OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [arch/] [s390/] [kernel/] [kprobes.c] - Blame information for rev 63

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 63 marcus.erl
/*
2
 *  Kernel Probes (KProbes)
3
 *
4
 * This program is free software; you can redistribute it and/or modify
5
 * it under the terms of the GNU General Public License as published by
6
 * the Free Software Foundation; either version 2 of the License, or
7
 * (at your option) any later version.
8
 *
9
 * This program is distributed in the hope that it will be useful,
10
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
 * GNU General Public License for more details.
13
 *
14
 * You should have received a copy of the GNU General Public License
15
 * along with this program; if not, write to the Free Software
16
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
 *
18
 * Copyright (C) IBM Corporation, 2002, 2006
19
 *
20
 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21
 */
22
 
23
#include <linux/kprobes.h>
24
#include <linux/ptrace.h>
25
#include <linux/preempt.h>
26
#include <linux/stop_machine.h>
27
#include <linux/kdebug.h>
28
#include <asm/cacheflush.h>
29
#include <asm/sections.h>
30
#include <asm/uaccess.h>
31
#include <linux/module.h>
32
 
33
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35
 
36
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
37
 
38
int __kprobes arch_prepare_kprobe(struct kprobe *p)
39
{
40
        /* Make sure the probe isn't going on a difficult instruction */
41
        if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
42
                return -EINVAL;
43
 
44
        if ((unsigned long)p->addr & 0x01) {
45
                printk("Attempt to register kprobe at an unaligned address\n");
46
                return -EINVAL;
47
                }
48
 
49
        /* Use the get_insn_slot() facility for correctness */
50
        if (!(p->ainsn.insn = get_insn_slot()))
51
                return -ENOMEM;
52
 
53
        memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
54
 
55
        get_instruction_type(&p->ainsn);
56
        p->opcode = *p->addr;
57
        return 0;
58
}
59
 
60
int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
61
{
62
        switch (*(__u8 *) instruction) {
63
        case 0x0c:      /* bassm */
64
        case 0x0b:      /* bsm   */
65
        case 0x83:      /* diag  */
66
        case 0x44:      /* ex    */
67
                return -EINVAL;
68
        }
69
        switch (*(__u16 *) instruction) {
70
        case 0x0101:    /* pr    */
71
        case 0xb25a:    /* bsa   */
72
        case 0xb240:    /* bakr  */
73
        case 0xb258:    /* bsg   */
74
        case 0xb218:    /* pc    */
75
        case 0xb228:    /* pt    */
76
                return -EINVAL;
77
        }
78
        return 0;
79
}
80
 
81
void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
82
{
83
        /* default fixup method */
84
        ainsn->fixup = FIXUP_PSW_NORMAL;
85
 
86
        /* save r1 operand */
87
        ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
88
 
89
        /* save the instruction length (pop 5-5) in bytes */
90
        switch (*(__u8 *) (ainsn->insn) >> 6) {
91
        case 0:
92
                ainsn->ilen = 2;
93
                break;
94
        case 1:
95
        case 2:
96
                ainsn->ilen = 4;
97
                break;
98
        case 3:
99
                ainsn->ilen = 6;
100
                break;
101
        }
102
 
103
        switch (*(__u8 *) ainsn->insn) {
104
        case 0x05:      /* balr */
105
        case 0x0d:      /* basr */
106
                ainsn->fixup = FIXUP_RETURN_REGISTER;
107
                /* if r2 = 0, no branch will be taken */
108
                if ((*ainsn->insn & 0x0f) == 0)
109
                        ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
110
                break;
111
        case 0x06:      /* bctr */
112
        case 0x07:      /* bcr  */
113
                ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
114
                break;
115
        case 0x45:      /* bal  */
116
        case 0x4d:      /* bas  */
117
                ainsn->fixup = FIXUP_RETURN_REGISTER;
118
                break;
119
        case 0x47:      /* bc   */
120
        case 0x46:      /* bct  */
121
        case 0x86:      /* bxh  */
122
        case 0x87:      /* bxle */
123
                ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
124
                break;
125
        case 0x82:      /* lpsw */
126
                ainsn->fixup = FIXUP_NOT_REQUIRED;
127
                break;
128
        case 0xb2:      /* lpswe */
129
                if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
130
                        ainsn->fixup = FIXUP_NOT_REQUIRED;
131
                }
132
                break;
133
        case 0xa7:      /* bras */
134
                if ((*ainsn->insn & 0x0f) == 0x05) {
135
                        ainsn->fixup |= FIXUP_RETURN_REGISTER;
136
                }
137
                break;
138
        case 0xc0:
139
                if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
140
                        || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
141
                ainsn->fixup |= FIXUP_RETURN_REGISTER;
142
                break;
143
        case 0xeb:
144
                if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||   /* bxhg  */
145
                        *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
146
                        ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
147
                }
148
                break;
149
        case 0xe3:      /* bctg */
150
                if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
151
                        ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
152
                }
153
                break;
154
        }
155
}
156
 
