1 |
2 |
dmitryr |
//////////////////////////////////////////////////////////////////////
|
2 |
|
|
//// ////
|
3 |
|
|
//// eth_miim.v ////
|
4 |
|
|
//// ////
|
5 |
|
|
//// This file is part of the Ethernet IP core project ////
|
6 |
|
|
//// http://www.opencores.org/projects/ethmac/ ////
|
7 |
|
|
//// ////
|
8 |
|
|
//// Author(s): ////
|
9 |
|
|
//// - Igor Mohor (igorM@opencores.org) ////
|
10 |
|
|
//// ////
|
11 |
|
|
//// All additional information is avaliable in the Readme.txt ////
|
12 |
|
|
//// file. ////
|
13 |
|
|
//// ////
|
14 |
|
|
//////////////////////////////////////////////////////////////////////
|
15 |
|
|
//// ////
|
16 |
|
|
//// Copyright (C) 2001 Authors ////
|
17 |
|
|
//// ////
|
18 |
|
|
//// This source file may be used and distributed without ////
|
19 |
|
|
//// restriction provided that this copyright statement is not ////
|
20 |
|
|
//// removed from the file and that any derivative work contains ////
|
21 |
|
|
//// the original copyright notice and the associated disclaimer. ////
|
22 |
|
|
//// ////
|
23 |
|
|
//// This source file is free software; you can redistribute it ////
|
24 |
|
|
//// and/or modify it under the terms of the GNU Lesser General ////
|
25 |
|
|
//// Public License as published by the Free Software Foundation; ////
|
26 |
|
|
//// either version 2.1 of the License, or (at your option) any ////
|
27 |
|
|
//// later version. ////
|
28 |
|
|
//// ////
|
29 |
|
|
//// This source is distributed in the hope that it will be ////
|
30 |
|
|
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
|
31 |
|
|
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
|
32 |
|
|
//// PURPOSE. See the GNU Lesser General Public License for more ////
|
33 |
|
|
//// details. ////
|
34 |
|
|
//// ////
|
35 |
|
|
//// You should have received a copy of the GNU Lesser General ////
|
36 |
|
|
//// Public License along with this source; if not, download it ////
|
37 |
|
|
//// from http://www.opencores.org/lgpl.shtml ////
|
38 |
|
|
//// ////
|
39 |
|
|
//////////////////////////////////////////////////////////////////////
|
40 |
|
|
//
|
41 |
|
|
// CVS Revision History
|
42 |
|
|
//
|
43 |
|
|
// $Log: not supported by cvs2svn $
|
44 |
|
|
// Revision 1.6 2005/02/21 12:48:07 igorm
|
45 |
|
|
// Warning fixes.
|
46 |
|
|
//
|
47 |
|
|
// Revision 1.5 2003/05/16 10:08:27 mohor
|
48 |
|
|
// Busy was set 2 cycles too late. Reported by Dennis Scott.
|
49 |
|
|
//
|
50 |
|
|
// Revision 1.4 2002/08/14 18:32:10 mohor
|
51 |
|
|
// - Busy signal was not set on time when scan status operation was performed
|
52 |
|
|
// and clock was divided with more than 2.
|
53 |
|
|
// - Nvalid remains valid two more clocks (was previously cleared too soon).
|
54 |
|
|
//
|
55 |
|
|
// Revision 1.3 2002/01/23 10:28:16 mohor
|
56 |
|
|
// Link in the header changed.
|
57 |
|
|
//
|
58 |
|
|
// Revision 1.2 2001/10/19 08:43:51 mohor
|
59 |
|
|
// eth_timescale.v changed to timescale.v This is done because of the
|
60 |
|
|
// simulation of the few cores in a one joined project.
|
61 |
|
|
//
|
62 |
|
|
// Revision 1.1 2001/08/06 14:44:29 mohor
|
63 |
|
|
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
|
64 |
|
|
// Include files fixed to contain no path.
|
65 |
|
|
// File names and module names changed ta have a eth_ prologue in the name.
|
66 |
|
|
// File eth_timescale.v is used to define timescale
|
67 |
|
|
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
|
68 |
|
|
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
|
69 |
|
|
// and Mdo_OE. The bidirectional signal must be created on the top level. This
|
70 |
|
|
// is done due to the ASIC tools.
|
71 |
|
|
//
|
72 |
|
|
// Revision 1.2 2001/08/02 09:25:31 mohor
|
73 |
|
|
// Unconnected signals are now connected.
