1 |
62 |
marcus.erl |
/* gf128mul.c - GF(2^128) multiplication functions
|
2 |
|
|
*
|
3 |
|
|
* Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
|
4 |
|
|
* Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
|
5 |
|
|
*
|
6 |
|
|
* Based on Dr Brian Gladman's (GPL'd) work published at
|
7 |
|
|
* http://fp.gladman.plus.com/cryptography_technology/index.htm
|
8 |
|
|
* See the original copyright notice below.
|
9 |
|
|
*
|
10 |
|
|
* This program is free software; you can redistribute it and/or modify it
|
11 |
|
|
* under the terms of the GNU General Public License as published by the Free
|
12 |
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
13 |
|
|
* any later version.
|
14 |
|
|
*/
|
15 |
|
|
|
16 |
|
|
/*
|
17 |
|
|
---------------------------------------------------------------------------
|
18 |
|
|
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
19 |
|
|
|
20 |
|
|
LICENSE TERMS
|
21 |
|
|
|
22 |
|
|
The free distribution and use of this software in both source and binary
|
23 |
|
|
form is allowed (with or without changes) provided that:
|
24 |
|
|
|
25 |
|
|
1. distributions of this source code include the above copyright
|
26 |
|
|
notice, this list of conditions and the following disclaimer;
|
27 |
|
|
|
28 |
|
|
2. distributions in binary form include the above copyright
|
29 |
|
|
notice, this list of conditions and the following disclaimer
|
30 |
|
|
in the documentation and/or other associated materials;
|
31 |
|
|
|
32 |
|
|
3. the copyright holder's name is not used to endorse products
|
33 |
|
|
built using this software without specific written permission.
|
34 |
|
|
|
35 |
|
|
ALTERNATIVELY, provided that this notice is retained in full, this product
|
36 |
|
|
may be distributed under the terms of the GNU General Public License (GPL),
|
37 |
|
|
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
38 |
|
|
|
39 |
|
|
DISCLAIMER
|
40 |
|
|
|
41 |
|
|
This software is provided 'as is' with no explicit or implied warranties
|
42 |
|
|
in respect of its properties, including, but not limited to, correctness
|
43 |
|
|
and/or fitness for purpose.
|
44 |
|
|
---------------------------------------------------------------------------
|
45 |
|
|
Issue 31/01/2006
|
46 |
|
|
|
47 |
|
|
This file provides fast multiplication in GF(128) as required by several
|
48 |
|
|
cryptographic authentication modes
|
49 |
|
|
*/
|
50 |
|
|
|
51 |
|
|
#include <crypto/gf128mul.h>
|
52 |
|
|
#include <linux/kernel.h>
|
53 |
|
|
#include <linux/module.h>
|
54 |
|
|
#include <linux/slab.h>
|
55 |
|
|
|
56 |
|
|
#define gf128mul_dat(q) { \
|
57 |
|
|
q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
|
58 |
|
|
q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
|
59 |
|
|
q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
|
60 |
|
|
q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
|
61 |
|
|
q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
|
62 |
|
|
q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
|
63 |
|
|
q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
|
64 |
|
|
q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
|
65 |
|
|
q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
|
66 |
|
|
q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
|
67 |
|
|
q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
|
68 |
|
|
q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
|
69 |
|
|
q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
