OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [atm/] [lanai.c] - Blame information for rev 65

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
2
 *
3
 *  This program is free software; you can redistribute it and/or
4
 *  modify it under the terms of the GNU General Public License
5
 *  as published by the Free Software Foundation; either version
6
 *  2 of the License, or (at your option) any later version.
7
 *
8
 * This driver supports ATM cards based on the Efficient "Lanai"
9
 * chipset such as the Speedstream 3010 and the ENI-25p.  The
10
 * Speedstream 3060 is currently not supported since we don't
11
 * have the code to drive the on-board Alcatel DSL chipset (yet).
12
 *
13
 * Thanks to Efficient for supporting this project with hardware,
14
 * documentation, and by answering my questions.
15
 *
16
 * Things not working yet:
17
 *
18
 * o  We don't support the Speedstream 3060 yet - this card has
19
 *    an on-board DSL modem chip by Alcatel and the driver will
20
 *    need some extra code added to handle it
21
 *
22
 * o  Note that due to limitations of the Lanai only one VCC can be
23
 *    in CBR at once
24
 *
25
 * o We don't currently parse the EEPROM at all.  The code is all
26
 *   there as per the spec, but it doesn't actually work.  I think
27
 *   there may be some issues with the docs.  Anyway, do NOT
28
 *   enable it yet - bugs in that code may actually damage your
29
 *   hardware!  Because of this you should hardware an ESI before
30
 *   trying to use this in a LANE or MPOA environment.
31
 *
32
 * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
33
 *      vcc_tx_aal0() needs to send or queue a SKB
34
 *      vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
35
 *      vcc_rx_aal0() needs to handle AAL0 interrupts
36
 *    This isn't too much work - I just wanted to get other things
37
 *    done first.
38
 *
39
 * o  lanai_change_qos() isn't written yet
40
 *
41
 * o  There aren't any ioctl's yet -- I'd like to eventually support
42
 *    setting loopback and LED modes that way.
43
 *
44
 * o  If the segmentation engine or DMA gets shut down we should restart
45
 *    card as per section 17.0i.  (see lanai_reset)
46
 *
47
 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
48
 *   API says it isn't exactly commonly implemented)
49
 */
50
 
51
/* Version history:
52
 *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
53
 *   v.0.02 -- 11-JAN-2000 -- Endian fixes
54
 *   v.0.01 -- 30-NOV-1999 -- Initial release
55
 */
56
 
57
#include <linux/module.h>
58
#include <linux/mm.h>
59
#include <linux/atmdev.h>
60
#include <asm/io.h>
61
#include <asm/byteorder.h>
62
#include <linux/spinlock.h>
63
#include <linux/pci.h>
64
#include <linux/dma-mapping.h>
65
#include <linux/init.h>
66
#include <linux/delay.h>
67
#include <linux/interrupt.h>
68
 
69
/* -------------------- TUNABLE PARAMATERS: */
70
 
71
/*
72
 * Maximum number of VCIs per card.  Setting it lower could theoretically
73
 * save some memory, but since we allocate our vcc list with get_free_pages,
74
 * it's not really likely for most architectures
75
 */
76
#define NUM_VCI                 (1024)
77
 
78
/*
79
 * Enable extra debugging
80
 */
81
#define DEBUG
82
/*
83
 * Debug _all_ register operations with card, except the memory test.
84
 * Also disables the timed poll to prevent extra chattiness.  This
85
 * isn't for normal use
86
 */
87
#undef DEBUG_RW
88
 
89
/*
90
 * The programming guide specifies a full test of the on-board SRAM
91
 * at initialization time.  Undefine to remove this
92
 */
93
#define FULL_MEMORY_TEST
94
 
95
/*
96
 * This is the number of (4 byte) service entries that we will
97
 * try to allocate at startup.  Note that we will end up with
98
 * one PAGE_SIZE's worth regardless of what this is set to
99
 */
100
#define SERVICE_ENTRIES         (1024)
101
/* TODO: make above a module load-time option */
102
 
103
/*
104
 * We normally read the onboard EEPROM in order to discover our MAC
105
 * address.  Undefine to _not_ do this
106
 */
107
/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
108
/* TODO: make above a module load-time option (also) */
109
 
110
/*
111
 * Depth of TX fifo (in 128 byte units; range 2-31)
112
 * Smaller numbers are better for network latency
113
 * Larger numbers are better for PCI latency
114
 * I'm really sure where the best tradeoff is, but the BSD driver uses
115
 * 7 and it seems to work ok.
116
 */
117
#define TX_FIFO_DEPTH           (7)
118
/* TODO: make above a module load-time option */
119
 
120
/*
121
 * How often (in jiffies) we will try to unstick stuck connections -
122
 * shouldn't need to happen much
123
 */
124
#define LANAI_POLL_PERIOD       (10*HZ)
125
/* TODO: make above a module load-time option */
126
 
127
/*
128
 * When allocating an AAL5 receiving buffer, try to make it at least
129
 * large enough to hold this many max_sdu sized PDUs
130
 */
131
#define AAL5_RX_MULTIPLIER      (3)
132
/* TODO: make above a module load-time option */
133
 
134
/*
135
 * Same for transmitting buffer
136
 */
137
#define AAL5_TX_MULTIPLIER      (3)
138
/* TODO: make above a module load-time option */
139
 
140
/*
141
 * When allocating an AAL0 transmiting buffer, how many cells should fit.
142
 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
143
 * really critical
144
 */
145
#define AAL0_TX_MULTIPLIER      (40)
146
/* TODO: make above a module load-time option */
147
 
148
/*
149
 * How large should we make the AAL0 receiving buffer.  Remember that this
150
 * is shared between all AAL0 VC's
151
 */
152
#define AAL0_RX_BUFFER_SIZE     (PAGE_SIZE)
153
/* TODO: make above a module load-time option */
154
 
155
/*
156
 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
157
 */
158
/* #define USE_POWERDOWN */
159
/* TODO: make above a module load-time option (also) */
160
 
161
/* -------------------- DEBUGGING AIDS: */
162
 
163
#define DEV_LABEL "lanai"
164
 
165
#ifdef DEBUG
166
 
167
#define DPRINTK(format, args...) \
168
        printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
169
#define APRINTK(truth, format, args...) \
170
        do { \
171
                if (unlikely(!(truth))) \
172
                        printk(KERN_ERR DEV_LABEL ": " format, ##args); \
173
        } while (0)
174
 
175
#else /* !DEBUG */
176
 
177
#define DPRINTK(format, args...)
178
#define APRINTK(truth, format, args...)
179
 
180
#endif /* DEBUG */
181
 
182
#ifdef DEBUG_RW
183
#define RWDEBUG(format, args...) \
184
        printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
185
#else /* !DEBUG_RW */
186
#define RWDEBUG(format, args...)
187
#endif
188
 
189
/* -------------------- DATA DEFINITIONS: */
190
 
191
#define LANAI_MAPPING_SIZE      (0x40000)
192
#define LANAI_EEPROM_SIZE       (128)
193
 
194
typedef int vci_t;
195
typedef void __iomem *bus_addr_t;
196
 
197
/* DMA buffer in host memory for TX, RX, or service list. */
198
struct lanai_buffer {
199
        u32 *start;     /* From get_free_pages */
200
        u32 *end;       /* One past last byte */
201
        u32 *ptr;       /* Pointer to current host location */
202
        dma_addr_t dmaaddr;
203
};
204
 
205
struct lanai_vcc_stats {
206
        unsigned rx_nomem;
207
        union {
208
                struct {
209
                        unsigned rx_badlen;
210
                        unsigned service_trash;
211
                        unsigned service_stream;
212
                        unsigned service_rxcrc;
213
                } aal5;
214
                struct {
215
                } aal0;
216
        } x;
217
};
218
 
219
struct lanai_dev;                       /* Forward declaration */
220
 
221
/*
222
 * This is the card-specific per-vcc data.  Note that unlike some other
223
 * drivers there is NOT a 1-to-1 correspondance between these and
224
 * atm_vcc's - each one of these represents an actual 2-way vcc, but
225
 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
226
 * direction.  To make it weirder, there can even be 0-way vccs
227
 * bound to us, waiting to do a change_qos
228
 */
229
struct lanai_vcc {
230
        bus_addr_t vbase;               /* Base of VCC's registers */
231
        struct lanai_vcc_stats stats;
232
        int nref;                       /* # of atm_vcc's who reference us */
233
        vci_t vci;
234
        struct {
235
                struct lanai_buffer buf;
236
                struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
237
        } rx;
238
        struct {
239
                struct lanai_buffer buf;
240
                struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
241
                int endptr;             /* last endptr from service entry */
242
                struct sk_buff_head backlog;
243
                void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
244
        } tx;
245
};
246
 
247
enum lanai_type {
248
        lanai2  = PCI_DEVICE_ID_EF_ATM_LANAI2,
249
        lanaihb = PCI_DEVICE_ID_EF_ATM_LANAIHB
250
};
251
 
252
struct lanai_dev_stats {
253
        unsigned ovfl_trash;    /* # of cells dropped - buffer overflow */
254
        unsigned vci_trash;     /* # of cells dropped - closed vci */
255
        unsigned hec_err;       /* # of cells dropped - bad HEC */
256
        unsigned atm_ovfl;      /* # of cells dropped - rx fifo overflow */
257
        unsigned pcierr_parity_detect;
258
        unsigned pcierr_serr_set;
259
        unsigned pcierr_master_abort;
260
        unsigned pcierr_m_target_abort;
261
        unsigned pcierr_s_target_abort;
262
        unsigned pcierr_master_parity;
263
        unsigned service_notx;
264
        unsigned service_norx;
265
        unsigned service_rxnotaal5;
266
        unsigned dma_reenable;
267
        unsigned card_reset;
268
};
269
 
270
struct lanai_dev {
271
        bus_addr_t base;
272
        struct lanai_dev_stats stats;
273
        struct lanai_buffer service;
274
        struct lanai_vcc **vccs;
275
#ifdef USE_POWERDOWN
276
        int nbound;                     /* number of bound vccs */
277
#endif
278
        enum lanai_type type;
279
        vci_t num_vci;                  /* Currently just NUM_VCI */
280
        u8 eeprom[LANAI_EEPROM_SIZE];
281
        u32 serialno, magicno;
282
        struct pci_dev *pci;
283
        DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
284
        DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
285
        struct timer_list timer;
286
        int naal0;
287
        struct lanai_buffer aal0buf;    /* AAL0 RX buffers */
288
        u32 conf1, conf2;               /* CONFIG[12] registers */
289
        u32 status;                     /* STATUS register */
290
        spinlock_t endtxlock;
291
        spinlock_t servicelock;
292
        struct atm_vcc *cbrvcc;
293
        int number;
294
        int board_rev;
295
/* TODO - look at race conditions with maintence of conf1/conf2 */
296
/* TODO - transmit locking: should we use _irq not _irqsave? */
297
/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
298
};
299
 