|
74 |
|
|
//
|
75 |
|
|
// Revision 1.1 2001/07/30 21:23:42 mohor
|
76 |
|
|
// Directory structure changed. Files checked and joind together.
|
77 |
|
|
//
|
78 |
|
|
// Revision 1.3 2001/06/01 22:28:56 mohor
|
79 |
|
|
// This files (MIIM) are fully working. They were thoroughly tested. The testbench is not updated.
|
80 |
|
|
//
|
81 |
|
|
//
|
82 |
|
|
|
83 |
|
|
`include "timescale.v"
|
84 |
|
|
|
85 |
|
|
|
86 |
|
|
module eth_miim
|
87 |
|
|
(
|
88 |
|
|
Clk,
|
89 |
|
|
Reset,
|
90 |
|
|
Divider,
|
91 |
|
|
NoPre,
|
92 |
|
|
CtrlData,
|
93 |
|
|
Rgad,
|
94 |
|
|
Fiad,
|
95 |
|
|
WCtrlData,
|
96 |
|
|
RStat,
|
97 |
|
|
ScanStat,
|
98 |
|
|
Mdi,
|
99 |
|
|
Mdo,
|
100 |
|
|
MdoEn,
|
101 |
|
|
Mdc,
|
102 |
|
|
Busy,
|
103 |
|
|
Prsd,
|
104 |
|
|
LinkFail,
|
105 |
|
|
Nvalid,
|
106 |
|
|
WCtrlDataStart,
|
107 |
|
|
RStatStart,
|
108 |
|
|
UpdateMIIRX_DATAReg
|
109 |
|
|
);
|
110 |
|
|
|
111 |
|
|
|
112 |
|
|
|
113 |
|
|
input Clk; // Host Clock
|
114 |
|
|
input Reset; // General Reset
|
115 |
|
|
input [7:0] Divider; // Divider for the host clock
|
116 |
|
|
input [15:0] CtrlData; // Control Data (to be written to the PHY reg.)
|
117 |
|
|
input [4:0] Rgad; // Register Address (within the PHY)
|
118 |
|
|
input [4:0] Fiad; // PHY Address
|
119 |
|
|
input NoPre; // No Preamble (no 32-bit preamble)
|
120 |
|
|
input WCtrlData; // Write Control Data operation
|
121 |
|
|
input RStat; // Read Status operation
|
122 |
|
|
input ScanStat; // Scan Status operation
|
123 |
|
|
input Mdi; // MII Management Data In
|
124 |
|
|
|
125 |
|
|
output Mdc; // MII Management Data Clock
|
126 |
|
|
output Mdo; // MII Management Data Output
|
127 |
|
|
output MdoEn; // MII Management Data Output Enable
|
128 |
|
|
output Busy; // Busy Signal
|
129 |
|
|
output LinkFail; // Link Integrity Signal
|
130 |
|
|
output Nvalid; // Invalid Status (qualifier for the valid scan result)
|
131 |
|
|
|
132 |
|
|
output [15:0] Prsd; // Read Status Data (data read from the PHY)
|
133 |
|
|
|
134 |
|
|
output WCtrlDataStart; // This signals resets the WCTRLDATA bit in the MIIM Command register
|
135 |
|
|
output RStatStart; // This signal resets the RSTAT BIT in the MIIM Command register
|
136 |
|
|
output UpdateMIIRX_DATAReg;// Updates MII RX_DATA register with read data
|
137 |
|
|
|
138 |
|
|
parameter Tp = 1;
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
reg Nvalid;
|
142 |
|
|
reg EndBusy_d; // Pre-end Busy signal
|
143 |
|
|
reg EndBusy; // End Busy signal (stops the operation in progress)
|
144 |
|
|
|
145 |
|
|
reg WCtrlData_q1; // Write Control Data operation delayed 1 Clk cycle
|
146 |
|
|
reg WCtrlData_q2; // Write Control Data operation delayed 2 Clk cycles
|
147 |
|
|
reg WCtrlData_q3; // Write Control Data operation delayed 3 Clk cycles
|
148 |
|
|
reg WCtrlDataStart; // Start Write Control Data Command (positive edge detected)
|
149 |
|
|
reg WCtrlDataStart_q;
|
150 |
|
|
reg WCtrlDataStart_q1; // Start Write Control Data Command delayed 1 Mdc cycle
|
151 |
|
|
reg WCtrlDataStart_q2; // Start Write Control Data Command delayed 2 Mdc cycles
|
152 |
|
|
|
153 |
|
|
reg RStat_q1; // Read Status operation delayed 1 Clk cycle
|
154 |
|
|
reg RStat_q2; // Read Status operation delayed 2 Clk cycles