|
70 |
|
|
q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
|
71 |
|
|
q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
|
72 |
|
|
q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
|
73 |
|
|
q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
|
74 |
|
|
q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
|
75 |
|
|
q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
|
76 |
|
|
q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
|
77 |
|
|
q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
|
78 |
|
|
q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
|
79 |
|
|
q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
|
80 |
|
|
q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
|
81 |
|
|
q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
|
82 |
|
|
q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
|
83 |
|
|
q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
|
84 |
|
|
q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
|
85 |
|
|
q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
|
86 |
|
|
q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
|
87 |
|
|
q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
|
88 |
|
|
q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
|
89 |
|
|
}
|
90 |
|
|
|
91 |
|
|
/* Given the value i in 0..255 as the byte overflow when a field element
|
92 |
|
|
in GHASH is multipled by x^8, this function will return the values that
|
93 |
|
|
are generated in the lo 16-bit word of the field value by applying the
|
94 |
|
|
modular polynomial. The values lo_byte and hi_byte are returned via the
|
95 |
|
|
macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into
|
96 |
|
|
memory as required by a suitable definition of this macro operating on
|
97 |
|
|
the table above
|
98 |
|
|
*/
|
99 |
|
|
|
100 |
|
|
#define xx(p, q) 0x##p##q
|
101 |
|
|
|
102 |
|
|
#define xda_bbe(i) ( \
|
103 |
|
|
(i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \
|
104 |
|
|
(i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \
|
105 |
|
|
(i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \
|
106 |
|
|
(i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \
|
107 |
|
|
)
|
108 |
|
|
|
109 |
|
|
#define xda_lle(i) ( \
|
110 |
|
|
(i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \
|
111 |
|
|
(i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \
|
112 |
|
|
(i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \
|
113 |
|
|
(i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \
|
114 |
|
|
)
|
115 |
|
|
|
116 |
|
|
static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle);
|
117 |
|
|
static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe);
|
118 |
|
|
|
119 |
|
|
/* These functions multiply a field element by x, by x^4 and by x^8
|
120 |
|
|
* in the polynomial field representation. It uses 32-bit word operations
|
121 |
|
|
* to gain speed but compensates for machine endianess and hence works
|
122 |
|
|
* correctly on both styles of machine.
|
123 |
|
|
*/
|
124 |
|
|
|
125 |
|
|
static void gf128mul_x_lle(be128 *r, const be128 *x)
|
126 |
|
|
{
|
127 |
|
|
u64 a = be64_to_cpu(x->a);
|
128 |
|
|
u64 b = be64_to_cpu(x->b);
|
129 |
|
|
u64 _tt = gf128mul_table_lle[(b << 7) & 0xff];
|
130 |
|
|
|
131 |
|
|
r->b = cpu_to_be64((b >> 1) | (a << 63));
|
132 |
|
|
r->a = cpu_to_be64((a >> 1) ^ (_tt << 48));
|
133 |
|
|
}
|
134 |
|
|
|
135 |
|
|
static void gf128mul_x_bbe(be128 *r, const be128 *x)