157
static int __kprobes swap_instruction(void *aref)
158
{
159
        struct ins_replace_args *args = aref;
160
        u32 *addr;
161
        u32 instr;
162
        int err = -EFAULT;
163
 
164
        /*
165
         * Text segment is read-only, hence we use stura to bypass dynamic
166
         * address translation to exchange the instruction. Since stura
167
         * always operates on four bytes, but we only want to exchange two
168
         * bytes do some calculations to get things right. In addition we
169
         * shall not cross any page boundaries (vmalloc area!) when writing
170
         * the new instruction.
171
         */
172
        addr = (u32 *)((unsigned long)args->ptr & -4UL);
173
        if ((unsigned long)args->ptr & 2)
174
                instr = ((*addr) & 0xffff0000) | args->new;
175
        else
176
                instr = ((*addr) & 0x0000ffff) | args->new << 16;
177
 
178
        asm volatile(
179
                "       lra     %1,0(%1)\n"
180
                "0:     stura   %2,%1\n"
181
                "1:     la      %0,0\n"
182
                "2:\n"
183
                EX_TABLE(0b,2b)
184
                : "+d" (err)
185
                : "a" (addr), "d" (instr)
186
                : "memory", "cc");
187
 
188
        return err;
189
}
190
 
191
void __kprobes arch_arm_kprobe(struct kprobe *p)
192
{
193
        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
194
        unsigned long status = kcb->kprobe_status;
195
        struct ins_replace_args args;
196
 
197
        args.ptr = p->addr;
198
        args.old = p->opcode;
199
        args.new = BREAKPOINT_INSTRUCTION;
200
 
201
        kcb->kprobe_status = KPROBE_SWAP_INST;
202
        stop_machine_run(swap_instruction, &args, NR_CPUS);
203
        kcb->kprobe_status = status;
204
}
205
 
206
void __kprobes arch_disarm_kprobe(struct kprobe *p)
207
{
208
        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
209
        unsigned long status = kcb->kprobe_status;
210
        struct ins_replace_args args;
211
 
212
        args.ptr = p->addr;
213
        args.old = BREAKPOINT_INSTRUCTION;
214
        args.new = p->opcode;
215
 
216
        kcb->kprobe_status = KPROBE_SWAP_INST;
217
        stop_machine_run(swap_instruction, &args, NR_CPUS);
218
        kcb->kprobe_status = status;
219
}
220
 
221
void __kprobes arch_remove_kprobe(struct kprobe *p)
222
{
223
        mutex_lock(&kprobe_mutex);
224
        free_insn_slot(p->ainsn.insn, 0);
225
        mutex_unlock(&kprobe_mutex);
226
}
227
 
228
static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
229
{
230
        per_cr_bits kprobe_per_regs[1];
231
 
232
        memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
233
        regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
234
 
235
        /* Set up the per control reg info, will pass to lctl */
236
        kprobe_per_regs[0].em_instruction_fetch = 1;
237
        kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
238
        kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
239
 
240
        /* Set the PER control regs, turns on single step for this address */
241
        __ctl_load(kprobe_per_regs, 9, 11);
242
        regs->psw.mask |= PSW_MASK_PER;
243
        regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
244
}
245
 
246
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
247
{
248
        kcb->prev_kprobe.kp = kprobe_running();
249
        kcb->prev_kprobe.status = kcb->kprobe_status;
250
        kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
251
        memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
252
                                        sizeof(kcb->kprobe_saved_ctl));
253
}
254
 
255
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
256
{
257
        __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
258
        kcb->kprobe_status = kcb->prev_kprobe.status;
259
        kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
260
        memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
261
                                        sizeof(kcb->kprobe_saved_ctl));
262
}
263
 
