OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gdb/] [gdb-6.8/] [gdb/] [valprint.c] - Blame information for rev 25

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 25 jlechner
/* Print values for GDB, the GNU debugger.
2
 
3
   Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4
   1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5
   Free Software Foundation, Inc.
6
 
7
   This file is part of GDB.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
 
22
#include "defs.h"
23
#include "gdb_string.h"
24
#include "symtab.h"
25
#include "gdbtypes.h"
26
#include "value.h"
27
#include "gdbcore.h"
28
#include "gdbcmd.h"
29
#include "target.h"
30
#include "language.h"
31
#include "annotate.h"
32
#include "valprint.h"
33
#include "floatformat.h"
34
#include "doublest.h"
35
#include "exceptions.h"
36
#include "dfp.h"
37
 
38
#include <errno.h>
39
 
40
/* Prototypes for local functions */
41
 
42
static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
43
                                int len, int *errnoptr);
44
 
45
static void show_print (char *, int);
46
 
47
static void set_print (char *, int);
48
 
49
static void set_radix (char *, int);
50
 
51
static void show_radix (char *, int);
52
 
53
static void set_input_radix (char *, int, struct cmd_list_element *);
54
 
55
static void set_input_radix_1 (int, unsigned);
56
 
57
static void set_output_radix (char *, int, struct cmd_list_element *);
58
 
59
static void set_output_radix_1 (int, unsigned);
60
 
61
void _initialize_valprint (void);
62
 
63
/* Maximum number of chars to print for a string pointer value or vector
64
   contents, or UINT_MAX for no limit.  Note that "set print elements 0"
65
   stores UINT_MAX in print_max, which displays in a show command as
66
   "unlimited". */
67
 
68
unsigned int print_max;
69
#define PRINT_MAX_DEFAULT 200   /* Start print_max off at this value. */
70
static void
71
show_print_max (struct ui_file *file, int from_tty,
72
                struct cmd_list_element *c, const char *value)
73
{
74
  fprintf_filtered (file, _("\
75
Limit on string chars or array elements to print is %s.\n"),
76
                    value);
77
}
78
 
79
 
80
/* Default input and output radixes, and output format letter.  */
81
 
82
unsigned input_radix = 10;
83
static void
84
show_input_radix (struct ui_file *file, int from_tty,
85
                  struct cmd_list_element *c, const char *value)
86
{
87
  fprintf_filtered (file, _("\
88
Default input radix for entering numbers is %s.\n"),
89
                    value);
90
}
91
 
92
unsigned output_radix = 10;
93
static void
94
show_output_radix (struct ui_file *file, int from_tty,
95
                   struct cmd_list_element *c, const char *value)
96
{
97
  fprintf_filtered (file, _("\
98
Default output radix for printing of values is %s.\n"),
99
                    value);
100
}
101
int output_format = 0;
102
 
103
/* By default we print arrays without printing the index of each element in
104
   the array.  This behavior can be changed by setting PRINT_ARRAY_INDEXES.  */
105
 
106
static int print_array_indexes = 0;
107
static void
108
show_print_array_indexes (struct ui_file *file, int from_tty,
109
                          struct cmd_list_element *c, const char *value)
110
{
111
  fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
112
}
113
 
114
/* Print repeat counts if there are more than this many repetitions of an
115
   element in an array.  Referenced by the low level language dependent
116
   print routines. */
117
 
118
unsigned int repeat_count_threshold = 10;
119
static void
120
show_repeat_count_threshold (struct ui_file *file, int from_tty,
121
                             struct cmd_list_element *c, const char *value)
122
{
123
  fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
124
                    value);
125
}
126
 
127
/* If nonzero, stops printing of char arrays at first null. */
128
 
129
int stop_print_at_null;
130
static void
131
show_stop_print_at_null (struct ui_file *file, int from_tty,
132
                         struct cmd_list_element *c, const char *value)
133
{
134
  fprintf_filtered (file, _("\
135
Printing of char arrays to stop at first null char is %s.\n"),
136
                    value);
137
}
138
 
139
/* Controls pretty printing of structures. */
140
 
141
int prettyprint_structs;
142
static void
143
show_prettyprint_structs (struct ui_file *file, int from_tty,
144
                          struct cmd_list_element *c, const char *value)
145
{
146
  fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
147
}
148
 
149
/* Controls pretty printing of arrays.  */
150
 
151
int prettyprint_arrays;
152
static void
153
show_prettyprint_arrays (struct ui_file *file, int from_tty,
154
                         struct cmd_list_element *c, const char *value)
155
{
156
  fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
157
}
158
 
159
/* If nonzero, causes unions inside structures or other unions to be
160
   printed. */
161
 
162
int unionprint;                 /* Controls printing of nested unions.  */
163
static void
164
show_unionprint (struct ui_file *file, int from_tty,
165
                 struct cmd_list_element *c, const char *value)
166
{
167
  fprintf_filtered (file, _("\
168
Printing of unions interior to structures is %s.\n"),
169
                    value);
170
}
171
 
172
/* If nonzero, causes machine addresses to be printed in certain contexts. */
173
 
174
int addressprint;               /* Controls printing of machine addresses */
175
static void
176
show_addressprint (struct ui_file *file, int from_tty,
177
                   struct cmd_list_element *c, const char *value)
178
{
179
  fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
180
}
181
 
182
 
183
/* Print data of type TYPE located at VALADDR (within GDB), which came from
184
   the inferior at address ADDRESS, onto stdio stream STREAM according to
185
   FORMAT (a letter, or 0 for natural format using TYPE).
186
 
187
   If DEREF_REF is nonzero, then dereference references, otherwise just print
188
   them like pointers.
189
 
190
   The PRETTY parameter controls prettyprinting.
191
 
192
   If the data are a string pointer, returns the number of string characters
193
   printed.
194
 
195
   FIXME:  The data at VALADDR is in target byte order.  If gdb is ever
196
   enhanced to be able to debug more than the single target it was compiled
197
   for (specific CPU type and thus specific target byte ordering), then
198
   either the print routines are going to have to take this into account,
199
   or the data is going to have to be passed into here already converted
200
   to the host byte ordering, whichever is more convenient. */
201
 
202
 
203
int
204
val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
205
           CORE_ADDR address, struct ui_file *stream, int format,
206
           int deref_ref, int recurse, enum val_prettyprint pretty)
207
{
208
  volatile struct gdb_exception except;
209
  volatile enum val_prettyprint real_pretty = pretty;
210
  int ret = 0;
211
 
212
  struct type *real_type = check_typedef (type);
213
  if (pretty == Val_pretty_default)
214
    real_pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
215
 
