OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [block/] [as-iosched.c] - Blame information for rev 62

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  Anticipatory & deadline i/o scheduler.
3
 *
4
 *  Copyright (C) 2002 Jens Axboe <axboe@kernel.dk>
5
 *                     Nick Piggin <nickpiggin@yahoo.com.au>
6
 *
7
 */
8
#include <linux/kernel.h>
9
#include <linux/fs.h>
10
#include <linux/blkdev.h>
11
#include <linux/elevator.h>
12
#include <linux/bio.h>
13
#include <linux/module.h>
14
#include <linux/slab.h>
15
#include <linux/init.h>
16
#include <linux/compiler.h>
17
#include <linux/rbtree.h>
18
#include <linux/interrupt.h>
19
 
20
#define REQ_SYNC        1
21
#define REQ_ASYNC       0
22
 
23
/*
24
 * See Documentation/block/as-iosched.txt
25
 */
26
 
27
/*
28
 * max time before a read is submitted.
29
 */
30
#define default_read_expire (HZ / 8)
31
 
32
/*
33
 * ditto for writes, these limits are not hard, even
34
 * if the disk is capable of satisfying them.
35
 */
36
#define default_write_expire (HZ / 4)
37
 
38
/*
39
 * read_batch_expire describes how long we will allow a stream of reads to
40
 * persist before looking to see whether it is time to switch over to writes.
41
 */
42
#define default_read_batch_expire (HZ / 2)
43
 
44
/*
45
 * write_batch_expire describes how long we want a stream of writes to run for.
46
 * This is not a hard limit, but a target we set for the auto-tuning thingy.
47
 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
48
 * a short amount of time...
49
 */
50
#define default_write_batch_expire (HZ / 8)
51
 
52
/*
53
 * max time we may wait to anticipate a read (default around 6ms)
54
 */
55
#define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
56
 
57
/*
58
 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
59
 * however huge values tend to interfere and not decay fast enough. A program
60
 * might be in a non-io phase of operation. Waiting on user input for example,
61
 * or doing a lengthy computation. A small penalty can be justified there, and
62
 * will still catch out those processes that constantly have large thinktimes.
63
 */
64
#define MAX_THINKTIME (HZ/50UL)
65
 
66
/* Bits in as_io_context.state */
67
enum as_io_states {
68
        AS_TASK_RUNNING=0,       /* Process has not exited */
69
        AS_TASK_IOSTARTED,      /* Process has started some IO */
70
        AS_TASK_IORUNNING,      /* Process has completed some IO */
71
};
72
 
73
enum anticipation_status {
74
        ANTIC_OFF=0,             /* Not anticipating (normal operation)  */
75
        ANTIC_WAIT_REQ,         /* The last read has not yet completed  */
76
        ANTIC_WAIT_NEXT,        /* Currently anticipating a request vs
77
                                   last read (which has completed) */
78
        ANTIC_FINISHED,         /* Anticipating but have found a candidate
79
                                 * or timed out */
80
};
81
 
82
struct as_data {
83
        /*
84
         * run time data
85
         */
86
 
87
        struct request_queue *q;        /* the "owner" queue */
88
 
89
        /*
90
         * requests (as_rq s) are present on both sort_list and fifo_list
91
         */
92
        struct rb_root sort_list[2];
93
        struct list_head fifo_list[2];
94
 
95
        struct request *next_rq[2];     /* next in sort order */
96
        sector_t last_sector[2];        /* last REQ_SYNC & REQ_ASYNC sectors */
97
 
98
        unsigned long exit_prob;        /* probability a task will exit while
99
                                           being waited on */
100
        unsigned long exit_no_coop;     /* probablility an exited task will
101
                                           not be part of a later cooperating
102
                                           request */
103
        unsigned long new_ttime_total;  /* mean thinktime on new proc */
104
        unsigned long new_ttime_mean;
105
        u64 new_seek_total;             /* mean seek on new proc */
106
        sector_t new_seek_mean;
107
 
108
        unsigned long current_batch_expires;
109
        unsigned long last_check_fifo[2];
110
        int changed_batch;              /* 1: waiting for old batch to end */
111
        int new_batch;                  /* 1: waiting on first read complete */
112
        int batch_data_dir;             /* current batch REQ_SYNC / REQ_ASYNC */
113
        int write_batch_count;          /* max # of reqs in a write batch */
114
        int current_write_count;        /* how many requests left this batch */
115
        int write_batch_idled;          /* has the write batch gone idle? */
116
 
117
        enum anticipation_status antic_status;
118
        unsigned long antic_start;      /* jiffies: when it started */
119
        struct timer_list antic_timer;  /* anticipatory scheduling timer */
120
        struct work_struct antic_work;  /* Deferred unplugging */
121
        struct io_context *io_context;  /* Identify the expected process */
122
        int ioc_finished; /* IO associated with io_context is finished */
123
        int nr_dispatched;
124
 
125
        /*
126
         * settings that change how the i/o scheduler behaves
127
         */
128
        unsigned long fifo_expire[2];
129
        unsigned long batch_expire[2];
130
        unsigned long antic_expire;
131
};
132
 
133
/*
134
 * per-request data.
135
 */
136
enum arq_state {
137
        AS_RQ_NEW=0,             /* New - not referenced and not on any lists */
138
        AS_RQ_QUEUED,           /* In the request queue. It belongs to the
139
                                   scheduler */
140
        AS_RQ_DISPATCHED,       /* On the dispatch list. It belongs to the
141
                                   driver now */
142
        AS_RQ_PRESCHED,         /* Debug poisoning for requests being used */
143
        AS_RQ_REMOVED,
144
        AS_RQ_MERGED,
145
        AS_RQ_POSTSCHED,        /* when they shouldn't be */
146
};
147
 
148
#define RQ_IOC(rq)      ((struct io_context *) (rq)->elevator_private)
149
#define RQ_STATE(rq)    ((enum arq_state)(rq)->elevator_private2)
150
#define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state)
151
 
152
static DEFINE_PER_CPU(unsigned long, ioc_count);
153
static struct completion *ioc_gone;
154
 
155
static void as_move_to_dispatch(struct as_data *ad, struct request *rq);
156
static void as_antic_stop(struct as_data *ad);
157
 
158
/*
159
 * IO Context helper functions
160
 */
161
 
162
/* Called to deallocate the as_io_context */
163
static void free_as_io_context(struct as_io_context *aic)
164
{
165
        kfree(aic);
166
        elv_ioc_count_dec(ioc_count);
167
        if (ioc_gone && !elv_ioc_count_read(ioc_count))
168
                complete(ioc_gone);
169
}
170
 
