1 |
2 |
dmitryr |
// ========== Copyright Header Begin ==========================================
|
2 |
|
|
//
|
3 |
|
|
// OpenSPARC T1 Processor File: bw_r_l2d_32k.v
|
4 |
|
|
// Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved.
|
5 |
|
|
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES.
|
6 |
|
|
//
|
7 |
|
|
// The above named program is free software; you can redistribute it and/or
|
8 |
|
|
// modify it under the terms of the GNU General Public
|
9 |
|
|
// License version 2 as published by the Free Software Foundation.
|
10 |
|
|
//
|
11 |
|
|
// The above named program is distributed in the hope that it will be
|
12 |
|
|
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
|
|
// General Public License for more details.
|
15 |
|
|
//
|
16 |
|
|
// You should have received a copy of the GNU General Public
|
17 |
|
|
// License along with this work; if not, write to the Free Software
|
18 |
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
|
19 |
|
|
//
|
20 |
|
|
// ========== Copyright Header End ============================================
|
21 |
|
|
//FPGA_SYN enables all FPGA related modifications
|
22 |
|
|
`ifdef FPGA_SYN
|
23 |
|
|
`define FPGA_SYN_RED
|
24 |
|
|
`endif
|
25 |
|
|
|
26 |
|
|
module bw_r_l2d_32k (/*AUTOARG*/
|
27 |
|
|
// Outputs
|
28 |
|
|
decc_out, so, l2d_fuse_data_out,
|
29 |
|
|
// Inputs
|
30 |
|
|
decc_in_l, decc_read_in, word_en_l, way_sel_l, set_l,
|
31 |
|
|
col_offset_l, wr_en_l, rclk, arst_l, mem_write_disable,
|
32 |
|
|
sehold, se, si, fuse_l2d_wren, fuse_l2d_rden,
|
33 |
|
|
fuse_l2d_rid, fuse_clk1, fuse_clk2,
|
34 |
|
|
fuse_l2d_data_in, fuse_read_data_in
|
35 |
|
|
);
|
36 |
|
|
|
37 |
|
|
input [155:0] decc_in_l;
|
38 |
|
|
input [155:0] decc_read_in;
|
39 |
|
|
input [3:0] word_en_l;
|
40 |
|
|
input [1:0] way_sel_l;
|
41 |
|
|
input [9:0] set_l;
|
42 |
|
|
input col_offset_l;
|
43 |
|
|
input wr_en_l;
|
44 |
|
|
input rclk;
|
45 |
|
|
input arst_l;
|
46 |
|
|
|
47 |
|
|
// Test signals
|
48 |
|
|
input mem_write_disable;
|
49 |
|
|
input sehold;
|
50 |
|
|
input se;
|
51 |
|
|
input si;
|
52 |
|
|
|
53 |
|
|
|
54 |
|
|
// Efuse inputs
|
55 |
|
|
input fuse_l2d_wren;
|
56 |
|
|
input fuse_l2d_rden;
|
57 |
|
|
input [2:0] fuse_l2d_rid;
|
58 |
|
|
input fuse_clk1;
|
59 |
|
|
input fuse_clk2;
|
60 |
|
|
input fuse_l2d_data_in;
|
61 |
|
|
input fuse_read_data_in;
|
62 |
|
|
|
63 |
|
|
|
64 |
|
|
output [155:0] decc_out ;
|
65 |
|
|
output so;
|
66 |
|
|
|
67 |
|
|
// Efuse outputs
|
68 |
|
|
output l2d_fuse_data_out;
|
69 |
|
|
|
70 |
|
|
reg [155:0] tmp_decc_out;
|
71 |
|
|