216
  QUIT;
217
 
218
  /* Ensure that the type is complete and not just a stub.  If the type is
219
     only a stub and we can't find and substitute its complete type, then
220
     print appropriate string and return.  */
221
 
222
  if (TYPE_STUB (real_type))
223
    {
224
      fprintf_filtered (stream, "<incomplete type>");
225
      gdb_flush (stream);
226
      return (0);
227
    }
228
 
229
  TRY_CATCH (except, RETURN_MASK_ERROR)
230
    {
231
      ret = LA_VAL_PRINT (type, valaddr, embedded_offset, address,
232
                          stream, format, deref_ref, recurse, real_pretty);
233
    }
234
  if (except.reason < 0)
235
    fprintf_filtered (stream, _("<error reading variable>"));
236
 
237
  return ret;
238
}
239
 
240
/* Check whether the value VAL is printable.  Return 1 if it is;
241
   return 0 and print an appropriate error message to STREAM if it
242
   is not.  */
243
 
244
static int
245
value_check_printable (struct value *val, struct ui_file *stream)
246
{
247
  if (val == 0)
248
    {
249
      fprintf_filtered (stream, _("<address of value unknown>"));
250
      return 0;
251
    }
252
 
253
  if (value_optimized_out (val))
254
    {
255
      fprintf_filtered (stream, _("<value optimized out>"));
256
      return 0;
257
    }
258
 
259
  return 1;
260
}
261
 
262
/* Print the value VAL onto stream STREAM according to FORMAT (a
263
   letter, or 0 for natural format using TYPE).
264
 
265
   If DEREF_REF is nonzero, then dereference references, otherwise just print
266
   them like pointers.
267
 
268
   The PRETTY parameter controls prettyprinting.
269
 
270
   If the data are a string pointer, returns the number of string characters
271
   printed.
272
 
273
   This is a preferable interface to val_print, above, because it uses
274
   GDB's value mechanism.  */
275
 
276
int
277
common_val_print (struct value *val, struct ui_file *stream, int format,
278
                  int deref_ref, int recurse, enum val_prettyprint pretty)
279
{
280
  if (!value_check_printable (val, stream))
281
    return 0;
282
 
283
  return val_print (value_type (val), value_contents_all (val),
284
                    value_embedded_offset (val), VALUE_ADDRESS (val),
285
                    stream, format, deref_ref, recurse, pretty);
286
}
287
 
288
/* Print the value VAL in C-ish syntax on stream STREAM.
289
   FORMAT is a format-letter, or 0 for print in natural format of data type.
290
   If the object printed is a string pointer, returns
291
   the number of string bytes printed.  */
292
 
293
int
294
value_print (struct value *val, struct ui_file *stream, int format,
295
             enum val_prettyprint pretty)
296
{
297
  if (!value_check_printable (val, stream))
298
    return 0;
299
 
300
  return LA_VALUE_PRINT (val, stream, format, pretty);
301
}
302
 
303
/* Called by various <lang>_val_print routines to print
304
   TYPE_CODE_INT's.  TYPE is the type.  VALADDR is the address of the
305
   value.  STREAM is where to print the value.  */
306
 
307
void
308
val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
309
                         struct ui_file *stream)
310
{
311
  if (TYPE_LENGTH (type) > sizeof (LONGEST))
312
    {
313
      LONGEST val;
314
 
315
      if (TYPE_UNSIGNED (type)
316
          && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
317
                                            &val))
318
        {
319
          print_longest (stream, 'u', 0, val);
320
        }
321
      else
322
        {
323
          /* Signed, or we couldn't turn an unsigned value into a
324
             LONGEST.  For signed values, one could assume two's
325
             complement (a reasonable assumption, I think) and do
326
             better than this.  */
327
          print_hex_chars (stream, (unsigned char *) valaddr,
328
                           TYPE_LENGTH (type));
329
        }
330
    }
331
  else
332
    {
333
      print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
334
                     unpack_long (type, valaddr));
335
    }
336
}
337
 
338
void
339
val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
340
                           struct ui_file *stream)
341
{
342
  ULONGEST val = unpack_long (type, valaddr);
343
  int bitpos, nfields = TYPE_NFIELDS (type);
344
 
345
  fputs_filtered ("[ ", stream);
346
  for (bitpos = 0; bitpos < nfields; bitpos++)
347
    {
348
      if (TYPE_FIELD_BITPOS (type, bitpos) != -1
349
          && (val & ((ULONGEST)1 << bitpos)))
350
        {
351
          if (TYPE_FIELD_NAME (type, bitpos))
352
            fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
353
          else
354
            fprintf_filtered (stream, "#%d ", bitpos);
355
        }
356
    }
357
  fputs_filtered ("]", stream);
358
}
359
 
360
/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
361
   The raison d'etre of this function is to consolidate printing of
362
   LONG_LONG's into this one function. The format chars b,h,w,g are
363
   from print_scalar_formatted().  Numbers are printed using C
364
   format.
365
 
366
   USE_C_FORMAT means to use C format in all cases.  Without it,
367
   'o' and 'x' format do not include the standard C radix prefix
368
   (leading 0 or 0x).
369
 
370
   Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
371
   and was intended to request formating according to the current
372
   language and would be used for most integers that GDB prints.  The
373
   exceptional cases were things like protocols where the format of
374
   the integer is a protocol thing, not a user-visible thing).  The
375
   parameter remains to preserve the information of what things might
376
   be printed with language-specific format, should we ever resurrect
377
   that capability. */
378
 
379
void
380
print_longest (struct ui_file *stream, int format, int use_c_format,
381
               LONGEST val_long)
382
{
383
  const char *val;
384
 
385
  switch (format)
386
    {
387
    case 'd':
388
      val = int_string (val_long, 10, 1, 0, 1); break;
389
    case 'u':
390
      val = int_string (val_long, 10, 0, 0, 1); break;
391
    case 'x':
392
      val = int_string (val_long, 16, 0, 0, use_c_format); break;
393
    case 'b':
394
      val = int_string (val_long, 16, 0, 2, 1); break;
395
    case 'h':
396
      val = int_string (val_long, 16, 0, 4, 1); break;
397
    case 'w':
398
      val = int_string (val_long, 16, 0, 8, 1); break;
399
    case 'g':
400
      val = int_string (val_long, 16, 0, 16, 1); break;
401
      break;
402
    case 'o':
403
      val = int_string (val_long, 8, 0, 0, use_c_format); break;
404
    default:
405
      internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
406
    }
407
  fputs_filtered (val, stream);
408
}
409
 