171
static void as_trim(struct io_context *ioc)
172
{
173
        if (ioc->aic)
174
                free_as_io_context(ioc->aic);
175
        ioc->aic = NULL;
176
}
177
 
178
/* Called when the task exits */
179
static void exit_as_io_context(struct as_io_context *aic)
180
{
181
        WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
182
        clear_bit(AS_TASK_RUNNING, &aic->state);
183
}
184
 
185
static struct as_io_context *alloc_as_io_context(void)
186
{
187
        struct as_io_context *ret;
188
 
189
        ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
190
        if (ret) {
191
                ret->dtor = free_as_io_context;
192
                ret->exit = exit_as_io_context;
193
                ret->state = 1 << AS_TASK_RUNNING;
194
                atomic_set(&ret->nr_queued, 0);
195
                atomic_set(&ret->nr_dispatched, 0);
196
                spin_lock_init(&ret->lock);
197
                ret->ttime_total = 0;
198
                ret->ttime_samples = 0;
199
                ret->ttime_mean = 0;
200
                ret->seek_total = 0;
201
                ret->seek_samples = 0;
202
                ret->seek_mean = 0;
203
                elv_ioc_count_inc(ioc_count);
204
        }
205
 
206
        return ret;
207
}
208
 
209
/*
210
 * If the current task has no AS IO context then create one and initialise it.
211
 * Then take a ref on the task's io context and return it.
212
 */
213
static struct io_context *as_get_io_context(int node)
214
{
215
        struct io_context *ioc = get_io_context(GFP_ATOMIC, node);
216
        if (ioc && !ioc->aic) {
217
                ioc->aic = alloc_as_io_context();
218
                if (!ioc->aic) {
219
                        put_io_context(ioc);
220
                        ioc = NULL;
221
                }
222
        }
223
        return ioc;
224
}
225
 
226
static void as_put_io_context(struct request *rq)
227
{
228
        struct as_io_context *aic;
229
 
230
        if (unlikely(!RQ_IOC(rq)))
231
                return;
232
 
233
        aic = RQ_IOC(rq)->aic;
234
 
235
        if (rq_is_sync(rq) && aic) {
236
                spin_lock(&aic->lock);
237
                set_bit(AS_TASK_IORUNNING, &aic->state);
238
                aic->last_end_request = jiffies;
239
                spin_unlock(&aic->lock);
240
        }
241
 
242
        put_io_context(RQ_IOC(rq));
243
}
244
 
245
/*
246
 * rb tree support functions
247
 */
248
#define RQ_RB_ROOT(ad, rq)      (&(ad)->sort_list[rq_is_sync((rq))])
249
 
250
static void as_add_rq_rb(struct as_data *ad, struct request *rq)
251
{
252
        struct request *alias;
253
 
254
        while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) {
255
                as_move_to_dispatch(ad, alias);
256
                as_antic_stop(ad);
257
        }
258
}
259
 
260
static inline void as_del_rq_rb(struct as_data *ad, struct request *rq)
261
{
262
        elv_rb_del(RQ_RB_ROOT(ad, rq), rq);
263
}
264
 
265
/*
266
 * IO Scheduler proper
267
 */
268
 
269
#define MAXBACK (1024 * 1024)   /*
270
                                 * Maximum distance the disk will go backward
271
                                 * for a request.
272
                                 */
273
 
274
#define BACK_PENALTY    2
275
 
276
/*
277
 * as_choose_req selects the preferred one of two requests of the same data_dir
278
 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
279
 */
280
static struct request *
281
as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2)
282
{
283
        int data_dir;
284
        sector_t last, s1, s2, d1, d2;
285
        int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
286
        const sector_t maxback = MAXBACK;
287
 
288
        if (rq1 == NULL || rq1 == rq2)
289
                return rq2;
290
        if (rq2 == NULL)
291
                return rq1;
292
 
293
        data_dir = rq_is_sync(rq1);
294
 
295
        last = ad->last_sector[data_dir];
296
        s1 = rq1->sector;
297
        s2 = rq2->sector;
298
 
299
        BUG_ON(data_dir != rq_is_sync(rq2));
300
 
301
        /*
302
         * Strict one way elevator _except_ in the case where we allow
303
         * short backward seeks which are biased as twice the cost of a
304
         * similar forward seek.
305
         */
306
        if (s1 >= last)
307
                d1 = s1 - last;
308
        else if (s1+maxback >= last)
309
                d1 = (last - s1)*BACK_PENALTY;
310
        else {
311
                r1_wrap = 1;
312
                d1 = 0; /* shut up, gcc */
313
        }
314
 
315
        if (s2 >= last)
316
                d2 = s2 - last;
317
        else if (s2+maxback >= last)
318
                d2 = (last - s2)*BACK_PENALTY;
319
        else {
320
                r2_wrap = 1;
321
                d2 = 0;
322
        }
323
 
324
        /* Found required data */
325
        if (!r1_wrap && r2_wrap)
326
                return rq1;
327
        else if (!r2_wrap && r1_wrap)
328
                return rq2;
329
        else if (r1_wrap && r2_wrap) {
330
                /* both behind the head */
331
                if (s1 <= s2)
332
                        return rq1;
333
                else
334
                        return rq2;
335
        }
336
 
337
        /* Both requests in front of the head */
338
        if (d1 < d2)
339
                return rq1;
340
        else if (d2 < d1)
341
                return rq2;
342
        else {
343
                if (s1 >= s2)
344
                        return rq1;
345
                else
346
                        return rq2;
347
        }
348
}
349
 
350
/*
351
 * as_find_next_rq finds the next request after @prev in elevator order.
352
 * this with as_choose_req form the basis for how the scheduler chooses
353
 * what request to process next. Anticipation works on top of this.
354
 */
355
static struct request *
356
as_find_next_rq(struct as_data *ad, struct request *last)
357
{
358
        struct rb_node *rbnext = rb_next(&last->rb_node);
359
        struct rb_node *rbprev = rb_prev(&last->rb_node);
360
        struct request *next = NULL, *prev = NULL;
361
 
362
        BUG_ON(RB_EMPTY_NODE(&last->rb_node));
363
 
364
        if (rbprev)
365
                prev = rb_entry_rq(rbprev);
366
 
367
        if (rbnext)
368
                next = rb_entry_rq(rbnext);
369
        else {
370
                const int data_dir = rq_is_sync(last);
371
 
