OpenCores
URL https://opencores.org/ocsvn/spi_master_slave/spi_master_slave/trunk

Subversion Repositories spi_master_slave

[/] [spi_master_slave/] [trunk/] [syn/] [spi_master.vhd] - Blame information for rev 19

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 5 jdoin
-----------------------------------------------------------------------------------------------------------------------
2 12 jdoin
-- Author:          Jonny Doin, jdoin@opencores.org, jonnydoin@gmail.com
3 5 jdoin
-- 
4
-- Create Date:     12:18:12 04/25/2011 
5
-- Module Name:     SPI_MASTER - RTL
6
-- Project Name:    SPI MASTER / SLAVE INTERFACE
7
-- Target Devices:  Spartan-6
8
-- Tool versions:   ISE 13.1
9
-- Description: 
10
--
11
--      This block is the SPI master interface, implemented in one single entity.
12
--      All internal core operations are synchronous to the 'sclk_i', and a spi base clock is generated by dividing sclk_i downto
13
--      a frequency that is 2x the spi SCK line frequency. The divider value is passed as a generic parameter during instantiation.
14
--      All parallel i/o interface operations are synchronous to the 'pclk_i' high speed clock, that can be asynchronous to the serial
15
--      'sclk_i' clock.
16 13 jdoin
--      For optimized use of longlines, connect 'sclk_i' and 'pclk_i' to the same global clock line.
17 5 jdoin
--      Fully pipelined cross-clock circuitry guarantees that no setup artifacts occur on the buffers that are accessed by the two 
18
--      clock domains.
19
--      The block is very simple to use, and has parallel inputs and outputs that behave like a synchronous memory i/o.
20
--      It is parameterizable via generics for the data width ('N'), SPI mode (CPHA and CPOL), lookahead prefetch signaling 
21
--      ('PREFETCH'), and spi base clock division from sclk_i ('SPI_2X_CLK_DIV').
22
--
23
--      SPI CLOCK GENERATION
24
--      ====================
25
--
26
--      The clock generation for the SPI SCK is derived from the high-speed 'sclk_i' clock. The core divides this reference 
27
--      clock to form the SPI base clock, by the 'SPI_2X_CLK_DIV' generic parameter. The user must set the divider value for the 
28
--      SPI_2X clock, which is 2x the desired SCK frequency. 
29
--      All registers in the core are clocked by the high-speed clocks, and clock enables are used to run the FSM and other logic
30
--      at lower rates. This architecture preserves FPGA clock resources like global clock buffers, and avoids path delays caused
31
--      by combinatorial clock dividers outputs.
32
--      The core has async clock domain circuitry to handle asynchronous clocks for the SPI and parallel interfaces.
33
--
34
--      PARALLEL WRITE INTERFACE
35
--      ========================
36
--      The parallel interface has an input port 'di_i' and an output port 'do_o'.
37
--      Parallel load is controlled using 3 signals: 'di_i', 'di_req_o' and 'wren_i'. 'di_req_o' is a look ahead data request line,
38
--      that is set 'PREFETCH' clock cycles in advance to synchronize a pipelined memory or fifo to present the 
39
--      next input data at 'di_i' in time to have continuous clock at the spi bus, to allow back-to-back continuous load.
40
--      For a pipelined sync RAM, a PREFETCH of 2 cycles allows an address generator to present the new adress to the RAM in one
41
--      cycle, and the RAM to respond in one more cycle, in time for 'di_i' to be latched by the shifter.
42
--      If the user sequencer needs a different value for PREFETCH, the generic can be altered at instantiation time.
43
--      The 'wren_i' write enable strobe must be valid at least one setup time before the rising edge of the last SPI clock cycle,
44
--      if continuous transmission is intended. If 'wren_i' is not valid 2 SPI clock cycles after the last transmitted bit, the interface
45
--      enters idle state and deasserts SSEL.
46
--      When the interface is idle, 'wren_i' write strobe loads the data and starts transmission. 'di_req_o' will strobe when entering 
47
--      idle state, if a previously loaded data has already been transferred.
48
--
49
--      PARALLEL WRITE SEQUENCE
50
--      =======================
51
--                         __    __    __    __    __    __    __ 
52
--      pclk_i          __/  \__/  \__/  \__/  \__/  \__/  \__/  \...     -- parallel interface clock
53
--                               ___________                        
54
--      di_req_o        ________/           \_____________________...     -- 'di_req_o' asserted on rising edge of 'pclk_i'
55
--                      ______________ ___________________________...
56
--      di_i            __old_data____X______new_data_____________...     -- user circuit loads data on 'di_i' at next 'pclk_i' rising edge
57
--                                                 _______                        
58
--      wren_i          __________________________/       \_______...     -- user strobes 'wren_i' for one cycle of 'pclk_i'
59
--                      
60
--
61
--      PARALLEL READ INTERFACE
62
--      =======================
63
--      An internal buffer is used to copy the internal shift register data to drive the 'do_o' port. When a complete word is received,
64 6 jdoin
--      the core shift register is transferred to the buffer, at the rising edge of the spi clock, 'spi_clk'.
65
--      The signal 'do_valid_o' is set one 'spi_clk' clock after, to directly drive a synchronous memory or fifo write enable.
66 5 jdoin
--      'do_valid_o' is synchronous to the parallel interface clock, and changes only on rising edges of 'pclk_i'.
67
--      When the interface is idle, data at the 'do_o' port holds the last word received.
68
--
69
--      PARALLEL READ SEQUENCE
70
--      ======================
71
--                      ______        ______        ______        ______   
72 7 jdoin
--      spi_clk          bit1 \______/ bitN \______/bitN-1\______/bitN-2\__...  -- internal spi 2x base clock
73 5 jdoin
--                      _    __    __    __    __    __    __    __    __  
74
--      pclk_i           \__/  \__/  \__/  \__/  \__/  \__/  \__/  \__/  \_...  -- parallel interface clock (may be async to sclk_i)
75
--                      _____________ _____________________________________...  -- 1) rx data is transferred to 'do_buffer_reg'
76 6 jdoin
--      do_o            ___old_data__X__________new_data___________________...  --    after last rx bit, at rising 'spi_clk'.
77 5 jdoin
--                                                   ____________               
78
--      do_valid_o      ____________________________/            \_________...  -- 2) 'do_valid_o' strobed for 2 'pclk_i' cycles
79
--                                                                              --    on the 3rd 'pclk_i' rising edge.
80
--
81
--
82
--      The propagation delay of spi_sck_o and spi_mosi_o, referred to the internal clock, is balanced by similar path delays,
83