410
/* This used to be a macro, but I don't think it is called often enough
411
   to merit such treatment.  */
412
/* Convert a LONGEST to an int.  This is used in contexts (e.g. number of
413
   arguments to a function, number in a value history, register number, etc.)
414
   where the value must not be larger than can fit in an int.  */
415
 
416
int
417
longest_to_int (LONGEST arg)
418
{
419
  /* Let the compiler do the work */
420
  int rtnval = (int) arg;
421
 
422
  /* Check for overflows or underflows */
423
  if (sizeof (LONGEST) > sizeof (int))
424
    {
425
      if (rtnval != arg)
426
        {
427
          error (_("Value out of range."));
428
        }
429
    }
430
  return (rtnval);
431
}
432
 
433
/* Print a floating point value of type TYPE (not always a
434
   TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM.  */
435
 
436
void
437
print_floating (const gdb_byte *valaddr, struct type *type,
438
                struct ui_file *stream)
439
{
440
  DOUBLEST doub;
441
  int inv;
442
  const struct floatformat *fmt = NULL;
443
  unsigned len = TYPE_LENGTH (type);
444
  enum float_kind kind;
445
 
446
  /* If it is a floating-point, check for obvious problems.  */
447
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
448
    fmt = floatformat_from_type (type);
449
  if (fmt != NULL)
450
    {
451
      kind = floatformat_classify (fmt, valaddr);
452
      if (kind == float_nan)
453
        {
454
          if (floatformat_is_negative (fmt, valaddr))
455
            fprintf_filtered (stream, "-");
456
          fprintf_filtered (stream, "nan(");
457
          fputs_filtered ("0x", stream);
458
          fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
459
          fprintf_filtered (stream, ")");
460
          return;
461
        }
462
      else if (kind == float_infinite)
463
        {
464
          if (floatformat_is_negative (fmt, valaddr))
465
            fputs_filtered ("-", stream);
466
          fputs_filtered ("inf", stream);
467
          return;
468
        }
469
    }
470
 
471
  /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
472
     isn't necessarily a TYPE_CODE_FLT.  Consequently, unpack_double
473
     needs to be used as that takes care of any necessary type
474
     conversions.  Such conversions are of course direct to DOUBLEST
475
     and disregard any possible target floating point limitations.
476
     For instance, a u64 would be converted and displayed exactly on a
477
     host with 80 bit DOUBLEST but with loss of information on a host
478
     with 64 bit DOUBLEST.  */
479
 
480
  doub = unpack_double (type, valaddr, &inv);
481
  if (inv)
482
    {
483
      fprintf_filtered (stream, "<invalid float value>");
484
      return;
485
    }
486
 
487
  /* FIXME: kettenis/2001-01-20: The following code makes too much
488
     assumptions about the host and target floating point format.  */
489
 
490
  /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
491
     not necessarily be a TYPE_CODE_FLT, the below ignores that and
492
     instead uses the type's length to determine the precision of the
493
     floating-point value being printed.  */
494
 
495
  if (len < sizeof (double))
496
      fprintf_filtered (stream, "%.9g", (double) doub);
497
  else if (len == sizeof (double))
498
      fprintf_filtered (stream, "%.17g", (double) doub);
499
  else
500
#ifdef PRINTF_HAS_LONG_DOUBLE
501
    fprintf_filtered (stream, "%.35Lg", doub);
502
#else
503
    /* This at least wins with values that are representable as
504
       doubles.  */
505
    fprintf_filtered (stream, "%.17g", (double) doub);
506
#endif
507
}
508
 
509
void
510
print_decimal_floating (const gdb_byte *valaddr, struct type *type,
511
                        struct ui_file *stream)
512
{
513
  char decstr[MAX_DECIMAL_STRING];
514
  unsigned len = TYPE_LENGTH (type);
515
 
516
  decimal_to_string (valaddr, len, decstr);
517
  fputs_filtered (decstr, stream);
518
  return;
519
}
520
 
521
void
522
print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
523
                    unsigned len)
524
{
525
 
526
#define BITS_IN_BYTES 8
527
 
528
  const gdb_byte *p;
529
  unsigned int i;
530
  int b;
531
 
532
  /* Declared "int" so it will be signed.
533
   * This ensures that right shift will shift in zeros.
534
   */
535
  const int mask = 0x080;
536
 
537
  /* FIXME: We should be not printing leading zeroes in most cases.  */
538
 
539
  if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
540
    {
541
      for (p = valaddr;
542
           p < valaddr + len;
543
           p++)
544
        {
545
          /* Every byte has 8 binary characters; peel off
546
           * and print from the MSB end.
547
           */
548
          for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
549
            {
550
              if (*p & (mask >> i))
551
                b = 1;
552
              else
553
                b = 0;
554
 
555
              fprintf_filtered (stream, "%1d", b);
556
            }
557
        }
558
    }
559
  else
560
    {
561
      for (p = valaddr + len - 1;
562
           p >= valaddr;
563
           p--)
564
        {
565
          for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
566
            {
567
              if (*p & (mask >> i))
568
                b = 1;
569
              else
570
                b = 0;
571
 
572
              fprintf_filtered (stream, "%1d", b);
573
            }
574
        }
575
    }
576
}
577
 
578
/* VALADDR points to an integer of LEN bytes.
579
 * Print it in octal on stream or format it in buf.
580
 */
581
void
582
print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
583
                   unsigned len)
584
{
585
  const gdb_byte *p;
586
  unsigned char octa1, octa2, octa3, carry;
587
  int cycle;
588
 
589
  /* FIXME: We should be not printing leading zeroes in most cases.  */
590
 
591
 
592
  /* Octal is 3 bits, which doesn't fit.  Yuk.  So we have to track
593
   * the extra bits, which cycle every three bytes:
594
   *
595
   * Byte side:       0            1             2          3
596
   *                         |             |            |            |
597
   * bit number   123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
598
   *
599
   * Octal side:   0   1   carry  3   4  carry ...
600
   *
601
   * Cycle number:    0             1            2
602
   *
603
   * But of course we are printing from the high side, so we have to
604
   * figure out where in the cycle we are so that we end up with no
605
   * left over bits at the end.
606
   */
607
#define BITS_IN_OCTAL 3
608
#define HIGH_ZERO     0340
609
#define LOW_ZERO      0016
610
#define CARRY_ZERO    0003
611
#define HIGH_ONE      0200
612
#define MID_ONE       0160
613
#define LOW_ONE       0016
614
#define CARRY_ONE     0001
615
#define HIGH_TWO      0300
616
#define MID_TWO       0070
617
#define LOW_TWO       0007
618
 