372
                rbnext = rb_first(&ad->sort_list[data_dir]);
373
                if (rbnext && rbnext != &last->rb_node)
374
                        next = rb_entry_rq(rbnext);
375
        }
376
 
377
        return as_choose_req(ad, next, prev);
378
}
379
 
380
/*
381
 * anticipatory scheduling functions follow
382
 */
383
 
384
/*
385
 * as_antic_expired tells us when we have anticipated too long.
386
 * The funny "absolute difference" math on the elapsed time is to handle
387
 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
388
 */
389
static int as_antic_expired(struct as_data *ad)
390
{
391
        long delta_jif;
392
 
393
        delta_jif = jiffies - ad->antic_start;
394
        if (unlikely(delta_jif < 0))
395
                delta_jif = -delta_jif;
396
        if (delta_jif < ad->antic_expire)
397
                return 0;
398
 
399
        return 1;
400
}
401
 
402
/*
403
 * as_antic_waitnext starts anticipating that a nice request will soon be
404
 * submitted. See also as_antic_waitreq
405
 */
406
static void as_antic_waitnext(struct as_data *ad)
407
{
408
        unsigned long timeout;
409
 
410
        BUG_ON(ad->antic_status != ANTIC_OFF
411
                        && ad->antic_status != ANTIC_WAIT_REQ);
412
 
413
        timeout = ad->antic_start + ad->antic_expire;
414
 
415
        mod_timer(&ad->antic_timer, timeout);
416
 
417
        ad->antic_status = ANTIC_WAIT_NEXT;
418
}
419
 
420
/*
421
 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
422
 * until the request that we're anticipating on has finished. This means we
423
 * are timing from when the candidate process wakes up hopefully.
424
 */
425
static void as_antic_waitreq(struct as_data *ad)
426
{
427
        BUG_ON(ad->antic_status == ANTIC_FINISHED);
428
        if (ad->antic_status == ANTIC_OFF) {
429
                if (!ad->io_context || ad->ioc_finished)
430
                        as_antic_waitnext(ad);
431
                else
432
                        ad->antic_status = ANTIC_WAIT_REQ;
433
        }
434
}
435
 
436
/*
437
 * This is called directly by the functions in this file to stop anticipation.
438
 * We kill the timer and schedule a call to the request_fn asap.
439
 */
440
static void as_antic_stop(struct as_data *ad)
441
{
442
        int status = ad->antic_status;
443
 
444
        if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
445
                if (status == ANTIC_WAIT_NEXT)
446
                        del_timer(&ad->antic_timer);
447
                ad->antic_status = ANTIC_FINISHED;
448
                /* see as_work_handler */
449
                kblockd_schedule_work(&ad->antic_work);
450
        }
451
}
452
 
453
/*
454
 * as_antic_timeout is the timer function set by as_antic_waitnext.
455
 */
456
static void as_antic_timeout(unsigned long data)
457
{
458
        struct request_queue *q = (struct request_queue *)data;
459
        struct as_data *ad = q->elevator->elevator_data;
460
        unsigned long flags;
461
 
462
        spin_lock_irqsave(q->queue_lock, flags);
463
        if (ad->antic_status == ANTIC_WAIT_REQ
464
                        || ad->antic_status == ANTIC_WAIT_NEXT) {
465
                struct as_io_context *aic = ad->io_context->aic;
466
 
467
                ad->antic_status = ANTIC_FINISHED;
468
                kblockd_schedule_work(&ad->antic_work);
469
 
470
                if (aic->ttime_samples == 0) {
471
                        /* process anticipated on has exited or timed out*/
472
                        ad->exit_prob = (7*ad->exit_prob + 256)/8;
473
                }
474
                if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
475
                        /* process not "saved" by a cooperating request */
476
                        ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
477
                }
478
        }
479
        spin_unlock_irqrestore(q->queue_lock, flags);
480
}
481
 
482
static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
483
                                unsigned long ttime)
484
{
485
        /* fixed point: 1.0 == 1<<8 */
486
        if (aic->ttime_samples == 0) {
487
                ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
488
                ad->new_ttime_mean = ad->new_ttime_total / 256;
489
 
490
                ad->exit_prob = (7*ad->exit_prob)/8;
491
        }
492
        aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
493
        aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
494
        aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
495
}
496
 
497
static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
498
                                sector_t sdist)
499
{
500
        u64 total;
501
 
502
        if (aic->seek_samples == 0) {
503
                ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
504
                ad->new_seek_mean = ad->new_seek_total / 256;
505
        }
506
 
507
        /*
508
         * Don't allow the seek distance to get too large from the
509
         * odd fragment, pagein, etc
510
         */
511
        if (aic->seek_samples <= 60) /* second&third seek */
512
                sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
513
        else
514
                sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
515
 
516
        aic->seek_samples = (7*aic->seek_samples + 256) / 8;
517
        aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
518
        total = aic->seek_total + (aic->seek_samples/2);
519
        do_div(total, aic->seek_samples);
520
        aic->seek_mean = (sector_t)total;
521
}
522
 
523
/*
524
 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
525
 * updates @aic->ttime_mean based on that. It is called when a new
526
 * request is queued.
527
 */
528
static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
529
                                struct request *rq)
530
{
531
        int data_dir = rq_is_sync(rq);
532
        unsigned long thinktime = 0;
533
        sector_t seek_dist;
534
 
535
        if (aic == NULL)
536
                return;
537
 
538
        if (data_dir == REQ_SYNC) {
539
                unsigned long in_flight = atomic_read(&aic->nr_queued)
540
                                        + atomic_read(&aic->nr_dispatched);
541
                spin_lock(&aic->lock);
542
                if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
543
                        test_bit(AS_TASK_IOSTARTED, &aic->state)) {
544
                        /* Calculate read -> read thinktime */
545
                        if (test_bit(AS_TASK_IORUNNING, &aic->state)
546
                                                        && in_flight == 0) {
547
                                thinktime = jiffies - aic->last_end_request;
548
                                thinktime = min(thinktime, MAX_THINKTIME-1);
549
                        }
550
                        as_update_thinktime(ad, aic, thinktime);
551
 
552
                        /* Calculate read -> read seek distance */
553
                        if (aic->last_request_pos < rq->sector)
554
                                seek_dist = rq->sector - aic->last_request_pos;
555
                        else
556
                                seek_dist = aic->last_request_pos - rq->sector;
557
                        as_update_seekdist(ad, aic, seek_dist);
558
                }
559
                aic->last_request_pos = rq->sector + rq->nr_sectors;
560
                set_bit(AS_TASK_IOSTARTED, &aic->state);
561
                spin_unlock(&aic->lock);
562
        }
563
}
564
 