|
155 |
|
|
reg RStat_q3; // Read Status operation delayed 3 Clk cycles
|
156 |
|
|
reg RStatStart; // Start Read Status Command (positive edge detected)
|
157 |
|
|
reg RStatStart_q1; // Start Read Status Command delayed 1 Mdc cycle
|
158 |
|
|
reg RStatStart_q2; // Start Read Status Command delayed 2 Mdc cycles
|
159 |
|
|
|
160 |
|
|
reg ScanStat_q1; // Scan Status operation delayed 1 cycle
|
161 |
|
|
reg ScanStat_q2; // Scan Status operation delayed 2 cycles
|
162 |
|
|
reg SyncStatMdcEn; // Scan Status operation delayed at least cycles and synchronized to MdcEn
|
163 |
|
|
|
164 |
|
|
wire WriteDataOp; // Write Data Operation (positive edge detected)
|
165 |
|
|
wire ReadStatusOp; // Read Status Operation (positive edge detected)
|
166 |
|
|
wire ScanStatusOp; // Scan Status Operation (positive edge detected)
|
167 |
|
|
wire StartOp; // Start Operation (start of any of the preceding operations)
|
168 |
|
|
wire EndOp; // End of Operation
|
169 |
|
|
|
170 |
|
|
reg InProgress; // Operation in progress
|
171 |
|
|
reg InProgress_q1; // Operation in progress delayed 1 Mdc cycle
|
172 |
|
|
reg InProgress_q2; // Operation in progress delayed 2 Mdc cycles
|
173 |
|
|
reg InProgress_q3; // Operation in progress delayed 3 Mdc cycles
|
174 |
|
|
|
175 |
|
|
reg WriteOp; // Write Operation Latch (When asserted, write operation is in progress)
|
176 |
|
|
reg [6:0] BitCounter; // Bit Counter
|
177 |
|
|
|
178 |
|
|
|
179 |
|
|
wire [3:0] ByteSelect; // Byte Select defines which byte (preamble, data, operation, etc.) is loaded and shifted through the shift register.
|
180 |
|
|
wire MdcEn; // MII Management Data Clock Enable signal is asserted for one Clk period before Mdc rises.
|
181 |
|
|
wire ShiftedBit; // This bit is output of the shift register and is connected to the Mdo signal
|
182 |
|
|
wire MdcEn_n;
|
183 |
|
|
|
184 |
|
|
wire LatchByte1_d2;
|
185 |
|
|
wire LatchByte0_d2;
|
186 |
|
|
reg LatchByte1_d;
|
187 |
|
|
reg LatchByte0_d;
|
188 |
|
|
reg [1:0] LatchByte; // Latch Byte selects which part of Read Status Data is updated from the shift register
|
189 |
|
|
|
190 |
|
|
reg UpdateMIIRX_DATAReg;// Updates MII RX_DATA register with read data
|
191 |
|
|
|
192 |
|
|
|
193 |
|
|
|
194 |
|
|
|
195 |
|
|
|
196 |
|
|
// Generation of the EndBusy signal. It is used for ending the MII Management operation.
|
197 |
|
|
always @ (posedge Clk or posedge Reset)
|
198 |
|
|
begin
|
199 |
|
|
if(Reset)
|
200 |
|
|
begin
|
201 |
|
|
EndBusy_d <= #Tp 1'b0;
|
202 |
|
|
EndBusy <= #Tp 1'b0;
|
203 |
|
|
end
|
204 |
|
|
else
|
205 |
|
|
begin
|
206 |
|
|
EndBusy_d <= #Tp ~InProgress_q2 & InProgress_q3;
|
207 |
|
|
EndBusy <= #Tp EndBusy_d;
|
208 |
|
|
end
|
209 |
|
|
end
|
210 |
|
|
|
211 |
|
|
|
212 |
|
|
// Update MII RX_DATA register
|
213 |
|
|
always @ (posedge Clk or posedge Reset)
|
214 |
|
|
begin
|
215 |
|
|
if(Reset)
|
216 |
|
|
UpdateMIIRX_DATAReg <= #Tp 0;
|
217 |
|
|
else
|
218 |
|
|
if(EndBusy & ~WCtrlDataStart_q)
|
219 |
|
|
UpdateMIIRX_DATAReg <= #Tp 1;
|
220 |
|
|
else
|
221 |
|
|
UpdateMIIRX_DATAReg <= #Tp 0;
|
222 |
|
|
end
|
223 |
|
|
|
224 |
|
|
|
225 |
|
|
|
226 |
|
|
// Generation of the delayed signals used for positive edge triggering.