619
  /* For 32 we start in cycle 2, with two bits and one bit carry;
620
   * for 64 in cycle in cycle 1, with one bit and a two bit carry.
621
   */
622
  cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
623
  carry = 0;
624
 
625
  fputs_filtered ("0", stream);
626
  if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
627
    {
628
      for (p = valaddr;
629
           p < valaddr + len;
630
           p++)
631
        {
632
          switch (cycle)
633
            {
634
            case 0:
635
              /* No carry in, carry out two bits.
636
               */
637
              octa1 = (HIGH_ZERO & *p) >> 5;
638
              octa2 = (LOW_ZERO & *p) >> 2;
639
              carry = (CARRY_ZERO & *p);
640
              fprintf_filtered (stream, "%o", octa1);
641
              fprintf_filtered (stream, "%o", octa2);
642
              break;
643
 
644
            case 1:
645
              /* Carry in two bits, carry out one bit.
646
               */
647
              octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
648
              octa2 = (MID_ONE & *p) >> 4;
649
              octa3 = (LOW_ONE & *p) >> 1;
650
              carry = (CARRY_ONE & *p);
651
              fprintf_filtered (stream, "%o", octa1);
652
              fprintf_filtered (stream, "%o", octa2);
653
              fprintf_filtered (stream, "%o", octa3);
654
              break;
655
 
656
            case 2:
657
              /* Carry in one bit, no carry out.
658
               */
659
              octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
660
              octa2 = (MID_TWO & *p) >> 3;
661
              octa3 = (LOW_TWO & *p);
662
              carry = 0;
663
              fprintf_filtered (stream, "%o", octa1);
664
              fprintf_filtered (stream, "%o", octa2);
665
              fprintf_filtered (stream, "%o", octa3);
666
              break;
667
 
668
            default:
669
              error (_("Internal error in octal conversion;"));
670
            }
671
 
672
          cycle++;
673
          cycle = cycle % BITS_IN_OCTAL;
674
        }
675
    }
676
  else
677
    {
678
      for (p = valaddr + len - 1;
679
           p >= valaddr;
680
           p--)
681
        {
682
          switch (cycle)
683
            {
684
            case 0:
685
              /* Carry out, no carry in */
686
              octa1 = (HIGH_ZERO & *p) >> 5;
687
              octa2 = (LOW_ZERO & *p) >> 2;
688
              carry = (CARRY_ZERO & *p);
689
              fprintf_filtered (stream, "%o", octa1);
690
              fprintf_filtered (stream, "%o", octa2);
691
              break;
692
 
693
            case 1:
694
              /* Carry in, carry out */
695
              octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
696
              octa2 = (MID_ONE & *p) >> 4;
697
              octa3 = (LOW_ONE & *p) >> 1;
698
              carry = (CARRY_ONE & *p);
699
              fprintf_filtered (stream, "%o", octa1);
700
              fprintf_filtered (stream, "%o", octa2);
701
              fprintf_filtered (stream, "%o", octa3);
702
              break;
703
 
704
            case 2:
705
              /* Carry in, no carry out */
706
              octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
707
              octa2 = (MID_TWO & *p) >> 3;
708
              octa3 = (LOW_TWO & *p);
709
              carry = 0;
710
              fprintf_filtered (stream, "%o", octa1);
711
              fprintf_filtered (stream, "%o", octa2);
712
              fprintf_filtered (stream, "%o", octa3);
713
              break;
714
 
715
            default:
716
              error (_("Internal error in octal conversion;"));
717
            }
718
 
719
          cycle++;
720
          cycle = cycle % BITS_IN_OCTAL;
721
        }
722
    }
723
 
724
}
725
 
726
/* VALADDR points to an integer of LEN bytes.
727
 * Print it in decimal on stream or format it in buf.
728
 */
729
void
730
print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
731
                     unsigned len)
732
{
733
#define TEN             10
734
#define TWO_TO_FOURTH   16
735
#define CARRY_OUT(  x ) ((x) / TEN)     /* extend char to int */
736
#define CARRY_LEFT( x ) ((x) % TEN)
737
#define SHIFT( x )      ((x) << 4)
738
#define START_P \
739
        ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
740
#define NOT_END_P \
741
        ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
742
#define NEXT_P \
743
        ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? p++ : p-- )
744
#define LOW_NIBBLE(  x ) ( (x) & 0x00F)
745
#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
746
 
747
  const gdb_byte *p;
748
  unsigned char *digits;
749
  int carry;
750
  int decimal_len;
751
  int i, j, decimal_digits;
752
  int dummy;
753
  int flip;
754
 
755
  /* Base-ten number is less than twice as many digits
756
   * as the base 16 number, which is 2 digits per byte.
757
   */
758
  decimal_len = len * 2 * 2;
759
  digits = xmalloc (decimal_len);
760
 
761
  for (i = 0; i < decimal_len; i++)
762
    {
763
      digits[i] = 0;
764
    }
765
 
766
  /* Ok, we have an unknown number of bytes of data to be printed in
767
   * decimal.
768
   *
769
   * Given a hex number (in nibbles) as XYZ, we start by taking X and
770
   * decemalizing it as "x1 x2" in two decimal nibbles.  Then we multiply
771
   * the nibbles by 16, add Y and re-decimalize.  Repeat with Z.
772
   *
773
   * The trick is that "digits" holds a base-10 number, but sometimes
774
   * the individual digits are > 10.
775
   *
776
   * Outer loop is per nibble (hex digit) of input, from MSD end to
777
   * LSD end.
778
   */
779
  decimal_digits = 0;            /* Number of decimal digits so far */
780
  p = START_P;
781
  flip = 0;
782
  while (NOT_END_P)
783
    {
784
      /*
785
       * Multiply current base-ten number by 16 in place.
786
       * Each digit was between 0 and 9, now is between
787
       * 0 and 144.
788
       */
789
      for (j = 0; j < decimal_digits; j++)
790
        {
791
          digits[j] = SHIFT (digits[j]);
792
        }
793
 
794
      /* Take the next nibble off the input and add it to what
795
       * we've got in the LSB position.  Bottom 'digit' is now
796
       * between 0 and 159.
797
       *
798
       * "flip" is used to run this loop twice for each byte.
799
       */
800
      if (flip == 0)
801
        {
802
          /* Take top nibble.
803
           */
804
          digits[0] += HIGH_NIBBLE (*p);
805
          flip = 1;
806
        }
807
      else
808
        {
809
          /* Take low nibble and bump our pointer "p".
810
           */
811
          digits[0] += LOW_NIBBLE (*p);
812
          NEXT_P;
813
          flip = 0;
814
        }
815
 