--      but the sampling delay of spi_miso_i imposes a setup time referred to the sck signal that limits the high frequency
84
--      of the interface, for full duplex operation.
85
--
86
--      This design was originally targeted to a Spartan-6 platform, synthesized with XST and normal constraints.
87
--      The VHDL dialect used is VHDL'93, accepted largely by all synthesis tools.
88
--
89
------------------------------ COPYRIGHT NOTICE -----------------------------------------------------------------------
90
--                                                                   
91
--      This file is part of the SPI MASTER/SLAVE INTERFACE project http://opencores.org/project,spi_master_slave
92 6 jdoin
--                                                                   
93 5 jdoin
--      Author(s):      Jonny Doin, jdoin@opencores.org
94 6 jdoin
--                                                                   
95 5 jdoin
--      Copyright (C) 2011 Authors and OPENCORES.ORG
96 6 jdoin
--      --------------------------------------------
97
--                                                                   
98
--      This source file may be used and distributed without restriction provided that this copyright statement is not    
99 5 jdoin
--      removed from the file and that any derivative work contains the original copyright notice and the associated 
100 6 jdoin
--      disclaimer. 
101
--                                                                   
102 5 jdoin
--      This source file is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser 
103
--      General Public License as published by the Free Software Foundation; either version 2.1 of the License, or 
104 6 jdoin
--      (at your option) any later version.
105
--                                                                   
106
--      This source is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
107
--      warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more  
108
--      details.
109
--
110 5 jdoin
--      You should have received a copy of the GNU Lesser General Public License along with this source; if not, download 
111 6 jdoin
--      it from http://www.opencores.org/lgpl.shtml
112 5 jdoin
--                                                                   
113
------------------------------ REVISION HISTORY -----------------------------------------------------------------------
114
--
115
-- 2011/04/28   v0.01.0010  [JD]    shifter implemented as a sequential process. timing problems and async issues in synthesis.
116
-- 2011/05/01   v0.01.0030  [JD]    changed original shifter design to a fully pipelined RTL fsmd. solved all synthesis issues.
117
-- 2011/05/05   v0.01.0034  [JD]    added an internal buffer register for rx_data, to allow greater liberty in data load/store.
118
-- 2011/05/08   v0.10.0038  [JD]    increased one state to have SSEL start one cycle before SCK. Implemented full CPOL/CPHA
119
--                                  logic, based on generics, and do_valid_o signal.
120
-- 2011/05/13   v0.20.0045  [JD]    streamlined signal names, added PREFETCH parameter, added assertions.
121
-- 2011/05/17   v0.80.0049  [JD]    added explicit clock synchronization circuitry across clock boundaries.
122
-- 2011/05/18   v0.95.0050  [JD]    clock generation circuitry, with generators for all-rising-edge clock core.
123
-- 2011/06/05   v0.96.0053  [JD]    changed async clear to sync resets.
124
-- 2011/06/07   v0.97.0065  [JD]    added cross-clock buffers, fixed fsm async glitches.
125
-- 2011/06/09   v0.97.0068  [JD]    reduced control sets (resets, CE, presets) to the absolute minimum to operate, to reduce
126
--                                  synthesis LUT overhead in Spartan-6 architecture.
127
-- 2011/06/11   v0.97.0075  [JD]    redesigned all parallel data interfacing ports, and implemented cross-clock strobe logic.
128 12 jdoin
-- 2011/06/12   v0.97.0079  [JD]    streamlined wr_ack for all cases and eliminated unnecessary register resets.
129 5 jdoin
-- 2011/06/14   v0.97.0083  [JD]    (bug CPHA effect) : redesigned SCK output circuit.
130
--                                  (minor bug) : removed fsm registers from (not rst_i) chip enable.
131
-- 2011/06/15   v0.97.0086  [JD]    removed master MISO input register, to relax MISO data setup time (to get higher speed).
132
-- 2011/07/09   v1.00.0095  [JD]    changed all clocking scheme to use a single high-speed clock with clock enables to control lower 
133
--                                  frequency sequential circuits, to preserve clocking resources and avoid path delay glitches.
134
-- 2011/07/10   v1.00.0098  [JD]    implemented SCK clock divider circuit to generate spi clock directly from system clock.
135
-- 2011/07/10   v1.10.0075  [JD]    verified spi_master_slave in silicon at 50MHz, 25MHz, 16.666MHz, 12.5MHz, 10MHz, 8.333MHz, 
136 6 jdoin
--                                  7.1428MHz, 6.25MHz, 1MHz and 500kHz. The core proved very robust at all tested frequencies.
137 10 jdoin
-- 2011/07/16   v1.11.0080  [JD]    verified both spi_master and spi_slave in loopback at 50MHz SPI clock.
138 11 jdoin
-- 2011/07/17   v1.11.0080  [JD]    BUG: CPOL='1', CPHA='1' @50MHz causes MOSI to be shifted one bit earlier.
139
--                                  BUG: CPOL='0', CPHA='1' causes SCK to have one extra pulse with one sclk_i width at the end.
140
-- 2011/07/18   v1.12.0105  [JD]    CHG: spi sck output register changed to remove glitch at last clock when CPHA='1'.
141
--                                  for CPHA='1', max spi clock is 25MHz. for CPHA= '0', max spi clock is >50MHz.
142 12 jdoin
-- 2011/07/24   v1.13.0125  [JD]    FIX: 'sck_ena_ce' is on half-cycle advanced to 'fsm_ce', elliminating CPHA='1' glitches.
143
--                                  Core verified for all CPOL, CPHA at up to 50MHz, simulates to over 100MHz.
144
-- 2011/07/29   v1.14.0130  [JD]    Removed global signal setting at the FSM, implementing exhaustive explicit signal attributions
145
--                                  for each state, to avoid reported inference problems in some synthesis engines.
146
--                                  Streamlined port names and indentation blocks.
147 13 jdoin
-- 2011/08/01   v1.15.0135  [JD]    Fixed latch inference for spi_mosi_o driver at the fsm.
148
--                                  The master and slave cores were verified in FPGA with continuous transmission, for all SPI modes.
149 16 jdoin
-- 2011/08/04   v1.15.0136  [JD]    Fixed assertions (PREFETCH >= 1) and minor comment bugs.
150 5 jdoin
--
151
-----------------------------------------------------------------------------------------------------------------------
152
--  TODO
153
--  ====
154
--
155
-----------------------------------------------------------------------------------------------------------------------
156
library ieee;
157
use ieee.std_logic_1164.all;
158
use ieee.numeric_std.all;
159 6 jdoin
use ieee.std_logic_unsigned.all;
160 5 jdoin
 