300
/*
301
 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
302
 * This function iterates one of these, calling a given function for each
303
 * vci with their bit set
304
 */
305
static void vci_bitfield_iterate(struct lanai_dev *lanai,
306
        const unsigned long *lp,
307
        void (*func)(struct lanai_dev *,vci_t vci))
308
{
309
        vci_t vci = find_first_bit(lp, NUM_VCI);
310
        while (vci < NUM_VCI) {
311
                func(lanai, vci);
312
                vci = find_next_bit(lp, NUM_VCI, vci + 1);
313
        }
314
}
315
 
316
/* -------------------- BUFFER  UTILITIES: */
317
 
318
/*
319
 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
320
 * usually any page allocation will do.  Just to be safe in case
321
 * PAGE_SIZE is insanely tiny, though...
322
 */
323
#define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
324
 
325
/*
326
 * Allocate a buffer in host RAM for service list, RX, or TX
327
 * Returns buf->start==NULL if no memory
328
 * Note that the size will be rounded up 2^n bytes, and
329
 * if we can't allocate that we'll settle for something smaller
330
 * until minbytes
331
 */
332
static void lanai_buf_allocate(struct lanai_buffer *buf,
333
        size_t bytes, size_t minbytes, struct pci_dev *pci)
334
{
335
        int size;
336
 
337
        if (bytes > (128 * 1024))       /* max lanai buffer size */
338
                bytes = 128 * 1024;
339
        for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
340
                ;
341
        if (minbytes < LANAI_PAGE_SIZE)
342
                minbytes = LANAI_PAGE_SIZE;
343
        do {
344
                /*
345
                 * Technically we could use non-consistent mappings for
346
                 * everything, but the way the lanai uses DMA memory would
347
                 * make that a terrific pain.  This is much simpler.
348
                 */
349
                buf->start = pci_alloc_consistent(pci, size, &buf->dmaaddr);
350
                if (buf->start != NULL) {       /* Success */
351
                        /* Lanai requires 256-byte alignment of DMA bufs */
352
                        APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
353
                            "bad dmaaddr: 0x%lx\n",
354
                            (unsigned long) buf->dmaaddr);
355
                        buf->ptr = buf->start;
356
                        buf->end = (u32 *)
357
                            (&((unsigned char *) buf->start)[size]);
358
                        memset(buf->start, 0, size);
359
                        break;
360
                }
361
                size /= 2;
362
        } while (size >= minbytes);
363
}
364
 
365
/* size of buffer in bytes */
366
static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
367
{
368
        return ((unsigned long) buf->end) - ((unsigned long) buf->start);
369
}
370
 
371
static void lanai_buf_deallocate(struct lanai_buffer *buf,
372
        struct pci_dev *pci)
373
{
374
        if (buf->start != NULL) {
375
                pci_free_consistent(pci, lanai_buf_size(buf),
376
                    buf->start, buf->dmaaddr);
377
                buf->start = buf->end = buf->ptr = NULL;
378
        }
379
}
380
 
381
/* size of buffer as "card order" (0=1k .. 7=128k) */
382
static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
383
{
384
        int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
385
 
386
        /* This can only happen if PAGE_SIZE is gigantic, but just in case */
387
        if (order > 7)
388
                order = 7;
389
        return order;
390
}
391
 
392
/* -------------------- PORT I/O UTILITIES: */
393
 
394
/* Registers (and their bit-fields) */
395
enum lanai_register {
396
        Reset_Reg               = 0x00, /* Reset; read for chip type; bits: */
397
#define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)    /* Board revision */
398
#define   RESET_GET_BOARD_ID(x)     (((x)>> 2)&0x03)    /* Board ID */
399
#define     BOARD_ID_LANAI256           (0)     /* 25.6M adapter card */
400
        Endian_Reg              = 0x04, /* Endian setting */
401
        IntStatus_Reg           = 0x08, /* Interrupt status */
402
        IntStatusMasked_Reg     = 0x0C, /* Interrupt status (masked) */
403
        IntAck_Reg              = 0x10, /* Interrupt acknowledge */
404
        IntAckMasked_Reg        = 0x14, /* Interrupt acknowledge (masked) */
405
        IntStatusSet_Reg        = 0x18, /* Get status + enable/disable */
406
        IntStatusSetMasked_Reg  = 0x1C, /* Get status + en/di (masked) */
407
        IntControlEna_Reg       = 0x20, /* Interrupt control enable */
408
        IntControlDis_Reg       = 0x24, /* Interrupt control disable */
409
        Status_Reg              = 0x28, /* Status */
410
#define   STATUS_PROMDATA        (0x00000001)   /* PROM_DATA pin */
411
#define   STATUS_WAITING         (0x00000002)   /* Interrupt being delayed */
412
#define   STATUS_SOOL            (0x00000004)   /* SOOL alarm */
413
#define   STATUS_LOCD            (0x00000008)   /* LOCD alarm */
414
#define   STATUS_LED             (0x00000010)   /* LED (HAPPI) output */
415
#define   STATUS_GPIN            (0x00000020)   /* GPIN pin */
416
#define   STATUS_BUTTBUSY        (0x00000040)   /* Butt register is pending */
417
        Config1_Reg             = 0x2C, /* Config word 1; bits: */
418
#define   CONFIG1_PROMDATA       (0x00000001)   /* PROM_DATA pin */
419
#define   CONFIG1_PROMCLK        (0x00000002)   /* PROM_CLK pin */
420
#define   CONFIG1_SET_READMODE(x) ((x)*0x004)   /* PCI BM reads; values: */
421
#define     READMODE_PLAIN          (0)         /*   Plain memory read */
422
#define     READMODE_LINE           (2)         /*   Memory read line */
423
#define     READMODE_MULTIPLE       (3)         /*   Memory read multiple */
424
#define   CONFIG1_DMA_ENABLE     (0x00000010)   /* Turn on DMA */
425
#define   CONFIG1_POWERDOWN      (0x00000020)   /* Turn off clocks */
426
#define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)   /* Clock&loop mode; values: */
427
#define     LOOPMODE_NORMAL         (0)         /*   Normal - no loop */
428
#define     LOOPMODE_TIME           (1)
429
#define     LOOPMODE_DIAG           (2)
430
#define     LOOPMODE_LINE           (3)
431
#define   CONFIG1_MASK_LOOPMODE  (0x00000180)
432
#define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)   /* Mode of LED; values: */
433
#define     LEDMODE_NOT_SOOL        (0)         /*   !SOOL */
434
#define     LEDMODE_OFF             (1)         /*   0     */
435
#define     LEDMODE_ON              (2)         /*   1     */
436
#define     LEDMODE_NOT_LOCD        (3)         /*   !LOCD */
437
#define     LEDMORE_GPIN            (4)         /*   GPIN  */
438
#define     LEDMODE_NOT_GPIN        (7)         /*   !GPIN */
439
#define   CONFIG1_MASK_LEDMODE   (0x00000E00)
440
#define   CONFIG1_GPOUT1         (0x00001000)   /* Toggle for reset */
441
#define   CONFIG1_GPOUT2         (0x00002000)   /* Loopback PHY */
442
#define   CONFIG1_GPOUT3         (0x00004000)   /* Loopback lanai */
443
        Config2_Reg             = 0x30, /* Config word 2; bits: */
444
#define   CONFIG2_HOWMANY        (0x00000001)   /* >512 VCIs? */
445
#define   CONFIG2_PTI7_MODE      (0x00000002)   /* Make PTI=7 RM, not OAM */
446
#define   CONFIG2_VPI_CHK_DIS    (0x00000004)   /* Ignore RX VPI value */
447
#define   CONFIG2_HEC_DROP       (0x00000008)   /* Drop cells w/ HEC errors */
448
#define   CONFIG2_VCI0_NORMAL    (0x00000010)   /* Treat VCI=0 normally */
449
#define   CONFIG2_CBR_ENABLE     (0x00000020)   /* Deal with CBR traffic */
450
#define   CONFIG2_TRASH_ALL      (0x00000040)   /* Trashing incoming cells */
451
#define   CONFIG2_TX_DISABLE     (0x00000080)   /* Trashing outgoing cells */
452
#define   CONFIG2_SET_TRASH      (0x00000100)   /* Turn trashing on */
453
        Statistics_Reg          = 0x34, /* Statistics; bits: */
454
#define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)    /* FIFO overflowed */
455
#define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)    /* HEC was bad */
456
#define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)    /* VCI not open */
457
#define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)    /* VCC buffer full */
458
        ServiceStuff_Reg        = 0x38, /* Service stuff; bits: */
459
#define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)   /* size of service buffer */
460
#define   SSTUFF_SET_ADDR(x)        ((x)>>8)    /* set address of buffer */
461
        ServWrite_Reg           = 0x3C, /* ServWrite Pointer */
462
        ServRead_Reg            = 0x40, /* ServRead Pointer */
463
        TxDepth_Reg             = 0x44, /* FIFO Transmit Depth */
464
        Butt_Reg                = 0x48, /* Butt register */
465
        CBR_ICG_Reg             = 0x50,
466
        CBR_PTR_Reg             = 0x54,
467
        PingCount_Reg           = 0x58, /* Ping count */
468
        DMA_Addr_Reg            = 0x5C  /* DMA address */
469
};
470
 
471
static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
472
        enum lanai_register reg)
473
{
474
        return lanai->base + reg;
475
}
476
 
477
static inline u32 reg_read(const struct lanai_dev *lanai,
478
        enum lanai_register reg)
479
{
480
        u32 t;
481
        t = readl(reg_addr(lanai, reg));
482
        RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
483
            (int) reg, t);
484
        return t;
485
}
486
 
487
static inline void reg_write(const struct lanai_dev *lanai, u32 val,
488
        enum lanai_register reg)
489
{
490
        RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
491
            (int) reg, val);
492
        writel(val, reg_addr(lanai, reg));
493
}
494
 
495
static inline void conf1_write(const struct lanai_dev *lanai)
496
{
497
        reg_write(lanai, lanai->conf1, Config1_Reg);
498
}
499
 
500
static inline void conf2_write(const struct lanai_dev *lanai)
501
{
502
        reg_write(lanai, lanai->conf2, Config2_Reg);
503
}
504
 
505
/* Same as conf2_write(), but defers I/O if we're powered down */
506
static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
507
{
508
#ifdef USE_POWERDOWN
509
        if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
510
                return;
511
#endif /* USE_POWERDOWN */
512
        conf2_write(lanai);
513
}
514
 
