OpenCores
URL https://opencores.org/ocsvn/sparc64soc/sparc64soc/trunk

Subversion Repositories sparc64soc

[/] [sparc64soc/] [trunk/] [T1-CPU/] [exu/] [sparc_exu_ecl_mdqctl.v] - Blame information for rev 7

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 2 dmitryr
// ========== Copyright Header Begin ==========================================
2
// 
3
// OpenSPARC T1 Processor File: sparc_exu_ecl_mdqctl.v
4
// Copyright (c) 2006 Sun Microsystems, Inc.  All Rights Reserved.
5
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES.
6
// 
7
// The above named program is free software; you can redistribute it and/or
8
// modify it under the terms of the GNU General Public
9
// License version 2 as published by the Free Software Foundation.
10
// 
11
// The above named program is distributed in the hope that it will be 
12
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
// General Public License for more details.
15
// 
16
// You should have received a copy of the GNU General Public
17
// License along with this work; if not, write to the Free Software
18
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
19
// 
20
// ========== Copyright Header End ============================================
21
////////////////////////////////////////////////////////////////////////
22
/*
23
//  Module Name: sparc_exu_ecl_mdqctl
24
//      Description:  This block is the control logic for the multiply/divide
25
//      input buffer.  It generates the select lines for both the output
26
//      to mul and div, as well as for moving the data within the buffer.
27
//      There are 4 slots in the buffer, which is a modified FIFO.
28
//      It will output 1 MUL and 1 DIV every cycle, as well as whether those
29
//      outputs are valid.  If none of the slots contain a valid entry, it
30
//      will pass through the input to the output.  If a kill comes through
31
//      and invalidates an entry, it will show up on the valid bit coming out
32
//      of the mdq, but may cause a lost cycle as the kill won't affect the logic
33
//      which chooses the output until the next cycle.  The block also
34
//      stores the thr, rd, setcc and other control bits for each entry.
35
*/
36
 
37
`define MULS 10
38
`define IS64 9
39
`define SIGNED 8
40
`define SET_CC 7
41
 
42
module sparc_exu_ecl_mdqctl (/*AUTOARG*/
43
   // Outputs
44
   mdqctl_divcntl_input_vld, mdqctl_divcntl_reset_div,
45
   mdqctl_divcntl_muldone, ecl_div_div64, ecl_div_signed_div,
46
   ecl_div_muls, mdqctl_wb_divthr_g, mdqctl_wb_divrd_g,
47
   mdqctl_wb_multhr_g, mdqctl_wb_mulrd_g, mdqctl_wb_divsetcc_g,
48
   mdqctl_wb_mulsetcc_g, mdqctl_wb_yreg_shift_g, exu_mul_input_vld,
49
   mdqctl_wb_yreg_wen_g, ecl_div_mul_sext_rs1_e,
50
   ecl_div_mul_sext_rs2_e, ecl_div_mul_get_new_data,
51
   ecl_div_mul_keep_data, ecl_div_mul_get_32bit_data,
52
   ecl_div_mul_wen, div_zero_m,
53
   // Inputs
54
   clk, se, reset, ifu_exu_muldivop_d, tid_d, ifu_exu_rd_d, tid_w1,
55
   flush_w1, ifu_exu_inst_vld_w, wb_divcntl_ack_g, divcntl_wb_req_g,
56
   byp_alu_rs1_data_31_e, byp_alu_rs2_data_31_e, mul_exu_ack,
57
   ecl_div_sel_div, ifu_exu_muls_d, div_ecl_detect_zero_high,
58
   div_ecl_detect_zero_low, ifu_tlu_flush_w, early_flush_w
59
   ) ;
60
   input clk;
61
   input se;
62
   input reset;
63
   input [4:0] ifu_exu_muldivop_d;
64
   input [1:0] tid_d;
65
   input [4:0] ifu_exu_rd_d;
66
   input [1:0] tid_w1;
67
   input       flush_w1;
68
   input       ifu_exu_inst_vld_w;
69
   input       wb_divcntl_ack_g;
70
   input       divcntl_wb_req_g;
71
   input       byp_alu_rs1_data_31_e;
72
   input       byp_alu_rs2_data_31_e;
73
   input       mul_exu_ack;
74
   input       ecl_div_sel_div;
75
   input       ifu_exu_muls_d;
76
   input       div_ecl_detect_zero_high;
77
   input       div_ecl_detect_zero_low;
78
   input       ifu_tlu_flush_w;
79
   input       early_flush_w;
80
 