565
/*
566
 * as_close_req decides if one request is considered "close" to the
567
 * previous one issued.
568
 */
569
static int as_close_req(struct as_data *ad, struct as_io_context *aic,
570
                        struct request *rq)
571
{
572
        unsigned long delay;    /* jiffies */
573
        sector_t last = ad->last_sector[ad->batch_data_dir];
574
        sector_t next = rq->sector;
575
        sector_t delta; /* acceptable close offset (in sectors) */
576
        sector_t s;
577
 
578
        if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
579
                delay = 0;
580
        else
581
                delay = jiffies - ad->antic_start;
582
 
583
        if (delay == 0)
584
                delta = 8192;
585
        else if (delay <= (20 * HZ / 1000) && delay <= ad->antic_expire)
586
                delta = 8192 << delay;
587
        else
588
                return 1;
589
 
590
        if ((last <= next + (delta>>1)) && (next <= last + delta))
591
                return 1;
592
 
593
        if (last < next)
594
                s = next - last;
595
        else
596
                s = last - next;
597
 
598
        if (aic->seek_samples == 0) {
599
                /*
600
                 * Process has just started IO. Use past statistics to
601
                 * gauge success possibility
602
                 */
603
                if (ad->new_seek_mean > s) {
604
                        /* this request is better than what we're expecting */
605
                        return 1;
606
                }
607
 
608
        } else {
609
                if (aic->seek_mean > s) {
610
                        /* this request is better than what we're expecting */
611
                        return 1;
612
                }
613
        }
614
 
615
        return 0;
616
}
617
 
618
/*
619
 * as_can_break_anticipation returns true if we have been anticipating this
620
 * request.
621
 *
622
 * It also returns true if the process against which we are anticipating
623
 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
624
 * dispatch it ASAP, because we know that application will not be submitting
625
 * any new reads.
626
 *
627
 * If the task which has submitted the request has exited, break anticipation.
628
 *
629
 * If this task has queued some other IO, do not enter enticipation.
630
 */
631
static int as_can_break_anticipation(struct as_data *ad, struct request *rq)
632
{
633
        struct io_context *ioc;
634
        struct as_io_context *aic;
635
 
636
        ioc = ad->io_context;
637
        BUG_ON(!ioc);
638
 
639
        if (rq && ioc == RQ_IOC(rq)) {
640
                /* request from same process */
641
                return 1;
642
        }
643
 
644
        if (ad->ioc_finished && as_antic_expired(ad)) {
645
                /*
646
                 * In this situation status should really be FINISHED,
647
                 * however the timer hasn't had the chance to run yet.
648
                 */
649
                return 1;
650
        }
651
 
652
        aic = ioc->aic;
653
        if (!aic)
654
                return 0;
655
 
656
        if (atomic_read(&aic->nr_queued) > 0) {
657
                /* process has more requests queued */
658
                return 1;
659
        }
660
 
661
        if (atomic_read(&aic->nr_dispatched) > 0) {
662
                /* process has more requests dispatched */
663
                return 1;
664
        }
665
 
666
        if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) {
667
                /*
668
                 * Found a close request that is not one of ours.
669
                 *
670
                 * This makes close requests from another process update
671
                 * our IO history. Is generally useful when there are
672
                 * two or more cooperating processes working in the same
673
                 * area.
674
                 */
675
                if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
676
                        if (aic->ttime_samples == 0)
677
                                ad->exit_prob = (7*ad->exit_prob + 256)/8;
678
 
679
                        ad->exit_no_coop = (7*ad->exit_no_coop)/8;
680
                }
681
 
682
                as_update_iohist(ad, aic, rq);
683
                return 1;
684
        }
685
 
686
        if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
687
                /* process anticipated on has exited */
688
                if (aic->ttime_samples == 0)
689
                        ad->exit_prob = (7*ad->exit_prob + 256)/8;
690
 
691
                if (ad->exit_no_coop > 128)
692
                        return 1;
693
        }
694
 
695
        if (aic->ttime_samples == 0) {
696
                if (ad->new_ttime_mean > ad->antic_expire)
697
                        return 1;
698
                if (ad->exit_prob * ad->exit_no_coop > 128*256)
699
                        return 1;
700
        } else if (aic->ttime_mean > ad->antic_expire) {
701
                /* the process thinks too much between requests */
702
                return 1;
703
        }
704
 
705
        return 0;
706
}
707
 
708
/*
709
 * as_can_anticipate indicates whether we should either run rq
710
 * or keep anticipating a better request.
711
 */
712
static int as_can_anticipate(struct as_data *ad, struct request *rq)
713
{
714
        if (!ad->io_context)
715
                /*
716
                 * Last request submitted was a write
717
                 */
718
                return 0;
719
 
720
        if (ad->antic_status == ANTIC_FINISHED)
721
                /*
722
                 * Don't restart if we have just finished. Run the next request
723
                 */
724
                return 0;
725
 
726
        if (as_can_break_anticipation(ad, rq))
727
                /*
728
                 * This request is a good candidate. Don't keep anticipating,
729
                 * run it.
730
                 */
731
                return 0;
732
 
733
        /*
734
         * OK from here, we haven't finished, and don't have a decent request!
735
         * Status is either ANTIC_OFF so start waiting,
736
         * ANTIC_WAIT_REQ so continue waiting for request to finish
737
         * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
738
         */
739
 
740
        return 1;
741
}
742
 
743
/*
744
 * as_update_rq must be called whenever a request (rq) is added to
745
 * the sort_list. This function keeps caches up to date, and checks if the
746
 * request might be one we are "anticipating"
747
 */
748
static void as_update_rq(struct as_data *ad, struct request *rq)
749
{
750
        const int data_dir = rq_is_sync(rq);
751
 
752
        /* keep the next_rq cache up to date */
753
        ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]);
754
 
755
        /*
756
         * have we been anticipating this request?
757
         * or does it come from the same process as the one we are anticipating
758
         * for?
759
         */
760
        if (ad->antic_status == ANTIC_WAIT_REQ
761
                        || ad->antic_status == ANTIC_WAIT_NEXT) {
762
                if (as_can_break_anticipation(ad, rq))
763
                        as_antic_stop(ad);
764
        }
765
}
766
 
