inline complex<float>&
1084
  complex<float>::operator-=(float __f)
1085
  {
1086
    __real__ _M_value -= __f;
1087
    return *this;
1088
  }
1089
 
1090
  inline complex<float>&
1091
  complex<float>::operator*=(float __f)
1092
  {
1093
    _M_value *= __f;
1094
    return *this;
1095
  }
1096
 
1097
  inline complex<float>&
1098
  complex<float>::operator/=(float __f)
1099
  {
1100
    _M_value /= __f;
1101
    return *this;
1102
  }
1103
 
1104
  template<typename _Tp>
1105
  inline complex<float>&
1106
  complex<float>::operator=(const complex<_Tp>& __z)
1107
  {
1108
    __real__ _M_value = __z.real();
1109
    __imag__ _M_value = __z.imag();
1110
    return *this;
1111
  }
1112
 
1113
  template<typename _Tp>
1114
  inline complex<float>&
1115
  complex<float>::operator+=(const complex<_Tp>& __z)
1116
  {
1117
    __real__ _M_value += __z.real();
1118
    __imag__ _M_value += __z.imag();
1119
    return *this;
1120
  }
1121
 
1122
  template<typename _Tp>
1123
    inline complex<float>&
1124
    complex<float>::operator-=(const complex<_Tp>& __z)
1125
    {
1126
     __real__ _M_value -= __z.real();
1127
     __imag__ _M_value -= __z.imag();
1128
     return *this;
1129
    }
1130
 
1131
  template<typename _Tp>
1132
    inline complex<float>&
1133
    complex<float>::operator*=(const complex<_Tp>& __z)
1134
    {
1135
      _ComplexT __t;
1136
      __real__ __t = __z.real();
1137
      __imag__ __t = __z.imag();
1138
      _M_value *= __t;
1139
      return *this;
1140
    }
1141
 
1142
  template<typename _Tp>
1143
    inline complex<float>&
1144
    complex<float>::operator/=(const complex<_Tp>& __z)
1145
    {
1146
      _ComplexT __t;
1147
      __real__ __t = __z.real();
1148
      __imag__ __t = __z.imag();
1149
      _M_value /= __t;
1150
      return *this;
1151
    }
1152
 
1153
  // 26.2.3  complex specializations
1154
  // complex<double> specialization
1155
  template<>
1156
    struct complex<double>
1157
    {
1158
      typedef double value_type;
1159
      typedef __complex__ double _ComplexT;
1160
 
1161
      complex(_ComplexT __z) : _M_value(__z) { }
1162
 
1163
      complex(double = 0.0, double = 0.0);
1164
 
1165
      complex(const complex<float>&);
1166
      explicit complex(const complex<long double>&);
1167
 
1168
      double& real();
1169
      const double& real() const;
1170
      double& imag();
1171
      const double& imag() const;
1172
 
1173
      complex<double>& operator=(double);
1174
      complex<double>& operator+=(double);
1175
      complex<double>& operator-=(double);
1176
      complex<double>& operator*=(double);
1177
      complex<double>& operator/=(double);
1178
 
1179
      // The compiler will synthetize this, efficiently.
1180
      // complex& operator= (const complex&);
1181
      template<typename _Tp>
1182
        complex<double>& operator=(const complex<_Tp>&);
1183
      template<typename _Tp>
1184
        complex<double>& operator+=(const complex<_Tp>&);
1185
      template<typename _Tp>
1186
        complex<double>& operator-=(const complex<_Tp>&);
1187
      template<typename _Tp>
1188
        complex<double>& operator*=(const complex<_Tp>&);
1189
      template<typename _Tp>
1190
        complex<double>& operator/=(const complex<_Tp>&);
1191
 
1192
      const _ComplexT& __rep() const { return _M_value; }
1193
 
1194
    private:
1195
      _ComplexT _M_value;
1196
    };
1197
 
1198
  inline double&
1199
  complex<double>::real()
1200
  { return __real__ _M_value; }
1201
 
1202
  inline const double&
1203
  complex<double>::real() const
1204
  { return __real__ _M_value; }
1205
 
1206
  inline double&
1207
  complex<double>::imag()
1208
  { return __imag__ _M_value; }
1209
 
1210
  inline const double&
1211
  complex<double>::imag() const
1212
  { return __imag__ _M_value; }
1213
 
1214
  inline
1215
  complex<double>::complex(double __r, double __i)
1216
  {
1217
    __real__ _M_value = __r;
1218
    __imag__ _M_value = __i;
1219
  }
1220
 