264
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
265
                                                struct kprobe_ctlblk *kcb)
266
{
267
        __get_cpu_var(current_kprobe) = p;
268
        /* Save the interrupt and per flags */
269
        kcb->kprobe_saved_imask = regs->psw.mask &
270
            (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
271
        /* Save the control regs that govern PER */
272
        __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
273
}
274
 
275
/* Called with kretprobe_lock held */
276
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
277
                                        struct pt_regs *regs)
278
{
279
        ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
280
 
281
        /* Replace the return addr with trampoline addr */
282
        regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
283
}
284
 
285
static int __kprobes kprobe_handler(struct pt_regs *regs)
286
{
287
        struct kprobe *p;
288
        int ret = 0;
289
        unsigned long *addr = (unsigned long *)
290
                ((regs->psw.addr & PSW_ADDR_INSN) - 2);
291
        struct kprobe_ctlblk *kcb;
292
 
293
        /*
294
         * We don't want to be preempted for the entire
295
         * duration of kprobe processing
296
         */
297
        preempt_disable();
298
        kcb = get_kprobe_ctlblk();
299
 
300
        /* Check we're not actually recursing */
301
        if (kprobe_running()) {
302
                p = get_kprobe(addr);
303
                if (p) {
304
                        if (kcb->kprobe_status == KPROBE_HIT_SS &&
305
                            *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
306
                                regs->psw.mask &= ~PSW_MASK_PER;
307
                                regs->psw.mask |= kcb->kprobe_saved_imask;
308
                                goto no_kprobe;
309
                        }
310
                        /* We have reentered the kprobe_handler(), since
311
                         * another probe was hit while within the handler.
312
                         * We here save the original kprobes variables and
313
                         * just single step on the instruction of the new probe
314
                         * without calling any user handlers.
315
                         */
316
                        save_previous_kprobe(kcb);
317
                        set_current_kprobe(p, regs, kcb);
318
                        kprobes_inc_nmissed_count(p);
319
                        prepare_singlestep(p, regs);
320
                        kcb->kprobe_status = KPROBE_REENTER;
321
                        return 1;
322
                } else {
323
                        p = __get_cpu_var(current_kprobe);
324
                        if (p->break_handler && p->break_handler(p, regs)) {
325
                                goto ss_probe;
326
                        }
327
                }
328
                goto no_kprobe;
329
        }
330
 
331
        p = get_kprobe(addr);
332
        if (!p)
333
                /*
334
                 * No kprobe at this address. The fault has not been
335
                 * caused by a kprobe breakpoint. The race of breakpoint
336
                 * vs. kprobe remove does not exist because on s390 we
337
                 * use stop_machine_run to arm/disarm the breakpoints.
338
                 */
339
                goto no_kprobe;
340
 
341
        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
342
        set_current_kprobe(p, regs, kcb);
343
        if (p->pre_handler && p->pre_handler(p, regs))
344
                /* handler has already set things up, so skip ss setup */
345
                return 1;
346
 
347
ss_probe:
348
        prepare_singlestep(p, regs);
349
        kcb->kprobe_status = KPROBE_HIT_SS;
350
        return 1;
351
 
352
no_kprobe:
353
        preempt_enable_no_resched();
354
        return ret;
355
}
356
 
357
/*
358
 * Function return probe trampoline:
359
 *      - init_kprobes() establishes a probepoint here
360
 *      - When the probed function returns, this probe
361
 *              causes the handlers to fire
362
 */
363
void kretprobe_trampoline_holder(void)
364
{
365
        asm volatile(".global kretprobe_trampoline\n"
366
                     "kretprobe_trampoline: bcr 0,0\n");
367
}
368
 
369
/*
370
 * Called when the probe at kretprobe trampoline is hit
371
 */
372
static int __kprobes trampoline_probe_handler(struct kprobe *p,
373
                                              struct pt_regs *regs)
374
{
375
        struct kretprobe_instance *ri = NULL;
376
        struct hlist_head *head, empty_rp;
377
        struct hlist_node *node, *tmp;
378
        unsigned long flags, orig_ret_address = 0;
379
        unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
380
 
381
        INIT_HLIST_HEAD(&empty_rp);
382
        spin_lock_irqsave(&kretprobe_lock, flags);
383
        head = kretprobe_inst_table_head(current);
384
 