reg [155:0] decc_out_tmp;
|
72 |
|
|
reg [155:0] reg_decc_in;
|
73 |
|
|
|
74 |
|
|
`ifdef DEFINE_0IN
|
75 |
|
|
`else
|
76 |
|
|
reg [155:0] way0_decc[1023:0] ;
|
77 |
|
|
reg [155:0] way1_decc[1023:0] ;
|
78 |
|
|
`endif
|
79 |
|
|
|
80 |
|
|
wire acc_en_d1;
|
81 |
|
|
reg [1:0] way_sel_d1;
|
82 |
|
|
reg [9:0] set_d1;
|
83 |
|
|
reg [3:0] word_en_d1;
|
84 |
|
|
reg wr_en_d1;
|
85 |
|
|
reg [155:0] decc_in_d1;
|
86 |
|
|
reg [155:0] decc_out_d1;
|
87 |
|
|
reg col_offset_d1;
|
88 |
|
|
|
89 |
|
|
wire [1:0] way_sel_sehold;
|
90 |
|
|
wire [9:0] set_sehold;
|
91 |
|
|
wire [3:0] word_en_sehold;
|
92 |
|
|
wire wr_en_sehold;
|
93 |
|
|
wire [155:0] decc_in_sehold;
|
94 |
|
|
wire col_offset;
|
95 |
|
|
|
96 |
|
|
wire [155:0] decc_out ;
|
97 |
|
|
|
98 |
|
|
// JC begin
|
99 |
|
|
// Because of this 2 cycle block,
|
100 |
|
|
// The following codes are just helping me for Innologic verification
|
101 |
|
|
// stop_1_cyc: when col_offset = 1, the next cycle will be ignore
|
102 |
|
|
// keep_rd_out: The output data will be kept for another cycle
|
103 |
|
|
reg keep_rd_out;
|
104 |
|
|
reg stop_1_cyc;
|
105 |
|
|
always @(posedge rclk) begin
|
106 |
|
|
if (col_offset && (|way_sel_sehold)) begin
|
107 |
|
|
stop_1_cyc <= 1'b1;
|
108 |
|
|
end
|
109 |
|
|
else stop_1_cyc <= 1'b0;
|
110 |
|
|
if (acc_en_d1 & ~wr_en_d1) begin
|
111 |
|
|
keep_rd_out <= 1'b1;
|
112 |
|
|
end
|
113 |
|
|
else keep_rd_out <= 1'b0;
|
114 |
|
|
end
|
115 |
|
|
// JC end
|
116 |
|
|
|
117 |
|
|
|
118 |
|
|
assign wr_en_sehold = (sehold) ? wr_en_d1 : ~wr_en_l;
|
119 |
|
|
assign set_sehold = (sehold) ? set_d1 : ~set_l;
|
120 |
|
|
assign way_sel_sehold = (sehold) ? way_sel_d1 : ~way_sel_l;
|
121 |
|
|
assign word_en_sehold = (sehold) ? word_en_d1 : ~word_en_l;
|
122 |
|
|
// In Circuits, we use se to disable write, however, I modified testbench as following
|
123 |
|
|
// to verify write disable:
|
124 |
|
|
// force inno_tb_top.xtor.xcnt.se_l = ~mem_write_disable ;
|
125 |
|
|
|
126 |
|
|
assign col_offset = (stop_1_cyc || mem_write_disable ) ? (1'b0) : ~col_offset_l ;
|
127 |
|
|
|
128 |
|
|
assign acc_en_d1 = col_offset_d1 & (|way_sel_d1);
|
129 |
|
|
|
130 |
|
|
always @(posedge rclk) begin
|
131 |
|
|
col_offset_d1 <= col_offset;
|
132 |
|
|
way_sel_d1 <= way_sel_sehold;
|
133 |
|
|
set_d1 <= set_sehold;
|
134 |
|
|
word_en_d1 <= word_en_sehold;
|
135 |
|
|
wr_en_d1 <= wr_en_sehold;
|
136 |
|
|
// JC
|
137 |
|
|
// EVEN THOUGH We don't have any write data latch,
|
138 |
|
|
// Our write-data drivers act like latch which gating by
|
139 |
|
|
// Worden signals.