816
      /* Re-decimalize.  We have to do this often enough
817
       * that we don't overflow, but once per nibble is
818
       * overkill.  Easier this way, though.  Note that the
819
       * carry is often larger than 10 (e.g. max initial
820
       * carry out of lowest nibble is 15, could bubble all
821
       * the way up greater than 10).  So we have to do
822
       * the carrying beyond the last current digit.
823
       */
824
      carry = 0;
825
      for (j = 0; j < decimal_len - 1; j++)
826
        {
827
          digits[j] += carry;
828
 
829
          /* "/" won't handle an unsigned char with
830
           * a value that if signed would be negative.
831
           * So extend to longword int via "dummy".
832
           */
833
          dummy = digits[j];
834
          carry = CARRY_OUT (dummy);
835
          digits[j] = CARRY_LEFT (dummy);
836
 
837
          if (j >= decimal_digits && carry == 0)
838
            {
839
              /*
840
               * All higher digits are 0 and we
841
               * no longer have a carry.
842
               *
843
               * Note: "j" is 0-based, "decimal_digits" is
844
               *       1-based.
845
               */
846
              decimal_digits = j + 1;
847
              break;
848
            }
849
        }
850
    }
851
 
852
  /* Ok, now "digits" is the decimal representation, with
853
   * the "decimal_digits" actual digits.  Print!
854
   */
855
  for (i = decimal_digits - 1; i >= 0; i--)
856
    {
857
      fprintf_filtered (stream, "%1d", digits[i]);
858
    }
859
  xfree (digits);
860
}
861
 
862
/* VALADDR points to an integer of LEN bytes.  Print it in hex on stream.  */
863
 
864
void
865
print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
866
                 unsigned len)
867
{
868
  const gdb_byte *p;
869
 
870
  /* FIXME: We should be not printing leading zeroes in most cases.  */
871
 
872
  fputs_filtered ("0x", stream);
873
  if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
874
    {
875
      for (p = valaddr;
876
           p < valaddr + len;
877
           p++)
878
        {
879
          fprintf_filtered (stream, "%02x", *p);
880
        }
881
    }
882
  else
883
    {
884
      for (p = valaddr + len - 1;
885
           p >= valaddr;
886
           p--)
887
        {
888
          fprintf_filtered (stream, "%02x", *p);
889
        }
890
    }
891
}
892
 
893
/* VALADDR points to a char integer of LEN bytes.  Print it out in appropriate language form on stream.
894
   Omit any leading zero chars.  */
895
 
896
void
897
print_char_chars (struct ui_file *stream, const gdb_byte *valaddr,
898
                  unsigned len)
899
{
900
  const gdb_byte *p;
901
 
902
  if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
903
    {
904
      p = valaddr;
905
      while (p < valaddr + len - 1 && *p == 0)
906
        ++p;
907
 
908
      while (p < valaddr + len)
909
        {
910
          LA_EMIT_CHAR (*p, stream, '\'');
911
          ++p;
912
        }
913
    }
914
  else
915
    {
916
      p = valaddr + len - 1;
917
      while (p > valaddr && *p == 0)
918
        --p;
919
 
920
      while (p >= valaddr)
921
        {
922
          LA_EMIT_CHAR (*p, stream, '\'');
923
          --p;
924
        }
925
    }
926
}
927
 
928
/* Return non-zero if the debugger should print the index of each element
929
   when printing array values.  */
930
 
931
int
932
print_array_indexes_p (void)
933
{
934
  return print_array_indexes;
935
}
936
 
937
/* Assuming TYPE is a simple, non-empty array type, compute its lower bound.
938
   Save it into LOW_BOUND if not NULL.
939
 
940
   Return 1 if the operation was successful. Return zero otherwise,
941
   in which case the value of LOW_BOUND is unmodified.
942
 
943
   Computing the array lower bound is pretty easy, but this function
944
   does some additional verifications before returning the low bound.
945
   If something incorrect is detected, it is better to return a status
946
   rather than throwing an error, making it easier for the caller to
947
   implement an error-recovery plan.  For instance, it may decide to
948
   warn the user that the bound was not found and then use a default
949
   value instead.  */
950
 
951
int
952
get_array_low_bound (struct type *type, long *low_bound)
953
{
954
  struct type *index = TYPE_INDEX_TYPE (type);
955
  long low = 0;
956
 
957
  if (index == NULL)
958
    return 0;
959
 
960
  if (TYPE_CODE (index) != TYPE_CODE_RANGE
961
      && TYPE_CODE (index) != TYPE_CODE_ENUM)
962
    return 0;
963
 
964
  low = TYPE_LOW_BOUND (index);
965
  if (low > TYPE_HIGH_BOUND (index))
966
    return 0;
967
 
968
  if (low_bound)
969
    *low_bound = low;
970
 
971
  return 1;
972
}
973
 
974
/* Print on STREAM using the given FORMAT the index for the element
975
   at INDEX of an array whose index type is INDEX_TYPE.  */
976
 
977
void
978
maybe_print_array_index (struct type *index_type, LONGEST index,
979
                         struct ui_file *stream, int format,
980
                         enum val_prettyprint pretty)
981
{
982
  struct value *index_value;
983
 
984
  if (!print_array_indexes)
985
    return;
986
 
987
  index_value = value_from_longest (index_type, index);
988
 
989
  LA_PRINT_ARRAY_INDEX (index_value, stream, format, pretty);
990
}
991
 
992
/*  Called by various <lang>_val_print routines to print elements of an
993
   array in the form "<elem1>, <elem2>, <elem3>, ...".
994
 
995
   (FIXME?)  Assumes array element separator is a comma, which is correct
996
   for all languages currently handled.
997
   (FIXME?)  Some languages have a notation for repeated array elements,
998
   perhaps we should try to use that notation when appropriate.
999
 */
1000
 
1001
void
1002
val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1003
                          CORE_ADDR address, struct ui_file *stream,
1004
                          int format, int deref_ref,
1005
                          int recurse, enum val_prettyprint pretty,
1006
                          unsigned int i)
1007
{
1008
  unsigned int things_printed = 0;
1009
  unsigned len;
1010
  struct type *elttype, *index_type;
1011
  unsigned eltlen;
1012
  /* Position of the array element we are examining to see
1013
     whether it is repeated.  */
1014
  unsigned int rep1;
1015
  /* Number of repetitions we have detected so far.  */
1016
  unsigned int reps;
1017
  long low_bound_index = 0;
1018
 