385
        /*
386
         * It is possible to have multiple instances associated with a given
387
         * task either because an multiple functions in the call path
388
         * have a return probe installed on them, and/or more then one return
389
         * return probe was registered for a target function.
390
         *
391
         * We can handle this because:
392
         *     - instances are always inserted at the head of the list
393
         *     - when multiple return probes are registered for the same
394
         *       function, the first instance's ret_addr will point to the
395
         *       real return address, and all the rest will point to
396
         *       kretprobe_trampoline
397
         */
398
        hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
399
                if (ri->task != current)
400
                        /* another task is sharing our hash bucket */
401
                        continue;
402
 
403
                if (ri->rp && ri->rp->handler)
404
                        ri->rp->handler(ri, regs);
405
 
406
                orig_ret_address = (unsigned long)ri->ret_addr;
407
                recycle_rp_inst(ri, &empty_rp);
408
 
409
                if (orig_ret_address != trampoline_address) {
410
                        /*
411
                         * This is the real return address. Any other
412
                         * instances associated with this task are for
413
                         * other calls deeper on the call stack
414
                         */
415
                        break;
416
                }
417
        }
418
        kretprobe_assert(ri, orig_ret_address, trampoline_address);
419
        regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
420
 
421
        reset_current_kprobe();
422
        spin_unlock_irqrestore(&kretprobe_lock, flags);
423
        preempt_enable_no_resched();
424
 
425
        hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
426
                hlist_del(&ri->hlist);
427
                kfree(ri);
428
        }
429
        /*
430
         * By returning a non-zero value, we are telling
431
         * kprobe_handler() that we don't want the post_handler
432
         * to run (and have re-enabled preemption)
433
         */
434
        return 1;
435
}
436
 
437
/*
438
 * Called after single-stepping.  p->addr is the address of the
439
 * instruction whose first byte has been replaced by the "breakpoint"
440
 * instruction.  To avoid the SMP problems that can occur when we
441
 * temporarily put back the original opcode to single-step, we
442
 * single-stepped a copy of the instruction.  The address of this
443
 * copy is p->ainsn.insn.
444
 */
445
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
446
{
447
        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
448
 
449
        regs->psw.addr &= PSW_ADDR_INSN;
450
 
451
        if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
452
                regs->psw.addr = (unsigned long)p->addr +
453
                                ((unsigned long)regs->psw.addr -
454
                                 (unsigned long)p->ainsn.insn);
455
 
456
        if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
457
                if ((unsigned long)regs->psw.addr -
458
                    (unsigned long)p->ainsn.insn == p->ainsn.ilen)
459
                        regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
460
 
461
        if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
462
                regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
463
                                                (regs->gprs[p->ainsn.reg] -
464
                                                (unsigned long)p->ainsn.insn))
465
                                                | PSW_ADDR_AMODE;
466
 
467
        regs->psw.addr |= PSW_ADDR_AMODE;
468
        /* turn off PER mode */
469
        regs->psw.mask &= ~PSW_MASK_PER;
470
        /* Restore the original per control regs */
471
        __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
472
        regs->psw.mask |= kcb->kprobe_saved_imask;
473
}
474
 
475
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
476
{
477
        struct kprobe *cur = kprobe_running();
478
        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
479
 
480
        if (!cur)
481
                return 0;
482
 
483
        if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
484
                kcb->kprobe_status = KPROBE_HIT_SSDONE;
485
                cur->post_handler(cur, regs, 0);
486
        }
487
 
488
        resume_execution(cur, regs);
489
 
490
        /*Restore back the original saved kprobes variables and continue. */
491
        if (kcb->kprobe_status == KPROBE_REENTER) {
492
                restore_previous_kprobe(kcb);
493
                goto out;
494
        }
495
        reset_current_kprobe();
496
out:
497
        preempt_enable_no_resched();
498
 
499
        /*
500
         * if somebody else is singlestepping across a probe point, psw mask
501
         * will have PER set, in which case, continue the remaining processing
502
         * of do_single_step, as if this is not a probe hit.
503
         */
504
        if (regs->psw.mask & PSW_MASK_PER) {
505
                return 0;
506
        }
507
 
508
        return 1;
509
}
510
 
511
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
512
{
513
        struct kprobe *cur = kprobe_running();
514
        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
515
        const struct exception_table_entry *entry;
516
 