|
140 |
|
|
decc_in_d1 <= ~decc_in_l;
|
141 |
|
|
// JC
|
142 |
|
|
//This is NOT output flops, but we can keep read outs for
|
143 |
|
|
// 2 cycles.
|
144 |
|
|
decc_out_d1 <= decc_out_tmp;
|
145 |
|
|
end
|
146 |
|
|
|
147 |
|
|
|
148 |
|
|
`ifdef DEFINE_0IN
|
149 |
|
|
wire [155:0] decc_out0, decc_out1;
|
150 |
|
|
|
151 |
|
|
wire [155:0] wm = { {39{word_en_d1[3]}}, {39{word_en_d1[2]}}, {39{word_en_d1[1]}}, {39{word_en_d1[0]}} };
|
152 |
|
|
wire we0 = acc_en_d1 & wr_en_d1 & way_sel_d1[0];
|
153 |
|
|
wire we1 = acc_en_d1 & wr_en_d1 & way_sel_d1[1];
|
154 |
|
|
|
155 |
|
|
l2data_axis data_array0 (.data_out (decc_out0[155:0]),
|
156 |
|
|
.rclk (rclk),
|
157 |
|
|
.adr (set_d1[9:0]),
|
158 |
|
|
.data_in (decc_in_d1[155:0]),
|
159 |
|
|
.we (we0),
|
160 |
|
|
.wm (wm[155:0]) );
|
161 |
|
|
l2data_axis data_array1 (.data_out (decc_out1[155:0]),
|
162 |
|
|
.rclk (rclk),
|
163 |
|
|
.adr (set_d1[9:0]),
|
164 |
|
|
.data_in (decc_in_d1[155:0]),
|
165 |
|
|
.we (we1),
|
166 |
|
|
.wm (wm[155:0]) );
|
167 |
|
|
|
168 |
|
|
always @(/*AUTOSENSE*/acc_en_d1 or decc_in_d1 or decc_out0
|
169 |
|
|
or decc_out1 or way_sel_d1 or word_en_d1 or wr_en_d1) begin
|
170 |
|
|
if (acc_en_d1 & ~wr_en_d1) begin
|
171 |
|
|
//////////////////////////
|
172 |
|
|
// 16 or 64B byte read
|
173 |
|
|
//////////////////////////
|
174 |
|
|
decc_out_tmp = way_sel_d1[0] ? decc_out0[155:0] : decc_out1[155:0];
|
175 |
|
|
end
|
176 |
|
|
|
177 |
|
|
if (acc_en_d1 & wr_en_d1) begin
|
178 |
|
|
//////////////////////////
|
179 |
|
|
// Store word/dword OR 64B store
|
180 |
|
|
//////////////////////////
|
181 |
|
|
tmp_decc_out = way_sel_d1[0] ? decc_out0[155:0] : decc_out1[155:0];
|
182 |
|
|
|
183 |
|
|
//////////////////////////////////////
|
184 |
|
|
// Write data based on Word enables.