767
/*
768
 * Gathers timings and resizes the write batch automatically
769
 */
770
static void update_write_batch(struct as_data *ad)
771
{
772
        unsigned long batch = ad->batch_expire[REQ_ASYNC];
773
        long write_time;
774
 
775
        write_time = (jiffies - ad->current_batch_expires) + batch;
776
        if (write_time < 0)
777
                write_time = 0;
778
 
779
        if (write_time > batch && !ad->write_batch_idled) {
780
                if (write_time > batch * 3)
781
                        ad->write_batch_count /= 2;
782
                else
783
                        ad->write_batch_count--;
784
        } else if (write_time < batch && ad->current_write_count == 0) {
785
                if (batch > write_time * 3)
786
                        ad->write_batch_count *= 2;
787
                else
788
                        ad->write_batch_count++;
789
        }
790
 
791
        if (ad->write_batch_count < 1)
792
                ad->write_batch_count = 1;
793
}
794
 
795
/*
796
 * as_completed_request is to be called when a request has completed and
797
 * returned something to the requesting process, be it an error or data.
798
 */
799
static void as_completed_request(struct request_queue *q, struct request *rq)
800
{
801
        struct as_data *ad = q->elevator->elevator_data;
802
 
803
        WARN_ON(!list_empty(&rq->queuelist));
804
 
805
        if (RQ_STATE(rq) != AS_RQ_REMOVED) {
806
                printk("rq->state %d\n", RQ_STATE(rq));
807
                WARN_ON(1);
808
                goto out;
809
        }
810
 
811
        if (ad->changed_batch && ad->nr_dispatched == 1) {
812
                kblockd_schedule_work(&ad->antic_work);
813
                ad->changed_batch = 0;
814
 
815
                if (ad->batch_data_dir == REQ_SYNC)
816
                        ad->new_batch = 1;
817
        }
818
        WARN_ON(ad->nr_dispatched == 0);
819
        ad->nr_dispatched--;
820
 
821
        /*
822
         * Start counting the batch from when a request of that direction is
823
         * actually serviced. This should help devices with big TCQ windows
824
         * and writeback caches
825
         */
826
        if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) {
827
                update_write_batch(ad);
828
                ad->current_batch_expires = jiffies +
829
                                ad->batch_expire[REQ_SYNC];
830
                ad->new_batch = 0;
831
        }
832
 
833
        if (ad->io_context == RQ_IOC(rq) && ad->io_context) {
834
                ad->antic_start = jiffies;
835
                ad->ioc_finished = 1;
836
                if (ad->antic_status == ANTIC_WAIT_REQ) {
837
                        /*
838
                         * We were waiting on this request, now anticipate
839
                         * the next one
840
                         */
841
                        as_antic_waitnext(ad);
842
                }
843
        }
844
 
845
        as_put_io_context(rq);
846
out:
847
        RQ_SET_STATE(rq, AS_RQ_POSTSCHED);
848
}
849
 
850
/*
851
 * as_remove_queued_request removes a request from the pre dispatch queue
852
 * without updating refcounts. It is expected the caller will drop the
853
 * reference unless it replaces the request at somepart of the elevator
854
 * (ie. the dispatch queue)
855
 */
856
static void as_remove_queued_request(struct request_queue *q,
857
                                     struct request *rq)
858
{
859
        const int data_dir = rq_is_sync(rq);
860
        struct as_data *ad = q->elevator->elevator_data;
861
        struct io_context *ioc;
862
 
863
        WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
864
 
865
        ioc = RQ_IOC(rq);
866
        if (ioc && ioc->aic) {
867
                BUG_ON(!atomic_read(&ioc->aic->nr_queued));
868
                atomic_dec(&ioc->aic->nr_queued);
869
        }
870
 
871
        /*
872
         * Update the "next_rq" cache if we are about to remove its
873
         * entry
874
         */
875
        if (ad->next_rq[data_dir] == rq)
876
                ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
877
 
878
        rq_fifo_clear(rq);
879
        as_del_rq_rb(ad, rq);
880
}
881
 
882
/*
883
 * as_fifo_expired returns 0 if there are no expired requests on the fifo,
884
 * 1 otherwise.  It is ratelimited so that we only perform the check once per
885
 * `fifo_expire' interval.  Otherwise a large number of expired requests
886
 * would create a hopeless seekstorm.
887
 *
888
 * See as_antic_expired comment.
889
 */
890
static int as_fifo_expired(struct as_data *ad, int adir)
891
{
892
        struct request *rq;
893
        long delta_jif;
894
 
895
        delta_jif = jiffies - ad->last_check_fifo[adir];
896
        if (unlikely(delta_jif < 0))
897
                delta_jif = -delta_jif;
898
        if (delta_jif < ad->fifo_expire[adir])
899
                return 0;
900
 
901
        ad->last_check_fifo[adir] = jiffies;
902
 
903
        if (list_empty(&ad->fifo_list[adir]))
904
                return 0;
905
 
906
        rq = rq_entry_fifo(ad->fifo_list[adir].next);
907
 
908
        return time_after(jiffies, rq_fifo_time(rq));
909
}
910
 
911
/*
912
 * as_batch_expired returns true if the current batch has expired. A batch
913
 * is a set of reads or a set of writes.
914
 */
915
static inline int as_batch_expired(struct as_data *ad)
916
{
917
        if (ad->changed_batch || ad->new_batch)
918
                return 0;
919
 
920
        if (ad->batch_data_dir == REQ_SYNC)
921
                /* TODO! add a check so a complete fifo gets written? */
922
                return time_after(jiffies, ad->current_batch_expires);
923
 
924
        return time_after(jiffies, ad->current_batch_expires)
925
                || ad->current_write_count == 0;
926
}
927
 
928
/*
929
 * move an entry to dispatch queue
930
 */
931
static void as_move_to_dispatch(struct as_data *ad, struct request *rq)
932
{
933
        const int data_dir = rq_is_sync(rq);
934
 
935
        BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
936
 
937
        as_antic_stop(ad);
938
        ad->antic_status = ANTIC_OFF;
939
 
940
        /*
941
         * This has to be set in order to be correctly updated by
942
         * as_find_next_rq
943
         */
944
        ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
945
 
946
        if (data_dir == REQ_SYNC) {
947
                struct io_context *ioc = RQ_IOC(rq);
948
                /* In case we have to anticipate after this */
949
                copy_io_context(&ad->io_context, &ioc);
950
        } else {
951
                if (ad->io_context) {
952
                        put_io_context(ad->io_context);
953
                        ad->io_context = NULL;
954
                }
955
 