515
static inline void reset_board(const struct lanai_dev *lanai)
516
{
517
        DPRINTK("about to reset board\n");
518
        reg_write(lanai, 0, Reset_Reg);
519
        /*
520
         * If we don't delay a little while here then we can end up
521
         * leaving the card in a VERY weird state and lock up the
522
         * PCI bus.  This isn't documented anywhere but I've convinced
523
         * myself after a lot of painful experimentation
524
         */
525
        udelay(5);
526
}
527
 
528
/* -------------------- CARD SRAM UTILITIES: */
529
 
530
/* The SRAM is mapped into normal PCI memory space - the only catch is
531
 * that it is only 16-bits wide but must be accessed as 32-bit.  The
532
 * 16 high bits will be zero.  We don't hide this, since they get
533
 * programmed mostly like discrete registers anyway
534
 */
535
#define SRAM_START (0x20000)
536
#define SRAM_BYTES (0x20000)    /* Again, half don't really exist */
537
 
538
static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
539
{
540
        return lanai->base + SRAM_START + offset;
541
}
542
 
543
static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
544
{
545
        return readl(sram_addr(lanai, offset));
546
}
547
 
548
static inline void sram_write(const struct lanai_dev *lanai,
549
        u32 val, int offset)
550
{
551
        writel(val, sram_addr(lanai, offset));
552
}
553
 
554
static int __devinit sram_test_word(const struct lanai_dev *lanai,
555
                                    int offset, u32 pattern)
556
{
557
        u32 readback;
558
        sram_write(lanai, pattern, offset);
559
        readback = sram_read(lanai, offset);
560
        if (likely(readback == pattern))
561
                return 0;
562
        printk(KERN_ERR DEV_LABEL
563
            "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
564
            lanai->number, offset,
565
            (unsigned int) pattern, (unsigned int) readback);
566
        return -EIO;
567
}
568
 
569
static int __devinit sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
570
{
571
        int offset, result = 0;
572
        for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
573
                result = sram_test_word(lanai, offset, pattern);
574
        return result;
575
}
576
 
577
static int __devinit sram_test_and_clear(const struct lanai_dev *lanai)
578
{
579
#ifdef FULL_MEMORY_TEST
580
        int result;
581
        DPRINTK("testing SRAM\n");
582
        if ((result = sram_test_pass(lanai, 0x5555)) != 0)
583
                return result;
584
        if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
585
                return result;
586
#endif
587
        DPRINTK("clearing SRAM\n");
588
        return sram_test_pass(lanai, 0x0000);
589
}
590
 
591
/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
592
 
593
/* vcc table */
594
enum lanai_vcc_offset {
595
        vcc_rxaddr1             = 0x00, /* Location1, plus bits: */
596
#define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)   /* size of RX buffer */
597
#define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)   /* RM cell action; values: */
598
#define     RMMODE_TRASH          (0)           /*   discard */
599
#define     RMMODE_PRESERVE       (1)           /*   input as AAL0 */
600
#define     RMMODE_PIPE           (2)           /*   pipe to coscheduler */
601
#define     RMMODE_PIPEALL        (3)           /*   pipe non-RM too */
602
#define   RXADDR1_OAM_PRESERVE   (0x00002000)   /* Input OAM cells as AAL0 */
603
#define   RXADDR1_SET_MODE(x) ((x)*0x0004000)   /* Reassembly mode */
604
#define     RXMODE_TRASH          (0)           /*   discard */
605
#define     RXMODE_AAL0           (1)           /*   non-AAL5 mode */
606
#define     RXMODE_AAL5           (2)           /*   AAL5, intr. each PDU */
607
#define     RXMODE_AAL5_STREAM    (3)           /*   AAL5 w/o per-PDU intr */
608
        vcc_rxaddr2             = 0x04, /* Location2 */
609
        vcc_rxcrc1              = 0x08, /* RX CRC claculation space */
610
        vcc_rxcrc2              = 0x0C,
611
        vcc_rxwriteptr          = 0x10, /* RX writeptr, plus bits: */
612
#define   RXWRITEPTR_LASTEFCI    (0x00002000)   /* Last PDU had EFCI bit */
613
#define   RXWRITEPTR_DROPPING    (0x00004000)   /* Had error, dropping */
614
#define   RXWRITEPTR_TRASHING    (0x00008000)   /* Trashing */
615
        vcc_rxbufstart          = 0x14, /* RX bufstart, plus bits: */
616
#define   RXBUFSTART_CLP         (0x00004000)
617
#define   RXBUFSTART_CI          (0x00008000)
618
        vcc_rxreadptr           = 0x18, /* RX readptr */
619
        vcc_txicg               = 0x1C, /* TX ICG */
620
        vcc_txaddr1             = 0x20, /* Location1, plus bits: */
621
#define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)   /* size of TX buffer */
622
#define   TXADDR1_ABR            (0x00008000)   /* use ABR (doesn't work) */
623
        vcc_txaddr2             = 0x24, /* Location2 */
624
        vcc_txcrc1              = 0x28, /* TX CRC claculation space */
625
        vcc_txcrc2              = 0x2C,
626
        vcc_txreadptr           = 0x30, /* TX Readptr, plus bits: */
627
#define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
628
#define   TXREADPTR_MASK_DELTA  (0x0000E000)    /* ? */
629
        vcc_txendptr            = 0x34, /* TX Endptr, plus bits: */
630
#define   TXENDPTR_CLP          (0x00002000)
631
#define   TXENDPTR_MASK_PDUMODE (0x0000C000)    /* PDU mode; values: */
632
#define     PDUMODE_AAL0         (0*0x04000)
633
#define     PDUMODE_AAL5         (2*0x04000)
634
#define     PDUMODE_AAL5STREAM   (3*0x04000)
635
        vcc_txwriteptr          = 0x38, /* TX Writeptr */
636
#define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
637
        vcc_txcbr_next          = 0x3C  /* # of next CBR VCI in ring */
638
#define   TXCBR_NEXT_BOZO       (0x00008000)    /* "bozo bit" */
639
};
640
 
641
#define CARDVCC_SIZE    (0x40)
642
 
643
static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
644
        vci_t vci)
645
{
646
        return sram_addr(lanai, vci * CARDVCC_SIZE);
647
}
648
 
649
static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
650
        enum lanai_vcc_offset offset)
651
{
652
        u32 val;
653
        APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
654
        val= readl(lvcc->vbase + offset);
655
        RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
656
            lvcc->vci, (int) offset, val);
657
        return val;
658
}
659
 
660
static inline void cardvcc_write(const struct lanai_vcc *lvcc,
661
        u32 val, enum lanai_vcc_offset offset)
662
{
663
        APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
664
        APRINTK((val & ~0xFFFF) == 0,
665
            "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
666
            (unsigned int) val, lvcc->vci, (unsigned int) offset);
667
        RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
668
            lvcc->vci, (unsigned int) offset, (unsigned int) val);
669
        writel(val, lvcc->vbase + offset);
670
}
671
 
672
/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
673
 
674
/* How many bytes will an AAL5 PDU take to transmit - remember that:
675
 *   o  we need to add 8 bytes for length, CPI, UU, and CRC
676
 *   o  we need to round up to 48 bytes for cells
677
 */
678
static inline int aal5_size(int size)
679
{
680
        int cells = (size + 8 + 47) / 48;
681
        return cells * 48;
682
}
683
 
684
/* How many bytes can we send if we have "space" space, assuming we have
685
 * to send full cells
686
 */
687
static inline int aal5_spacefor(int space)
688
{
689
        int cells = space / 48;
690
        return cells * 48;
691
}
692
 
693
/* -------------------- FREE AN ATM SKB: */
694
 
695
static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
696
{
697
        if (atmvcc->pop != NULL)
698
                atmvcc->pop(atmvcc, skb);
699
        else
700
                dev_kfree_skb_any(skb);
701
}
702
 
703
/* -------------------- TURN VCCS ON AND OFF: */
704
 
705
static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
706
{
707
        u32 addr1;
708
        if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
709
                dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
710
                cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
711
                cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
712
                cardvcc_write(lvcc, 0, vcc_rxwriteptr);
713
                cardvcc_write(lvcc, 0, vcc_rxbufstart);
714
                cardvcc_write(lvcc, 0, vcc_rxreadptr);
715
                cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
716
                addr1 = ((dmaaddr >> 8) & 0xFF) |
717
                    RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
718
                    RXADDR1_SET_RMMODE(RMMODE_TRASH) |  /* ??? */
719
                 /* RXADDR1_OAM_PRESERVE |      --- no OAM support yet */
720
                    RXADDR1_SET_MODE(RXMODE_AAL5);
721
        } else
722
                addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
723
                    RXADDR1_OAM_PRESERVE |                    /* ??? */
724
                    RXADDR1_SET_MODE(RXMODE_AAL0);
725
        /* This one must be last! */
726
        cardvcc_write(lvcc, addr1, vcc_rxaddr1);
727
}
728
 
729
static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
730
{
731
        dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
732
        cardvcc_write(lvcc, 0, vcc_txicg);
733
        cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
734
        cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
735
        cardvcc_write(lvcc, 0, vcc_txreadptr);
736
        cardvcc_write(lvcc, 0, vcc_txendptr);
737
        cardvcc_write(lvcc, 0, vcc_txwriteptr);
738
        cardvcc_write(lvcc,
739
                (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
740
                TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
741
        cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
742
        cardvcc_write(lvcc,
743
            ((dmaaddr >> 8) & 0xFF) |
744
            TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
745
            vcc_txaddr1);
746
}
747
 
748
/* Shutdown receiving on card */
749
static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
750
{
751
        if (lvcc->vbase == NULL)        /* We were never bound to a VCI */
752
                return;
753
        /* 15.1.1 - set to trashing, wait one cell time (15us) */
754
        cardvcc_write(lvcc,
755
            RXADDR1_SET_RMMODE(RMMODE_TRASH) |
756
            RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
757
        udelay(15);
758
        /* 15.1.2 - clear rest of entries */
759
        cardvcc_write(lvcc, 0, vcc_rxaddr2);
760
        cardvcc_write(lvcc, 0, vcc_rxcrc1);
761
        cardvcc_write(lvcc, 0, vcc_rxcrc2);
762
        cardvcc_write(lvcc, 0, vcc_rxwriteptr);
763
        cardvcc_write(lvcc, 0, vcc_rxbufstart);
764
        cardvcc_write(lvcc, 0, vcc_rxreadptr);
765
}
766
 