|
185 |
|
|
//////////////////////////////////////
|
186 |
|
|
|
187 |
|
|
reg_decc_in[155:117] = (decc_in_d1[155:117] & {39{word_en_d1[3]}} |
|
188 |
|
|
tmp_decc_out[155:117] & {39{~word_en_d1[3]}});
|
189 |
|
|
reg_decc_in[116:78] = (decc_in_d1[116:78] & {39{word_en_d1[2]}} |
|
190 |
|
|
tmp_decc_out[116:78] & {39{~word_en_d1[2]}});
|
191 |
|
|
reg_decc_in[77:39] = (decc_in_d1[77:39] & {39{word_en_d1[1]}} |
|
192 |
|
|
tmp_decc_out[77:39] & {39{~word_en_d1[1]}});
|
193 |
|
|
reg_decc_in[38:0] = (decc_in_d1[38:0] & {39{word_en_d1[0]}} |
|
194 |
|
|
tmp_decc_out[38:0] & {39{~word_en_d1[0]}});
|
195 |
|
|
|
196 |
|
|
//////////////////////////////////////////////////////////
|
197 |
|
|
// the store data gets reflected onto the read output bus
|
198 |
|
|
//////////////////////////////////////////////////////////
|
199 |
|
|
|
200 |
|
|
// decc_out_tmp[155:0] = reg_decc_in[155:0];
|
201 |
|
|
// Store data is *not* reflected onto the read output bus in the physical implementation
|
202 |
|
|
decc_out_tmp[155:0] = 156'b0;
|
203 |
|
|
|
204 |
|
|
end // of write operation
|
205 |
|
|
|
206 |
|
|
if (~acc_en_d1) begin
|
207 |
|
|
// no access
|
208 |
|
|
decc_out_tmp[155:0] = 156'b0;
|
209 |
|
|
end
|
210 |
|
|
|
211 |
|
|
end // of always block
|
212 |
|
|
|
213 |
|
|
`else
|
214 |
|
|
|
215 |
|
|
always @(/*AUTOSENSE*/acc_en_d1 or decc_in_d1 or set_d1
|
216 |
|
|
or way_sel_d1 or word_en_d1 or wr_en_d1) begin
|
217 |
|
|
|
218 |
|
|
`ifdef INNO_MUXEX
|
219 |
|
|
`else
|
220 |
|
|
//----- PURELY FOR VERIFICATION -----------------------
|
221 |
|
|
if(wr_en_d1==1'bx) begin
|
222 |
|
|
`ifdef MODELSIM
|
223 |
|
|
$display("L2_DATA_ERR"," wr en error %b ", wr_en_d1);
|
224 |
|
|
`else
|
225 |
|
|
$error("L2_DATA_ERR"," wr en error %b ", wr_en_d1);
|
226 |
|
|
`endif
|
227 |
|
|
end
|
228 |
|
|
//----- PURELY FOR VERIFICATION -----------------------
|
229 |
|
|
`endif
|
230 |
|
|
|
231 |
|
|
|
232 |
|
|
//////////////////
|
233 |
|
|
// MEMORY ACCESS
|
234 |
|
|
//////////////////
|
235 |
|
|
|
236 |
|
|
if (acc_en_d1) begin
|
237 |
|
|
|
238 |
|
|
`ifdef INNO_MUXEX
|
239 |
|
|
`else
|
240 |
|
|
//----- PURELY FOR VERIFICATION -----------------------
|
241 |
|
|
if(set_d1==10'bx) begin
|
242 |
|
|
`ifdef MODELSIM
|
243 |
|
|
$error("L2_DATA_ERR"," index error %h ", set_d1[9:0]);
|
244 |
|
|
`else
|
245 |
|
|
$display("L2_DATA_ERR"," index error %h ", set_d1[9:0]);
|
246 |
|
|
`endif
|
247 |
|
|
end
|
248 |
|
|
//----- PURELY FOR VERIFICATION -----------------------
|
249 |
|
|
`endif
|
250 |
|
|
|
251 |
|
|
|
252 |
|
|
if (~wr_en_d1) begin
|
253 |
|
|
//////////////////////////
|
254 |
|
|
// 16 or 64B byte read
|
255 |
|
|
//////////////////////////
|
256 |
|
|
decc_out_tmp = way_sel_d1[0] ? way0_decc[set_d1] : way1_decc[set_d1];
|
257 |
|
|
//JC: For keeping data for 2 cycle
|
258 |
|
|
// keep_rd_out = 2'b01;
|
259 |
|
|
end
|
260 |
|
|
|
261 |
|
|
else begin
|
262 |
|
|
//////////////////////////
|
263 |
|
|
// Store word/dword OR 64B store
|
264 |
|
|
//////////////////////////
|
265 |
|
|
tmp_decc_out = way_sel_d1[0] ? way0_decc[set_d1] : way1_decc[set_d1];
|
266 |
|
|
|
267 |
|
|
// keep_rd_out = 2'b00;
|
268 |
|
|
//////////////////////////////////////
|
269 |
|
|
// Write data based on Word enables.
