1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* pata_mpiix.c - Intel MPIIX PATA for new ATA layer
|
3 |
|
|
* (C) 2005-2006 Red Hat Inc
|
4 |
|
|
* Alan Cox <alan@redhat.com>
|
5 |
|
|
*
|
6 |
|
|
* The MPIIX is different enough to the PIIX4 and friends that we give it
|
7 |
|
|
* a separate driver. The old ide/pci code handles this by just not tuning
|
8 |
|
|
* MPIIX at all.
|
9 |
|
|
*
|
10 |
|
|
* The MPIIX also differs in another important way from the majority of PIIX
|
11 |
|
|
* devices. The chip is a bridge (pardon the pun) between the old world of
|
12 |
|
|
* ISA IDE and PCI IDE. Although the ATA timings are PCI configured the actual
|
13 |
|
|
* IDE controller is not decoded in PCI space and the chip does not claim to
|
14 |
|
|
* be IDE class PCI. This requires slightly non-standard probe logic compared
|
15 |
|
|
* with PCI IDE and also that we do not disable the device when our driver is
|
16 |
|
|
* unloaded (as it has many other functions).
|
17 |
|
|
*
|
18 |
|
|
* The driver conciously keeps this logic internally to avoid pushing quirky
|
19 |
|
|
* PATA history into the clean libata layer.
|
20 |
|
|
*
|
21 |
|
|
* Thinkpad specific note: If you boot an MPIIX using a thinkpad with a PCMCIA
|
22 |
|
|
* hard disk present this driver will not detect it. This is not a bug. In this
|
23 |
|
|
* configuration the secondary port of the MPIIX is disabled and the addresses
|
24 |
|
|
* are decoded by the PCMCIA bridge and therefore are for a generic IDE driver
|
25 |
|
|
* to operate.
|
26 |
|
|
*/
|
27 |
|
|
|
28 |
|
|
#include <linux/kernel.h>
|
29 |
|
|
#include <linux/module.h>
|
30 |
|
|
#include <linux/pci.h>
|
31 |
|
|
#include <linux/init.h>
|
32 |
|
|
#include <linux/blkdev.h>
|
33 |
|
|
#include <linux/delay.h>
|
34 |
|
|
#include <scsi/scsi_host.h>
|
35 |
|
|
#include <linux/libata.h>
|
36 |
|
|
|
37 |
|
|
#define DRV_NAME "pata_mpiix"
|
38 |
|
|
#define DRV_VERSION "0.7.6"
|
39 |
|
|
|
40 |
|
|
enum {
|
41 |
|
|
IDETIM = 0x6C, /* IDE control register */
|
42 |
|
|
IORDY = (1 << 1),
|
43 |
|
|
PPE = (1 << 2),
|
44 |
|
|
FTIM = (1 << 0),
|
45 |
|
|
ENABLED = (1 << 15),
|
46 |
|
|
SECONDARY = (1 << 14)
|
47 |
|
|
};
|
48 |
|
|
|
49 |
|
|
static int mpiix_pre_reset(struct ata_link *link, unsigned long deadline)
|
50 |
|
|
{
|
51 |
|
|
struct ata_port *ap = link->ap;
|
52 |
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
53 |
|
|
static const struct pci_bits mpiix_enable_bits = { 0x6D, 1, 0x80, 0x80 };
|
54 |
|
|
|
55 |
|
|
if (!pci_test_config_bits(pdev, &mpiix_enable_bits))
|
56 |
|
|
return -ENOENT;
|
57 |
|
|
|
58 |
|
|
return ata_std_prereset(link, deadline);
|
59 |
|
|
}
|
60 |
|
|
|
61 |
|
|
/**
|
62 |
|
|
* mpiix_error_handler - probe reset
|
63 |
|
|
* @ap: ATA port
|
64 |
|
|
*
|
65 |
|
|
* Perform the ATA probe and bus reset sequence plus specific handling
|
66 |
|
|
* for this hardware. The MPIIX has the enable bits in a different place
|
67 |
|
|
* to PIIX4 and friends. As a pure PIO device it has no cable detect
|
68 |
|
|
*/
|
69 |
|
|
|
70 |
|
|
static void mpiix_error_handler(struct ata_port *ap)
|
71 |
|
|
{
|
72 |
|
|
ata_bmdma_drive_eh(ap, mpiix_pre_reset, ata_std_softreset, NULL, ata_std_postreset);
|
73 |
|
|
}
|
74 |
|
|
|
75 |
|
|
/**
|
76 |
|
|
* mpiix_set_piomode - set initial PIO mode data
|
77 |
|
|
* @ap: ATA interface
|
78 |
|
|
* @adev: ATA device
|
79 |
|
|
*
|
80 |
|
|
* Called to do the PIO mode setup. The MPIIX allows us to program the
|
81 |
|
|
* IORDY sample point (2-5 clocks), recovery (1-4 clocks) and whether
|
82 |
|
|
* prefetching or IORDY are used.