|
227 |
|
|
always @ (posedge Clk or posedge Reset)
|
228 |
|
|
begin
|
229 |
|
|
if(Reset)
|
230 |
|
|
begin
|
231 |
|
|
WCtrlData_q1 <= #Tp 1'b0;
|
232 |
|
|
WCtrlData_q2 <= #Tp 1'b0;
|
233 |
|
|
WCtrlData_q3 <= #Tp 1'b0;
|
234 |
|
|
|
235 |
|
|
RStat_q1 <= #Tp 1'b0;
|
236 |
|
|
RStat_q2 <= #Tp 1'b0;
|
237 |
|
|
RStat_q3 <= #Tp 1'b0;
|
238 |
|
|
|
239 |
|
|
ScanStat_q1 <= #Tp 1'b0;
|
240 |
|
|
ScanStat_q2 <= #Tp 1'b0;
|
241 |
|
|
SyncStatMdcEn <= #Tp 1'b0;
|
242 |
|
|
end
|
243 |
|
|
else
|
244 |
|
|
begin
|
245 |
|
|
WCtrlData_q1 <= #Tp WCtrlData;
|
246 |
|
|
WCtrlData_q2 <= #Tp WCtrlData_q1;
|
247 |
|
|
WCtrlData_q3 <= #Tp WCtrlData_q2;
|
248 |
|
|
|
249 |
|
|
RStat_q1 <= #Tp RStat;
|
250 |
|
|
RStat_q2 <= #Tp RStat_q1;
|
251 |
|
|
RStat_q3 <= #Tp RStat_q2;
|
252 |
|
|
|
253 |
|
|
ScanStat_q1 <= #Tp ScanStat;
|
254 |
|
|
ScanStat_q2 <= #Tp ScanStat_q1;
|
255 |
|
|
if(MdcEn)
|
256 |
|
|
SyncStatMdcEn <= #Tp ScanStat_q2;
|
257 |
|
|
end
|
258 |
|
|
end
|
259 |
|
|
|
260 |
|
|
|
261 |
|
|
// Generation of the Start Commands (Write Control Data or Read Status)
|
262 |
|
|
always @ (posedge Clk or posedge Reset)
|
263 |
|
|
begin
|
264 |
|
|
if(Reset)
|
265 |
|
|
begin
|
266 |
|
|
WCtrlDataStart <= #Tp 1'b0;
|
267 |
|
|
WCtrlDataStart_q <= #Tp 1'b0;
|
268 |
|
|
RStatStart <= #Tp 1'b0;
|
269 |
|
|
end
|
270 |
|
|
else
|
271 |
|
|
begin
|
272 |
|
|
if(EndBusy)
|
273 |
|
|
begin
|
274 |
|
|
WCtrlDataStart <= #Tp 1'b0;
|
275 |
|
|
RStatStart <= #Tp 1'b0;
|
276 |
|
|
end
|
277 |
|
|
else
|
278 |
|
|
begin
|
279 |
|
|
if(WCtrlData_q2 & ~WCtrlData_q3)
|
280 |
|
|
WCtrlDataStart <= #Tp 1'b1;
|
281 |
|
|
if(RStat_q2 & ~RStat_q3)
|
282 |
|
|
RStatStart <= #Tp 1'b1;
|
283 |
|
|
WCtrlDataStart_q <= #Tp WCtrlDataStart;
|
284 |
|
|
end
|
285 |
|
|
end
|
286 |
|
|
end
|
287 |
|
|
|
288 |
|
|
|
289 |
|
|
// Generation of the Nvalid signal (indicates when the status is invalid)
|
290 |
|
|
always @ (posedge Clk or posedge Reset)
|
291 |
|
|
begin
|
292 |
|
|
if(Reset)
|
293 |
|
|
Nvalid <= #Tp 1'b0;
|
294 |
|
|
else
|
295 |
|
|
begin
|
296 |
|
|
if(~InProgress_q2 & InProgress_q3)
|
297 |
|
|
begin
|
298 |
|
|
Nvalid <= #Tp 1'b0;
|
299 |
|
|
end
|
300 |
|
|
else
|
301 |
|
|
begin
|
302 |
|
|
if(ScanStat_q2 & ~SyncStatMdcEn)
|
303 |
|
|
Nvalid <= #Tp 1'b1;
|
304 |
|
|
end
|
305 |
|
|
end
|
306 |
|
|
end
|
307 |
|
|
|
308 |
|
|
// Signals used for the generation of the Operation signals (positive edge)
|
309 |
|
|
always @ (posedge Clk or posedge Reset)
|
310 |
|
|
begin