767
/* Shutdown transmitting on card.
768
 * Unfortunately the lanai needs us to wait until all the data
769
 * drains out of the buffer before we can dealloc it, so this
770
 * can take awhile -- up to 370ms for a full 128KB buffer
771
 * assuming everone else is quiet.  In theory the time is
772
 * boundless if there's a CBR VCC holding things up.
773
 */
774
static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
775
        struct lanai_vcc *lvcc)
776
{
777
        struct sk_buff *skb;
778
        unsigned long flags, timeout;
779
        int read, write, lastread = -1;
780
        APRINTK(!in_interrupt(),
781
            "lanai_shutdown_tx_vci called w/o process context!\n");
782
        if (lvcc->vbase == NULL)        /* We were never bound to a VCI */
783
                return;
784
        /* 15.2.1 - wait for queue to drain */
785
        while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
786
                lanai_free_skb(lvcc->tx.atmvcc, skb);
787
        read_lock_irqsave(&vcc_sklist_lock, flags);
788
        __clear_bit(lvcc->vci, lanai->backlog_vccs);
789
        read_unlock_irqrestore(&vcc_sklist_lock, flags);
790
        /*
791
         * We need to wait for the VCC to drain but don't wait forever.  We
792
         * give each 1K of buffer size 1/128th of a second to clear out.
793
         * TODO: maybe disable CBR if we're about to timeout?
794
         */
795
        timeout = jiffies +
796
            (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
797
        write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
798
        for (;;) {
799
                read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
800
                if (read == write &&       /* Is TX buffer empty? */
801
                    (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
802
                    (cardvcc_read(lvcc, vcc_txcbr_next) &
803
                    TXCBR_NEXT_BOZO) == 0))
804
                        break;
805
                if (read != lastread) {    /* Has there been any progress? */
806
                        lastread = read;
807
                        timeout += HZ / 10;
808
                }
809
                if (unlikely(time_after(jiffies, timeout))) {
810
                        printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
811
                            "backlog closing vci %d\n",
812
                            lvcc->tx.atmvcc->dev->number, lvcc->vci);
813
                        DPRINTK("read, write = %d, %d\n", read, write);
814
                        break;
815
                }
816
                msleep(40);
817
        }
818
        /* 15.2.2 - clear out all tx registers */
819
        cardvcc_write(lvcc, 0, vcc_txreadptr);
820
        cardvcc_write(lvcc, 0, vcc_txwriteptr);
821
        cardvcc_write(lvcc, 0, vcc_txendptr);
822
        cardvcc_write(lvcc, 0, vcc_txcrc1);
823
        cardvcc_write(lvcc, 0, vcc_txcrc2);
824
        cardvcc_write(lvcc, 0, vcc_txaddr2);
825
        cardvcc_write(lvcc, 0, vcc_txaddr1);
826
}
827
 
828
/* -------------------- MANAGING AAL0 RX BUFFER: */
829
 
830
static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
831
{
832
        DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
833
        lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
834
                           lanai->pci);
835
        return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
836
}
837
 
838
static inline void aal0_buffer_free(struct lanai_dev *lanai)
839
{
840
        DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
841
        lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
842
}
843
 
844
/* -------------------- EEPROM UTILITIES: */
845
 
846
/* Offsets of data in the EEPROM */
847
#define EEPROM_COPYRIGHT        (0)
848
#define EEPROM_COPYRIGHT_LEN    (44)
849
#define EEPROM_CHECKSUM         (62)
850
#define EEPROM_CHECKSUM_REV     (63)
851
#define EEPROM_MAC              (64)
852
#define EEPROM_MAC_REV          (70)
853
#define EEPROM_SERIAL           (112)
854
#define EEPROM_SERIAL_REV       (116)
855
#define EEPROM_MAGIC            (120)
856
#define EEPROM_MAGIC_REV        (124)
857
 
858
#define EEPROM_MAGIC_VALUE      (0x5AB478D2)
859
 
860
#ifndef READ_EEPROM
861
 
862
/* Stub functions to use if EEPROM reading is disabled */
863
static int __devinit eeprom_read(struct lanai_dev *lanai)
864
{
865
        printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
866
            lanai->number);
867
        memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
868
        return 0;
869
}
870
 
871
static int __devinit eeprom_validate(struct lanai_dev *lanai)
872
{
873
        lanai->serialno = 0;
874
        lanai->magicno = EEPROM_MAGIC_VALUE;
875
        return 0;
876
}
877
 
878
#else /* READ_EEPROM */
879
 
880
static int __devinit eeprom_read(struct lanai_dev *lanai)
881
{
882
        int i, address;
883
        u8 data;
884
        u32 tmp;
885
#define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
886
                            } while (0)
887
#define clock_h()        set_config1(lanai->conf1 | CONFIG1_PROMCLK)
888
#define clock_l()        set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
889
#define data_h()         set_config1(lanai->conf1 | CONFIG1_PROMDATA)
890
#define data_l()         set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
891
#define pre_read()       do { data_h(); clock_h(); udelay(5); } while (0)
892
#define read_pin()       (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
893
#define send_stop()      do { data_l(); udelay(5); clock_h(); udelay(5); \
894
                              data_h(); udelay(5); } while (0)
895
        /* start with both clock and data high */
896
        data_h(); clock_h(); udelay(5);
897
        for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
898
                data = (address << 1) | 1;      /* Command=read + address */
899
                /* send start bit */
900
                data_l(); udelay(5);
901
                clock_l(); udelay(5);
902
                for (i = 128; i != 0; i >>= 1) {   /* write command out */
903
                        tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
904
                            (data & i) ? CONFIG1_PROMDATA : 0;
905
                        if (lanai->conf1 != tmp) {
906
                                set_config1(tmp);
907
                                udelay(5);      /* Let new data settle */
908
                        }
909
                        clock_h(); udelay(5); clock_l(); udelay(5);
910
                }
911
                /* look for ack */
912
                data_h(); clock_h(); udelay(5);
913
                if (read_pin() != 0)
914
                        goto error;     /* No ack seen */
915
                clock_l(); udelay(5);
916
                /* read back result */
917
                for (data = 0, i = 7; i >= 0; i--) {
918
                        data_h(); clock_h(); udelay(5);
919
                        data = (data << 1) | !!read_pin();
920
                        clock_l(); udelay(5);
921
                }
922
                /* look again for ack */
923
                data_h(); clock_h(); udelay(5);
924
                if (read_pin() == 0)
925
                        goto error;     /* Spurious ack */
926
                clock_l(); udelay(5);
927
                send_stop();
928
                lanai->eeprom[address] = data;
929
                DPRINTK("EEPROM 0x%04X %02X\n",
930
                    (unsigned int) address, (unsigned int) data);
931
        }
932
        return 0;
933
    error:
934
        clock_l(); udelay(5);           /* finish read */
935
        send_stop();
936
        printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
937
            lanai->number, address);
938
        return -EIO;
939
#undef set_config1
940
#undef clock_h
941
#undef clock_l
942
#undef data_h
943
#undef data_l
944
#undef pre_read
945
#undef read_pin
946
#undef send_stop
947
}
948
 
949
/* read a big-endian 4-byte value out of eeprom */
950
static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
951
{
952
        return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
953
}
954
 
955
/* Checksum/validate EEPROM contents */
956
static int __devinit eeprom_validate(struct lanai_dev *lanai)
957
{
958
        int i, s;
959
        u32 v;
960
        const u8 *e = lanai->eeprom;
961
#ifdef DEBUG
962
        /* First, see if we can get an ASCIIZ string out of the copyright */
963
        for (i = EEPROM_COPYRIGHT;
964
            i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
965
                if (e[i] < 0x20 || e[i] > 0x7E)
966
                        break;
967
        if ( i != EEPROM_COPYRIGHT &&
968
            i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
969
                DPRINTK("eeprom: copyright = \"%s\"\n",
970
                    (char *) &e[EEPROM_COPYRIGHT]);
971
        else
972
                DPRINTK("eeprom: copyright not found\n");
973
#endif
974
        /* Validate checksum */
975
        for (i = s = 0; i < EEPROM_CHECKSUM; i++)
976
                s += e[i];
977
        s &= 0xFF;
978
        if (s != e[EEPROM_CHECKSUM]) {
979
                printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
980
                    "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
981
                    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
982
                return -EIO;
983
        }
984
        s ^= 0xFF;
985
        if (s != e[EEPROM_CHECKSUM_REV]) {
986
                printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
987
                    "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
988
                    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
989
                return -EIO;
990
        }
991
        /* Verify MAC address */
992
        for (i = 0; i < 6; i++)
993
                if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
994
                        printk(KERN_ERR DEV_LABEL
995
                            "(itf %d) : EEPROM MAC addresses don't match "
996
                            "(0x%02X, inverse 0x%02X)\n", lanai->number,
997
                            (unsigned int) e[EEPROM_MAC + i],
998
                            (unsigned int) e[EEPROM_MAC_REV + i]);
999
                        return -EIO;
1000
                }
1001
        DPRINTK("eeprom: MAC address = %02X:%02X:%02X:%02X:%02X:%02X\n",
1002
                e[EEPROM_MAC + 0], e[EEPROM_MAC + 1], e[EEPROM_MAC + 2],
1003
                e[EEPROM_MAC + 3], e[EEPROM_MAC + 4], e[EEPROM_MAC + 5]);
1004
        /* Verify serial number */
1005
        lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
1006
        v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
1007
        if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
1008
                printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
1009
                    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1010
                    (unsigned int) lanai->serialno, (unsigned int) v);
1011
                return -EIO;
1012
        }
1013
        DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1014
        /* Verify magic number */
1015
        lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1016
        v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1017
        if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1018
                printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1019
                    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1020
                    lanai->magicno, v);
1021
                return -EIO;
1022
        }
1023
        DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1024
        if (lanai->magicno != EEPROM_MAGIC_VALUE)
1025
                printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1026
                    "magic not what expected (got 0x%08X, not 0x%08X)\n",
1027
                    lanai->number, (unsigned int) lanai->magicno,
1028
                    (unsigned int) EEPROM_MAGIC_VALUE);
1029
        return 0;
1030
}
1031
 
1032
#endif /* READ_EEPROM */
1033
 
1034
static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1035
{
1036
        return &lanai->eeprom[EEPROM_MAC];
1037
}
1038
 
1039
/* -------------------- INTERRUPT HANDLING UTILITIES: */
1040
 
1041
/* Interrupt types */
1042
#define INT_STATS       (0x00000002)    /* Statistics counter overflow */
1043
#define INT_SOOL        (0x00000004)    /* SOOL changed state */
1044
#define INT_LOCD        (0x00000008)    /* LOCD changed state */
1045
#define INT_LED         (0x00000010)    /* LED (HAPPI) changed state */
1046
#define INT_GPIN        (0x00000020)    /* GPIN changed state */
1047
#define INT_PING        (0x00000040)    /* PING_COUNT fulfilled */
1048
#define INT_WAKE        (0x00000080)    /* Lanai wants bus */
1049
#define INT_CBR0        (0x00000100)    /* CBR sched hit VCI 0 */
1050
#define INT_LOCK        (0x00000200)    /* Service list overflow */
1051
#define INT_MISMATCH    (0x00000400)    /* TX magic list mismatch */
1052
#define INT_AAL0_STR    (0x00000800)    /* Non-AAL5 buffer half filled */
1053
#define INT_AAL0        (0x00001000)    /* Non-AAL5 data available */
1054
#define INT_SERVICE     (0x00002000)    /* Service list entries available */
1055
#define INT_TABORTSENT  (0x00004000)    /* Target abort sent by lanai */
1056
#define INT_TABORTBM    (0x00008000)    /* Abort rcv'd as bus master */
1057
#define INT_TIMEOUTBM   (0x00010000)    /* No response to bus master */
1058
#define INT_PCIPARITY   (0x00020000)    /* Parity error on PCI */
1059
 