517
        switch(kcb->kprobe_status) {
518
        case KPROBE_SWAP_INST:
519
                /* We are here because the instruction replacement failed */
520
                return 0;
521
        case KPROBE_HIT_SS:
522
        case KPROBE_REENTER:
523
                /*
524
                 * We are here because the instruction being single
525
                 * stepped caused a page fault. We reset the current
526
                 * kprobe and the nip points back to the probe address
527
                 * and allow the page fault handler to continue as a
528
                 * normal page fault.
529
                 */
530
                regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
531
                regs->psw.mask &= ~PSW_MASK_PER;
532
                regs->psw.mask |= kcb->kprobe_saved_imask;
533
                if (kcb->kprobe_status == KPROBE_REENTER)
534
                        restore_previous_kprobe(kcb);
535
                else
536
                        reset_current_kprobe();
537
                preempt_enable_no_resched();
538
                break;
539
        case KPROBE_HIT_ACTIVE:
540
        case KPROBE_HIT_SSDONE:
541
                /*
542
                 * We increment the nmissed count for accounting,
543
                 * we can also use npre/npostfault count for accouting
544
                 * these specific fault cases.
545
                 */
546
                kprobes_inc_nmissed_count(cur);
547
 
548
                /*
549
                 * We come here because instructions in the pre/post
550
                 * handler caused the page_fault, this could happen
551
                 * if handler tries to access user space by
552
                 * copy_from_user(), get_user() etc. Let the
553
                 * user-specified handler try to fix it first.
554
                 */
555
                if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
556
                        return 1;
557
 
558
                /*
559
                 * In case the user-specified fault handler returned
560
                 * zero, try to fix up.
561
                 */
562
                entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
563
                if (entry) {
564
                        regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
565
                        return 1;
566
                }
567
 
568
                /*
569
                 * fixup_exception() could not handle it,
570
                 * Let do_page_fault() fix it.
571
                 */
572
                break;
573
        default:
574
                break;
575
        }
576
        return 0;
577
}
578
 
579
/*
580
 * Wrapper routine to for handling exceptions.
581
 */
582
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
583
                                       unsigned long val, void *data)
584
{
585
        struct die_args *args = (struct die_args *)data;
586
        int ret = NOTIFY_DONE;
587
 
588
        switch (val) {
589
        case DIE_BPT:
590
                if (kprobe_handler(args->regs))
591
                        ret = NOTIFY_STOP;
592
                break;
593
        case DIE_SSTEP:
594
                if (post_kprobe_handler(args->regs))
595
                        ret = NOTIFY_STOP;
596
                break;
597
        case DIE_TRAP:
598
                /* kprobe_running() needs smp_processor_id() */
599
                preempt_disable();
600
                if (kprobe_running() &&
601
                    kprobe_fault_handler(args->regs, args->trapnr))
602
                        ret = NOTIFY_STOP;
603
                preempt_enable();
604
                break;
605
        default:
606
                break;
607
        }
608
        return ret;
609
}
610
 
611
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
612
{
613
        struct jprobe *jp = container_of(p, struct jprobe, kp);
614
        unsigned long addr;
615
        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
616
 
617
        memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
618
 
619
        /* setup return addr to the jprobe handler routine */
620
        regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
621
 
622
        /* r14 is the function return address */
623
        kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
624
        /* r15 is the stack pointer */
625
        kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
626
        addr = (unsigned long)kcb->jprobe_saved_r15;
627
 
628
        memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
629
               MIN_STACK_SIZE(addr));
630
        return 1;
631
}
632
 
633
void __kprobes jprobe_return(void)
634
{
635
        asm volatile(".word 0x0002");
636
}
637
 
638
void __kprobes jprobe_return_end(void)
639
{
640
        asm volatile("bcr 0,0");
641
}
642
 
643
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
644
{
645
        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
646
        unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
647
 
648
        /* Put the regs back */
649
        memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
650
        /* put the stack back */
651
        memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
652
               MIN_STACK_SIZE(stack_addr));
653
        preempt_enable_no_resched();
654
        return 1;
655
}
656
 
657
static struct kprobe trampoline_p = {
658
        .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
659
        .pre_handler = trampoline_probe_handler
660
};
661
 
662
int __init arch_init_kprobes(void)
663
{
664
        return register_kprobe(&trampoline_p);
665
}
666
 
667
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
668
{
669
        if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
670
                return 1;
671
        return 0;
672
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.