161
--================================================================================================================
162 10 jdoin
-- SYNTHESIS CONSIDERATIONS
163
-- ========================
164 5 jdoin
-- There are several output ports that are used to simulate and verify the core operation. 
165
-- Do not map any signals to the unused ports, and the synthesis tool will remove the related interfacing
166
-- circuitry. 
167
-- The same is valid for the transmit and receive ports. If the receive ports are not mapped, the
168
-- synthesis tool will remove the receive logic from the generated circuitry.
169
--================================================================================================================
170
 
171
entity spi_master is
172
    Generic (
173
        N : positive := 32;                                             -- 32bit serial word length is default
174
        CPOL : std_logic := '0';                                        -- SPI mode selection (mode 0 default)
175
        CPHA : std_logic := '0';                                        -- CPOL = clock polarity, CPHA = clock phase.
176
        PREFETCH : positive := 2;                                       -- prefetch lookahead cycles
177
        SPI_2X_CLK_DIV : positive := 5);                                -- for a 100MHz sclk_i, yields a 10MHz SCK
178
    Port (
179
        sclk_i : in std_logic := 'X';                                   -- high-speed serial interface system clock
180
        pclk_i : in std_logic := 'X';                                   -- high-speed parallel interface system clock
181
        rst_i : in std_logic := 'X';                                    -- reset core
182 7 jdoin
        ---- serial interface ----
183 5 jdoin
        spi_ssel_o : out std_logic;                                     -- spi bus slave select line
184
        spi_sck_o : out std_logic;                                      -- spi bus sck
185
        spi_mosi_o : out std_logic;                                     -- spi bus mosi output
186
        spi_miso_i : in std_logic := 'X';                               -- spi bus spi_miso_i input
187 7 jdoin
        ---- parallel interface ----
188 5 jdoin
        di_req_o : out std_logic;                                       -- preload lookahead data request line
189 6 jdoin
        di_i : in  std_logic_vector (N-1 downto 0) := (others => 'X');  -- parallel data in (clocked on rising spi_clk after last bit)
190 5 jdoin
        wren_i : in std_logic := 'X';                                   -- user data write enable, starts transmission when interface is idle
191 12 jdoin
        wr_ack_o : out std_logic;                                       -- write acknowledge
192 6 jdoin
        do_valid_o : out std_logic;                                     -- do_o data valid signal, valid during one spi_clk rising edge.
193
        do_o : out  std_logic_vector (N-1 downto 0);                    -- parallel output (clocked on rising spi_clk after last bit)
194 7 jdoin
        --- debug ports: can be removed or left unconnected for the application circuit ---
195 12 jdoin
        sck_ena_o : out std_logic;                                      -- debug: internal sck enable signal
196
        sck_ena_ce_o : out std_logic;                                   -- debug: internal sck clock enable signal
197 5 jdoin
        do_transfer_o : out std_logic;                                  -- debug: internal transfer driver
198
        wren_o : out std_logic;                                         -- debug: internal state of the wren_i pulse stretcher
199
        rx_bit_reg_o : out std_logic;                                   -- debug: internal rx bit
200 13 jdoin
        state_dbg_o : out std_logic_vector (3 downto 0);                -- debug: internal state register
201 5 jdoin
        core_clk_o : out std_logic;
202
        core_n_clk_o : out std_logic;
203
        core_ce_o : out std_logic;
204
        core_n_ce_o : out std_logic;
205
        sh_reg_dbg_o : out std_logic_vector (N-1 downto 0)              -- debug: internal shift register
206
    );
207
end spi_master;
208
 