1060
/* Sets of the above */
1061
#define INT_ALL         (0x0003FFFE)    /* All interrupts */
1062
#define INT_STATUS      (0x0000003C)    /* Some status pin changed */
1063
#define INT_DMASHUT     (0x00038000)    /* DMA engine got shut down */
1064
#define INT_SEGSHUT     (0x00000700)    /* Segmentation got shut down */
1065
 
1066
static inline u32 intr_pending(const struct lanai_dev *lanai)
1067
{
1068
        return reg_read(lanai, IntStatusMasked_Reg);
1069
}
1070
 
1071
static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1072
{
1073
        reg_write(lanai, i, IntControlEna_Reg);
1074
}
1075
 
1076
static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1077
{
1078
        reg_write(lanai, i, IntControlDis_Reg);
1079
}
1080
 
1081
/* -------------------- CARD/PCI STATUS: */
1082
 
1083
static void status_message(int itf, const char *name, int status)
1084
{
1085
        static const char *onoff[2] = { "off to on", "on to off" };
1086
        printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1087
            itf, name, onoff[!status]);
1088
}
1089
 
1090
static void lanai_check_status(struct lanai_dev *lanai)
1091
{
1092
        u32 new = reg_read(lanai, Status_Reg);
1093
        u32 changes = new ^ lanai->status;
1094
        lanai->status = new;
1095
#define e(flag, name) \
1096
                if (changes & flag) \
1097
                        status_message(lanai->number, name, new & flag)
1098
        e(STATUS_SOOL, "SOOL");
1099
        e(STATUS_LOCD, "LOCD");
1100
        e(STATUS_LED, "LED");
1101
        e(STATUS_GPIN, "GPIN");
1102
#undef e
1103
}
1104
 
1105
static void pcistatus_got(int itf, const char *name)
1106
{
1107
        printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1108
}
1109
 
1110
static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1111
{
1112
        u16 s;
1113
        int result;
1114
        result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1115
        if (result != PCIBIOS_SUCCESSFUL) {
1116
                printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1117
                    "%d\n", lanai->number, result);
1118
                return;
1119
        }
1120
        s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1121
            PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1122
            PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1123
        if (s == 0)
1124
                return;
1125
        result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1126
        if (result != PCIBIOS_SUCCESSFUL)
1127
                printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1128
                    "%d\n", lanai->number, result);
1129
        if (clearonly)
1130
                return;
1131
#define e(flag, name, stat) \
1132
                if (s & flag) { \
1133
                        pcistatus_got(lanai->number, name); \
1134
                        ++lanai->stats.pcierr_##stat; \
1135
                }
1136
        e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1137
        e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1138
        e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1139
        e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1140
        e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1141
        e(PCI_STATUS_PARITY, "master parity", master_parity);
1142
#undef e
1143
}
1144
 
1145
/* -------------------- VCC TX BUFFER UTILITIES: */
1146
 
1147
/* space left in tx buffer in bytes */
1148
static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1149
{
1150
        int r;
1151
        r = endptr * 16;
1152
        r -= ((unsigned long) lvcc->tx.buf.ptr) -
1153
            ((unsigned long) lvcc->tx.buf.start);
1154
        r -= 16;        /* Leave "bubble" - if start==end it looks empty */
1155
        if (r < 0)
1156
                r += lanai_buf_size(&lvcc->tx.buf);
1157
        return r;
1158
}
1159
 
1160
/* test if VCC is currently backlogged */
1161
static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1162
{
1163
        return !skb_queue_empty(&lvcc->tx.backlog);
1164
}
1165
 
1166
/* Bit fields in the segmentation buffer descriptor */
1167
#define DESCRIPTOR_MAGIC        (0xD0000000)
1168
#define DESCRIPTOR_AAL5         (0x00008000)
1169
#define DESCRIPTOR_AAL5_STREAM  (0x00004000)
1170
#define DESCRIPTOR_CLP          (0x00002000)
1171
 
1172
/* Add 32-bit descriptor with its padding */
1173
static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1174
        u32 flags, int len)
1175
{
1176
        int pos;
1177
        APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1178
            "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1179
        lvcc->tx.buf.ptr += 4;  /* Hope the values REALLY don't matter */
1180
        pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1181
            (unsigned char *) lvcc->tx.buf.start;
1182
        APRINTK((pos & ~0x0001FFF0) == 0,
1183
            "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1184
            "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1185
            lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1186
        pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1187
        APRINTK((pos & ~0x0001FFF0) == 0,
1188
            "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1189
            "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1190
            lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1191
        lvcc->tx.buf.ptr[-1] =
1192
            cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1193
            ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1194
            DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1195
        if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1196
                lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1197
}
1198
 
1199
/* Add 32-bit AAL5 trailer and leave room for its CRC */
1200
static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1201
        int len, int cpi, int uu)
1202
{
1203
        APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1204
            "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1205
        lvcc->tx.buf.ptr += 2;
1206
        lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1207
        if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1208
                lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1209
}
1210
 
1211
static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1212
        const unsigned char *src, int n)
1213
{
1214
        unsigned char *e;
1215
        int m;
1216
        e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1217
        m = e - (unsigned char *) lvcc->tx.buf.end;
1218
        if (m < 0)
1219
                m = 0;
1220
        memcpy(lvcc->tx.buf.ptr, src, n - m);
1221
        if (m != 0) {
1222
                memcpy(lvcc->tx.buf.start, src + n - m, m);
1223
                e = ((unsigned char *) lvcc->tx.buf.start) + m;
1224
        }
1225
        lvcc->tx.buf.ptr = (u32 *) e;
1226
}
1227
 
1228
static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1229
{
1230
        unsigned char *e;
1231
        int m;
1232
        if (n == 0)
1233
                return;
1234
        e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1235
        m = e - (unsigned char *) lvcc->tx.buf.end;
1236
        if (m < 0)
1237
                m = 0;
1238
        memset(lvcc->tx.buf.ptr, 0, n - m);
1239
        if (m != 0) {
1240
                memset(lvcc->tx.buf.start, 0, m);
1241
                e = ((unsigned char *) lvcc->tx.buf.start) + m;
1242
        }
1243
        lvcc->tx.buf.ptr = (u32 *) e;
1244
}
1245
 
1246
/* Update "butt" register to specify new WritePtr */
1247
static inline void lanai_endtx(struct lanai_dev *lanai,
1248
        const struct lanai_vcc *lvcc)
1249
{
1250
        int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1251
            (unsigned char *) lvcc->tx.buf.start;
1252
        APRINTK((ptr & ~0x0001FFF0) == 0,
1253
            "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1254
            ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1255
            lvcc->tx.buf.end);
1256
 
1257
        /*
1258
         * Since the "butt register" is a shared resounce on the card we
1259
         * serialize all accesses to it through this spinlock.  This is
1260
         * mostly just paranoia sicne the register is rarely "busy" anyway
1261
         * but is needed for correctness.
1262
         */
1263
        spin_lock(&lanai->endtxlock);
1264
        /*
1265
         * We need to check if the "butt busy" bit is set before
1266
         * updating the butt register.  In theory this should
1267
         * never happen because the ATM card is plenty fast at
1268
         * updating the register.  Still, we should make sure
1269
         */
1270
        for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1271
                if (unlikely(i > 50)) {
1272
                        printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1273
                            "always busy!\n", lanai->number);
1274
                        break;
1275
                }
1276
                udelay(5);
1277
        }
1278
        /*
1279
         * Before we tall the card to start work we need to be sure 100% of
1280
         * the info in the service buffer has been written before we tell
1281
         * the card about it
1282
         */
1283
        wmb();
1284
        reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1285
        spin_unlock(&lanai->endtxlock);
1286
}
1287
 
1288
/*
1289
 * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
1290
 * space available.  "pdusize" is the number of bytes the PDU will take
1291
 */
1292
static void lanai_send_one_aal5(struct lanai_dev *lanai,
1293
        struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1294
{
1295
        int pad;
1296
        APRINTK(pdusize == aal5_size(skb->len),
1297
            "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1298
            pdusize, aal5_size(skb->len));
1299
        vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1300
        pad = pdusize - skb->len - 8;
1301
        APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1302
        APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1303
        vcc_tx_memcpy(lvcc, skb->data, skb->len);
1304
        vcc_tx_memzero(lvcc, pad);
1305
        vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1306
        lanai_endtx(lanai, lvcc);
1307
        lanai_free_skb(lvcc->tx.atmvcc, skb);
1308
        atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1309
}
1310
 
1311
/* Try to fill the buffer - don't call unless there is backlog */
1312
static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1313
        struct lanai_vcc *lvcc, int endptr)
1314
{
1315
        int n;
1316
        struct sk_buff *skb;
1317
        int space = vcc_tx_space(lvcc, endptr);
1318
        APRINTK(vcc_is_backlogged(lvcc),
1319
            "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1320
            lvcc->vci);
1321
        while (space >= 64) {
1322
                skb = skb_dequeue(&lvcc->tx.backlog);
1323
                if (skb == NULL)
1324
                        goto no_backlog;
1325
                n = aal5_size(skb->len);
1326
                if (n + 16 > space) {
1327
                        /* No room for this packet - put it back on queue */
1328
                        skb_queue_head(&lvcc->tx.backlog, skb);
1329
                        return;
1330
                }
1331
                lanai_send_one_aal5(lanai, lvcc, skb, n);
1332
                space -= n + 16;
1333
        }
1334
        if (!vcc_is_backlogged(lvcc)) {
1335
            no_backlog:
1336
                __clear_bit(lvcc->vci, lanai->backlog_vccs);
1337
        }
1338
}
1339
 
1340
/* Given an skb that we want to transmit either send it now or queue */
1341
static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1342
        struct sk_buff *skb)
1343
{
1344
        int space, n;
1345
        if (vcc_is_backlogged(lvcc))            /* Already backlogged */
1346
                goto queue_it;
1347
        space = vcc_tx_space(lvcc,
1348
                    TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1349
        n = aal5_size(skb->len);
1350
        APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1351
        if (space < n + 16) {                   /* No space for this PDU */
1352
                __set_bit(lvcc->vci, lanai->backlog_vccs);
1353
            queue_it:
1354
                skb_queue_tail(&lvcc->tx.backlog, skb);
1355
                return;
1356
        }
1357
        lanai_send_one_aal5(lanai, lvcc, skb, n);
1358
}
1359
 