|
270 |
|
|
//////////////////////////////////////
|
271 |
|
|
|
272 |
|
|
reg_decc_in[155:117] = (decc_in_d1[155:117] & {39{word_en_d1[3]}} |
|
273 |
|
|
tmp_decc_out[155:117] & {39{~word_en_d1[3]}});
|
274 |
|
|
reg_decc_in[116:78] = (decc_in_d1[116:78] & {39{word_en_d1[2]}} |
|
275 |
|
|
tmp_decc_out[116:78] & {39{~word_en_d1[2]}});
|
276 |
|
|
reg_decc_in[77:39] = (decc_in_d1[77:39] & {39{word_en_d1[1]}} |
|
277 |
|
|
tmp_decc_out[77:39] & {39{~word_en_d1[1]}});
|
278 |
|
|
reg_decc_in[38:0] = (decc_in_d1[38:0] & {39{word_en_d1[0]}} |
|
279 |
|
|
tmp_decc_out[38:0] & {39{~word_en_d1[0]}});
|
280 |
|
|
|
281 |
|
|
if (way_sel_d1[0]) way0_decc[set_d1] = reg_decc_in;
|
282 |
|
|
if (way_sel_d1[1]) way1_decc[set_d1] = reg_decc_in;
|
283 |
|
|
|
284 |
|
|
//////////////////////////////////////////////////////////
|
285 |
|
|
// the store data gets reflected onto the read output bus
|
286 |
|
|
//////////////////////////////////////////////////////////
|
287 |
|
|
|
288 |
|
|
// decc_out_tmp[155:0] = reg_decc_in[155:0];
|
289 |
|
|
// Store data is *not* reflected onto the read output bus in the physical implementation
|
290 |
|
|
|
291 |
|
|
decc_out_tmp[155:0] = 156'b0;
|
292 |
|
|
|
293 |
|
|
end // of write operation
|
294 |
|
|
|
295 |
|
|
end
|
296 |
|
|
|
297 |
|
|
else begin
|
298 |
|
|
// no access
|
299 |
|
|
decc_out_tmp[155:0] = 156'b0;
|
300 |
|
|
end
|
301 |
|
|
|
302 |
|
|
end // of always block
|
303 |
|
|
`endif
|
304 |
|
|
// Modeling wired-OR
|
305 |
|
|
|
306 |
|
|
// JC we don't have any flop in this level
|
307 |
|
|
// assign decc_out[155:0] = decc_out_d1[155:0] | decc_read_in[155:0];
|
308 |
|
|
|
309 |
|
|
assign decc_out[155:0] = (acc_en_d1 & ~wr_en_d1) ? 156'bX : (keep_rd_out) ?