209
--================================================================================================================
210
-- this architecture is a pipelined register-transfer description.
211 6 jdoin
-- all signals are clocked at the rising edge of the system clock 'sclk_i'.
212 5 jdoin
--================================================================================================================
213 13 jdoin
architecture rtl of spi_master is
214 6 jdoin
    -- core clocks, generated from 'sclk_i': initialized to differential values
215 11 jdoin
    signal core_clk     : std_logic := '0';     -- continuous core clock, positive logic
216
    signal core_n_clk   : std_logic := '1';     -- continuous core clock, negative logic
217
    signal core_ce      : std_logic := '0';     -- core clock enable, positive logic
218
    signal core_n_ce    : std_logic := '1';     -- core clock enable, negative logic
219 5 jdoin
    -- spi bus clock, generated from the CPOL selected core clock polarity
220 11 jdoin
    signal spi_2x_ce    : std_logic := '1';     -- spi_2x clock enable
221
    signal spi_clk      : std_logic := '0';     -- spi bus output clock
222 12 jdoin
    signal spi_clk_reg  : std_logic;            -- output pipeline delay for spi sck (do NOT global initialize)
223 5 jdoin
    -- core fsm clock enables
224 11 jdoin
    signal fsm_ce       : std_logic := '1';     -- fsm clock enable
225 12 jdoin
    signal sck_ena_ce   : std_logic := '1';     -- SCK clock enable
226 11 jdoin
    signal samp_ce      : std_logic := '1';     -- data sampling clock enable
227 5 jdoin
    --
228
    -- GLOBAL RESET: 
229
    --      all signals are initialized to zero at GSR (global set/reset) by giving explicit
230
    --      initialization values at declaration. This is needed for all Xilinx FPGAs, and 
231 7 jdoin
    --      especially for the Spartan-6 and newer CLB architectures, where a async reset can
232 5 jdoin
    --      reduce the usability of the slice registers, due to the need to share the control 
233
    --      set (RESET/PRESET, CLOCK ENABLE and CLOCK) by all 8 registers in a slice.
234 7 jdoin
    --      By using GSR for the initialization, and reducing async RESET local init to the bare
235 5 jdoin
    --      essential, the model achieves better LUT/FF packing and CLB usability.
236
    --
237
    -- internal state signals for register and combinatorial stages
238
    signal state_next : natural range N+1 downto 0 := 0;
239
    signal state_reg : natural range N+1 downto 0 := 0;
240
    -- shifter signals for register and combinatorial stages
241 13 jdoin
    signal sh_next : std_logic_vector (N-1 downto 0);
242
    signal sh_reg : std_logic_vector (N-1 downto 0);
243 5 jdoin
    -- input bit sampled buffer
244
    signal rx_bit_reg : std_logic := '0';
245
    -- buffered di_i data signals for register and combinatorial stages
246 13 jdoin
    signal di_reg : std_logic_vector (N-1 downto 0);
247 5 jdoin
    -- internal wren_i stretcher for fsm combinatorial stage
248 13 jdoin
    signal wren : std_logic;
249 12 jdoin
    signal wr_ack_next : std_logic := '0';
250
    signal wr_ack_reg : std_logic := '0';
251 5 jdoin
    -- internal SSEL enable control signals
252 12 jdoin
    signal ssel_ena_next : std_logic := '0';
253
    signal ssel_ena_reg : std_logic := '0';
254 5 jdoin
    -- internal SCK enable control signals
255 12 jdoin
    signal sck_ena_next : std_logic;
256
    signal sck_ena_reg : std_logic;
257 5 jdoin
    -- buffered do_o data signals for register and combinatorial stages
258 13 jdoin
    signal do_buffer_next : std_logic_vector (N-1 downto 0);
259
    signal do_buffer_reg : std_logic_vector (N-1 downto 0);
260 5 jdoin
    -- internal signal to flag transfer to do_buffer_reg
261
    signal do_transfer_next : std_logic := '0';
262
    signal do_transfer_reg : std_logic := '0';
263
    -- internal input data request signal 
264
    signal di_req_next : std_logic := '0';
265
    signal di_req_reg : std_logic := '0';
266
    -- cross-clock do_transfer_reg -> do_valid_o_reg pipeline
267
    signal do_valid_A : std_logic := '0';
268
    signal do_valid_B : std_logic := '0';
269
    signal do_valid_C : std_logic := '0';
270
    signal do_valid_D : std_logic := '0';
271
    signal do_valid_next : std_logic := '0';
272
    signal do_valid_o_reg : std_logic := '0';
273
    -- cross-clock di_req_reg -> di_req_o_reg pipeline
274
    signal di_req_o_A : std_logic := '0';
275
    signal di_req_o_B : std_logic := '0';
276
    signal di_req_o_C : std_logic := '0';
277
    signal di_req_o_D : std_logic := '0';
278
    signal di_req_o_next : std_logic := '1';
279
    signal di_req_o_reg : std_logic := '1';
280
begin
281
    --=============================================================================================
282
    --  GENERICS CONSTRAINTS CHECKING
283
    --=============================================================================================
284
    -- minimum word width is 8 bits
285 6 jdoin
    assert N >= 8
286
    report "Generic parameter 'N' (shift register size) needs to be 8 bits minimum"
287 16 jdoin
    severity FAILURE;
288 5 jdoin
    -- minimum prefetch lookahead check
289 16 jdoin
    assert PREFETCH >= 1
290 6 jdoin
    report "Generic parameter 'PREFETCH' (lookahead count) needs to be 1 minimum"
291 16 jdoin
    severity FAILURE;
292 5 jdoin
    -- maximum prefetch lookahead check
293 6 jdoin
    assert PREFETCH <= N-5
294
    report "Generic parameter 'PREFETCH' (lookahead count) out of range, needs to be N-5 maximum"
295 16 jdoin
    severity FAILURE;
296 5 jdoin
    -- SPI_2X_CLK_DIV clock divider value must not be zero
297 6 jdoin
    assert SPI_2X_CLK_DIV > 0
298
    report "Generic parameter 'SPI_2X_CLK_DIV' must not be zero"
299 16 jdoin
    severity FAILURE;
300 5 jdoin
 