1360
static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1361
        struct lanai_vcc *lvcc, int endptr)
1362
{
1363
        printk(KERN_INFO DEV_LABEL
1364
            ": vcc_tx_unqueue_aal0: not implemented\n");
1365
}
1366
 
1367
static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1368
        struct sk_buff *skb)
1369
{
1370
        printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1371
        /* Remember to increment lvcc->tx.atmvcc->stats->tx */
1372
        lanai_free_skb(lvcc->tx.atmvcc, skb);
1373
}
1374
 
1375
/* -------------------- VCC RX BUFFER UTILITIES: */
1376
 
1377
/* unlike the _tx_ cousins, this doesn't update ptr */
1378
static inline void vcc_rx_memcpy(unsigned char *dest,
1379
        const struct lanai_vcc *lvcc, int n)
1380
{
1381
        int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1382
            ((const unsigned char *) (lvcc->rx.buf.end));
1383
        if (m < 0)
1384
                m = 0;
1385
        memcpy(dest, lvcc->rx.buf.ptr, n - m);
1386
        memcpy(dest + n - m, lvcc->rx.buf.start, m);
1387
        /* Make sure that these copies don't get reordered */
1388
        barrier();
1389
}
1390
 
1391
/* Receive AAL5 data on a VCC with a particular endptr */
1392
static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1393
{
1394
        int size;
1395
        struct sk_buff *skb;
1396
        const u32 *x;
1397
        u32 *end = &lvcc->rx.buf.start[endptr * 4];
1398
        int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1399
        if (n < 0)
1400
                n += lanai_buf_size(&lvcc->rx.buf);
1401
        APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1402
            "vcc_rx_aal5: n out of range (%d/%Zu)\n",
1403
            n, lanai_buf_size(&lvcc->rx.buf));
1404
        /* Recover the second-to-last word to get true pdu length */
1405
        if ((x = &end[-2]) < lvcc->rx.buf.start)
1406
                x = &lvcc->rx.buf.end[-2];
1407
        /*
1408
         * Before we actually read from the buffer, make sure the memory
1409
         * changes have arrived
1410
         */
1411
        rmb();
1412
        size = be32_to_cpup(x) & 0xffff;
1413
        if (unlikely(n != aal5_size(size))) {
1414
                /* Make sure size matches padding */
1415
                printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1416
                    "on vci=%d - size=%d n=%d\n",
1417
                    lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1418
                lvcc->stats.x.aal5.rx_badlen++;
1419
                goto out;
1420
        }
1421
        skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1422
        if (unlikely(skb == NULL)) {
1423
                lvcc->stats.rx_nomem++;
1424
                goto out;
1425
        }
1426
        skb_put(skb, size);
1427
        vcc_rx_memcpy(skb->data, lvcc, size);
1428
        ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1429
        __net_timestamp(skb);
1430
        lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1431
        atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1432
    out:
1433
        lvcc->rx.buf.ptr = end;
1434
        cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1435
}
1436
 
1437
static void vcc_rx_aal0(struct lanai_dev *lanai)
1438
{
1439
        printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1440
        /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1441
        /* Remember to increment lvcc->rx.atmvcc->stats->rx */
1442
}
1443
 
1444
/* -------------------- MANAGING HOST-BASED VCC TABLE: */
1445
 
1446
/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1447
#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1448
#define VCCTABLE_GETFREEPAGE
1449
#else
1450
#include <linux/vmalloc.h>
1451
#endif
1452
 
1453
static int __devinit vcc_table_allocate(struct lanai_dev *lanai)
1454
{
1455
#ifdef VCCTABLE_GETFREEPAGE
1456
        APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1457
            "vcc table > PAGE_SIZE!");
1458
        lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1459
        return (lanai->vccs == NULL) ? -ENOMEM : 0;
1460
#else
1461
        int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1462
        lanai->vccs = (struct lanai_vcc **) vmalloc(bytes);
1463
        if (unlikely(lanai->vccs == NULL))
1464
                return -ENOMEM;
1465
        memset(lanai->vccs, 0, bytes);
1466
        return 0;
1467
#endif
1468
}
1469
 
1470
static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1471
{
1472
#ifdef VCCTABLE_GETFREEPAGE
1473
        free_page((unsigned long) lanai->vccs);
1474
#else
1475
        vfree(lanai->vccs);
1476
#endif
1477
}
1478
 
1479
/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1480
static inline struct lanai_vcc *new_lanai_vcc(void)
1481
{
1482
        struct lanai_vcc *lvcc;
1483
        lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
1484
        if (likely(lvcc != NULL)) {
1485
                skb_queue_head_init(&lvcc->tx.backlog);
1486
#ifdef DEBUG
1487
                lvcc->vci = -1;
1488
#endif
1489
        }
1490
        return lvcc;
1491
}
1492
 
1493
static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1494
        struct lanai_buffer *buf, int max_sdu, int multiplier,
1495
        const char *name)
1496
{
1497
        int size;
1498
        if (unlikely(max_sdu < 1))
1499
                max_sdu = 1;
1500
        max_sdu = aal5_size(max_sdu);
1501
        size = (max_sdu + 16) * multiplier + 16;
1502
        lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1503
        if (unlikely(buf->start == NULL))
1504
                return -ENOMEM;
1505
        if (unlikely(lanai_buf_size(buf) < size))
1506
                printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1507
                    "for %s buffer, got only %Zu\n", lanai->number, size,
1508
                    name, lanai_buf_size(buf));
1509
        DPRINTK("Allocated %Zu byte %s buffer\n", lanai_buf_size(buf), name);
1510
        return 0;
1511
}
1512
 
1513
/* Setup a RX buffer for a currently unbound AAL5 vci */
1514
static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1515
        struct lanai_vcc *lvcc, const struct atm_qos *qos)
1516
{
1517
        return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1518
            qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1519
}
1520
 
1521
/* Setup a TX buffer for a currently unbound AAL5 vci */
1522
static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1523
        const struct atm_qos *qos)
1524
{
1525
        int max_sdu, multiplier;
1526
        if (qos->aal == ATM_AAL0) {
1527
                lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1528
                max_sdu = ATM_CELL_SIZE - 1;
1529
                multiplier = AAL0_TX_MULTIPLIER;
1530
        } else {
1531
                lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1532
                max_sdu = qos->txtp.max_sdu;
1533
                multiplier = AAL5_TX_MULTIPLIER;
1534
        }
1535
        return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1536
            multiplier, "TX");
1537
}
1538
 
1539
static inline void host_vcc_bind(struct lanai_dev *lanai,
1540
        struct lanai_vcc *lvcc, vci_t vci)
1541
{
1542
        if (lvcc->vbase != NULL)
1543
                return;    /* We already were bound in the other direction */
1544
        DPRINTK("Binding vci %d\n", vci);
1545
#ifdef USE_POWERDOWN
1546
        if (lanai->nbound++ == 0) {
1547
                DPRINTK("Coming out of powerdown\n");
1548
                lanai->conf1 &= ~CONFIG1_POWERDOWN;
1549
                conf1_write(lanai);
1550
                conf2_write(lanai);
1551
        }
1552
#endif
1553
        lvcc->vbase = cardvcc_addr(lanai, vci);
1554
        lanai->vccs[lvcc->vci = vci] = lvcc;
1555
}
1556
 
1557
static inline void host_vcc_unbind(struct lanai_dev *lanai,
1558
        struct lanai_vcc *lvcc)
1559
{
1560
        if (lvcc->vbase == NULL)
1561
                return; /* This vcc was never bound */
1562
        DPRINTK("Unbinding vci %d\n", lvcc->vci);
1563
        lvcc->vbase = NULL;
1564
        lanai->vccs[lvcc->vci] = NULL;
1565
#ifdef USE_POWERDOWN
1566
        if (--lanai->nbound == 0) {
1567
                DPRINTK("Going into powerdown\n");
1568
                lanai->conf1 |= CONFIG1_POWERDOWN;
1569
                conf1_write(lanai);
1570
        }
1571
#endif
1572
}
1573
 
1574
/* -------------------- RESET CARD: */
1575
 
1576
static void lanai_reset(struct lanai_dev *lanai)
1577
{
1578
        printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* reseting - not "
1579
            "implemented\n", lanai->number);
1580
        /* TODO */
1581
        /* The following is just a hack until we write the real
1582
         * resetter - at least ack whatever interrupt sent us
1583
         * here
1584
         */
1585
        reg_write(lanai, INT_ALL, IntAck_Reg);
1586
        lanai->stats.card_reset++;
1587
}
1588
 
1589
/* -------------------- SERVICE LIST UTILITIES: */
1590
 
1591
/*
1592
 * Allocate service buffer and tell card about it
1593
 */
1594
static int __devinit service_buffer_allocate(struct lanai_dev *lanai)
1595
{
1596
        lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1597
            lanai->pci);
1598
        if (unlikely(lanai->service.start == NULL))
1599
                return -ENOMEM;
1600
        DPRINTK("allocated service buffer at 0x%08lX, size %Zu(%d)\n",
1601
            (unsigned long) lanai->service.start,
1602
            lanai_buf_size(&lanai->service),
1603
            lanai_buf_size_cardorder(&lanai->service));
1604
        /* Clear ServWrite register to be safe */
1605
        reg_write(lanai, 0, ServWrite_Reg);
1606
        /* ServiceStuff register contains size and address of buffer */
1607
        reg_write(lanai,
1608
            SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1609
            SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1610
            ServiceStuff_Reg);
1611
        return 0;
1612
}
1613
 
1614
static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1615
{
1616
        lanai_buf_deallocate(&lanai->service, lanai->pci);
1617
}
1618
 
1619
/* Bitfields in service list */
1620
#define SERVICE_TX      (0x80000000)    /* Was from transmission */
1621
#define SERVICE_TRASH   (0x40000000)    /* RXed PDU was trashed */
1622
#define SERVICE_CRCERR  (0x20000000)    /* RXed PDU had CRC error */
1623
#define SERVICE_CI      (0x10000000)    /* RXed PDU had CI set */
1624
#define SERVICE_CLP     (0x08000000)    /* RXed PDU had CLP set */
1625
#define SERVICE_STREAM  (0x04000000)    /* RX Stream mode */
1626
#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1627
#define SERVICE_GET_END(x) ((x)&0x1FFF)
1628
 