|
310 |
|
|
(decc_out_d1[155:0] | decc_read_in[155:0]) :
|
311 |
|
|
(decc_out_tmp[155:0] | decc_read_in[155:0]);
|
312 |
|
|
|
313 |
|
|
/////////////////////////////////////////////////////////////////////
|
314 |
|
|
// Redundancy Registers
|
315 |
|
|
/////////////////////////////////////////////////////////////////////
|
316 |
|
|
|
317 |
|
|
reg [8:0] s_red_reg0;
|
318 |
|
|
reg [8:0] s_red_reg1;
|
319 |
|
|
reg [8:0] s_red_reg2;
|
320 |
|
|
reg [8:0] s_red_reg3;
|
321 |
|
|
reg [8:0] s_red_reg4;
|
322 |
|
|
reg [8:0] s_red_reg5;
|
323 |
|
|
|
324 |
|
|
reg [8:0] m_red_reg0;
|
325 |
|
|
reg [8:0] m_red_reg1;
|
326 |
|
|
reg [8:0] m_red_reg2;
|
327 |
|
|
reg [8:0] m_red_reg3;
|
328 |
|
|
reg [8:0] m_red_reg4;
|
329 |
|
|
reg [8:0] m_red_reg5;
|
330 |
|
|
|
331 |
|
|
wire l2d_fuse_data_out;
|
332 |
|
|
|
333 |
|
|
assign l2d_fuse_data_out = s_red_reg5[8];
|
334 |
|
|
|
335 |
|
|
always @(arst_l or fuse_clk1 or fuse_l2d_rid or fuse_l2d_wren or fuse_l2d_rden
|
336 |
|
|
or fuse_l2d_data_in or fuse_read_data_in
|
337 |
|
|
or s_red_reg0 or s_red_reg1 or s_red_reg2
|
338 |
|
|
or s_red_reg3 or s_red_reg4 or s_red_reg5) begin
|
339 |
|
|
|
340 |
|
|
if (!arst_l) begin
|
341 |
|
|
m_red_reg0[8:0] = 9'b0;
|
342 |
|
|
m_red_reg1[8:0] = 9'b0;
|
343 |
|
|
m_red_reg2[8:0] = 9'b0;
|
344 |
|
|
m_red_reg3[8:0] = 9'b0;
|
345 |
|
|
m_red_reg4[8:0] = 9'b0;
|
346 |
|
|
m_red_reg5[8:0] = 9'b0;
|
347 |
|
|
end
|
348 |
|
|
|
349 |
|
|
if (arst_l && fuse_clk1) begin
|
350 |
|
|
|
351 |
|
|
/////////////////////////////////
|
352 |
|
|
// Write operation
|
353 |
|
|
/////////////////////////////////
|
354 |
|
|
|
355 |
|
|
if (fuse_l2d_wren) begin
|
356 |
|
|
case (fuse_l2d_rid) //selecting among the six registers
|
357 |
|
|
3'b101: m_red_reg0[8:0] = {s_red_reg0[7:0], fuse_l2d_data_in};// bottom odd row
|
358 |
|
|
3'b011: m_red_reg1[8:0] = {s_red_reg1[7:0], fuse_l2d_data_in};// bottom even row
|
359 |
|
|
3'b010: m_red_reg2[8:0] = {s_red_reg2[7:0], fuse_l2d_data_in};// bottom column
|
360 |
|
|
3'b100: m_red_reg3[8:0] = {s_red_reg3[7:0], fuse_l2d_data_in};// top odd row
|
361 |
|
|
3'b001: m_red_reg4[8:0] = {s_red_reg4[7:0], fuse_l2d_data_in};// top even row
|
362 |
|
|
3'b000: m_red_reg5[8:0] = {s_red_reg5[7:0], fuse_l2d_data_in};// top column
|
363 |
|
|
default: ;
|
364 |
|
|
endcase // case(fuse_l2d_rid)
|
365 |
|
|
end // if (fuse_l2d_wren)
|
366 |
|
|
|
367 |
|
|
/////////////////////////////////
|
368 |
|
|
// Read operation
|
369 |
|
|
/////////////////////////////////
|
370 |
|
|
|
371 |
|
|
//JC This is just temporary fix for read operation, rid = 3'b111 will turn on everything
|
372 |
|
|
else if (fuse_l2d_rden) begin
|
373 |
|
|
m_red_reg0[8:0] = {s_red_reg0[7:0], fuse_read_data_in};
|
374 |
|
|
m_red_reg1[8:0] = {s_red_reg1[7:0], s_red_reg0[8]};
|
375 |
|
|
m_red_reg2[8:0] = {s_red_reg2[7:0], s_red_reg1[8]};
|
376 |
|
|
m_red_reg3[8:0] = {s_red_reg3[7:0], s_red_reg2[8]};
|
377 |
|
|
m_red_reg4[8:0] = {s_red_reg4[7:0], s_red_reg3[8]};
|
378 |
|
|
m_red_reg5[8:0] = {s_red_reg5[7:0], s_red_reg4[8]};
|
379 |
|
|
end // if (fuse_l2d_rden)
|
380 |
|
|
|
381 |
|
|
end // if (fuse_clk1)
|
382 |
|
|
|
383 |
|
|
end // always @ (fuse_clk1 or...