1019
  elttype = TYPE_TARGET_TYPE (type);
1020
  eltlen = TYPE_LENGTH (check_typedef (elttype));
1021
  len = TYPE_LENGTH (type) / eltlen;
1022
  index_type = TYPE_INDEX_TYPE (type);
1023
 
1024
  /* Get the array low bound.  This only makes sense if the array
1025
     has one or more element in it.  */
1026
  if (len > 0 && !get_array_low_bound (type, &low_bound_index))
1027
    {
1028
      warning ("unable to get low bound of array, using zero as default");
1029
      low_bound_index = 0;
1030
    }
1031
 
1032
  annotate_array_section_begin (i, elttype);
1033
 
1034
  for (; i < len && things_printed < print_max; i++)
1035
    {
1036
      if (i != 0)
1037
        {
1038
          if (prettyprint_arrays)
1039
            {
1040
              fprintf_filtered (stream, ",\n");
1041
              print_spaces_filtered (2 + 2 * recurse, stream);
1042
            }
1043
          else
1044
            {
1045
              fprintf_filtered (stream, ", ");
1046
            }
1047
        }
1048
      wrap_here (n_spaces (2 + 2 * recurse));
1049
      maybe_print_array_index (index_type, i + low_bound_index,
1050
                               stream, format, pretty);
1051
 
1052
      rep1 = i + 1;
1053
      reps = 1;
1054
      while ((rep1 < len) &&
1055
             !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1056
        {
1057
          ++reps;
1058
          ++rep1;
1059
        }
1060
 
1061
      if (reps > repeat_count_threshold)
1062
        {
1063
          val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1064
                     deref_ref, recurse + 1, pretty);
1065
          annotate_elt_rep (reps);
1066
          fprintf_filtered (stream, " <repeats %u times>", reps);
1067
          annotate_elt_rep_end ();
1068
 
1069
          i = rep1 - 1;
1070
          things_printed += repeat_count_threshold;
1071
        }
1072
      else
1073
        {
1074
          val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1075
                     deref_ref, recurse + 1, pretty);
1076
          annotate_elt ();
1077
          things_printed++;
1078
        }
1079
    }
1080
  annotate_array_section_end ();
1081
  if (i < len)
1082
    {
1083
      fprintf_filtered (stream, "...");
1084
    }
1085
}
1086
 
1087
/* Read LEN bytes of target memory at address MEMADDR, placing the
1088
   results in GDB's memory at MYADDR.  Returns a count of the bytes
1089
   actually read, and optionally an errno value in the location
1090
   pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1091
 
1092
/* FIXME: cagney/1999-10-14: Only used by val_print_string.  Can this
1093
   function be eliminated.  */
1094
 
1095
static int
1096
partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1097
{
1098
  int nread;                    /* Number of bytes actually read. */
1099
  int errcode;                  /* Error from last read. */
1100
 
1101
  /* First try a complete read. */
1102
  errcode = target_read_memory (memaddr, myaddr, len);
1103
  if (errcode == 0)
1104
    {
1105
      /* Got it all. */
1106
      nread = len;
1107
    }
1108
  else
1109
    {
1110
      /* Loop, reading one byte at a time until we get as much as we can. */
1111
      for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1112
        {
1113
          errcode = target_read_memory (memaddr++, myaddr++, 1);
1114
        }
1115
      /* If an error, the last read was unsuccessful, so adjust count. */
1116
      if (errcode != 0)
1117
        {
1118
          nread--;
1119
        }
1120
    }
1121
  if (errnoptr != NULL)
1122
    {
1123
      *errnoptr = errcode;
1124
    }
1125
  return (nread);
1126
}
1127
 
1128
/*  Print a string from the inferior, starting at ADDR and printing up to LEN
1129
   characters, of WIDTH bytes a piece, to STREAM.  If LEN is -1, printing
1130
   stops at the first null byte, otherwise printing proceeds (including null
1131
   bytes) until either print_max or LEN characters have been printed,
1132
   whichever is smaller. */
1133
 
1134
/* FIXME: Use target_read_string.  */
1135
 
1136
int
1137
val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
1138
{
1139
  int force_ellipsis = 0;        /* Force ellipsis to be printed if nonzero. */
1140
  int errcode;                  /* Errno returned from bad reads. */
1141
  unsigned int fetchlimit;      /* Maximum number of chars to print. */
1142
  unsigned int nfetch;          /* Chars to fetch / chars fetched. */
1143
  unsigned int chunksize;       /* Size of each fetch, in chars. */
1144
  gdb_byte *buffer = NULL;      /* Dynamically growable fetch buffer. */
1145
  gdb_byte *bufptr;             /* Pointer to next available byte in buffer. */
1146
  gdb_byte *limit;              /* First location past end of fetch buffer. */
1147
  struct cleanup *old_chain = NULL;     /* Top of the old cleanup chain. */
1148
  int found_nul;                /* Non-zero if we found the nul char */
1149
 
1150
  /* First we need to figure out the limit on the number of characters we are
1151
     going to attempt to fetch and print.  This is actually pretty simple.  If
1152
     LEN >= zero, then the limit is the minimum of LEN and print_max.  If
1153
     LEN is -1, then the limit is print_max.  This is true regardless of
1154
     whether print_max is zero, UINT_MAX (unlimited), or something in between,
1155
     because finding the null byte (or available memory) is what actually
1156
     limits the fetch. */
1157
 
1158
  fetchlimit = (len == -1 ? print_max : min (len, print_max));
1159
 
1160
  /* Now decide how large of chunks to try to read in one operation.  This
1161
     is also pretty simple.  If LEN >= zero, then we want fetchlimit chars,
1162
     so we might as well read them all in one operation.  If LEN is -1, we
1163
     are looking for a null terminator to end the fetching, so we might as
1164
     well read in blocks that are large enough to be efficient, but not so
1165
     large as to be slow if fetchlimit happens to be large.  So we choose the
1166
     minimum of 8 and fetchlimit.  We used to use 200 instead of 8 but
1167
     200 is way too big for remote debugging over a serial line.  */
1168
 
1169
  chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1170
 
1171
  /* Loop until we either have all the characters to print, or we encounter
1172
     some error, such as bumping into the end of the address space. */
1173
 
1174
  found_nul = 0;
1175
  old_chain = make_cleanup (null_cleanup, 0);
1176
 
1177
  if (len > 0)
1178
    {
1179
      buffer = (gdb_byte *) xmalloc (len * width);
1180
      bufptr = buffer;
1181
      old_chain = make_cleanup (xfree, buffer);
1182
 