|
83 |
|
|
*
|
84 |
|
|
* This would get very ugly because we can only program timing for one
|
85 |
|
|
* device at a time, the other gets PIO0. Fortunately libata calls
|
86 |
|
|
* our qc_issue_prot command before a command is issued so we can
|
87 |
|
|
* flip the timings back and forth to reduce the pain.
|
88 |
|
|
*/
|
89 |
|
|
|
90 |
|
|
static void mpiix_set_piomode(struct ata_port *ap, struct ata_device *adev)
|
91 |
|
|
{
|
92 |
|
|
int control = 0;
|
93 |
|
|
int pio = adev->pio_mode - XFER_PIO_0;
|
94 |
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
95 |
|
|
u16 idetim;
|
96 |
|
|
static const /* ISP RTC */
|
97 |
|
|
u8 timings[][2] = { { 0, 0 },
|
98 |
|
|
{ 0, 0 },
|
99 |
|
|
{ 1, 0 },
|
100 |
|
|
{ 2, 1 },
|
101 |
|
|
{ 2, 3 }, };
|
102 |
|
|
|
103 |
|
|
pci_read_config_word(pdev, IDETIM, &idetim);
|
104 |
|
|
|
105 |
|
|
/* Mask the IORDY/TIME/PPE for this device */
|
106 |
|
|
if (adev->class == ATA_DEV_ATA)
|
107 |
|
|
control |= PPE; /* Enable prefetch/posting for disk */
|
108 |
|
|
if (ata_pio_need_iordy(adev))
|
109 |
|
|
control |= IORDY;
|
110 |
|
|
if (pio > 1)
|
111 |
|
|
control |= FTIM; /* This drive is on the fast timing bank */
|
112 |
|
|
|
113 |
|
|
/* Mask out timing and clear both TIME bank selects */
|
114 |
|
|
idetim &= 0xCCEE;
|
115 |
|
|
idetim &= ~(0x07 << (4 * adev->devno));
|
116 |
|
|
idetim |= control << (4 * adev->devno);
|
117 |
|
|
|
118 |
|
|
idetim |= (timings[pio][0] << 12) | (timings[pio][1] << 8);
|
119 |
|
|
pci_write_config_word(pdev, IDETIM, idetim);
|
120 |
|
|
|
121 |
|
|
/* We use ap->private_data as a pointer to the device currently
|
122 |
|
|
loaded for timing */
|
123 |
|
|
ap->private_data = adev;
|
124 |
|
|
}
|
125 |
|
|
|
126 |
|
|
/**
|
127 |
|
|
* mpiix_qc_issue_prot - command issue
|
128 |
|
|
* @qc: command pending
|
129 |
|
|
*
|
130 |
|
|
* Called when the libata layer is about to issue a command. We wrap
|
131 |
|
|
* this interface so that we can load the correct ATA timings if
|
132 |
|
|
* necessary. Our logic also clears TIME0/TIME1 for the other device so
|
133 |
|
|
* that, even if we get this wrong, cycles to the other device will
|
134 |
|
|
* be made PIO0.
