OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [arch/] [s390/] [mm/] [vmem.c] - Blame information for rev 67

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 63 marcus.erl
/*
2
 *  arch/s390/mm/vmem.c
3
 *
4
 *    Copyright IBM Corp. 2006
5
 *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6
 */
7
 
8
#include <linux/bootmem.h>
9
#include <linux/pfn.h>
10
#include <linux/mm.h>
11
#include <linux/module.h>
12
#include <linux/list.h>
13
#include <asm/pgalloc.h>
14
#include <asm/pgtable.h>
15
#include <asm/setup.h>
16
#include <asm/tlbflush.h>
17
 
18
unsigned long vmalloc_end;
19
EXPORT_SYMBOL(vmalloc_end);
20
 
21
static struct page *vmem_map;
22
static DEFINE_MUTEX(vmem_mutex);
23
 
24
struct memory_segment {
25
        struct list_head list;
26
        unsigned long start;
27
        unsigned long size;
28
};
29
 
30
static LIST_HEAD(mem_segs);
31
 
32
void __meminit memmap_init(unsigned long size, int nid, unsigned long zone,
33
                           unsigned long start_pfn)
34
{
35
        struct page *start, *end;
36
        struct page *map_start, *map_end;
37
        int i;
38
 
39
        start = pfn_to_page(start_pfn);
40
        end = start + size;
41
 
42
        for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
43
                unsigned long cstart, cend;
44
 
45
                cstart = PFN_DOWN(memory_chunk[i].addr);
46
                cend = cstart + PFN_DOWN(memory_chunk[i].size);
47
 
48
                map_start = mem_map + cstart;
49
                map_end = mem_map + cend;
50
 
51
                if (map_start < start)
52
                        map_start = start;
53
                if (map_end > end)
54
                        map_end = end;
55
 
56
                map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
57
                        / sizeof(struct page);
58
                map_end += ((PFN_ALIGN((unsigned long) map_end)
59
                             - (unsigned long) map_end)
60
                            / sizeof(struct page));
61
 
62
                if (map_start < map_end)
63
                        memmap_init_zone((unsigned long)(map_end - map_start),
64
                                         nid, zone, page_to_pfn(map_start),
65
                                         MEMMAP_EARLY);
66
        }
67
}
68
 
69
static void __init_refok *vmem_alloc_pages(unsigned int order)
70
{
71
        if (slab_is_available())
72
                return (void *)__get_free_pages(GFP_KERNEL, order);
73
        return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
74
}
75
 
76
#define vmem_pud_alloc()        ({ BUG(); ((pud_t *) NULL); })
77
 
78
static inline pmd_t *vmem_pmd_alloc(void)
79
{
80
        pmd_t *pmd = NULL;
81
 
82
#ifdef CONFIG_64BIT
83
        pmd = vmem_alloc_pages(2);
84
        if (!pmd)
85
                return NULL;
86
        clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE*4);
87
#endif
88
        return pmd;
89
}
90
 
91
static inline pte_t *vmem_pte_alloc(void)
92
{
93
        pte_t *pte = vmem_alloc_pages(0);
94
 
95
        if (!pte)
96
                return NULL;
97
        clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY, PAGE_SIZE);
98
        return pte;
99
}
100
 
101
/*
102
 * Add a physical memory range to the 1:1 mapping.
103
 */
104
static int vmem_add_range(unsigned long start, unsigned long size)
105
{
106
        unsigned long address;
107
        pgd_t *pg_dir;
108
        pud_t *pu_dir;
109
        pmd_t *pm_dir;
110
        pte_t *pt_dir;
111
        pte_t  pte;
112
        int ret = -ENOMEM;
113
 
114
        for (address = start; address < start + size; address += PAGE_SIZE) {
115
                pg_dir = pgd_offset_k(address);
116
                if (pgd_none(*pg_dir)) {
117
                        pu_dir = vmem_pud_alloc();
118
                        if (!pu_dir)
119
                                goto out;
120
                        pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
121
                }
122
 
123
                pu_dir = pud_offset(pg_dir, address);
124
                if (pud_none(*pu_dir)) {
125
                        pm_dir = vmem_pmd_alloc();
126
                        if (!pm_dir)
127
                                goto out;
128
                        pud_populate_kernel(&init_mm, pu_dir, pm_dir);
129
                }
130
 
