1 |
2 |
dmitryr |
// ========== Copyright Header Begin ==========================================
|
2 |
|
|
//
|
3 |
|
|
// OpenSPARC T1 Processor File: sparc_exu_alu.v
|
4 |
|
|
// Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved.
|
5 |
|
|
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES.
|
6 |
|
|
//
|
7 |
|
|
// The above named program is free software; you can redistribute it and/or
|
8 |
|
|
// modify it under the terms of the GNU General Public
|
9 |
|
|
// License version 2 as published by the Free Software Foundation.
|
10 |
|
|
//
|
11 |
|
|
// The above named program is distributed in the hope that it will be
|
12 |
|
|
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
|
|
// General Public License for more details.
|
15 |
|
|
//
|
16 |
|
|
// You should have received a copy of the GNU General Public
|
17 |
|
|
// License along with this work; if not, write to the Free Software
|
18 |
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
|
19 |
|
|
//
|
20 |
|
|
// ========== Copyright Header End ============================================
|
21 |
|
|
////////////////////////////////////////////////////////////////////////
|
22 |
|
|
/*
|
23 |
|
|
// Module Name: sparc_exu_alu
|
24 |
|
|
*/
|
25 |
|
|
|
26 |
|
|
module sparc_exu_alu
|
27 |
|
|
(
|
28 |
|
|
/*AUTOARG*/
|
29 |
|
|
// Outputs
|
30 |
|
|
so, alu_byp_rd_data_e, exu_ifu_brpc_e, exu_lsu_ldst_va_e,
|
31 |
|
|
exu_lsu_early_va_e, exu_mmu_early_va_e, alu_ecl_add_n64_e,
|
32 |
|
|
alu_ecl_add_n32_e, alu_ecl_log_n64_e, alu_ecl_log_n32_e,
|
33 |
|
|
alu_ecl_zhigh_e, alu_ecl_zlow_e, exu_ifu_regz_e, exu_ifu_regn_e,
|
34 |
|
|
alu_ecl_adderin2_63_e, alu_ecl_adderin2_31_e,
|
35 |
|
|
alu_ecl_adder_out_63_e, alu_ecl_cout32_e, alu_ecl_cout64_e_l,
|
36 |
|
|
alu_ecl_mem_addr_invalid_e_l,
|
37 |
|
|
// Inputs
|
38 |
|
|
rclk, se, si, byp_alu_rs1_data_e, byp_alu_rs2_data_e_l,
|
39 |
|
|
byp_alu_rs3_data_e, byp_alu_rcc_data_e, ecl_alu_cin_e,
|
40 |
|
|
ifu_exu_invert_d, ecl_alu_log_sel_and_e, ecl_alu_log_sel_or_e,
|
41 |
|
|
ecl_alu_log_sel_xor_e, ecl_alu_log_sel_move_e,
|
42 |
|
|
ecl_alu_out_sel_sum_e_l, ecl_alu_out_sel_rs3_e_l,
|
43 |
|
|
ecl_alu_out_sel_shift_e_l, ecl_alu_out_sel_logic_e_l,
|
44 |
|
|
shft_alu_shift_out_e, ecl_alu_sethi_inst_e, ifu_lsu_casa_e
|
45 |
|
|
);
|
46 |
|
|
input rclk;
|
47 |
|
|
input se;
|
48 |
|
|
input si;
|
49 |
|
|
input [63:0] byp_alu_rs1_data_e; // source operand 1
|
50 |
|
|
input [63:0] byp_alu_rs2_data_e_l; // source operand 2
|
51 |
|
|
input [63:0] byp_alu_rs3_data_e; // source operand 3
|
52 |
|
|
input [63:0] byp_alu_rcc_data_e; // source operand for reg condition codes
|
53 |
|
|
input ecl_alu_cin_e; // cin for adder
|
54 |
|
|
input ifu_exu_invert_d;
|
55 |
|
|
input ecl_alu_log_sel_and_e;// These 4 wires are select lines for the logic
|
56 |
|
|
input ecl_alu_log_sel_or_e;// block mux. They are active high and choose the
|
57 |
|
|
input ecl_alu_log_sel_xor_e;// output they describe.
|
58 |
|
|
input ecl_alu_log_sel_move_e;
|
59 |
|
|
input ecl_alu_out_sel_sum_e_l;// The following 4 are select lines for
|
60 |
|
|
input ecl_alu_out_sel_rs3_e_l;// the output stage mux. They are active high
|
61 |
|
|
input ecl_alu_out_sel_shift_e_l;// and choose the output of the respective block.