1221
  inline complex<double>&
1222
  complex<double>::operator=(double __d)
1223
  {
1224
    __real__ _M_value = __d;
1225
    __imag__ _M_value = 0.0;
1226
    return *this;
1227
  }
1228
 
1229
  inline complex<double>&
1230
  complex<double>::operator+=(double __d)
1231
  {
1232
    __real__ _M_value += __d;
1233
    return *this;
1234
  }
1235
 
1236
  inline complex<double>&
1237
  complex<double>::operator-=(double __d)
1238
  {
1239
    __real__ _M_value -= __d;
1240
    return *this;
1241
  }
1242
 
1243
  inline complex<double>&
1244
  complex<double>::operator*=(double __d)
1245
  {
1246
    _M_value *= __d;
1247
    return *this;
1248
  }
1249
 
1250
  inline complex<double>&
1251
  complex<double>::operator/=(double __d)
1252
  {
1253
    _M_value /= __d;
1254
    return *this;
1255
  }
1256
 
1257
  template<typename _Tp>
1258
    inline complex<double>&
1259
    complex<double>::operator=(const complex<_Tp>& __z)
1260
    {
1261
      __real__ _M_value = __z.real();
1262
      __imag__ _M_value = __z.imag();
1263
      return *this;
1264
    }
1265
 
1266
  template<typename _Tp>
1267
    inline complex<double>&
1268
    complex<double>::operator+=(const complex<_Tp>& __z)
1269
    {
1270
      __real__ _M_value += __z.real();
1271
      __imag__ _M_value += __z.imag();
1272
      return *this;
1273
    }
1274
 
1275
  template<typename _Tp>
1276
    inline complex<double>&
1277
    complex<double>::operator-=(const complex<_Tp>& __z)
1278
    {
1279
      __real__ _M_value -= __z.real();
1280
      __imag__ _M_value -= __z.imag();
1281
      return *this;
1282
    }
1283
 
1284
  template<typename _Tp>
1285
    inline complex<double>&
1286
    complex<double>::operator*=(const complex<_Tp>& __z)
1287
    {
1288
      _ComplexT __t;
1289
      __real__ __t = __z.real();
1290
      __imag__ __t = __z.imag();
1291
      _M_value *= __t;
1292
      return *this;
1293
    }
1294
 
1295
  template<typename _Tp>
1296
    inline complex<double>&
1297
    complex<double>::operator/=(const complex<_Tp>& __z)
1298
    {
1299
      _ComplexT __t;
1300
      __real__ __t = __z.real();
1301
      __imag__ __t = __z.imag();
1302
      _M_value /= __t;
1303
      return *this;
1304
    }
1305
 
1306
  // 26.2.3  complex specializations
1307
  // complex<long double> specialization
1308
  template<>
1309
    struct complex<long double>
1310
    {
1311
      typedef long double value_type;
1312
      typedef __complex__ long double _ComplexT;
1313
 
1314
      complex(_ComplexT __z) : _M_value(__z) { }
1315
 
1316
      complex(long double = 0.0L, long double = 0.0L);
1317
 
1318
      complex(const complex<float>&);
1319
      complex(const complex<double>&);
1320
 
1321
      long double& real();
1322
      const long double& real() const;
1323
      long double& imag();
1324
      const long double& imag() const;
1325
 
1326
      complex<long double>& operator= (long double);
1327
      complex<long double>& operator+= (long double);
1328
      complex<long double>& operator-= (long double);
1329
      complex<long double>& operator*= (long double);
1330
      complex<long double>& operator/= (long double);
1331
 
1332
      // The compiler knows how to do this efficiently
1333
      // complex& operator= (const complex&);
1334
      template<typename _Tp>
1335
        complex<long double>& operator=(const complex<_Tp>&);
1336
      template<typename _Tp>
1337
        complex<long double>& operator+=(const complex<_Tp>&);
1338
      template<typename _Tp>
1339
        complex<long double>& operator-=(const complex<_Tp>&);
1340
      template<typename _Tp>
1341
        complex<long double>& operator*=(const complex<_Tp>&);
1342
      template<typename _Tp>
1343
        complex<long double>& operator/=(const complex<_Tp>&);
1344
 
1345
      const _ComplexT& __rep() const { return _M_value; }
1346
 
1347
    private:
1348
      _ComplexT _M_value;
1349
    };
1350
 
1351
  inline
1352
  complex<long double>::complex(long double __r, long double __i)
1353
  {
1354
    __real__ _M_value = __r;
1355
    __imag__ _M_value = __i;
1356
  }
1357
 