956
                if (ad->current_write_count != 0)
957
                        ad->current_write_count--;
958
        }
959
        ad->ioc_finished = 0;
960
 
961
        ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
962
 
963
        /*
964
         * take it off the sort and fifo list, add to dispatch queue
965
         */
966
        as_remove_queued_request(ad->q, rq);
967
        WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
968
 
969
        elv_dispatch_sort(ad->q, rq);
970
 
971
        RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
972
        if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
973
                atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
974
        ad->nr_dispatched++;
975
}
976
 
977
/*
978
 * as_dispatch_request selects the best request according to
979
 * read/write expire, batch expire, etc, and moves it to the dispatch
980
 * queue. Returns 1 if a request was found, 0 otherwise.
981
 */
982
static int as_dispatch_request(struct request_queue *q, int force)
983
{
984
        struct as_data *ad = q->elevator->elevator_data;
985
        const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
986
        const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
987
        struct request *rq;
988
 
989
        if (unlikely(force)) {
990
                /*
991
                 * Forced dispatch, accounting is useless.  Reset
992
                 * accounting states and dump fifo_lists.  Note that
993
                 * batch_data_dir is reset to REQ_SYNC to avoid
994
                 * screwing write batch accounting as write batch
995
                 * accounting occurs on W->R transition.
996
                 */
997
                int dispatched = 0;
998
 
999
                ad->batch_data_dir = REQ_SYNC;
1000
                ad->changed_batch = 0;
1001
                ad->new_batch = 0;
1002
 
1003
                while (ad->next_rq[REQ_SYNC]) {
1004
                        as_move_to_dispatch(ad, ad->next_rq[REQ_SYNC]);
1005
                        dispatched++;
1006
                }
1007
                ad->last_check_fifo[REQ_SYNC] = jiffies;
1008
 
1009
                while (ad->next_rq[REQ_ASYNC]) {
1010
                        as_move_to_dispatch(ad, ad->next_rq[REQ_ASYNC]);
1011
                        dispatched++;
1012
                }
1013
                ad->last_check_fifo[REQ_ASYNC] = jiffies;
1014
 
1015
                return dispatched;
1016
        }
1017
 
1018
        /* Signal that the write batch was uncontended, so we can't time it */
1019
        if (ad->batch_data_dir == REQ_ASYNC && !reads) {
1020
                if (ad->current_write_count == 0 || !writes)
1021
                        ad->write_batch_idled = 1;
1022
        }
1023
 
1024
        if (!(reads || writes)
1025
                || ad->antic_status == ANTIC_WAIT_REQ
1026
                || ad->antic_status == ANTIC_WAIT_NEXT
1027
                || ad->changed_batch)
1028
                return 0;
1029
 
1030
        if (!(reads && writes && as_batch_expired(ad))) {
1031
                /*
1032
                 * batch is still running or no reads or no writes
1033
                 */
1034
                rq = ad->next_rq[ad->batch_data_dir];
1035
 
1036
                if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
1037
                        if (as_fifo_expired(ad, REQ_SYNC))
1038
                                goto fifo_expired;
1039
 
1040
                        if (as_can_anticipate(ad, rq)) {
1041
                                as_antic_waitreq(ad);
1042
                                return 0;
1043
                        }
1044
                }
1045
 
1046
                if (rq) {
1047
                        /* we have a "next request" */
1048
                        if (reads && !writes)
1049
                                ad->current_batch_expires =
1050
                                        jiffies + ad->batch_expire[REQ_SYNC];
1051
                        goto dispatch_request;
1052
                }
1053
        }
1054
 
1055
        /*
1056
         * at this point we are not running a batch. select the appropriate
1057
         * data direction (read / write)
1058
         */
1059
 
1060
        if (reads) {
1061
                BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_SYNC]));
1062
 
1063
                if (writes && ad->batch_data_dir == REQ_SYNC)
1064
                        /*
1065
                         * Last batch was a read, switch to writes
1066
                         */
1067
                        goto dispatch_writes;
1068
 
1069
                if (ad->batch_data_dir == REQ_ASYNC) {
1070
                        WARN_ON(ad->new_batch);
1071
                        ad->changed_batch = 1;
1072
                }
1073
                ad->batch_data_dir = REQ_SYNC;
1074
                rq = rq_entry_fifo(ad->fifo_list[REQ_SYNC].next);
1075
                ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1076
                goto dispatch_request;
1077
        }
1078
 
1079
        /*
1080
         * the last batch was a read
1081
         */
1082
 
1083
        if (writes) {
1084
dispatch_writes:
1085
                BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_ASYNC]));
1086
 
1087
                if (ad->batch_data_dir == REQ_SYNC) {
1088
                        ad->changed_batch = 1;
1089
 
1090
                        /*
1091
                         * new_batch might be 1 when the queue runs out of
1092
                         * reads. A subsequent submission of a write might
1093
                         * cause a change of batch before the read is finished.
1094
                         */
1095
                        ad->new_batch = 0;
1096
                }
1097
                ad->batch_data_dir = REQ_ASYNC;
1098
                ad->current_write_count = ad->write_batch_count;
1099
                ad->write_batch_idled = 0;
1100
                rq = rq_entry_fifo(ad->fifo_list[REQ_ASYNC].next);
1101
                ad->last_check_fifo[REQ_ASYNC] = jiffies;
1102
                goto dispatch_request;
1103
        }
1104
 
1105
        BUG();
1106
        return 0;
1107
 
1108
dispatch_request:
1109
        /*
1110
         * If a request has expired, service it.
1111
         */
1112
 
1113
        if (as_fifo_expired(ad, ad->batch_data_dir)) {
1114
fifo_expired:
1115
                rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1116
        }
1117
 
1118
        if (ad->changed_batch) {
1119
                WARN_ON(ad->new_batch);
1120
 
1121
                if (ad->nr_dispatched)
1122
                        return 0;
1123
 
1124
                if (ad->batch_data_dir == REQ_ASYNC)
1125
                        ad->current_batch_expires = jiffies +
1126
                                        ad->batch_expire[REQ_ASYNC];
1127
                else
1128
                        ad->new_batch = 1;
1129
 
1130
                ad->changed_batch = 0;
1131
        }
1132
 
1133
        /*
1134
         * rq is the selected appropriate request.
1135
         */
1136
        as_move_to_dispatch(ad, rq);
1137
 