131
                pm_dir = pmd_offset(pu_dir, address);
132
                if (pmd_none(*pm_dir)) {
133
                        pt_dir = vmem_pte_alloc();
134
                        if (!pt_dir)
135
                                goto out;
136
                        pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
137
                }
138
 
139
                pt_dir = pte_offset_kernel(pm_dir, address);
140
                pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
141
                *pt_dir = pte;
142
        }
143
        ret = 0;
144
out:
145
        flush_tlb_kernel_range(start, start + size);
146
        return ret;
147
}
148
 
149
/*
150
 * Remove a physical memory range from the 1:1 mapping.
151
 * Currently only invalidates page table entries.
152
 */
153
static void vmem_remove_range(unsigned long start, unsigned long size)
154
{
155
        unsigned long address;
156
        pgd_t *pg_dir;
157
        pud_t *pu_dir;
158
        pmd_t *pm_dir;
159
        pte_t *pt_dir;
160
        pte_t  pte;
161
 
162
        pte_val(pte) = _PAGE_TYPE_EMPTY;
163
        for (address = start; address < start + size; address += PAGE_SIZE) {
164
                pg_dir = pgd_offset_k(address);
165
                pu_dir = pud_offset(pg_dir, address);
166
                if (pud_none(*pu_dir))
167
                        continue;
168
                pm_dir = pmd_offset(pu_dir, address);
169
                if (pmd_none(*pm_dir))
170
                        continue;
171
                pt_dir = pte_offset_kernel(pm_dir, address);
172
                *pt_dir = pte;
173
        }
174
        flush_tlb_kernel_range(start, start + size);
175
}
176
 
177
/*
178
 * Add a backed mem_map array to the virtual mem_map array.
179
 */
180
static int vmem_add_mem_map(unsigned long start, unsigned long size)
181
{
182
        unsigned long address, start_addr, end_addr;
183
        struct page *map_start, *map_end;
184
        pgd_t *pg_dir;
185
        pud_t *pu_dir;
186
        pmd_t *pm_dir;
187
        pte_t *pt_dir;
188
        pte_t  pte;
189
        int ret = -ENOMEM;
190
 
191
        map_start = vmem_map + PFN_DOWN(start);
192
        map_end = vmem_map + PFN_DOWN(start + size);
193
 
194
        start_addr = (unsigned long) map_start & PAGE_MASK;
195
        end_addr = PFN_ALIGN((unsigned long) map_end);
196
 
197
        for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
198
                pg_dir = pgd_offset_k(address);
199
                if (pgd_none(*pg_dir)) {
200
                        pu_dir = vmem_pud_alloc();
201
                        if (!pu_dir)
202
                                goto out;
203
                        pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
204
                }
205
 
206
                pu_dir = pud_offset(pg_dir, address);
207
                if (pud_none(*pu_dir)) {
208
                        pm_dir = vmem_pmd_alloc();
209
                        if (!pm_dir)
210
                                goto out;
211
                        pud_populate_kernel(&init_mm, pu_dir, pm_dir);
212
                }
213
 
214
                pm_dir = pmd_offset(pu_dir, address);
215
                if (pmd_none(*pm_dir)) {
216
                        pt_dir = vmem_pte_alloc();
217
                        if (!pt_dir)
218
                                goto out;
219
                        pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
220
                }
221
 
222
                pt_dir = pte_offset_kernel(pm_dir, address);
223
                if (pte_none(*pt_dir)) {
224
                        unsigned long new_page;
225
 
226
                        new_page =__pa(vmem_alloc_pages(0));
227
                        if (!new_page)
228
                                goto out;
229
                        pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
230
                        *pt_dir = pte;
231
                }
232
        }
233
        ret = 0;
234
out:
235
        flush_tlb_kernel_range(start_addr, end_addr);
236
        return ret;
237
}
238
 
239
static int vmem_add_mem(unsigned long start, unsigned long size)
240
{
241
        int ret;
242
 
243
        ret = vmem_add_range(start, size);
244
        if (ret)
245
                return ret;
246
        return vmem_add_mem_map(start, size);
247
}
248
 
249
/*
250
 * Add memory segment to the segment list if it doesn't overlap with
251
 * an already present segment.
252
 */
253
static int insert_memory_segment(struct memory_segment *seg)
254
{
255
        struct memory_segment *tmp;
256
 
257
        if (PFN_DOWN(seg->start + seg->size) > max_pfn ||
258
            seg->start + seg->size < seg->start)
259
                return -ERANGE;
260
 