|
311 |
|
|
if(Reset)
|
312 |
|
|
begin
|
313 |
|
|
WCtrlDataStart_q1 <= #Tp 1'b0;
|
314 |
|
|
WCtrlDataStart_q2 <= #Tp 1'b0;
|
315 |
|
|
|
316 |
|
|
RStatStart_q1 <= #Tp 1'b0;
|
317 |
|
|
RStatStart_q2 <= #Tp 1'b0;
|
318 |
|
|
|
319 |
|
|
InProgress_q1 <= #Tp 1'b0;
|
320 |
|
|
InProgress_q2 <= #Tp 1'b0;
|
321 |
|
|
InProgress_q3 <= #Tp 1'b0;
|
322 |
|
|
|
323 |
|
|
LatchByte0_d <= #Tp 1'b0;
|
324 |
|
|
LatchByte1_d <= #Tp 1'b0;
|
325 |
|
|
|
326 |
|
|
LatchByte <= #Tp 2'b00;
|
327 |
|
|
end
|
328 |
|
|
else
|
329 |
|
|
begin
|
330 |
|
|
if(MdcEn)
|
331 |
|
|
begin
|
332 |
|
|
WCtrlDataStart_q1 <= #Tp WCtrlDataStart;
|
333 |
|
|
WCtrlDataStart_q2 <= #Tp WCtrlDataStart_q1;
|
334 |
|
|
|
335 |
|
|
RStatStart_q1 <= #Tp RStatStart;
|
336 |
|
|
RStatStart_q2 <= #Tp RStatStart_q1;
|
337 |
|
|
|
338 |
|
|
LatchByte[0] <= #Tp LatchByte0_d;
|
339 |
|
|
LatchByte[1] <= #Tp LatchByte1_d;
|
340 |
|
|
|
341 |
|
|
LatchByte0_d <= #Tp LatchByte0_d2;
|
342 |
|
|
LatchByte1_d <= #Tp LatchByte1_d2;
|
343 |
|
|
|
344 |
|
|
InProgress_q1 <= #Tp InProgress;
|
345 |
|
|
InProgress_q2 <= #Tp InProgress_q1;
|
346 |
|
|
InProgress_q3 <= #Tp InProgress_q2;
|
347 |
|
|
end
|
348 |
|
|
end
|
349 |
|
|
end
|
350 |
|
|
|
351 |
|
|
|
352 |
|
|
// Generation of the Operation signals
|
353 |
|
|
assign WriteDataOp = WCtrlDataStart_q1 & ~WCtrlDataStart_q2;
|
354 |
|
|
assign ReadStatusOp = RStatStart_q1 & ~RStatStart_q2;
|
355 |
|
|
assign ScanStatusOp = SyncStatMdcEn & ~InProgress & ~InProgress_q1 & ~InProgress_q2;
|
356 |
|
|
assign StartOp = WriteDataOp | ReadStatusOp | ScanStatusOp;
|
357 |
|
|
|
358 |
|
|
// Busy
|
359 |
|
|
assign Busy = WCtrlData | WCtrlDataStart | RStat | RStatStart | SyncStatMdcEn | EndBusy | InProgress | InProgress_q3 | Nvalid;
|
360 |
|
|
|
361 |
|
|
|
362 |
|
|
// Generation of the InProgress signal (indicates when an operation is in progress)
|
363 |
|
|
// Generation of the WriteOp signal (indicates when a write is in progress)
|
364 |
|
|
always @ (posedge Clk or posedge Reset)
|
365 |
|
|
begin
|
366 |
|
|
if(Reset)
|
367 |
|
|
begin
|
368 |
|
|
InProgress <= #Tp 1'b0;
|
369 |
|
|
WriteOp <= #Tp 1'b0;
|
370 |
|
|
end
|
371 |
|
|
else
|
372 |
|
|
begin
|
373 |
|
|
if(MdcEn)
|
374 |
|
|
begin
|
375 |
|
|
if(StartOp)
|
376 |
|
|
begin
|
377 |
|
|
if(~InProgress)
|
378 |
|
|
WriteOp <= #Tp WriteDataOp;
|
379 |
|
|
InProgress <= #Tp 1'b1;
|
380 |
|
|
end
|
381 |
|
|
else
|
382 |
|
|
begin
|
383 |
|
|
if(EndOp)
|
384 |
|
|
begin
|
385 |
|
|
InProgress <= #Tp 1'b0;