1138
        return 1;
1139
}
1140
 
1141
/*
1142
 * add rq to rbtree and fifo
1143
 */
1144
static void as_add_request(struct request_queue *q, struct request *rq)
1145
{
1146
        struct as_data *ad = q->elevator->elevator_data;
1147
        int data_dir;
1148
 
1149
        RQ_SET_STATE(rq, AS_RQ_NEW);
1150
 
1151
        data_dir = rq_is_sync(rq);
1152
 
1153
        rq->elevator_private = as_get_io_context(q->node);
1154
 
1155
        if (RQ_IOC(rq)) {
1156
                as_update_iohist(ad, RQ_IOC(rq)->aic, rq);
1157
                atomic_inc(&RQ_IOC(rq)->aic->nr_queued);
1158
        }
1159
 
1160
        as_add_rq_rb(ad, rq);
1161
 
1162
        /*
1163
         * set expire time and add to fifo list
1164
         */
1165
        rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]);
1166
        list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]);
1167
 
1168
        as_update_rq(ad, rq); /* keep state machine up to date */
1169
        RQ_SET_STATE(rq, AS_RQ_QUEUED);
1170
}
1171
 
1172
static void as_activate_request(struct request_queue *q, struct request *rq)
1173
{
1174
        WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED);
1175
        RQ_SET_STATE(rq, AS_RQ_REMOVED);
1176
        if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1177
                atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched);
1178
}
1179
 
1180
static void as_deactivate_request(struct request_queue *q, struct request *rq)
1181
{
1182
        WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED);
1183
        RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
1184
        if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1185
                atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
1186
}
1187
 
1188
/*
1189
 * as_queue_empty tells us if there are requests left in the device. It may
1190
 * not be the case that a driver can get the next request even if the queue
1191
 * is not empty - it is used in the block layer to check for plugging and
1192
 * merging opportunities
1193
 */
1194
static int as_queue_empty(struct request_queue *q)
1195
{
1196
        struct as_data *ad = q->elevator->elevator_data;
1197
 
1198
        return list_empty(&ad->fifo_list[REQ_ASYNC])
1199
                && list_empty(&ad->fifo_list[REQ_SYNC]);
1200
}
1201
 
1202
static int
1203
as_merge(struct request_queue *q, struct request **req, struct bio *bio)
1204
{
1205
        struct as_data *ad = q->elevator->elevator_data;
1206
        sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1207
        struct request *__rq;
1208
 
1209
        /*
1210
         * check for front merge
1211
         */
1212
        __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key);
1213
        if (__rq && elv_rq_merge_ok(__rq, bio)) {
1214
                *req = __rq;
1215
                return ELEVATOR_FRONT_MERGE;
1216
        }
1217
 
1218
        return ELEVATOR_NO_MERGE;
1219
}
1220
 
1221
static void as_merged_request(struct request_queue *q, struct request *req,
1222
                              int type)
1223
{
1224
        struct as_data *ad = q->elevator->elevator_data;
1225
 
1226
        /*
1227
         * if the merge was a front merge, we need to reposition request
1228
         */
1229
        if (type == ELEVATOR_FRONT_MERGE) {
1230
                as_del_rq_rb(ad, req);
1231
                as_add_rq_rb(ad, req);
1232
                /*
1233
                 * Note! At this stage of this and the next function, our next
1234
                 * request may not be optimal - eg the request may have "grown"
1235
                 * behind the disk head. We currently don't bother adjusting.
1236
                 */
1237
        }
1238
}
1239
 
1240
static void as_merged_requests(struct request_queue *q, struct request *req,
1241
                                struct request *next)
1242
{
1243
        /*
1244
         * if next expires before rq, assign its expire time to arq
1245
         * and move into next position (next will be deleted) in fifo
1246
         */
1247
        if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
1248
                if (time_before(rq_fifo_time(next), rq_fifo_time(req))) {
1249
                        struct io_context *rioc = RQ_IOC(req);
1250
                        struct io_context *nioc = RQ_IOC(next);
1251
 
1252
                        list_move(&req->queuelist, &next->queuelist);
1253
                        rq_set_fifo_time(req, rq_fifo_time(next));
1254
                        /*
1255
                         * Don't copy here but swap, because when anext is
1256
                         * removed below, it must contain the unused context
1257
                         */
1258
                        swap_io_context(&rioc, &nioc);
1259
                }
1260
        }
1261
 
1262
        /*
1263
         * kill knowledge of next, this one is a goner
1264
         */
1265
        as_remove_queued_request(q, next);
1266
        as_put_io_context(next);
1267
 
1268
        RQ_SET_STATE(next, AS_RQ_MERGED);
1269
}
1270
 
1271
/*
1272
 * This is executed in a "deferred" process context, by kblockd. It calls the
1273
 * driver's request_fn so the driver can submit that request.
1274
 *
1275
 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1276
 * state before calling, and don't rely on any state over calls.
1277
 *
1278
 * FIXME! dispatch queue is not a queue at all!
1279
 */
1280
static void as_work_handler(struct work_struct *work)
1281
{
1282
        struct as_data *ad = container_of(work, struct as_data, antic_work);
1283
        struct request_queue *q = ad->q;
1284
        unsigned long flags;
1285
 
1286
        spin_lock_irqsave(q->queue_lock, flags);
1287
        blk_start_queueing(q);
1288
        spin_unlock_irqrestore(q->queue_lock, flags);
1289
}
1290
 
1291
static int as_may_queue(struct request_queue *q, int rw)
1292
{
1293
        int ret = ELV_MQUEUE_MAY;
1294
        struct as_data *ad = q->elevator->elevator_data;
1295
        struct io_context *ioc;
1296
        if (ad->antic_status == ANTIC_WAIT_REQ ||
1297
                        ad->antic_status == ANTIC_WAIT_NEXT) {
1298
                ioc = as_get_io_context(q->node);
1299
                if (ad->io_context == ioc)
1300
                        ret = ELV_MQUEUE_MUST;
1301
                put_io_context(ioc);
1302
        }
1303
 
1304
        return ret;
1305
}
1306
 
1307
static void as_exit_queue(elevator_t *e)
1308
{
1309
        struct as_data *ad = e->elevator_data;
1310
 
1311
        del_timer_sync(&ad->antic_timer);
1312
        kblockd_flush_work(&ad->antic_work);
1313
 
1314
        BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
1315
        BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
1316
 