|
62 |
|
|
input ecl_alu_out_sel_logic_e_l;
|
63 |
|
|
input [63:0] shft_alu_shift_out_e;// result from shifter
|
64 |
|
|
input ecl_alu_sethi_inst_e;
|
65 |
|
|
input ifu_lsu_casa_e;
|
66 |
|
|
|
67 |
|
|
output so;
|
68 |
|
|
output [63:0] alu_byp_rd_data_e; // alu result
|
69 |
|
|
output [47:0] exu_ifu_brpc_e;// branch pc output
|
70 |
|
|
output [47:0] exu_lsu_ldst_va_e; // address for lsu
|
71 |
|
|
output [10:3] exu_lsu_early_va_e; // faster bits for cache
|
72 |
|
|
output [7:0] exu_mmu_early_va_e;
|
73 |
|
|
output alu_ecl_add_n64_e;
|
74 |
|
|
output alu_ecl_add_n32_e;
|
75 |
|
|
output alu_ecl_log_n64_e;
|
76 |
|
|
output alu_ecl_log_n32_e;
|
77 |
|
|
output alu_ecl_zhigh_e;
|
78 |
|
|
output alu_ecl_zlow_e;
|
79 |
|
|
output exu_ifu_regz_e; // rs1_data == 0
|
80 |
|
|
output exu_ifu_regn_e;
|
81 |
|
|
output alu_ecl_adderin2_63_e;
|
82 |
|
|
output alu_ecl_adderin2_31_e;
|
83 |
|
|
output alu_ecl_adder_out_63_e;
|
84 |
|
|
output alu_ecl_cout32_e; // To ecl of sparc_exu_ecl.v
|
85 |
|
|
output alu_ecl_cout64_e_l; // To ecl of sparc_exu_ecl.v
|
86 |
|
|
output alu_ecl_mem_addr_invalid_e_l;// adder_out[63:48] not all 1 or all 0
|
87 |
|
|
|
88 |
|
|
wire clk;
|
89 |
|
|
wire [63:0] logic_out; // result of logic block
|
90 |
|
|
wire [63:0] adder_out; // result of adder
|
91 |
|
|
wire [63:0] spr_out; // result of sum predict
|
92 |
|
|
wire [63:0] zcomp_in; // result going to zcompare
|
93 |
|
|
wire [63:0] va_e; // complete va
|
94 |
|
|
wire [63:0] byp_alu_rs2_data_e;
|
95 |
|
|
wire invert_e;
|
96 |
|
|
wire ecl_alu_out_sel_sum_e;
|
97 |
|
|
wire ecl_alu_out_sel_rs3_e;
|
98 |
|
|
wire ecl_alu_out_sel_shift_e;
|
99 |
|
|
wire ecl_alu_out_sel_logic_e;
|
100 |
|
|
assign clk = rclk;
|
101 |
|
|
assign byp_alu_rs2_data_e[63:0] = ~byp_alu_rs2_data_e_l[63:0];
|
102 |
|
|
assign ecl_alu_out_sel_sum_e = ~ecl_alu_out_sel_sum_e_l;
|
103 |
|
|
assign ecl_alu_out_sel_rs3_e = ~ecl_alu_out_sel_rs3_e_l;
|
104 |
|
|
assign ecl_alu_out_sel_shift_e = ~ecl_alu_out_sel_shift_e_l;
|
105 |
|
|
assign ecl_alu_out_sel_logic_e = ~ecl_alu_out_sel_logic_e_l;
|
106 |
|
|
|
107 |
|
|
// Zero comparison for exu_ifu_regz_e
|
108 |
|
|
sparc_exu_aluzcmp64 regzcmp(.in(byp_alu_rcc_data_e[63:0]), .zero64(exu_ifu_regz_e));
|
109 |
|
|
assign exu_ifu_regn_e = byp_alu_rcc_data_e[63];
|
110 |
|
|
|
111 |
|
|
// mux between adder output and rs1 (for casa) for lsu va
|
112 |
|
|
dp_mux2es #(64) lsu_va_mux(.dout(va_e[63:0]),
|
113 |
|
|
.in0(adder_out[63:0]),
|
114 |
|
|
.in1(byp_alu_rs1_data_e[63:0]),
|
115 |
|
|
.sel(ifu_lsu_casa_e));
|
116 |
|
|
assign exu_lsu_ldst_va_e[47:0] = va_e[47:0];
|
117 |
|
|
// for bits 10:4 we have a separate bus that is not used for cas
|
118 |
|
|
assign exu_lsu_early_va_e[10:3] = adder_out[10:3];
|
119 |
|
|
// mmu needs bits 7:0
|
120 |
|
|
assign exu_mmu_early_va_e[7:0] = adder_out[7:0];
|
121 |