81
 
82
   output      mdqctl_divcntl_input_vld;
83
   output      mdqctl_divcntl_reset_div;
84
   output      mdqctl_divcntl_muldone;
85
   output      ecl_div_div64;
86
   output      ecl_div_signed_div;
87
   output      ecl_div_muls;
88
   output [1:0] mdqctl_wb_divthr_g;
89
   output [4:0] mdqctl_wb_divrd_g;
90
   output [1:0] mdqctl_wb_multhr_g;
91
   output [4:0] mdqctl_wb_mulrd_g;
92
   output       mdqctl_wb_divsetcc_g;
93
   output       mdqctl_wb_mulsetcc_g;
94
   output       mdqctl_wb_yreg_shift_g;
95
 
96
 
97
   output       exu_mul_input_vld;
98
   output       mdqctl_wb_yreg_wen_g;
99
   output       ecl_div_mul_sext_rs1_e;
100
   output       ecl_div_mul_sext_rs2_e;
101
   output       ecl_div_mul_get_new_data;
102
   output       ecl_div_mul_keep_data;
103
   output       ecl_div_mul_get_32bit_data;
104
   output       ecl_div_mul_wen;
105
   output   div_zero_m;
106
 
107
   wire [11:0] div_data_next;
108
   wire [11:0] div_data;
109
   wire        new_div_vld;
110
   wire        curr_div_vld;
111
   wire [11:0] div_input_data_d;
112
   wire [9:0] mul_input_data_d;
113
   wire [9:0] mul_data;
114
   wire [9:0] mul_data_next;
115
   wire        new_mul_d;
116
   wire        kill_thr_mul;
117
   wire        mul_kill;
118
   wire        invalid_mul_w;
119
   wire        div_kill;
120
   wire        kill_thr_div;
121
 
122
   wire        mul_ready_next;
123
   wire        mul_ready;
124
   wire        mul_done_valid_c0;
125
   wire        mul_done_valid_c1;
126
   wire        mul_done_ack;
127
   wire        mul_done_c0;
128
   wire        mul_done_c1;
129
   wire        mul_done_c2;
130
   wire        mul_done_c3;
131
 
132
   wire        isdiv_e_valid;
133
   wire        isdiv_m_valid;
134
   wire        ismul_e_valid;
135
   wire        ismul_m_valid;
136
   wire        isdiv_e;
137
   wire        isdiv_m;
138
   wire        isdiv_w;
139
   wire        ismul_e;
140
   wire        ismul_m;
141
   wire        ismul_w;
142
 
143
   wire        div_used;
144
   wire        invalid_div_w;
145
   wire        div_zero_e;
146
 
147
   // Mul result state wires
148
   wire        go_mul_done;
149
   wire        stay_mul_done;
150
   wire        mul_done;
151
   wire        next_mul_done;
152
 
153
 
154
   ////////////////////////
155
   // Divide  output DATAPATH
156
   ////////////////////////
157
   // store control signals
158
   assign div_used = divcntl_wb_req_g & wb_divcntl_ack_g & ecl_div_sel_div;
159
 
160
   assign new_div_vld = ifu_exu_muls_d | ifu_exu_muldivop_d[3];
161
 
162
   assign div_input_data_d[11:0] = {1'b1, // isdiv
163
                                    ifu_exu_muls_d,
164
                                    ifu_exu_muldivop_d[2], // 64bit
165
                                    ifu_exu_muldivop_d[1], // signed
166
                                    ifu_exu_muldivop_d[0], // setcc
167
                                    ifu_exu_rd_d[4:0],
168
                                    tid_d[1:0]};
169
   mux2ds #(12) div_data_mux(.dout(div_data_next[11:0]),
170
                                .in0({curr_div_vld, div_data[10:0]}),
171
                                .in1(div_input_data_d[11:0]),
172
                                .sel0(~new_div_vld),
173
                                .sel1(new_div_vld));
174
 
175
   dffr_s #(12) div_data_dff(.din(div_data_next[11:0]), .clk(clk), .q(div_data[11:0]),
176
                          .se(se), .si(), .so(), .rst(reset));
177
 