1317
        put_io_context(ad->io_context);
1318
        kfree(ad);
1319
}
1320
 
1321
/*
1322
 * initialize elevator private data (as_data).
1323
 */
1324
static void *as_init_queue(struct request_queue *q)
1325
{
1326
        struct as_data *ad;
1327
 
1328
        ad = kmalloc_node(sizeof(*ad), GFP_KERNEL | __GFP_ZERO, q->node);
1329
        if (!ad)
1330
                return NULL;
1331
 
1332
        ad->q = q; /* Identify what queue the data belongs to */
1333
 
1334
        /* anticipatory scheduling helpers */
1335
        ad->antic_timer.function = as_antic_timeout;
1336
        ad->antic_timer.data = (unsigned long)q;
1337
        init_timer(&ad->antic_timer);
1338
        INIT_WORK(&ad->antic_work, as_work_handler);
1339
 
1340
        INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
1341
        INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
1342
        ad->sort_list[REQ_SYNC] = RB_ROOT;
1343
        ad->sort_list[REQ_ASYNC] = RB_ROOT;
1344
        ad->fifo_expire[REQ_SYNC] = default_read_expire;
1345
        ad->fifo_expire[REQ_ASYNC] = default_write_expire;
1346
        ad->antic_expire = default_antic_expire;
1347
        ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
1348
        ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
1349
 
1350
        ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
1351
        ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
1352
        if (ad->write_batch_count < 2)
1353
                ad->write_batch_count = 2;
1354
 
1355
        return ad;
1356
}
1357
 
1358
/*
1359
 * sysfs parts below
1360
 */
1361
 
1362
static ssize_t
1363
as_var_show(unsigned int var, char *page)
1364
{
1365
        return sprintf(page, "%d\n", var);
1366
}
1367
 
1368
static ssize_t
1369
as_var_store(unsigned long *var, const char *page, size_t count)
1370
{
1371
        char *p = (char *) page;
1372
 
1373
        *var = simple_strtoul(p, &p, 10);
1374
        return count;
1375
}
1376
 
1377
static ssize_t est_time_show(elevator_t *e, char *page)
1378
{
1379
        struct as_data *ad = e->elevator_data;
1380
        int pos = 0;
1381
 
1382
        pos += sprintf(page+pos, "%lu %% exit probability\n",
1383
                                100*ad->exit_prob/256);
1384
        pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1385
                                "cooperating process submitting IO\n",
1386
                                100*ad->exit_no_coop/256);
1387
        pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1388
        pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1389
                                (unsigned long long)ad->new_seek_mean);
1390
 
1391
        return pos;
1392
}
1393
 
1394
#define SHOW_FUNCTION(__FUNC, __VAR)                            \
1395
static ssize_t __FUNC(elevator_t *e, char *page)                \
1396
{                                                               \
1397
        struct as_data *ad = e->elevator_data;                  \
1398
        return as_var_show(jiffies_to_msecs((__VAR)), (page));  \
1399
}
1400
SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
1401
SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
1402
SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
1403
SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
1404
SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
1405
#undef SHOW_FUNCTION
1406
 
1407
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)                         \
1408
static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
1409
{                                                                       \
1410
        struct as_data *ad = e->elevator_data;                          \
1411
        int ret = as_var_store(__PTR, (page), count);                   \
1412
        if (*(__PTR) < (MIN))                                           \
1413
                *(__PTR) = (MIN);                                       \
1414
        else if (*(__PTR) > (MAX))                                      \
1415
                *(__PTR) = (MAX);                                       \
1416
        *(__PTR) = msecs_to_jiffies(*(__PTR));                          \
1417
        return ret;                                                     \
1418
}
1419
STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
1420
STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
1421
STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
1422
STORE_FUNCTION(as_read_batch_expire_store,
1423
                        &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
1424
STORE_FUNCTION(as_write_batch_expire_store,
1425
                        &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
1426
#undef STORE_FUNCTION
1427
 
1428
#define AS_ATTR(name) \
1429
        __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1430
 
1431
static struct elv_fs_entry as_attrs[] = {
1432
        __ATTR_RO(est_time),
1433
        AS_ATTR(read_expire),
1434
        AS_ATTR(write_expire),
1435
        AS_ATTR(antic_expire),
1436
        AS_ATTR(read_batch_expire),
1437
        AS_ATTR(write_batch_expire),
1438
        __ATTR_NULL
1439
};
1440
 
1441
static struct elevator_type iosched_as = {
1442
        .ops = {
1443
                .elevator_merge_fn =            as_merge,
1444
                .elevator_merged_fn =           as_merged_request,
1445
                .elevator_merge_req_fn =        as_merged_requests,
1446
                .elevator_dispatch_fn =         as_dispatch_request,
1447
                .elevator_add_req_fn =          as_add_request,
1448
                .elevator_activate_req_fn =     as_activate_request,
1449
                .elevator_deactivate_req_fn =   as_deactivate_request,
1450
                .elevator_queue_empty_fn =      as_queue_empty,
1451
                .elevator_completed_req_fn =    as_completed_request,
1452
                .elevator_former_req_fn =       elv_rb_former_request,
1453
                .elevator_latter_req_fn =       elv_rb_latter_request,
1454
                .elevator_may_queue_fn =        as_may_queue,
1455
                .elevator_init_fn =             as_init_queue,
1456
                .elevator_exit_fn =             as_exit_queue,
1457
                .trim =                         as_trim,
1458
        },
1459
 
1460
        .elevator_attrs = as_attrs,
1461
        .elevator_name = "anticipatory",
1462
        .elevator_owner = THIS_MODULE,
1463
};
1464
 
1465
static int __init as_init(void)
1466
{
1467
        elv_register(&iosched_as);
1468
 
1469
        return 0;
1470
}
1471
 
1472
static void __exit as_exit(void)
1473
{
1474
        DECLARE_COMPLETION_ONSTACK(all_gone);
1475
        elv_unregister(&iosched_as);
1476
        ioc_gone = &all_gone;
1477
        /* ioc_gone's update must be visible before reading ioc_count */
1478
        smp_wmb();
1479
        if (elv_ioc_count_read(ioc_count))
1480
                wait_for_completion(ioc_gone);
1481
        synchronize_rcu();
1482
}
1483
 
1484
module_init(as_init);
1485
module_exit(as_exit);
1486
 
1487
MODULE_AUTHOR("Nick Piggin");
1488
MODULE_LICENSE("GPL");
1489
MODULE_DESCRIPTION("anticipatory IO scheduler");

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.