301
    --=============================================================================================
302
    --  CLOCK GENERATION
303
    --=============================================================================================
304
    -- In order to preserve global clocking resources, the core clocking scheme is completely based 
305
    -- on using clock enables to process the serial high-speed clock at lower rates for the core fsm,
306
    -- the spi clock generator and the input sampling clock.
307
    -- The clock generation block derive 2 continuous antiphase signals from the 2x spi base clock 
308
    -- for the core clocking.
309 14 jdoin
    -- The 2 clock phases are generated by separate and synchronous FFs, and should have only 
310 7 jdoin
    -- differential interconnect delay skew.
311 5 jdoin
    -- Clock enable signals are generated with the same phase as the 2 core clocks, and these clock 
312
    -- enables are used to control clocking of all internal synchronous circuitry. 
313
    -- The clock enable phase is selected for serial input sampling, fsm clocking, and spi SCK output, 
314
    -- based on the configuration of CPOL and CPHA.
315
    -- Each phase is selected so that all the registers can be clocked with a rising edge on all SPI
316 13 jdoin
    -- modes, by a single high-speed global clock, preserving clock resources and clock to data skew.
317 5 jdoin
    -----------------------------------------------------------------------------------------------
318 6 jdoin
    -- generate the 2x spi base clock enable from the serial high-speed input clock
319 5 jdoin
    spi_2x_ce_gen_proc: process (sclk_i) is
320
        variable clk_cnt : integer range SPI_2X_CLK_DIV-1 downto 0 := 0;
321
    begin
322
        if sclk_i'event and sclk_i = '1' then
323
            if clk_cnt = SPI_2X_CLK_DIV-1 then
324
                spi_2x_ce <= '1';
325
                clk_cnt := 0;
326
            else
327
                spi_2x_ce <= '0';
328
                clk_cnt := clk_cnt + 1;
329
            end if;
330
        end if;
331
    end process spi_2x_ce_gen_proc;
332
    -----------------------------------------------------------------------------------------------
333 6 jdoin
    -- generate the core antiphase clocks and clock enables from the 2x base CE.
334 5 jdoin
    core_clock_gen_proc : process (sclk_i) is
335
    begin
336
        if sclk_i'event and sclk_i = '1' then
337
            if spi_2x_ce = '1' then
338
                -- generate the 2 antiphase core clocks
339
                core_clk <= core_n_clk;
340
                core_n_clk <= not core_n_clk;
341
                -- generate the 2 phase core clock enables
342
                core_ce <= core_n_clk;
343
                core_n_ce <= not core_n_clk;
344
            else
345
                core_ce <= '0';
346
                core_n_ce <= '0';
347
            end if;
348
        end if;
349
    end process core_clock_gen_proc;
350 12 jdoin
 
351
    --=============================================================================================
352
    --  GENERATE BLOCKS
353
    --=============================================================================================
354 5 jdoin
    -- spi clk generator: generate spi_clk from core_clk depending on CPOL
355 12 jdoin
    spi_sck_cpol_0_proc: if CPOL = '0' generate
356
    begin
357
        spi_clk <= core_clk;            -- for CPOL=0, spi clk has idle LOW
358
    end generate;
359
 
360
    spi_sck_cpol_1_proc: if CPOL = '1' generate
361
    begin
362
        spi_clk <= core_n_clk;          -- for CPOL=1, spi clk has idle HIGH
363
    end generate;
364 5 jdoin
    -----------------------------------------------------------------------------------------------
365
    -- Sampling clock enable generation: generate 'samp_ce' from 'core_ce' or 'core_n_ce' depending on CPHA
366
    -- always sample data at the half-cycle of the fsm update cell
367 12 jdoin
    samp_ce_cpha_0_proc: if CPHA = '0' generate
368
    begin
369
        samp_ce <= core_ce;
370
    end generate;
371
 
372
    samp_ce_cpha_1_proc: if CPHA = '1' generate
373
    begin
374
        samp_ce <= core_n_ce;
375
    end generate;
376 5 jdoin
    -----------------------------------------------------------------------------------------------
377 6 jdoin
    -- FSM clock enable generation: generate 'fsm_ce' from core_ce or core_n_ce depending on CPHA
378 12 jdoin
    fsm_ce_cpha_0_proc: if CPHA = '0' generate
379
    begin
380
        fsm_ce <= core_n_ce;            -- for CPHA=0, latch registers at rising edge of negative core clock enable
381
    end generate;
382
 