1629
/* Handle one thing from the service list - returns true if it marked a
1630
 * VCC ready for xmit
1631
 */
1632
static int handle_service(struct lanai_dev *lanai, u32 s)
1633
{
1634
        vci_t vci = SERVICE_GET_VCI(s);
1635
        struct lanai_vcc *lvcc;
1636
        read_lock(&vcc_sklist_lock);
1637
        lvcc = lanai->vccs[vci];
1638
        if (unlikely(lvcc == NULL)) {
1639
                read_unlock(&vcc_sklist_lock);
1640
                DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1641
                    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1642
                if (s & SERVICE_TX)
1643
                        lanai->stats.service_notx++;
1644
                else
1645
                        lanai->stats.service_norx++;
1646
                return 0;
1647
        }
1648
        if (s & SERVICE_TX) {                   /* segmentation interrupt */
1649
                if (unlikely(lvcc->tx.atmvcc == NULL)) {
1650
                        read_unlock(&vcc_sklist_lock);
1651
                        DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1652
                            "vcc %d\n", lanai->number, (unsigned int) s, vci);
1653
                        lanai->stats.service_notx++;
1654
                        return 0;
1655
                }
1656
                __set_bit(vci, lanai->transmit_ready);
1657
                lvcc->tx.endptr = SERVICE_GET_END(s);
1658
                read_unlock(&vcc_sklist_lock);
1659
                return 1;
1660
        }
1661
        if (unlikely(lvcc->rx.atmvcc == NULL)) {
1662
                read_unlock(&vcc_sklist_lock);
1663
                DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1664
                    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1665
                lanai->stats.service_norx++;
1666
                return 0;
1667
        }
1668
        if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1669
                read_unlock(&vcc_sklist_lock);
1670
                DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1671
                    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1672
                lanai->stats.service_rxnotaal5++;
1673
                atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1674
                return 0;
1675
        }
1676
        if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1677
                vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1678
                read_unlock(&vcc_sklist_lock);
1679
                return 0;
1680
        }
1681
        if (s & SERVICE_TRASH) {
1682
                int bytes;
1683
                read_unlock(&vcc_sklist_lock);
1684
                DPRINTK("got trashed rx pdu on vci %d\n", vci);
1685
                atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1686
                lvcc->stats.x.aal5.service_trash++;
1687
                bytes = (SERVICE_GET_END(s) * 16) -
1688
                    (((unsigned long) lvcc->rx.buf.ptr) -
1689
                    ((unsigned long) lvcc->rx.buf.start)) + 47;
1690
                if (bytes < 0)
1691
                        bytes += lanai_buf_size(&lvcc->rx.buf);
1692
                lanai->stats.ovfl_trash += (bytes / 48);
1693
                return 0;
1694
        }
1695
        if (s & SERVICE_STREAM) {
1696
                read_unlock(&vcc_sklist_lock);
1697
                atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1698
                lvcc->stats.x.aal5.service_stream++;
1699
                printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1700
                    "PDU on VCI %d!\n", lanai->number, vci);
1701
                lanai_reset(lanai);
1702
                return 0;
1703
        }
1704
        DPRINTK("got rx crc error on vci %d\n", vci);
1705
        atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1706
        lvcc->stats.x.aal5.service_rxcrc++;
1707
        lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1708
        cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1709
        read_unlock(&vcc_sklist_lock);
1710
        return 0;
1711
}
1712
 
1713
/* Try transmitting on all VCIs that we marked ready to serve */
1714
static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1715
{
1716
        struct lanai_vcc *lvcc = lanai->vccs[vci];
1717
        if (vcc_is_backlogged(lvcc))
1718
                lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1719
}
1720
 
1721
/* Run service queue -- called from interrupt context or with
1722
 * interrupts otherwise disabled and with the lanai->servicelock
1723
 * lock held
1724
 */
1725
static void run_service(struct lanai_dev *lanai)
1726
{
1727
        int ntx = 0;
1728
        u32 wreg = reg_read(lanai, ServWrite_Reg);
1729
        const u32 *end = lanai->service.start + wreg;
1730
        while (lanai->service.ptr != end) {
1731
                ntx += handle_service(lanai,
1732
                    le32_to_cpup(lanai->service.ptr++));
1733
                if (lanai->service.ptr >= lanai->service.end)
1734
                        lanai->service.ptr = lanai->service.start;
1735
        }
1736
        reg_write(lanai, wreg, ServRead_Reg);
1737
        if (ntx != 0) {
1738
                read_lock(&vcc_sklist_lock);
1739
                vci_bitfield_iterate(lanai, lanai->transmit_ready,
1740
                    iter_transmit);
1741
                bitmap_zero(lanai->transmit_ready, NUM_VCI);
1742
                read_unlock(&vcc_sklist_lock);
1743
        }
1744
}
1745
 
1746
/* -------------------- GATHER STATISTICS: */
1747
 
1748
static void get_statistics(struct lanai_dev *lanai)
1749
{
1750
        u32 statreg = reg_read(lanai, Statistics_Reg);
1751
        lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1752
        lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1753
        lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1754
        lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1755
}
1756
 
1757
/* -------------------- POLLING TIMER: */
1758
 
1759
#ifndef DEBUG_RW
1760
/* Try to undequeue 1 backlogged vcc */
1761
static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1762
{
1763
        struct lanai_vcc *lvcc = lanai->vccs[vci];
1764
        int endptr;
1765
        if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1766
            !vcc_is_backlogged(lvcc)) {
1767
                __clear_bit(vci, lanai->backlog_vccs);
1768
                return;
1769
        }
1770
        endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1771
        lvcc->tx.unqueue(lanai, lvcc, endptr);
1772
}
1773
#endif /* !DEBUG_RW */
1774
 
1775
static void lanai_timed_poll(unsigned long arg)
1776
{
1777
        struct lanai_dev *lanai = (struct lanai_dev *) arg;
1778
#ifndef DEBUG_RW
1779
        unsigned long flags;
1780
#ifdef USE_POWERDOWN
1781
        if (lanai->conf1 & CONFIG1_POWERDOWN)
1782
                return;
1783
#endif /* USE_POWERDOWN */
1784
        local_irq_save(flags);
1785
        /* If we can grab the spinlock, check if any services need to be run */
1786
        if (spin_trylock(&lanai->servicelock)) {
1787
                run_service(lanai);
1788
                spin_unlock(&lanai->servicelock);
1789
        }
1790
        /* ...and see if any backlogged VCs can make progress */
1791
        /* unfortunately linux has no read_trylock() currently */
1792
        read_lock(&vcc_sklist_lock);
1793
        vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1794
        read_unlock(&vcc_sklist_lock);
1795
        local_irq_restore(flags);
1796
 
1797
        get_statistics(lanai);
1798
#endif /* !DEBUG_RW */
1799
        mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1800
}
1801
 
1802
static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1803
{
1804
        init_timer(&lanai->timer);
1805
        lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1806
        lanai->timer.data = (unsigned long) lanai;
1807
        lanai->timer.function = lanai_timed_poll;
1808
        add_timer(&lanai->timer);
1809
}
1810
 
1811
static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1812
{
1813
        del_timer_sync(&lanai->timer);
1814
}
1815
 
1816
/* -------------------- INTERRUPT SERVICE: */
1817
 
1818
static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1819
{
1820
        u32 ack = 0;
1821
        if (reason & INT_SERVICE) {
1822
                ack = INT_SERVICE;
1823
                spin_lock(&lanai->servicelock);
1824
                run_service(lanai);
1825
                spin_unlock(&lanai->servicelock);
1826
        }
1827
        if (reason & (INT_AAL0_STR | INT_AAL0)) {
1828
                ack |= reason & (INT_AAL0_STR | INT_AAL0);
1829
                vcc_rx_aal0(lanai);
1830
        }
1831
        /* The rest of the interrupts are pretty rare */
1832
        if (ack == reason)
1833
                goto done;
1834
        if (reason & INT_STATS) {
1835
                reason &= ~INT_STATS;   /* No need to ack */
1836
                get_statistics(lanai);
1837
        }
1838
        if (reason & INT_STATUS) {
1839
                ack |= reason & INT_STATUS;
1840
                lanai_check_status(lanai);
1841
        }
1842
        if (unlikely(reason & INT_DMASHUT)) {
1843
                printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1844
                    "shutdown, reason=0x%08X, address=0x%08X\n",
1845
                    lanai->number, (unsigned int) (reason & INT_DMASHUT),
1846
                    (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1847
                if (reason & INT_TABORTBM) {
1848
                        lanai_reset(lanai);
1849
                        return;
1850
                }
1851
                ack |= (reason & INT_DMASHUT);
1852
                printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1853
                    lanai->number);
1854
                conf1_write(lanai);
1855
                lanai->stats.dma_reenable++;
1856
                pcistatus_check(lanai, 0);
1857
        }
1858
        if (unlikely(reason & INT_TABORTSENT)) {
1859
                ack |= (reason & INT_TABORTSENT);
1860
                printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1861
                    lanai->number);
1862
                pcistatus_check(lanai, 0);
1863
        }
1864
        if (unlikely(reason & INT_SEGSHUT)) {
1865
                printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1866
                    "segmentation shutdown, reason=0x%08X\n", lanai->number,
1867
                    (unsigned int) (reason & INT_SEGSHUT));
1868
                lanai_reset(lanai);
1869
                return;
1870
        }
1871
        if (unlikely(reason & (INT_PING | INT_WAKE))) {
1872
                printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1873
                    "unexpected interrupt 0x%08X, resetting\n",
1874
                    lanai->number,
1875
                    (unsigned int) (reason & (INT_PING | INT_WAKE)));
1876
                lanai_reset(lanai);
1877
                return;
1878
        }
1879
#ifdef DEBUG
1880
        if (unlikely(ack != reason)) {
1881
                DPRINTK("unacked ints: 0x%08X\n",
1882
                    (unsigned int) (reason & ~ack));
1883
                ack = reason;
1884
        }
1885
#endif
1886
   done:
1887
        if (ack != 0)
1888
                reg_write(lanai, ack, IntAck_Reg);
1889
}
1890
 
1891
static irqreturn_t lanai_int(int irq, void *devid)
1892
{
1893
        struct lanai_dev *lanai = devid;
1894
        u32 reason;
1895
 
1896
#ifdef USE_POWERDOWN
1897
        /*
1898
         * If we're powered down we shouldn't be generating any interrupts -
1899
         * so assume that this is a shared interrupt line and it's for someone
1900
         * else
1901
         */
1902
        if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1903
                return IRQ_NONE;
1904
#endif
1905
 
1906
        reason = intr_pending(lanai);
1907
        if (reason == 0)
1908
                return IRQ_NONE;        /* Must be for someone else */
1909
 
1910
        do {
1911
                if (unlikely(reason == 0xFFFFFFFF))
1912
                        break;          /* Maybe we've been unplugged? */
1913
                lanai_int_1(lanai, reason);
1914
                reason = intr_pending(lanai);
1915
        } while (reason != 0);
1916
 
1917
        return IRQ_HANDLED;
1918
}
1919
 
1920
/* TODO - it would be nice if we could use the "delayed interrupt" system
1921
 *   to some advantage
1922
 */
1923
 