|
136 |
|
|
{
|
137 |
|
|
u64 a = be64_to_cpu(x->a);
|
138 |
|
|
u64 b = be64_to_cpu(x->b);
|
139 |
|
|
u64 _tt = gf128mul_table_bbe[a >> 63];
|
140 |
|
|
|
141 |
|
|
r->a = cpu_to_be64((a << 1) | (b >> 63));
|
142 |
|
|
r->b = cpu_to_be64((b << 1) ^ _tt);
|
143 |
|
|
}
|
144 |
|
|
|
145 |
|
|
void gf128mul_x_ble(be128 *r, const be128 *x)
|
146 |
|
|
{
|
147 |
|
|
u64 a = le64_to_cpu(x->a);
|
148 |
|
|
u64 b = le64_to_cpu(x->b);
|
149 |
|
|
u64 _tt = gf128mul_table_bbe[b >> 63];
|
150 |
|
|
|
151 |
|
|
r->a = cpu_to_le64((a << 1) ^ _tt);
|
152 |
|
|
r->b = cpu_to_le64((b << 1) | (a >> 63));
|
153 |
|
|
}
|
154 |
|
|
EXPORT_SYMBOL(gf128mul_x_ble);
|
155 |
|
|
|
156 |
|
|
static void gf128mul_x8_lle(be128 *x)
|
157 |
|
|
{
|
158 |
|
|
u64 a = be64_to_cpu(x->a);
|
159 |
|
|
u64 b = be64_to_cpu(x->b);
|
160 |
|
|
u64 _tt = gf128mul_table_lle[b & 0xff];
|
161 |
|
|
|
162 |
|
|
x->b = cpu_to_be64((b >> 8) | (a << 56));
|
163 |
|
|
x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
static void gf128mul_x8_bbe(be128 *x)
|
167 |
|
|
{
|
168 |
|
|
u64 a = be64_to_cpu(x->a);
|
169 |
|
|
u64 b = be64_to_cpu(x->b);
|
170 |
|
|
u64 _tt = gf128mul_table_bbe[a >> 56];
|
171 |
|
|
|
172 |
|
|
x->a = cpu_to_be64((a << 8) | (b >> 56));
|
173 |
|
|
x->b = cpu_to_be64((b << 8) ^ _tt);
|
174 |
|
|
}
|
175 |
|
|
|
176 |
|
|
void gf128mul_lle(be128 *r, const be128 *b)
|
177 |
|
|
{
|
178 |
|
|
be128 p[8];
|
179 |
|
|
int i;
|
180 |
|
|
|
181 |
|
|
p[0] = *r;
|
182 |
|
|
for (i = 0; i < 7; ++i)
|
183 |
|
|
gf128mul_x_lle(&p[i + 1], &p[i]);
|
184 |
|
|
|
185 |
|
|
memset(r, 0, sizeof(r));
|
186 |
|
|
for (i = 0;;) {
|
187 |
|
|
u8 ch = ((u8 *)b)[15 - i];
|
188 |
|
|
|
189 |
|
|
if (ch & 0x80)
|
190 |
|
|
be128_xor(r, r, &p[0]);
|
191 |
|
|
if (ch & 0x40)
|
192 |
|
|
be128_xor(r, r, &p[1]);
|
193 |
|
|
if (ch & 0x20)
|
194 |
|
|
be128_xor(r, r, &p[2]);
|
195 |
|
|
if (ch & 0x10)
|
196 |
|
|
be128_xor(r, r, &p[3]);
|
197 |
|
|
if (ch & 0x08)
|
198 |
|
|
be128_xor(r, r, &p[4]);
|
199 |
|
|
if (ch & 0x04)
|
200 |
|
|
be128_xor(r, r, &p[5]);
|
201 |
|
|
if (ch & 0x02)
|
202 |
|
|
be128_xor(r, r, &p[6]);
|
203 |
|
|
if (ch & 0x01)
|
204 |
|
|
be128_xor(r, r, &p[7]);
|
205 |
|
|
|
206 |
|
|
if (++i >= 16)
|
207 |
|
|
break;
|
208 |
|
|
|
209 |
|
|
gf128mul_x8_lle(r);
|
210 |
|
|
}
|
211 |
|
|
}
|
212 |
|
|
EXPORT_SYMBOL(gf128mul_lle);
|
213 |
|
|
|
214 |
|
|
void gf128mul_bbe(be128 *r, const be128 *b)
|
215 |
|
|
{
|
216 |
|
|
be128 p[8];
|
217 |
|
|
int i;
|
218 |
|
|
|
219 |
|
|
p[0] = *r;
|
220 |
|
|
for (i = 0; i < 7; ++i)
|
221 |
|
|
gf128mul_x_bbe(&p[i + 1], &p[i]);
|
222 |
|
|
|
223 |
|
|
memset(r, 0, sizeof(r));
|
224 |
|
|
for (i = 0;;) {
|
225 |
|
|
u8 ch = ((u8 *)b)[i];
|
226 |
|
|
|
227 |
|
|
if (ch & 0x80)
|
228 |
|
|
be128_xor(r, r, &p[7]);
|
229 |
|
|
if (ch & 0x40)
|
230 |
|
|
be128_xor(r, r, &p[6]);
|
231 |
|
|
if (ch & 0x20)
|
232 |
|
|
be128_xor(r, r, &p[5]);
|
233 |
|
|
if (ch & 0x10)
|
234 |
|
|
be128_xor(r, r, &p[4]);
|
235 |
|
|
if (ch & 0x08)
|
236 |
|
|
be128_xor(r, r, &p[3]);
|
237 |
|
|
if (ch & 0x04)
|
238 |
|
|
be128_xor(r, r, &p[2]);
|
239 |
|
|
if (ch & 0x02)
|
240 |
|
|
be128_xor(r, r, &p[1]);
|
241 |
|
|
if (ch & 0x01)
|
242 |
|
|
be128_xor(r, r, &p[0]);
|
243 |
|
|
|
244 |
|
|
if (++i >= 16)
|
245 |
|
|
break;
|
246 |
|
|
|
247 |
|
|
gf128mul_x8_bbe(r);
|
248 |
|
|
}
|
249 |
|
|
}
|
250 |
|
|
EXPORT_SYMBOL(gf128mul_bbe);
|
251 |
|
|
|
252 |
|
|
/* This version uses 64k bytes of table space.