1358
  inline long double&
1359
  complex<long double>::real()
1360
  { return __real__ _M_value; }
1361
 
1362
  inline const long double&
1363
  complex<long double>::real() const
1364
  { return __real__ _M_value; }
1365
 
1366
  inline long double&
1367
  complex<long double>::imag()
1368
  { return __imag__ _M_value; }
1369
 
1370
  inline const long double&
1371
  complex<long double>::imag() const
1372
  { return __imag__ _M_value; }
1373
 
1374
  inline complex<long double>&
1375
  complex<long double>::operator=(long double __r)
1376
  {
1377
    __real__ _M_value = __r;
1378
    __imag__ _M_value = 0.0L;
1379
    return *this;
1380
  }
1381
 
1382
  inline complex<long double>&
1383
  complex<long double>::operator+=(long double __r)
1384
  {
1385
    __real__ _M_value += __r;
1386
    return *this;
1387
  }
1388
 
1389
  inline complex<long double>&
1390
  complex<long double>::operator-=(long double __r)
1391
  {
1392
    __real__ _M_value -= __r;
1393
    return *this;
1394
  }
1395
 
1396
  inline complex<long double>&
1397
  complex<long double>::operator*=(long double __r)
1398
  {
1399
    _M_value *= __r;
1400
    return *this;
1401
  }
1402
 
1403
  inline complex<long double>&
1404
  complex<long double>::operator/=(long double __r)
1405
  {
1406
    _M_value /= __r;
1407
    return *this;
1408
  }
1409
 
1410
  template<typename _Tp>
1411
    inline complex<long double>&
1412
    complex<long double>::operator=(const complex<_Tp>& __z)
1413
    {
1414
      __real__ _M_value = __z.real();
1415
      __imag__ _M_value = __z.imag();
1416
      return *this;
1417
    }
1418
 
1419
  template<typename _Tp>
1420
    inline complex<long double>&
1421
    complex<long double>::operator+=(const complex<_Tp>& __z)
1422
    {
1423
      __real__ _M_value += __z.real();
1424
      __imag__ _M_value += __z.imag();
1425
      return *this;
1426
    }
1427
 
1428
  template<typename _Tp>
1429
    inline complex<long double>&
1430
    complex<long double>::operator-=(const complex<_Tp>& __z)
1431
    {
1432
      __real__ _M_value -= __z.real();
1433
      __imag__ _M_value -= __z.imag();
1434
      return *this;
1435
    }
1436
 
1437
  template<typename _Tp>
1438
    inline complex<long double>&
1439
    complex<long double>::operator*=(const complex<_Tp>& __z)
1440
    {
1441
      _ComplexT __t;
1442
      __real__ __t = __z.real();
1443
      __imag__ __t = __z.imag();
1444
      _M_value *= __t;
1445
      return *this;
1446
    }
1447
 
1448
  template<typename _Tp>
1449
    inline complex<long double>&
1450
    complex<long double>::operator/=(const complex<_Tp>& __z)
1451
    {
1452
      _ComplexT __t;
1453
      __real__ __t = __z.real();
1454
      __imag__ __t = __z.imag();
1455
      _M_value /= __t;
1456
      return *this;
1457
    }
1458
 
1459
  // These bits have to be at the end of this file, so that the
1460
  // specializations have all been defined.
1461
  // ??? No, they have to be there because of compiler limitation at
1462
  // inlining.  It suffices that class specializations be defined.
1463
  inline
1464
  complex<float>::complex(const complex<double>& __z)
1465
  : _M_value(__z.__rep()) { }
1466
 
1467
  inline
1468
  complex<float>::complex(const complex<long double>& __z)
1469
  : _M_value(__z.__rep()) { }
1470
 
1471
  inline
1472
  complex<double>::complex(const complex<float>& __z)
1473
  : _M_value(__z.__rep()) { }
1474
 
1475
  inline
1476
  complex<double>::complex(const complex<long double>& __z)
1477
    : _M_value(__z.__rep()) { }
1478
 
1479
  inline
1480
  complex<long double>::complex(const complex<float>& __z)
1481
  : _M_value(__z.__rep()) { }
1482
 
1483
  inline
1484
  complex<long double>::complex(const complex<double>& __z)
1485
  : _M_value(__z.__rep()) { }
1486
} // namespace std
1487
 
1488
#endif  /* _GLIBCXX_COMPLEX */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.