178
   //div  kill logic (kills on div by zero exception or if there isn't an outstanding div)
179
   assign div_zero_e = isdiv_e & div_ecl_detect_zero_high & div_ecl_detect_zero_low & ~div_data[`MULS];
180
   assign invalid_div_w = isdiv_w & (~ifu_exu_inst_vld_w | ifu_tlu_flush_w | early_flush_w);
181
   assign kill_thr_div = ~(div_data[1] ^ tid_w1[1]) & ~(div_data[0] ^ tid_w1[0]);
182
   assign div_kill = (flush_w1 & kill_thr_div) | invalid_div_w | new_div_vld;
183
   assign curr_div_vld = div_data[11] & ~div_zero_m & ~div_kill & ~div_used;
184
 
185
   wire   div_zero_unqual_m;
186
   assign div_zero_m = div_zero_unqual_m & isdiv_m;
187
   dff_s div_zero_e2m(.din(div_zero_e), .clk(clk), .q(div_zero_unqual_m), .se(se), .si(), .so());
188
 
189
   // pipeling for divide valid signal (for inst_vld checking)
190
   dff_s isdiv_d2e(.din(new_div_vld), .clk(clk), .q(isdiv_e),
191
                 .se(se), .si(), .so());
192
   dff_s isdiv_e2m(.din(isdiv_e_valid), .clk(clk), .q(isdiv_m),
193
                 .se(se), .si(), .so());
194
   dff_s isdiv_m2w(.din(isdiv_m_valid), .clk(clk), .q(isdiv_w),
195
                 .se(se), .si(), .so());
196
   assign        isdiv_e_valid = isdiv_e & ~div_kill;
197
   assign        isdiv_m_valid = isdiv_m & ~div_kill;
198
 
199
   // control for div state machine
200
   assign mdqctl_divcntl_reset_div = (~div_data[11] | div_kill);
201
   assign mdqctl_divcntl_input_vld = isdiv_e;
202
 
203
   // control signals for div
204
   assign ecl_div_div64 = div_data[`IS64];
205
   assign ecl_div_signed_div = div_data[`SIGNED];
206
   assign ecl_div_muls = div_data[`MULS];
207
 
208
   // control for writeback on completion
209
   assign mdqctl_wb_divrd_g[4:0] = div_data[6:2];
210
   assign mdqctl_wb_divthr_g[1:0] = div_data[1:0];
211
   assign mdqctl_wb_divsetcc_g = div_data[`SET_CC] | div_data[`MULS];
212
   assign mdqctl_wb_yreg_shift_g = div_used & div_data[`MULS];
213
 
214
 
215
   ////////////////////////////////////////////////////////////////////////////
216
   // Multiply control
217
   //----------------------
218
   // The multiply will drop the current operation if a new request is issued.
219
   // This requires addition checking to make sure that the kills are for the
220
   // proper operation.
221
   ////////////////////////////////////////////////////////////////////////////
222
   dff_s ismul_d2e(.din(ifu_exu_muldivop_d[4]), .clk(clk), .q(ismul_e),
223
                 .se(se), .si(), .so());
224
   dff_s ismul_e2m(.din(ismul_e_valid), .clk(clk), .q(ismul_m),
225
                 .se(se), .si(), .so());
226
   dff_s ismul_m2w(.din(ismul_m_valid), .clk(clk), .q(ismul_w),
227
                 .se(se), .si(), .so());
228
   assign ismul_e_valid = ismul_e & ~mul_kill;
229
   assign        ismul_m_valid = ismul_m & ~mul_kill & ~ismul_e;
230
 
231
   // store control signals
232
  //   assign mul_used = divcntl_wb_req_g & wb_divcntl_ack_g & ~ecl_div_sel_div;
233
   assign new_mul_d = ifu_exu_muldivop_d[4];
234
 
235
   assign mul_input_data_d[9:0] = {ifu_exu_muldivop_d[2], // 64bit
236
                                    ifu_exu_muldivop_d[1], // signed
237
                                    ifu_exu_muldivop_d[0], // setcc
238
                                    ifu_exu_rd_d[4:0],
239
                                    tid_d[1:0]};
240
   assign mul_data_next[9:0] = (new_mul_d)? mul_input_data_d[9:0]: mul_data[9:0];
241
 