|
|
|
122 |
|
|
|
123 |
|
|
// Adder
|
124 |
|
|
assign exu_ifu_brpc_e[47:0] = adder_out[47:0];
|
125 |
|
|
assign alu_ecl_adder_out_63_e = adder_out[63];
|
126 |
|
|
sparc_exu_aluaddsub addsub(.adder_out(adder_out[63:0]),
|
127 |
|
|
/*AUTOINST*/
|
128 |
|
|
// Outputs
|
129 |
|
|
.spr_out (spr_out[63:0]),
|
130 |
|
|
.alu_ecl_cout64_e_l(alu_ecl_cout64_e_l),
|
131 |
|
|
.alu_ecl_cout32_e(alu_ecl_cout32_e),
|
132 |
|
|
.alu_ecl_adderin2_63_e(alu_ecl_adderin2_63_e),
|
133 |
|
|
.alu_ecl_adderin2_31_e(alu_ecl_adderin2_31_e),
|
134 |
|
|
// Inputs
|
135 |
|
|
.clk (clk),
|
136 |
|
|
.se (se),
|
137 |
|
|
.byp_alu_rs1_data_e(byp_alu_rs1_data_e[63:0]),
|
138 |
|
|
.byp_alu_rs2_data_e(byp_alu_rs2_data_e[63:0]),
|
139 |
|
|
.ecl_alu_cin_e(ecl_alu_cin_e),
|
140 |
|
|
.ifu_exu_invert_d(ifu_exu_invert_d));
|
141 |
|
|
|
142 |
|
|
// Logic/pass rs2_data
|
143 |
|
|
dff_s invert_d2e(.din(ifu_exu_invert_d), .clk(clk), .q(invert_e), .se(se), .si(), .so());
|
144 |
|
|
sparc_exu_alulogic logic(.rs1_data(byp_alu_rs1_data_e[63:0]),
|
145 |
|
|
.rs2_data(byp_alu_rs2_data_e[63:0]),
|
146 |
|
|
.isand(ecl_alu_log_sel_and_e),
|
147 |
|
|
.isor(ecl_alu_log_sel_or_e),
|
148 |
|
|
.isxor(ecl_alu_log_sel_xor_e),
|
149 |
|
|
.pass_rs2_data(ecl_alu_log_sel_move_e),
|
150 |
|
|
.inv_logic(invert_e), .logic_out(logic_out[63:0]),
|
151 |
|
|
.ifu_exu_sethi_inst_e(ecl_alu_sethi_inst_e));
|
152 |
|
|
|
153 |
|
|
// Mux between sum predict and logic outputs for zcc
|
154 |
|
|
dp_mux2es #(64) zcompmux(.dout(zcomp_in[63:0]),
|
155 |
|
|
.in0(logic_out[63:0]),
|
156 |
|
|
.in1(spr_out[63:0]),
|
157 |
|
|
.sel(ecl_alu_out_sel_sum_e));
|
158 |
|
|
|
159 |
|
|
// Zero comparison for zero cc
|
160 |
|
|
// sparc_exu_aluzcmp64 zcccmp(.in(zcomp_in[63:0]), .zero64(alu_ecl_z64_e),
|
161 |
|
|
// .zero32(alu_ecl_z32_e));
|
162 |
|
|
assign alu_ecl_zlow_e = ~(|zcomp_in[31:0]);
|
163 |
|
|
assign alu_ecl_zhigh_e = ~(|zcomp_in[63:32]);
|
164 |
|
|
|
165 |
|
|
// Get Negative ccs
|
166 |
|
|
assign alu_ecl_add_n64_e = adder_out[63];
|
167 |
|
|
assign alu_ecl_add_n32_e = adder_out[31];
|
168 |
|
|
assign alu_ecl_log_n64_e = logic_out[63];
|
169 |
|
|
assign alu_ecl_log_n32_e = logic_out[31];
|
170 |
|
|
|
171 |
|
|
|
172 |
|
|
// Mux for output
|
173 |
|
|
mux4ds #(64) output_mux(.dout(alu_byp_rd_data_e[63:0]),
|
174 |
|
|
.in0(adder_out[63:0]),
|
175 |
|
|
.in1(byp_alu_rs3_data_e[63:0]),
|
176 |
|
|
.in2(shft_alu_shift_out_e[63:0]),
|
177 |
|
|
.in3(logic_out[63:0]),
|
178 |
|
|
.sel0(ecl_alu_out_sel_sum_e),
|
179 |
|
|
.sel1(ecl_alu_out_sel_rs3_e),
|
180 |
|
|
.sel2(ecl_alu_out_sel_shift_e),
|
181 |
|
|
.sel3(ecl_alu_out_sel_logic_e));
|
182 |
|
|
|
183 |
|
|
// memory address checks
|
184 |
|
|
sparc_exu_alu_16eql chk_mem_addr(.equal(alu_ecl_mem_addr_invalid_e_l),
|
185 |
|
|
.in(va_e[63:47]));
|
186 |
|
|
|
187 |
|
|
endmodule // sparc_exu_alu
|