|
386 |
|
|
WriteOp <= #Tp 1'b0;
|
387 |
|
|
end
|
388 |
|
|
end
|
389 |
|
|
end
|
390 |
|
|
end
|
391 |
|
|
end
|
392 |
|
|
|
393 |
|
|
|
394 |
|
|
|
395 |
|
|
// Bit Counter counts from 0 to 63 (from 32 to 63 when NoPre is asserted)
|
396 |
|
|
always @ (posedge Clk or posedge Reset)
|
397 |
|
|
begin
|
398 |
|
|
if(Reset)
|
399 |
|
|
BitCounter[6:0] <= #Tp 7'h0;
|
400 |
|
|
else
|
401 |
|
|
begin
|
402 |
|
|
if(MdcEn)
|
403 |
|
|
begin
|
404 |
|
|
if(InProgress)
|
405 |
|
|
begin
|
406 |
|
|
if(NoPre & ( BitCounter == 7'h0 ))
|
407 |
|
|
BitCounter[6:0] <= #Tp 7'h21;
|
408 |
|
|
else
|
409 |
|
|
BitCounter[6:0] <= #Tp BitCounter[6:0] + 1'b1;
|
410 |
|
|
end
|
411 |
|
|
else
|
412 |
|
|
BitCounter[6:0] <= #Tp 7'h0;
|
413 |
|
|
end
|
414 |
|
|
end
|
415 |
|
|
end
|
416 |
|
|
|
417 |
|
|
|
418 |
|
|
// Operation ends when the Bit Counter reaches 63
|
419 |
|
|
assign EndOp = BitCounter==63;
|
420 |
|
|
|
421 |
|
|
assign ByteSelect[0] = InProgress & ((NoPre & (BitCounter == 7'h0)) | (~NoPre & (BitCounter == 7'h20)));
|
422 |
|
|
assign ByteSelect[1] = InProgress & (BitCounter == 7'h28);
|
423 |
|
|
assign ByteSelect[2] = InProgress & WriteOp & (BitCounter == 7'h30);
|
424 |
|
|
assign ByteSelect[3] = InProgress & WriteOp & (BitCounter == 7'h38);
|
425 |
|
|
|
426 |
|
|
|
427 |
|
|
// Latch Byte selects which part of Read Status Data is updated from the shift register
|
428 |
|
|
assign LatchByte1_d2 = InProgress & ~WriteOp & BitCounter == 7'h37;
|
429 |
|
|
assign LatchByte0_d2 = InProgress & ~WriteOp & BitCounter == 7'h3F;
|
430 |
|
|
|
431 |
|
|
|
432 |
|
|
// Connecting the Clock Generator Module
|
433 |
|
|
eth_clockgen clkgen(.Clk(Clk), .Reset(Reset), .Divider(Divider[7:0]), .MdcEn(MdcEn), .MdcEn_n(MdcEn_n), .Mdc(Mdc)
|
434 |
|
|
);
|
435 |
|
|
|
436 |
|
|
// Connecting the Shift Register Module
|
437 |
|
|
eth_shiftreg shftrg(.Clk(Clk), .Reset(Reset), .MdcEn_n(MdcEn_n), .Mdi(Mdi), .Fiad(Fiad), .Rgad(Rgad),
|
438 |
|
|
.CtrlData(CtrlData), .WriteOp(WriteOp), .ByteSelect(ByteSelect), .LatchByte(LatchByte),
|
439 |
|
|
.ShiftedBit(ShiftedBit), .Prsd(Prsd), .LinkFail(LinkFail)
|
440 |
|
|
);
|
441 |
|
|
|
442 |
|
|
// Connecting the Output Control Module
|
443 |
|
|
eth_outputcontrol outctrl(.Clk(Clk), .Reset(Reset), .MdcEn_n(MdcEn_n), .InProgress(InProgress),
|
444 |
|
|
.ShiftedBit(ShiftedBit), .BitCounter(BitCounter), .WriteOp(WriteOp), .NoPre(NoPre),
|
445 |
|
|
.Mdo(Mdo), .MdoEn(MdoEn)
|
446 |
|
|
);
|
447 |
|
|
|
448 |
|
|
endmodule
|