|
253 |
|
|
A 16 byte buffer has to be multiplied by a 16 byte key
|
254 |
|
|
value in GF(128). If we consider a GF(128) value in
|
255 |
|
|
the buffer's lowest byte, we can construct a table of
|
256 |
|
|
the 256 16 byte values that result from the 256 values
|
257 |
|
|
of this byte. This requires 4096 bytes. But we also
|
258 |
|
|
need tables for each of the 16 higher bytes in the
|
259 |
|
|
buffer as well, which makes 64 kbytes in total.
|
260 |
|
|
*/
|
261 |
|
|
/* additional explanation
|
262 |
|
|
* t[0][BYTE] contains g*BYTE
|
263 |
|
|
* t[1][BYTE] contains g*x^8*BYTE
|
264 |
|
|
* ..
|
265 |
|
|
* t[15][BYTE] contains g*x^120*BYTE */
|
266 |
|
|
struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g)
|
267 |
|
|
{
|
268 |
|
|
struct gf128mul_64k *t;
|
269 |
|
|
int i, j, k;
|
270 |
|
|
|
271 |
|
|
t = kzalloc(sizeof(*t), GFP_KERNEL);
|
272 |
|
|
if (!t)
|
273 |
|
|
goto out;
|
274 |
|
|
|
275 |
|
|
for (i = 0; i < 16; i++) {
|
276 |
|
|
t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
|
277 |
|
|
if (!t->t[i]) {
|
278 |
|
|
gf128mul_free_64k(t);
|
279 |
|
|
t = NULL;
|
280 |
|
|
goto out;
|
281 |
|
|
}
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
t->t[0]->t[128] = *g;
|
285 |
|
|
for (j = 64; j > 0; j >>= 1)
|
286 |
|
|
gf128mul_x_lle(&t->t[0]->t[j], &t->t[0]->t[j + j]);
|
287 |
|
|
|
288 |
|
|
for (i = 0;;) {
|
289 |
|
|
for (j = 2; j < 256; j += j)
|
290 |
|
|
for (k = 1; k < j; ++k)
|
291 |
|
|
be128_xor(&t->t[i]->t[j + k],
|
292 |
|
|
&t->t[i]->t[j], &t->t[i]->t[k]);
|
293 |
|
|
|
294 |
|
|
if (++i >= 16)
|
295 |
|
|
break;
|
296 |
|
|
|
297 |
|
|
for (j = 128; j > 0; j >>= 1) {
|
298 |
|
|
t->t[i]->t[j] = t->t[i - 1]->t[j];
|
299 |
|
|
gf128mul_x8_lle(&t->t[i]->t[j]);
|
300 |
|
|
}
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
out:
|
304 |
|
|
return t;
|
305 |
|
|
}
|
306 |
|
|
EXPORT_SYMBOL(gf128mul_init_64k_lle);
|
307 |
|
|
|
308 |
|
|
struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
|
309 |
|
|
{
|
310 |
|
|
struct gf128mul_64k *t;
|
311 |
|
|
int i, j, k;
|
312 |
|
|
|
313 |
|
|
t = kzalloc(sizeof(*t), GFP_KERNEL);
|
314 |
|
|
if (!t)
|
315 |
|
|
goto out;
|
316 |
|
|
|
317 |
|
|
for (i = 0; i < 16; i++) {
|
318 |
|
|
t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