383
    fsm_ce_cpha_1_proc: if CPHA = '1' generate
384
    begin
385
        fsm_ce <= core_ce;              -- for CPHA=1, latch registers at rising edge of positive core clock enable
386
    end generate;
387 13 jdoin
    -----------------------------------------------------------------------------------------------
388
    -- sck enable control: control sck advance phase for CPHA='1' relative to fsm clock
389 12 jdoin
    sck_ena_ce <= core_n_ce;            -- for CPHA=1, SCK is advanced one-half cycle
390 11 jdoin
 
391 5 jdoin
    --=============================================================================================
392
    --  REGISTERED INPUTS
393
    --=============================================================================================
394
    -- rx bit flop: capture rx bit after SAMPLE edge of sck
395 10 jdoin
    rx_bit_proc : process (sclk_i, spi_miso_i) is
396 5 jdoin
    begin
397 11 jdoin
        if sclk_i'event and sclk_i = '1' then
398
            if samp_ce = '1' then
399 5 jdoin
                rx_bit_reg <= spi_miso_i;
400 11 jdoin
            end if;
401
        end if;
402 5 jdoin
    end process rx_bit_proc;
403
 
404
    --=============================================================================================
405
    --  CROSS-CLOCK PIPELINE TRANSFER LOGIC
406
    --=============================================================================================
407
    -- do_valid_o and di_req_o strobe output logic
408
    -- this is a delayed pulse generator with a ripple-transfer FFD pipeline, that generates a 
409
    -- fixed-length delayed pulse for the output flags, at the parallel clock domain
410
    out_transfer_proc : process ( pclk_i, do_transfer_reg, di_req_reg,
411
                                  do_valid_A, do_valid_B, do_valid_D,
412
                                  di_req_o_A, di_req_o_B, di_req_o_D ) is
413
    begin
414
        if pclk_i'event and pclk_i = '1' then               -- clock at parallel port clock
415
            -- do_transfer_reg -> do_valid_o_reg
416
            do_valid_A <= do_transfer_reg;                  -- the input signal must be at least 2 clocks long
417
            do_valid_B <= do_valid_A;                       -- feed it to a ripple chain of FFDs
418
            do_valid_C <= do_valid_B;
419
            do_valid_D <= do_valid_C;
420
            do_valid_o_reg <= do_valid_next;                -- registered output pulse
421
            --------------------------------
422
            -- di_req_reg -> di_req_o_reg
423
            di_req_o_A <= di_req_reg;                       -- the input signal must be at least 2 clocks long
424
            di_req_o_B <= di_req_o_A;                       -- feed it to a ripple chain of FFDs
425
            di_req_o_C <= di_req_o_B;
426
            di_req_o_D <= di_req_o_C;
427
            di_req_o_reg <= di_req_o_next;                  -- registered output pulse
428
        end if;
429
        -- generate a 2-clocks pulse at the 3rd clock cycle
430
        do_valid_next <= do_valid_A and do_valid_B and not do_valid_D;
431
        di_req_o_next <= di_req_o_A and di_req_o_B and not di_req_o_D;
432
    end process out_transfer_proc;
433
    -- parallel load input registers: data register and write enable
434 12 jdoin
    in_transfer_proc: process ( pclk_i, wren_i, wr_ack_reg ) is
435 5 jdoin
    begin
436
        -- registered data input, input register with clock enable
437
        if pclk_i'event and pclk_i = '1' then
438
            if wren_i = '1' then
439
                di_reg <= di_i;                             -- parallel data input buffer register
440
            end if;
441
        end  if;
442
        -- stretch wren pulse to be detected by spi fsm (ffd with sync preset and sync reset)
443
        if pclk_i'event and pclk_i = '1' then
444
            if wren_i = '1' then                            -- wren_i is the sync preset for wren
445
                wren <= '1';
446 12 jdoin
            elsif wr_ack_reg = '1' then                     -- wr_ack is the sync reset for wren
447 5 jdoin
                wren <= '0';
448
            end if;
449
        end  if;
450
    end process in_transfer_proc;
451
 
452
    --=============================================================================================
453 13 jdoin
    --  REGISTER TRANSFER PROCESSES
454 7 jdoin
    --=============================================================================================
455
    -- fsm state and data registers: synchronous to the spi base reference clock
456
    core_reg_proc : process (sclk_i) is
457
    begin
458
        -- FF registers clocked on rising edge and cleared on sync rst_i
459
        if sclk_i'event and sclk_i = '1' then
460
            if rst_i = '1' then                             -- sync reset
461
                state_reg <= 0;                             -- only provide local reset for the state machine
462
            elsif fsm_ce = '1' then                         -- fsm_ce is clock enable for the fsm
463
                state_reg <= state_next;                    -- state register
464
            end if;
465
        end if;
466 11 jdoin
        -- FF registers clocked synchronous to the fsm state
467 7 jdoin
        if sclk_i'event and sclk_i = '1' then
468
            if fsm_ce = '1' then
469
                sh_reg <= sh_next;                          -- shift register
470 12 jdoin
                ssel_ena_reg <= ssel_ena_next;              -- spi select enable
471 7 jdoin
                do_buffer_reg <= do_buffer_next;            -- registered output data buffer 
472
                do_transfer_reg <= do_transfer_next;        -- output data transferred to buffer
473
                di_req_reg <= di_req_next;                  -- input data request
474 12 jdoin
                wr_ack_reg <= wr_ack_next;                  -- write acknowledge for data load synchronization
475 7 jdoin
            end if;
476
        end if;
477 11 jdoin
        -- FF registers clocked one-half cycle earlier than the fsm state
478 12 jdoin
        if sclk_i'event and sclk_i = '1' then
479
            if sck_ena_ce = '1' then
480
                sck_ena_reg <= sck_ena_next;                -- spi clock enable: look ahead logic
481
            end if;
482
        end if;
483 7 jdoin
    end process core_reg_proc;
484
 