|
384 |
|
|
|
385 |
|
|
// always @(posedge efc_scdata_fuse_clk1) begin
|
386 |
|
|
|
387 |
|
|
always @(arst_l or fuse_clk2 or fuse_l2d_rid or fuse_l2d_wren or fuse_l2d_rden
|
388 |
|
|
or m_red_reg0 or m_red_reg1 or m_red_reg2
|
389 |
|
|
or m_red_reg3 or m_red_reg4 or m_red_reg5) begin
|
390 |
|
|
|
391 |
|
|
`ifdef DEFINE_0IN
|
392 |
|
|
`else
|
393 |
|
|
`ifdef FPGA_SYN_RED
|
394 |
|
|
`else
|
395 |
|
|
if (!arst_l) begin
|
396 |
|
|
m_red_reg0[8:0] = 9'b0;
|
397 |
|
|
m_red_reg1[8:0] = 9'b0;
|
398 |
|
|
m_red_reg2[8:0] = 9'b0;
|
399 |
|
|
m_red_reg3[8:0] = 9'b0;
|
400 |
|
|
m_red_reg4[8:0] = 9'b0;
|
401 |
|
|
m_red_reg5[8:0] = 9'b0;
|
402 |
|
|
end
|
403 |
|
|
`endif
|
404 |
|
|
`endif
|
405 |
|
|
|
406 |
|
|
if (fuse_clk2) begin
|
407 |
|
|
|
408 |
|
|
if (fuse_l2d_wren) begin
|
409 |
|
|
case (fuse_l2d_rid) //selecting among the six registers
|
410 |
|
|
3'b101: s_red_reg0[8:0] = m_red_reg0[8:0];// bottom odd row
|
411 |
|
|
3'b011: s_red_reg1[8:0] = m_red_reg1[8:0];// bottom even row
|
412 |
|
|
3'b010: s_red_reg2[8:0] = m_red_reg2[8:0];// bottom column
|
413 |
|
|
3'b100: s_red_reg3[8:0] = m_red_reg3[8:0];// top odd row
|
414 |
|
|
3'b001: s_red_reg4[8:0] = m_red_reg4[8:0];// top even row
|
415 |
|
|
3'b000: s_red_reg5[8:0] = m_red_reg5[8:0];// top column
|
416 |
|
|
default: ;
|
417 |
|
|
endcase // case(fuse_l2d_rid)
|
418 |
|
|
end // if (fuse_l2d_wren)
|
419 |
|
|
else if (fuse_l2d_rden) begin
|
420 |
|
|
s_red_reg0[8:0] = m_red_reg0[8:0];// bottom odd row
|
421 |
|
|
s_red_reg1[8:0] = m_red_reg1[8:0];// bottom even row
|
422 |
|
|
s_red_reg2[8:0] = m_red_reg2[8:0];// bottom column
|
423 |
|
|
s_red_reg3[8:0] = m_red_reg3[8:0];// top odd row
|
424 |
|
|
s_red_reg4[8:0] = m_red_reg4[8:0];// top even row
|
425 |
|
|
s_red_reg5[8:0] = m_red_reg5[8:0];// top column
|
426 |
|
|
end // if (fuse_l2d_rden)
|
427 |
|
|
|
428 |
|
|
end // if (fuse_clk2)
|
429 |
|
|
|
430 |
|
|
end // always @ (fuse_clk2 or...
|
431 |
|
|
|
432 |
|
|
endmodule // bw_r_l2d_32k
|
433 |
|
|
|