|
319 |
|
|
if (!t->t[i]) {
|
320 |
|
|
gf128mul_free_64k(t);
|
321 |
|
|
t = NULL;
|
322 |
|
|
goto out;
|
323 |
|
|
}
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
t->t[0]->t[1] = *g;
|
327 |
|
|
for (j = 1; j <= 64; j <<= 1)
|
328 |
|
|
gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
|
329 |
|
|
|
330 |
|
|
for (i = 0;;) {
|
331 |
|
|
for (j = 2; j < 256; j += j)
|
332 |
|
|
for (k = 1; k < j; ++k)
|
333 |
|
|
be128_xor(&t->t[i]->t[j + k],
|
334 |
|
|
&t->t[i]->t[j], &t->t[i]->t[k]);
|
335 |
|
|
|
336 |
|
|
if (++i >= 16)
|
337 |
|
|
break;
|
338 |
|
|
|
339 |
|
|
for (j = 128; j > 0; j >>= 1) {
|
340 |
|
|
t->t[i]->t[j] = t->t[i - 1]->t[j];
|
341 |
|
|
gf128mul_x8_bbe(&t->t[i]->t[j]);
|
342 |
|
|
}
|
343 |
|
|
}
|
344 |
|
|
|
345 |
|
|
out:
|
346 |
|
|
return t;
|
347 |
|
|
}
|
348 |
|
|
EXPORT_SYMBOL(gf128mul_init_64k_bbe);
|
349 |
|
|
|
350 |
|
|
void gf128mul_free_64k(struct gf128mul_64k *t)
|
351 |
|
|
{
|
352 |
|
|
int i;
|
353 |
|
|
|
354 |
|
|
for (i = 0; i < 16; i++)
|
355 |
|
|
kfree(t->t[i]);
|
356 |
|
|
kfree(t);
|
357 |
|
|
}
|
358 |
|
|
EXPORT_SYMBOL(gf128mul_free_64k);
|
359 |
|
|
|
360 |
|
|
void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t)
|
361 |
|
|
{
|
362 |
|
|
u8 *ap = (u8 *)a;
|
363 |
|
|
be128 r[1];
|
364 |
|
|
int i;
|
365 |
|
|
|
366 |
|
|
*r = t->t[0]->t[ap[0]];
|
367 |
|
|
for (i = 1; i < 16; ++i)
|
368 |
|
|
be128_xor(r, r, &t->t[i]->t[ap[i]]);
|
369 |
|
|
*a = *r;
|
370 |
|
|
}
|
371 |
|
|
EXPORT_SYMBOL(gf128mul_64k_lle);
|
372 |
|
|
|
373 |
|
|
void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t)
|
374 |
|
|
{
|
375 |
|
|
u8 *ap = (u8 *)a;
|
376 |
|
|
be128 r[1];
|
377 |
|
|
int i;
|
378 |
|
|
|
379 |
|
|
*r = t->t[0]->t[ap[15]];
|
380 |
|
|
for (i = 1; i < 16; ++i)
|
381 |
|
|
be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
|
382 |
|
|
*a = *r;
|
383 |
|
|
}
|
384 |
|
|
EXPORT_SYMBOL(gf128mul_64k_bbe);
|
385 |
|
|
|
386 |
|
|
/* This version uses 4k bytes of table space.
|
387 |
|
|
A 16 byte buffer has to be multiplied by a 16 byte key
|
388 |
|
|
value in GF(128). If we consider a GF(128) value in a
|
389 |
|
|
single byte, we can construct a table of the 256 16 byte
|
390 |
|
|
values that result from the 256 values of this byte.