485
    --=============================================================================================
486 13 jdoin
    --  COMBINATORIAL LOGIC PROCESSES
487 5 jdoin
    --=============================================================================================
488
    -- state and datapath combinatorial logic
489 12 jdoin
    core_combi_proc : process ( sh_reg, state_reg, rx_bit_reg, ssel_ena_reg, sck_ena_reg, do_buffer_reg,
490
                                do_transfer_reg, wr_ack_reg, di_req_reg, di_reg, wren ) is
491 5 jdoin
    begin
492
        sh_next <= sh_reg;                                              -- all output signals are assigned to (avoid latches)
493 12 jdoin
        ssel_ena_next <= ssel_ena_reg;                                  -- controls the slave select line
494
        sck_ena_next <= sck_ena_reg;                                    -- controls the clock enable of spi sck line
495 5 jdoin
        do_buffer_next <= do_buffer_reg;                                -- output data buffer
496
        do_transfer_next <= do_transfer_reg;                            -- output data flag
497 12 jdoin
        wr_ack_next <= wr_ack_reg;                                      -- write acknowledge
498
        di_req_next <= di_req_reg;                                      -- prefetch data request
499 13 jdoin
        spi_mosi_o <= sh_reg(N-1);                                      -- default to avoid latch inference
500 12 jdoin
        state_next <= state_reg;                                        -- next state 
501 5 jdoin
        case state_reg is
502 16 jdoin
 
503 5 jdoin
            when (N+1) =>                                               -- this state is to enable SSEL before SCK
504 13 jdoin
                spi_mosi_o <= sh_reg(N-1);                              -- shift out tx bit from the MSb
505 12 jdoin
                ssel_ena_next <= '1';                                   -- tx in progress: will assert SSEL
506
                sck_ena_next <= '1';                                    -- enable SCK on next cycle (stays off on first SSEL clock cycle)
507
                di_req_next <= '0';                                     -- prefetch data request: deassert when shifting data
508
                wr_ack_next <= '0';                                     -- remove write acknowledge for all but the load stages
509
                state_next <= state_reg - 1;                            -- update next state at each sck pulse
510 16 jdoin
 
511
            when (N) =>                                                 -- deassert 'di_rdy' and stretch do_valid
512 13 jdoin
                spi_mosi_o <= sh_reg(N-1);                              -- shift out tx bit from the MSb
513 12 jdoin
                di_req_next <= '0';                                     -- prefetch data request: deassert when shifting data
514 5 jdoin
                sh_next(N-1 downto 1) <= sh_reg(N-2 downto 0);          -- shift inner bits
515
                sh_next(0) <= rx_bit_reg;                               -- shift in rx bit into LSb
516 12 jdoin
                wr_ack_next <= '0';                                     -- remove write acknowledge for all but the load stages
517
                state_next <= state_reg - 1;                            -- update next state at each sck pulse
518 16 jdoin
 
519
            when (N-1) downto (PREFETCH+3) =>                           -- remove 'do_transfer' and shift bits
520 13 jdoin
                spi_mosi_o <= sh_reg(N-1);                              -- shift out tx bit from the MSb
521 12 jdoin
                di_req_next <= '0';                                     -- prefetch data request: deassert when shifting data
522 16 jdoin
                do_transfer_next <= '0';                                -- reset 'do_valid' transfer signal
523 5 jdoin
                sh_next(N-1 downto 1) <= sh_reg(N-2 downto 0);          -- shift inner bits
524
                sh_next(0) <= rx_bit_reg;                               -- shift in rx bit into LSb
525 12 jdoin
                wr_ack_next <= '0';                                     -- remove write acknowledge for all but the load stages
526
                state_next <= state_reg - 1;                            -- update next state at each sck pulse
527 16 jdoin
 
528
            when (PREFETCH+2) downto 2 =>                               -- raise prefetch 'di_req_o' signal
529 13 jdoin
                spi_mosi_o <= sh_reg(N-1);                              -- shift out tx bit from the MSb
530 5 jdoin
                di_req_next <= '1';                                     -- request data in advance to allow for pipeline delays
531
                sh_next(N-1 downto 1) <= sh_reg(N-2 downto 0);          -- shift inner bits
532
                sh_next(0) <= rx_bit_reg;                               -- shift in rx bit into LSb
533 12 jdoin
                wr_ack_next <= '0';                                     -- remove write acknowledge for all but the load stages
534
                state_next <= state_reg - 1;                            -- update next state at each sck pulse
535 16 jdoin
 