261
        list_for_each_entry(tmp, &mem_segs, list) {
262
                if (seg->start >= tmp->start + tmp->size)
263
                        continue;
264
                if (seg->start + seg->size <= tmp->start)
265
                        continue;
266
                return -ENOSPC;
267
        }
268
        list_add(&seg->list, &mem_segs);
269
        return 0;
270
}
271
 
272
/*
273
 * Remove memory segment from the segment list.
274
 */
275
static void remove_memory_segment(struct memory_segment *seg)
276
{
277
        list_del(&seg->list);
278
}
279
 
280
static void __remove_shared_memory(struct memory_segment *seg)
281
{
282
        remove_memory_segment(seg);
283
        vmem_remove_range(seg->start, seg->size);
284
}
285
 
286
int remove_shared_memory(unsigned long start, unsigned long size)
287
{
288
        struct memory_segment *seg;
289
        int ret;
290
 
291
        mutex_lock(&vmem_mutex);
292
 
293
        ret = -ENOENT;
294
        list_for_each_entry(seg, &mem_segs, list) {
295
                if (seg->start == start && seg->size == size)
296
                        break;
297
        }
298
 
299
        if (seg->start != start || seg->size != size)
300
                goto out;
301
 
302
        ret = 0;
303
        __remove_shared_memory(seg);
304
        kfree(seg);
305
out:
306
        mutex_unlock(&vmem_mutex);
307
        return ret;
308
}
309
 
310
int add_shared_memory(unsigned long start, unsigned long size)
311
{
312
        struct memory_segment *seg;
313
        struct page *page;
314
        unsigned long pfn, num_pfn, end_pfn;
315
        int ret;
316
 
317
        mutex_lock(&vmem_mutex);
318
        ret = -ENOMEM;
319
        seg = kzalloc(sizeof(*seg), GFP_KERNEL);
320
        if (!seg)
321
                goto out;
322
        seg->start = start;
323
        seg->size = size;
324
 
325
        ret = insert_memory_segment(seg);
326
        if (ret)
327
                goto out_free;
328
 
329
        ret = vmem_add_mem(start, size);
330
        if (ret)
331
                goto out_remove;
332
 
333
        pfn = PFN_DOWN(start);
334
        num_pfn = PFN_DOWN(size);
335
        end_pfn = pfn + num_pfn;
336
 
337
        page = pfn_to_page(pfn);
338
        memset(page, 0, num_pfn * sizeof(struct page));
339
 
340
        for (; pfn < end_pfn; pfn++) {
341
                page = pfn_to_page(pfn);
342
                init_page_count(page);
343
                reset_page_mapcount(page);
344
                SetPageReserved(page);
345
                INIT_LIST_HEAD(&page->lru);
346
        }
347
        goto out;
348
 
349
out_remove:
350
        __remove_shared_memory(seg);
351
out_free:
352
        kfree(seg);
353
out:
354
        mutex_unlock(&vmem_mutex);
355
        return ret;
356
}
357
 
358
/*
359
 * map whole physical memory to virtual memory (identity mapping)
360
 */
361
void __init vmem_map_init(void)
362
{
363
        unsigned long map_size;
364
        int i;
365
 
366
        map_size = ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * sizeof(struct page);
367
        vmalloc_end = PFN_ALIGN(VMALLOC_END_INIT) - PFN_ALIGN(map_size);
368
        vmem_map = (struct page *) vmalloc_end;
369
        NODE_DATA(0)->node_mem_map = vmem_map;
370
 
371
        for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
372
                vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
373
}
374
 
375
/*
376
 * Convert memory chunk array to a memory segment list so there is a single
377
 * list that contains both r/w memory and shared memory segments.
378
 */
379
static int __init vmem_convert_memory_chunk(void)
380
{
381
        struct memory_segment *seg;
382
        int i;
383
 
384
        mutex_lock(&vmem_mutex);
385
        for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
386
                if (!memory_chunk[i].size)
387
                        continue;
388
                seg = kzalloc(sizeof(*seg), GFP_KERNEL);
389
                if (!seg)
390
                        panic("Out of memory...\n");
391
                seg->start = memory_chunk[i].addr;
392
                seg->size = memory_chunk[i].size;
393
                insert_memory_segment(seg);
394
        }
395
        mutex_unlock(&vmem_mutex);
396
        return 0;
397
}
398
 
399
core_initcall(vmem_convert_memory_chunk);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.