1183
      nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1184
        / width;
1185
      addr += nfetch * width;
1186
      bufptr += nfetch * width;
1187
    }
1188
  else if (len == -1)
1189
    {
1190
      unsigned long bufsize = 0;
1191
      do
1192
        {
1193
          QUIT;
1194
          nfetch = min (chunksize, fetchlimit - bufsize);
1195
 
1196
          if (buffer == NULL)
1197
            buffer = (gdb_byte *) xmalloc (nfetch * width);
1198
          else
1199
            {
1200
              discard_cleanups (old_chain);
1201
              buffer = (gdb_byte *) xrealloc (buffer, (nfetch + bufsize) * width);
1202
            }
1203
 
1204
          old_chain = make_cleanup (xfree, buffer);
1205
          bufptr = buffer + bufsize * width;
1206
          bufsize += nfetch;
1207
 
1208
          /* Read as much as we can. */
1209
          nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1210
            / width;
1211
 
1212
          /* Scan this chunk for the null byte that terminates the string
1213
             to print.  If found, we don't need to fetch any more.  Note
1214
             that bufptr is explicitly left pointing at the next character
1215
             after the null byte, or at the next character after the end of
1216
             the buffer. */
1217
 
1218
          limit = bufptr + nfetch * width;
1219
          while (bufptr < limit)
1220
            {
1221
              unsigned long c;
1222
 
1223
              c = extract_unsigned_integer (bufptr, width);
1224
              addr += width;
1225
              bufptr += width;
1226
              if (c == 0)
1227
                {
1228
                  /* We don't care about any error which happened after
1229
                     the NULL terminator.  */
1230
                  errcode = 0;
1231
                  found_nul = 1;
1232
                  break;
1233
                }
1234
            }
1235
        }
1236
      while (errcode == 0        /* no error */
1237
             && bufptr - buffer < fetchlimit * width    /* no overrun */
1238
             && !found_nul);    /* haven't found nul yet */
1239
    }
1240
  else
1241
    {                           /* length of string is really 0! */
1242
      buffer = bufptr = NULL;
1243
      errcode = 0;
1244
    }
1245
 
1246
  /* bufptr and addr now point immediately beyond the last byte which we
1247
     consider part of the string (including a '\0' which ends the string).  */
1248
 
1249
  /* We now have either successfully filled the buffer to fetchlimit, or
1250
     terminated early due to an error or finding a null char when LEN is -1. */
1251
 
1252
  if (len == -1 && !found_nul)
1253
    {
1254
      gdb_byte *peekbuf;
1255
 
1256
      /* We didn't find a null terminator we were looking for.  Attempt
1257
         to peek at the next character.  If not successful, or it is not
1258
         a null byte, then force ellipsis to be printed.  */
1259
 
1260
      peekbuf = (gdb_byte *) alloca (width);
1261
 
1262
      if (target_read_memory (addr, peekbuf, width) == 0
1263
          && extract_unsigned_integer (peekbuf, width) != 0)
1264
        force_ellipsis = 1;
1265
    }
1266
  else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1267
    {
1268
      /* Getting an error when we have a requested length, or fetching less
1269
         than the number of characters actually requested, always make us
1270
         print ellipsis. */
1271
      force_ellipsis = 1;
1272
    }
1273
 
1274
  QUIT;
1275
 
1276
  /* If we get an error before fetching anything, don't print a string.
1277
     But if we fetch something and then get an error, print the string
1278
     and then the error message.  */
1279
  if (errcode == 0 || bufptr > buffer)
1280
    {
1281
      if (addressprint)
1282
        {
1283
          fputs_filtered (" ", stream);
1284
        }
1285
      LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1286
    }
1287
 
1288
  if (errcode != 0)
1289
    {
1290
      if (errcode == EIO)
1291
        {
1292
          fprintf_filtered (stream, " <Address ");
1293
          fputs_filtered (paddress (addr), stream);
1294
          fprintf_filtered (stream, " out of bounds>");
1295
        }
1296
      else
1297
        {
1298
          fprintf_filtered (stream, " <Error reading address ");
1299
          fputs_filtered (paddress (addr), stream);
1300
          fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1301
        }
1302
    }
1303
  gdb_flush (stream);
1304
  do_cleanups (old_chain);
1305
  return ((bufptr - buffer) / width);
1306
}
1307
 
1308
 
1309
/* Validate an input or output radix setting, and make sure the user
1310
   knows what they really did here.  Radix setting is confusing, e.g.
1311
   setting the input radix to "10" never changes it!  */
1312
 
1313
static void
1314
set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1315
{
1316
  set_input_radix_1 (from_tty, input_radix);
1317
}
1318
 
1319
static void
1320
set_input_radix_1 (int from_tty, unsigned radix)
1321
{
1322
  /* We don't currently disallow any input radix except 0 or 1, which don't
1323
     make any mathematical sense.  In theory, we can deal with any input
1324
     radix greater than 1, even if we don't have unique digits for every
1325
     value from 0 to radix-1, but in practice we lose on large radix values.
1326
     We should either fix the lossage or restrict the radix range more.
1327
     (FIXME). */
1328
 
1329
  if (radix < 2)
1330
    {
1331
      /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1332
         value.  */
1333
      error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1334
             radix);
1335
    }
1336
  input_radix = radix;
1337
  if (from_tty)
1338
    {
1339
      printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1340
                       radix, radix, radix);
1341
    }
1342
}
1343
 
1344
static void
1345
set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1346
{
1347
  set_output_radix_1 (from_tty, output_radix);
1348
}
1349
 
1350
static void
1351
set_output_radix_1 (int from_tty, unsigned radix)
1352
{
1353
  /* Validate the radix and disallow ones that we aren't prepared to
1354
     handle correctly, leaving the radix unchanged. */
1355
  switch (radix)
1356
    {
1357
    case 16:
1358
      output_format = 'x';      /* hex */
1359
      break;
1360
    case 10:
1361
      output_format = 0; /* decimal */
1362
      break;
1363
    case 8:
1364
      output_format = 'o';      /* octal */
1365
      break;
1366
    default:
1367
      /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1368
         value.  */
1369
      error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1370
             radix);
1371
    }
1372
  output_radix = radix;
1373
  if (from_tty)
1374
    {
1375
      printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1376
                       radix, radix, radix);
1377
    }
1378
}
1379
 
1380
/* Set both the input and output radix at once.  Try to set the output radix
1381
   first, since it has the most restrictive range.  An radix that is valid as
1382
   an output radix is also valid as an input radix.
1383
 
1384
   It may be useful to have an unusual input radix.  If the user wishes to
1385
   set an input radix that is not valid as an output radix, he needs to use
1386
   the 'set input-radix' command. */
1387
 