536
            when 1 =>                                                   -- transfer rx data to do_buffer and restart if new data is written
537 13 jdoin
                spi_mosi_o <= sh_reg(N-1);                              -- shift out tx bit from the MSb
538 5 jdoin
                di_req_next <= '1';                                     -- request data in advance to allow for pipeline delays
539
                do_buffer_next(N-1 downto 1) <= sh_reg(N-2 downto 0);   -- shift rx data directly into rx buffer
540
                do_buffer_next(0) <= rx_bit_reg;                        -- shift last rx bit into rx buffer
541
                do_transfer_next <= '1';                                -- signal transfer to do_buffer
542
                if wren = '1' then                                      -- load tx register if valid data present at di_i
543
                    state_next <= N;                                    -- next state is top bit of new data
544
                    sh_next <= di_reg;                                  -- load parallel data from di_reg into shifter
545 12 jdoin
                    sck_ena_next <= '1';                                -- SCK enabled
546
                    wr_ack_next <= '1';                                 -- acknowledge data in transfer
547 5 jdoin
                else
548 12 jdoin
                    sck_ena_next <= '0';                                -- SCK disabled: tx empty, no data to send
549
                    wr_ack_next <= '0';                                 -- remove write acknowledge for all but the load stages
550
                    state_next <= state_reg - 1;                        -- update next state at each sck pulse
551 5 jdoin
                end if;
552 16 jdoin
 
553
            when 0 =>                                                   -- idle state: start and end of transmission
554 5 jdoin
                di_req_next <= '1';                                     -- will request data if shifter empty
555 12 jdoin
                sck_ena_next <= '0';                                    -- SCK disabled: tx empty, no data to send
556 5 jdoin
                if wren = '1' then                                      -- load tx register if valid data present at di_i
557 13 jdoin
                    spi_mosi_o <= di_reg(N-1);                          -- special case: shift out first tx bit from the MSb (look ahead)
558 12 jdoin
                    ssel_ena_next <= '1';                               -- enable interface SSEL
559 5 jdoin
                    state_next <= N+1;                                  -- start from idle: let one cycle for SSEL settling
560
                    sh_next <= di_reg;                                  -- load bits from di_reg into shifter
561 12 jdoin
                    wr_ack_next <= '1';                                 -- acknowledge data in transfer
562 5 jdoin
                else
563 13 jdoin
                    spi_mosi_o <= sh_reg(N-1);                          -- shift out tx bit from the MSb
564 12 jdoin
                    ssel_ena_next <= '0';                               -- deassert SSEL: interface is idle
565
                    wr_ack_next <= '0';                                 -- remove write acknowledge for all but the load stages
566 5 jdoin
                    state_next <= 0;                                    -- when idle, keep this state
567
                end if;
568 16 jdoin
 
569 5 jdoin
            when others =>
570
                state_next <= 0;                                        -- state 0 is safe state
571
        end case;
572
    end process core_combi_proc;
573
 
574
    --=============================================================================================
575
    --  OUTPUT LOGIC PROCESSES
576
    --=============================================================================================
577
    -- data output processes
578 12 jdoin
    spi_ssel_o_proc:    spi_ssel_o <= not ssel_ena_reg;                 -- active-low slave select line 
579
    do_o_proc:          do_o <= do_buffer_reg;                          -- parallel data out
580
    do_valid_o_proc:    do_valid_o <= do_valid_o_reg;                   -- data out valid
581
    di_req_o_proc:      di_req_o <= di_req_o_reg;                       -- input data request for next cycle
582
    wr_ack_o_proc:      wr_ack_o <= wr_ack_reg;                         -- write acknowledge
583 5 jdoin
    -----------------------------------------------------------------------------------------------
584
    -- SCK out logic: pipeline phase compensation for the SCK line
585
    -----------------------------------------------------------------------------------------------
586 12 jdoin
    -- This is a MUX with an output register. 
587
    -- The register gives us a pipeline delay for the SCK line, pairing with the state machine moore 
588
    -- output pipeline delay for the MOSI line, and thus enabling higher SCK frequency. 
589
    spi_sck_o_gen_proc : process (sclk_i, sck_ena_reg, spi_clk, spi_clk_reg) is
590 5 jdoin
    begin
591 12 jdoin
        if sclk_i'event and sclk_i = '1' then
592
            if sck_ena_reg = '1' then
593 5 jdoin
                spi_clk_reg <= spi_clk;                                 -- copy the selected clock polarity
594 12 jdoin
            else
595
                spi_clk_reg <= CPOL;                                    -- when clock disabled, set to idle polarity
596 5 jdoin
            end if;
597
        end if;
598
        spi_sck_o <= spi_clk_reg;                                       -- connect register to output
599
    end process spi_sck_o_gen_proc;
600
 
601
    --=============================================================================================
602
    --  DEBUG LOGIC PROCESSES
603
    --=============================================================================================
604 13 jdoin
    -- these signals are useful for verification, and can be deleted after debug.
605 5 jdoin
    do_transfer_proc:   do_transfer_o <= do_transfer_reg;
606 13 jdoin
    state_dbg_proc:     state_dbg_o <= std_logic_vector(to_unsigned(state_reg, 4));
607 5 jdoin
    rx_bit_reg_proc:    rx_bit_reg_o <= rx_bit_reg;
608
    wren_o_proc:        wren_o <= wren;
609 12 jdoin
    sh_reg_dbg_proc:    sh_reg_dbg_o <= sh_reg;
610 5 jdoin
    core_clk_o_proc:    core_clk_o <= core_clk;
611
    core_n_clk_o_proc:  core_n_clk_o <= core_n_clk;
612
    core_ce_o_proc:     core_ce_o <= core_ce;
613
    core_n_ce_o_proc:   core_n_ce_o <= core_n_ce;
614 12 jdoin
    sck_ena_o_proc:     sck_ena_o <= sck_ena_reg;
615
    sck_ena_ce_o_proc:  sck_ena_ce_o <= sck_ena_ce;
616 5 jdoin
 
617 13 jdoin
end architecture rtl;
618 5 jdoin
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.