|
391 |
|
|
This requires 4096 bytes. If we take the highest byte in
|
392 |
|
|
the buffer and use this table to get the result, we then
|
393 |
|
|
have to multiply by x^120 to get the final value. For the
|
394 |
|
|
next highest byte the result has to be multiplied by x^112
|
395 |
|
|
and so on. But we can do this by accumulating the result
|
396 |
|
|
in an accumulator starting with the result for the top
|
397 |
|
|
byte. We repeatedly multiply the accumulator value by
|
398 |
|
|
x^8 and then add in (i.e. xor) the 16 bytes of the next
|
399 |
|
|
lower byte in the buffer, stopping when we reach the
|
400 |
|
|
lowest byte. This requires a 4096 byte table.
|
401 |
|
|
*/
|
402 |
|
|
struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
|
403 |
|
|
{
|
404 |
|
|
struct gf128mul_4k *t;
|
405 |
|
|
int j, k;
|
406 |
|
|
|
407 |
|
|
t = kzalloc(sizeof(*t), GFP_KERNEL);
|
408 |
|
|
if (!t)
|
409 |
|
|
goto out;
|
410 |
|
|
|
411 |
|
|
t->t[128] = *g;
|
412 |
|
|
for (j = 64; j > 0; j >>= 1)
|
413 |
|
|
gf128mul_x_lle(&t->t[j], &t->t[j+j]);
|
414 |
|
|
|
415 |
|
|
for (j = 2; j < 256; j += j)
|
416 |
|
|
for (k = 1; k < j; ++k)
|
417 |
|
|
be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
|
418 |
|
|
|
419 |
|
|
out:
|
420 |
|
|
return t;
|
421 |
|
|
}
|
422 |
|
|
EXPORT_SYMBOL(gf128mul_init_4k_lle);
|
423 |
|
|
|
424 |
|
|
struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
|
425 |
|
|
{
|
426 |
|
|
struct gf128mul_4k *t;
|
427 |
|
|
int j, k;
|
428 |
|
|
|
429 |
|
|
t = kzalloc(sizeof(*t), GFP_KERNEL);
|
430 |
|
|
if (!t)
|
431 |
|
|
goto out;
|
432 |
|
|
|
433 |
|
|
t->t[1] = *g;
|
434 |
|
|
for (j = 1; j <= 64; j <<= 1)
|
435 |
|
|
gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
|
436 |
|
|
|
437 |
|
|
for (j = 2; j < 256; j += j)
|
438 |
|
|
for (k = 1; k < j; ++k)
|
439 |
|
|
be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
|
440 |
|
|
|
441 |
|
|
out:
|
442 |
|
|
return t;
|
443 |
|
|
}
|
444 |
|
|
EXPORT_SYMBOL(gf128mul_init_4k_bbe);
|
445 |
|
|
|
446 |
|
|
void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t)
|
447 |
|
|
{
|
448 |
|
|
u8 *ap = (u8 *)a;
|
449 |
|
|
be128 r[1];
|
450 |
|
|
int i = 15;
|
451 |
|
|
|
452 |
|
|
*r = t->t[ap[15]];
|
453 |
|
|
while (i--) {
|
454 |
|
|
gf128mul_x8_lle(r);
|
455 |
|
|
be128_xor(r, r, &t->t[ap[i]]);
|
456 |
|
|
}
|
457 |
|
|
*a = *r;
|
458 |
|
|
}
|
459 |
|
|
EXPORT_SYMBOL(gf128mul_4k_lle);
|
460 |
|
|
|
461 |
|
|
void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t)
|
462 |
|
|
{
|
463 |
|
|
u8 *ap = (u8 *)a;
|
464 |
|
|
be128 r[1];
|
465 |
|
|
int i = 0;
|
466 |
|
|
|
467 |
|
|
*r = t->t[ap[0]];
|
468 |
|
|
while (++i < 16) {
|
469 |
|
|
gf128mul_x8_bbe(r);
|
470 |
|
|
be128_xor(r, r, &t->t[ap[i]]);
|
471 |
|
|
}
|
472 |
|
|
*a = *r;
|
473 |
|
|
}
|
474 |
|
|
EXPORT_SYMBOL(gf128mul_4k_bbe);
|
475 |
|
|
|
476 |
|
|
MODULE_LICENSE("GPL");
|
477 |
|
|
MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");
|