1388
static void
1389
set_radix (char *arg, int from_tty)
1390
{
1391
  unsigned radix;
1392
 
1393
  radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1394
  set_output_radix_1 (0, radix);
1395
  set_input_radix_1 (0, radix);
1396
  if (from_tty)
1397
    {
1398
      printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1399
                       radix, radix, radix);
1400
    }
1401
}
1402
 
1403
/* Show both the input and output radices. */
1404
 
1405
static void
1406
show_radix (char *arg, int from_tty)
1407
{
1408
  if (from_tty)
1409
    {
1410
      if (input_radix == output_radix)
1411
        {
1412
          printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1413
                           input_radix, input_radix, input_radix);
1414
        }
1415
      else
1416
        {
1417
          printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1418
                           input_radix, input_radix, input_radix);
1419
          printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1420
                           output_radix, output_radix, output_radix);
1421
        }
1422
    }
1423
}
1424
 
1425
 
1426
static void
1427
set_print (char *arg, int from_tty)
1428
{
1429
  printf_unfiltered (
1430
     "\"set print\" must be followed by the name of a print subcommand.\n");
1431
  help_list (setprintlist, "set print ", -1, gdb_stdout);
1432
}
1433
 
1434
static void
1435
show_print (char *args, int from_tty)
1436
{
1437
  cmd_show_list (showprintlist, from_tty, "");
1438
}
1439
 
1440
void
1441
_initialize_valprint (void)
1442
{
1443
  struct cmd_list_element *c;
1444
 
1445
  add_prefix_cmd ("print", no_class, set_print,
1446
                  _("Generic command for setting how things print."),
1447
                  &setprintlist, "set print ", 0, &setlist);
1448
  add_alias_cmd ("p", "print", no_class, 1, &setlist);
1449
  /* prefer set print to set prompt */
1450
  add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1451
 
1452
  add_prefix_cmd ("print", no_class, show_print,
1453
                  _("Generic command for showing print settings."),
1454
                  &showprintlist, "show print ", 0, &showlist);
1455
  add_alias_cmd ("p", "print", no_class, 1, &showlist);
1456
  add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1457
 
1458
  add_setshow_uinteger_cmd ("elements", no_class, &print_max, _("\
1459
Set limit on string chars or array elements to print."), _("\
1460
Show limit on string chars or array elements to print."), _("\
1461
\"set print elements 0\" causes there to be no limit."),
1462
                            NULL,
1463
                            show_print_max,
1464
                            &setprintlist, &showprintlist);
1465
 
1466
  add_setshow_boolean_cmd ("null-stop", no_class, &stop_print_at_null, _("\
1467
Set printing of char arrays to stop at first null char."), _("\
1468
Show printing of char arrays to stop at first null char."), NULL,
1469
                           NULL,
1470
                           show_stop_print_at_null,
1471
                           &setprintlist, &showprintlist);
1472
 
1473
  add_setshow_uinteger_cmd ("repeats", no_class,
1474
                            &repeat_count_threshold, _("\
1475
Set threshold for repeated print elements."), _("\
1476
Show threshold for repeated print elements."), _("\
1477
\"set print repeats 0\" causes all elements to be individually printed."),
1478
                            NULL,
1479
                            show_repeat_count_threshold,
1480
                            &setprintlist, &showprintlist);
1481
 
1482
  add_setshow_boolean_cmd ("pretty", class_support, &prettyprint_structs, _("\
1483
Set prettyprinting of structures."), _("\
1484
Show prettyprinting of structures."), NULL,
1485
                           NULL,
1486
                           show_prettyprint_structs,
1487
                           &setprintlist, &showprintlist);
1488
 
1489
  add_setshow_boolean_cmd ("union", class_support, &unionprint, _("\
1490
Set printing of unions interior to structures."), _("\
1491
Show printing of unions interior to structures."), NULL,
1492
                           NULL,
1493
                           show_unionprint,
1494
                           &setprintlist, &showprintlist);
1495
 
1496
  add_setshow_boolean_cmd ("array", class_support, &prettyprint_arrays, _("\
1497
Set prettyprinting of arrays."), _("\
1498
Show prettyprinting of arrays."), NULL,
1499
                           NULL,
1500
                           show_prettyprint_arrays,
1501
                           &setprintlist, &showprintlist);
1502
 
1503
  add_setshow_boolean_cmd ("address", class_support, &addressprint, _("\
1504
Set printing of addresses."), _("\
1505
Show printing of addresses."), NULL,
1506
                           NULL,
1507
                           show_addressprint,
1508
                           &setprintlist, &showprintlist);
1509
 
1510
  add_setshow_uinteger_cmd ("input-radix", class_support, &input_radix, _("\
1511
Set default input radix for entering numbers."), _("\
1512
Show default input radix for entering numbers."), NULL,
1513
                            set_input_radix,
1514
                            show_input_radix,
1515
                            &setlist, &showlist);
1516
 
1517
  add_setshow_uinteger_cmd ("output-radix", class_support, &output_radix, _("\
1518
Set default output radix for printing of values."), _("\
1519
Show default output radix for printing of values."), NULL,
1520
                            set_output_radix,
1521
                            show_output_radix,
1522
                            &setlist, &showlist);
1523
 
1524
  /* The "set radix" and "show radix" commands are special in that
1525
     they are like normal set and show commands but allow two normally
1526
     independent variables to be either set or shown with a single
1527
     command.  So the usual deprecated_add_set_cmd() and [deleted]
1528
     add_show_from_set() commands aren't really appropriate. */
1529
  /* FIXME: i18n: With the new add_setshow_integer command, that is no
1530
     longer true - show can display anything.  */
1531
  add_cmd ("radix", class_support, set_radix, _("\
1532
Set default input and output number radices.\n\
1533
Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1534
Without an argument, sets both radices back to the default value of 10."),
1535
           &setlist);
1536
  add_cmd ("radix", class_support, show_radix, _("\
1537
Show the default input and output number radices.\n\
1538
Use 'show input-radix' or 'show output-radix' to independently show each."),
1539
           &showlist);
1540
 
1541
  add_setshow_boolean_cmd ("array-indexes", class_support,
1542
                           &print_array_indexes, _("\
1543
Set printing of array indexes."), _("\
1544
Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1545
                           &setprintlist, &showprintlist);
1546
 
1547
  /* Give people the defaults which they are used to.  */
1548
  prettyprint_structs = 0;
1549
  prettyprint_arrays = 0;
1550
  unionprint = 1;
1551
  addressprint = 1;
1552
  print_max = PRINT_MAX_DEFAULT;
1553
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.