|
135 |
|
|
*/
|
136 |
|
|
|
137 |
|
|
static unsigned int mpiix_qc_issue_prot(struct ata_queued_cmd *qc)
|
138 |
|
|
{
|
139 |
|
|
struct ata_port *ap = qc->ap;
|
140 |
|
|
struct ata_device *adev = qc->dev;
|
141 |
|
|
|
142 |
|
|
/* If modes have been configured and the channel data is not loaded
|
143 |
|
|
then load it. We have to check if pio_mode is set as the core code
|
144 |
|
|
does not set adev->pio_mode to XFER_PIO_0 while probing as would be
|
145 |
|
|
logical */
|
146 |
|
|
|
147 |
|
|
if (adev->pio_mode && adev != ap->private_data)
|
148 |
|
|
mpiix_set_piomode(ap, adev);
|
149 |
|
|
|
150 |
|
|
return ata_qc_issue_prot(qc);
|
151 |
|
|
}
|
152 |
|
|
|
153 |
|
|
static struct scsi_host_template mpiix_sht = {
|
154 |
|
|
.module = THIS_MODULE,
|
155 |
|
|
.name = DRV_NAME,
|
156 |
|
|
.ioctl = ata_scsi_ioctl,
|
157 |
|
|
.queuecommand = ata_scsi_queuecmd,
|
158 |
|
|
.can_queue = ATA_DEF_QUEUE,
|
159 |
|
|
.this_id = ATA_SHT_THIS_ID,
|
160 |
|
|
.sg_tablesize = LIBATA_MAX_PRD,
|
161 |
|
|
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
|
162 |
|
|
.emulated = ATA_SHT_EMULATED,
|
163 |
|
|
.use_clustering = ATA_SHT_USE_CLUSTERING,
|
164 |
|
|
.proc_name = DRV_NAME,
|
165 |
|
|
.dma_boundary = ATA_DMA_BOUNDARY,
|
166 |
|
|
.slave_configure = ata_scsi_slave_config,
|
167 |
|
|
.slave_destroy = ata_scsi_slave_destroy,
|
168 |
|
|
.bios_param = ata_std_bios_param,
|
169 |
|
|
};
|
170 |
|
|
|
171 |
|
|
static struct ata_port_operations mpiix_port_ops = {
|
172 |
|
|
.set_piomode = mpiix_set_piomode,
|
173 |
|
|
|
174 |
|
|
.tf_load = ata_tf_load,
|
175 |
|
|
.tf_read = ata_tf_read,
|
176 |
|
|
.check_status = ata_check_status,
|
177 |
|
|
.exec_command = ata_exec_command,
|
178 |
|
|
.dev_select = ata_std_dev_select,
|
179 |
|
|
|
180 |
|
|
.freeze = ata_bmdma_freeze,
|
181 |
|
|
.thaw = ata_bmdma_thaw,
|
182 |
|
|
.error_handler = mpiix_error_handler,
|
183 |
|
|
.post_internal_cmd = ata_bmdma_post_internal_cmd,
|
184 |
|
|
.cable_detect = ata_cable_40wire,
|
185 |
|
|
|
186 |
|
|
.qc_prep = ata_qc_prep,
|
187 |
|
|
.qc_issue = mpiix_qc_issue_prot,
|
188 |
|
|
.data_xfer = ata_data_xfer,
|
189 |
|
|
|
190 |
|
|
.irq_clear = ata_bmdma_irq_clear,
|
191 |
|
|
.irq_on = ata_irq_on,
|
192 |
|
|
|
193 |
|
|
.port_start = ata_sff_port_start,
|
194 |
|
|
};
|
195 |
|
|
|
196 |
|
|
static int mpiix_init_one(struct pci_dev *dev, const struct pci_device_id *id)
|
197 |
|
|
{
|
198 |
|
|
/* Single threaded by the PCI probe logic */
|
199 |
|
|
static int printed_version;
|
200 |
|
|
struct ata_host *host;
|
201 |
|
|
struct ata_port *ap;
|
202 |
|
|
void __iomem *cmd_addr, *ctl_addr;
|
203 |
|
|
u16 idetim;
|
204 |
|
|
int cmd, ctl, irq;
|
205 |
|
|
|
206 |
|
|
if (!printed_version++)
|
207 |
|
|
dev_printk(KERN_DEBUG, &dev->dev, "version " DRV_VERSION "\n");
|
208 |
|
|
|
209 |
|
|
host = ata_host_alloc(&dev->dev, 1);
|
210 |
|
|
if (!host)
|
211 |
|
|
return -ENOMEM;
|
212 |
|
|
ap = host->ports[0];
|
213 |
|
|
|
214 |
|
|