242
   dff_s #(10) mul_data_dff(.din(mul_data_next[9:0]), .clk(clk), .q(mul_data[9:0]),
243
                          .se(se), .si(), .so());
244
 
245
   // mul kill logic
246
   assign kill_thr_mul = ~(mul_data[1] ^ tid_w1[1]) & ~(mul_data[0] ^ tid_w1[0]);
247
   assign mul_kill = (flush_w1 & kill_thr_mul) | reset;
248
   assign invalid_mul_w = ismul_w & ~ifu_exu_inst_vld_w;
249
 
250
   // control signals for mul data in div unit
251
   assign      ecl_div_mul_keep_data = ~ismul_e;
252
   assign      ecl_div_mul_get_new_data = ismul_e & mul_data[`IS64];
253
   assign      ecl_div_mul_get_32bit_data = ismul_e & ~mul_data[`IS64];
254
   assign      ecl_div_mul_sext_rs1_e = byp_alu_rs1_data_31_e & mul_data[`SIGNED];
255
   assign      ecl_div_mul_sext_rs2_e = byp_alu_rs2_data_31_e & mul_data[`SIGNED];
256
 
257
   // control for writeback on completion
258
   assign      mdqctl_wb_yreg_wen_g = ~mul_data[`IS64] & ecl_div_mul_wen;
259
   assign      mdqctl_wb_multhr_g[1:0] = mul_data[1:0];
260
   assign      mdqctl_wb_mulsetcc_g = mul_data[`SET_CC];
261
   assign      mdqctl_wb_mulrd_g[4:0] = mul_data[6:2];
262
 
263
   // interface with mul and state of pending mul
264
   assign      mul_ready_next = ismul_e_valid | (mul_ready & ~mul_exu_ack & ~mul_kill & ~ismul_e & ~invalid_mul_w);
265
   dff_s mul_ready_dff(.din(mul_ready_next), .clk(clk), .q(mul_ready), .se(se), .si(), .so());
266
 
267
   assign      exu_mul_input_vld = mul_ready;
268
 
269
   // If there was a valid request and an ack then start passing down pipe
270
   assign      mul_done_ack = mul_ready & ~mul_kill & ~ismul_e & mul_exu_ack & ~invalid_mul_w;
271
   dff_s dff_done_ack2c0(.din(mul_done_ack), .clk(clk), .q(mul_done_c0),
272
                       .se(se), .si(), .so());
273
   // need to check here cause this could be w
274
   assign        mul_done_valid_c0 = mul_done_c0 & ~mul_kill & ~invalid_mul_w & ~ismul_e;
275
   dff_s dff_done_c02c1(.din(mul_done_valid_c0), .clk(clk), .q(mul_done_c1),
276
                       .se(se), .si(), .so());
277
   // need to check here cause this could be w1
278
   assign        mul_done_valid_c1 = mul_done_c1 & ~mul_kill & ~ismul_e;
279
   dff_s dff_done_c1c2(.din(mul_done_valid_c1), .clk(clk), .q(mul_done_c2),
280
                       .se(se), .si(), .so());
281
   dff_s dff_done_c22c3(.din(mul_done_c2), .clk(clk), .q(mul_done_c3),
282
                       .se(se), .si(), .so());
283
   dff_s dff_done_c32c4(.din(mul_done_c3), .clk(clk), .q(ecl_div_mul_wen),
284
                       .se(se), .si(), .so());
285
 
286
   // Mul result state machine
287
   assign        go_mul_done = ~mul_done & ecl_div_mul_wen;
288
   assign        stay_mul_done = mul_done & (~wb_divcntl_ack_g | ecl_div_sel_div);
289
   assign        next_mul_done = ~reset & (go_mul_done | stay_mul_done);
290
 
291
   assign        mdqctl_divcntl_muldone = mul_done;
292
 
293
   // mul state flop
294
   dff_s  mulstate_dff(.din(next_mul_done), .clk(clk), .q(mul_done), .se(se), .si(),
295
                     .so());
296
 
297
   /////////////////////////////////////////
298
   // Pipeline registers for control signals
299
   /////////////////////////////////////////
300
 
301
 
302
endmodule // sparc_exu_ecl_mdqctl

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.