/* MPIIX has many functions which can be turned on or off according
|
215 |
|
|
to other devices present. Make sure IDE is enabled before we try
|
216 |
|
|
and use it */
|
217 |
|
|
|
218 |
|
|
pci_read_config_word(dev, IDETIM, &idetim);
|
219 |
|
|
if (!(idetim & ENABLED))
|
220 |
|
|
return -ENODEV;
|
221 |
|
|
|
222 |
|
|
/* See if it's primary or secondary channel... */
|
223 |
|
|
if (!(idetim & SECONDARY)) {
|
224 |
|
|
cmd = 0x1F0;
|
225 |
|
|
ctl = 0x3F6;
|
226 |
|
|
irq = 14;
|
227 |
|
|
} else {
|
228 |
|
|
cmd = 0x170;
|
229 |
|
|
ctl = 0x376;
|
230 |
|
|
irq = 15;
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
cmd_addr = devm_ioport_map(&dev->dev, cmd, 8);
|
234 |
|
|
ctl_addr = devm_ioport_map(&dev->dev, ctl, 1);
|
235 |
|
|
if (!cmd_addr || !ctl_addr)
|
236 |
|
|
return -ENOMEM;
|
237 |
|
|
|
238 |
|
|
ata_port_desc(ap, "cmd 0x%x ctl 0x%x", cmd, ctl);
|
239 |
|
|
|
240 |
|
|
/* We do our own plumbing to avoid leaking special cases for whacko
|
241 |
|
|
ancient hardware into the core code. There are two issues to
|
242 |
|
|
worry about. #1 The chip is a bridge so if in legacy mode and
|
243 |
|
|
without BARs set fools the setup. #2 If you pci_disable_device
|
244 |
|
|
the MPIIX your box goes castors up */
|
245 |
|
|
|
246 |
|
|
ap->ops = &mpiix_port_ops;
|
247 |
|
|
ap->pio_mask = 0x1F;
|
248 |
|
|
ap->flags |= ATA_FLAG_SLAVE_POSS;
|
249 |
|
|
|
250 |
|
|
ap->ioaddr.cmd_addr = cmd_addr;
|
251 |
|
|
ap->ioaddr.ctl_addr = ctl_addr;
|
252 |
|
|
ap->ioaddr.altstatus_addr = ctl_addr;
|
253 |
|
|
|
254 |
|
|
/* Let libata fill in the port details */
|
255 |
|
|
ata_std_ports(&ap->ioaddr);
|
256 |
|
|
|
257 |
|
|
/* activate host */
|
258 |
|
|
return ata_host_activate(host, irq, ata_interrupt, IRQF_SHARED,
|
259 |
|
|
&mpiix_sht);
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
static const struct pci_device_id mpiix[] = {
|
263 |
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_82371MX), },
|
264 |
|
|
|
265 |
|
|
{ },
|
266 |
|
|
};
|
267 |
|
|
|
268 |
|
|
static struct pci_driver mpiix_pci_driver = {
|
269 |
|
|
.name = DRV_NAME,
|
270 |
|
|
.id_table = mpiix,
|
271 |
|
|
.probe = mpiix_init_one,
|
272 |
|
|
.remove = ata_pci_remove_one,
|
273 |
|
|
#ifdef CONFIG_PM
|
274 |
|
|
.suspend = ata_pci_device_suspend,
|
275 |
|
|
.resume = ata_pci_device_resume,
|
276 |
|
|
#endif
|
277 |
|
|
};
|
278 |
|
|
|
279 |
|
|
static int __init mpiix_init(void)
|
280 |
|
|
{
|
281 |
|
|
return pci_register_driver(&mpiix_pci_driver);
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
static void __exit mpiix_exit(void)
|
285 |
|
|
{
|
286 |
|
|
pci_unregister_driver(&mpiix_pci_driver);
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
MODULE_AUTHOR("Alan Cox");
|
290 |
|
|
MODULE_DESCRIPTION("low-level driver for Intel MPIIX");
|
291 |
|
|
MODULE_LICENSE("GPL");
|
292 |
|
|
MODULE_DEVICE_TABLE(pci, mpiix);
|
293 |
|
|
MODULE_VERSION(DRV_VERSION);
|
294 |
|
|
|
295 |
|
|
module_init(mpiix_init);
|
296 |
|
|
module_exit(mpiix_exit);
|