1924
/* -------------------- CHECK BOARD ID/REV: */
1925
 
1926
/*
1927
 * The board id and revision are stored both in the reset register and
1928
 * in the PCI configuration space - the documentation says to check
1929
 * each of them.  If revp!=NULL we store the revision there
1930
 */
1931
static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1932
{
1933
        DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1934
                (int) RESET_GET_BOARD_ID(val),
1935
                (int) RESET_GET_BOARD_REV(val));
1936
        if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1937
                printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1938
                    "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1939
                return -ENODEV;
1940
        }
1941
        if (revp != NULL)
1942
                *revp = RESET_GET_BOARD_REV(val);
1943
        return 0;
1944
}
1945
 
1946
/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1947
 
1948
static int __devinit lanai_pci_start(struct lanai_dev *lanai)
1949
{
1950
        struct pci_dev *pci = lanai->pci;
1951
        int result;
1952
        u16 w;
1953
 
1954
        if (pci_enable_device(pci) != 0) {
1955
                printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1956
                    "PCI device", lanai->number);
1957
                return -ENXIO;
1958
        }
1959
        pci_set_master(pci);
1960
        if (pci_set_dma_mask(pci, DMA_32BIT_MASK) != 0) {
1961
                printk(KERN_WARNING DEV_LABEL
1962
                    "(itf %d): No suitable DMA available.\n", lanai->number);
1963
                return -EBUSY;
1964
        }
1965
        if (pci_set_consistent_dma_mask(pci, DMA_32BIT_MASK) != 0) {
1966
                printk(KERN_WARNING DEV_LABEL
1967
                    "(itf %d): No suitable DMA available.\n", lanai->number);
1968
                return -EBUSY;
1969
        }
1970
        result = pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &w);
1971
        if (result != PCIBIOS_SUCCESSFUL) {
1972
                printk(KERN_ERR DEV_LABEL "(itf %d): can't read "
1973
                    "PCI_SUBSYSTEM_ID: %d\n", lanai->number, result);
1974
                return -EINVAL;
1975
        }
1976
        result = check_board_id_and_rev("PCI", w, NULL);
1977
        if (result != 0)
1978
                return result;
1979
        /* Set latency timer to zero as per lanai docs */
1980
        result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1981
        if (result != PCIBIOS_SUCCESSFUL) {
1982
                printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1983
                    "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1984
                return -EINVAL;
1985
        }
1986
        pcistatus_check(lanai, 1);
1987
        pcistatus_check(lanai, 0);
1988
        return 0;
1989
}
1990
 
1991
/* -------------------- VPI/VCI ALLOCATION: */
1992
 
1993
/*
1994
 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1995
 * get a CBRZERO interrupt), and we can use it only if noone is receiving
1996
 * AAL0 traffic (since they will use the same queue) - according to the
1997
 * docs we shouldn't even use it for AAL0 traffic
1998
 */
1999
static inline int vci0_is_ok(struct lanai_dev *lanai,
2000
        const struct atm_qos *qos)
2001
{
2002
        if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
2003
                return 0;
2004
        if (qos->rxtp.traffic_class != ATM_NONE) {
2005
                if (lanai->naal0 != 0)
2006
                        return 0;
2007
                lanai->conf2 |= CONFIG2_VCI0_NORMAL;
2008
                conf2_write_if_powerup(lanai);
2009
        }
2010
        return 1;
2011
}
2012
 
2013
/* return true if vci is currently unused, or if requested qos is
2014
 * compatible
2015
 */
2016
static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
2017
        const struct atm_vcc *atmvcc)
2018
{
2019
        const struct atm_qos *qos = &atmvcc->qos;
2020
        const struct lanai_vcc *lvcc = lanai->vccs[vci];
2021
        if (vci == 0 && !vci0_is_ok(lanai, qos))
2022
                return 0;
2023
        if (unlikely(lvcc != NULL)) {
2024
                if (qos->rxtp.traffic_class != ATM_NONE &&
2025
                    lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2026
                        return 0;
2027
                if (qos->txtp.traffic_class != ATM_NONE &&
2028
                    lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2029
                        return 0;
2030
                if (qos->txtp.traffic_class == ATM_CBR &&
2031
                    lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2032
                        return 0;
2033
        }
2034
        if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2035
            qos->rxtp.traffic_class != ATM_NONE) {
2036
                const struct lanai_vcc *vci0 = lanai->vccs[0];
2037
                if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2038
                        return 0;
2039
                lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2040
                conf2_write_if_powerup(lanai);
2041
        }
2042
        return 1;
2043
}
2044
 
2045
static int lanai_normalize_ci(struct lanai_dev *lanai,
2046
        const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2047
{
2048
        switch (*vpip) {
2049
                case ATM_VPI_ANY:
2050
                        *vpip = 0;
2051
                        /* FALLTHROUGH */
2052
                case 0:
2053
                        break;
2054
                default:
2055
                        return -EADDRINUSE;
2056
        }
2057
        switch (*vcip) {
2058
                case ATM_VCI_ANY:
2059
                        for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2060
                            (*vcip)++)
2061
                                if (vci_is_ok(lanai, *vcip, atmvcc))
2062
                                        return 0;
2063
                        return -EADDRINUSE;
2064
                default:
2065
                        if (*vcip >= lanai->num_vci || *vcip < 0 ||
2066
                            !vci_is_ok(lanai, *vcip, atmvcc))
2067
                                return -EADDRINUSE;
2068
        }
2069
        return 0;
2070
}
2071
 
2072
/* -------------------- MANAGE CBR: */
2073
 
2074
/*
2075
 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2076
 * Note that storing a number greater than 2046.0 will result in
2077
 * incorrect shaping
2078
 */
2079
#define CBRICG_FRAC_BITS        (4)
2080
#define CBRICG_MAX              (2046 << CBRICG_FRAC_BITS)
2081
 
2082
/*
2083
 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2084
 * where MAXPCR is (according to the docs) 25600000/(54*8),
2085
 * which is equal to (3125<<9)/27.
2086
 *
2087
 * Solving for ICG, we get:
2088
 *    ICG = MAXPCR/PCR - 1
2089
 *    ICG = (3125<<9)/(27*PCR) - 1
2090
 *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2091
 *
2092
 * The end result is supposed to be a fixed-point number with FRAC_BITS
2093
 * bits of a fractional part, so we keep everything in the numerator
2094
 * shifted by that much as we compute
2095
 *
2096
 */
2097
static int pcr_to_cbricg(const struct atm_qos *qos)
2098
{
2099
        int rounddown = 0;       /* 1 = Round PCR down, i.e. round ICG _up_ */
2100
        int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2101
        if (pcr == 0)            /* Use maximum bandwidth */
2102
                return 0;
2103
        if (pcr < 0) {
2104
                rounddown = 1;
2105
                pcr = -pcr;
2106
        }
2107
        x = pcr * 27;
2108
        icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2109
        if (rounddown)
2110
                icg += x - 1;
2111
        icg /= x;
2112
        if (icg > CBRICG_MAX)
2113
                icg = CBRICG_MAX;
2114
        DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2115
            pcr, rounddown ? 'Y' : 'N', icg);
2116
        return icg;
2117
}
2118
 
2119
static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2120
{
2121
        reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2122
        reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2123
        lanai->conf2 |= CONFIG2_CBR_ENABLE;
2124
        conf2_write(lanai);
2125
}
2126
 
2127
static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2128
{
2129
        lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2130
        conf2_write(lanai);
2131
}
2132
 
2133
/* -------------------- OPERATIONS: */
2134
 
2135
/* setup a newly detected device */
2136
static int __devinit lanai_dev_open(struct atm_dev *atmdev)
2137
{
2138
        struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2139
        unsigned long raw_base;
2140
        int result;
2141
 
2142
        DPRINTK("In lanai_dev_open()\n");
2143
        /* Basic device fields */
2144
        lanai->number = atmdev->number;
2145
        lanai->num_vci = NUM_VCI;
2146
        bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2147
        bitmap_zero(lanai->transmit_ready, NUM_VCI);
2148
        lanai->naal0 = 0;
2149
#ifdef USE_POWERDOWN
2150
        lanai->nbound = 0;
2151
#endif
2152
        lanai->cbrvcc = NULL;
2153
        memset(&lanai->stats, 0, sizeof lanai->stats);
2154
        spin_lock_init(&lanai->endtxlock);
2155
        spin_lock_init(&lanai->servicelock);
2156
        atmdev->ci_range.vpi_bits = 0;
2157
        atmdev->ci_range.vci_bits = 0;
2158
        while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2159
                atmdev->ci_range.vci_bits++;
2160
        atmdev->link_rate = ATM_25_PCR;
2161
 
2162
        /* 3.2: PCI initialization */
2163
        if ((result = lanai_pci_start(lanai)) != 0)
2164
                goto error;
2165
        raw_base = lanai->pci->resource[0].start;
2166
        lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2167
        if (lanai->base == NULL) {
2168
                printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2169
                goto error_pci;
2170
        }
2171
        /* 3.3: Reset lanai and PHY */
2172
        reset_board(lanai);
2173
        lanai->conf1 = reg_read(lanai, Config1_Reg);
2174
        lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2175
            CONFIG1_MASK_LEDMODE);
2176
        lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2177
        reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2178
        udelay(1000);
2179
        conf1_write(lanai);
2180
 
2181
        /*
2182
         * 3.4: Turn on endian mode for big-endian hardware
2183
         *   We don't actually want to do this - the actual bit fields
2184
         *   in the endian register are not documented anywhere.
2185
         *   Instead we do the bit-flipping ourselves on big-endian
2186
         *   hardware.
2187
         *
2188
         * 3.5: get the board ID/rev by reading the reset register
2189
         */
2190
        result = check_board_id_and_rev("register",
2191
            reg_read(lanai, Reset_Reg), &lanai->board_rev);
2192
        if (result != 0)
2193
                goto error_unmap;
2194
 
2195
        /* 3.6: read EEPROM */
2196
        if ((result = eeprom_read(lanai)) != 0)
2197
                goto error_unmap;
2198
        if ((result = eeprom_validate(lanai)) != 0)
2199
                goto error_unmap;
2200
 
2201
        /* 3.7: re-reset PHY, do loopback tests, setup PHY */
2202
        reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2203
        udelay(1000);
2204
        conf1_write(lanai);
2205
        /* TODO - loopback tests */
2206
        lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2207
        conf1_write(lanai);
2208
 
2209
        /* 3.8/3.9: test and initialize card SRAM */
2210
        if ((result = sram_test_and_clear(lanai)) != 0)
2211
                goto error_unmap;
2212
 
2213
        /* 3.10: initialize lanai registers */
2214
        lanai->conf1 |= CONFIG1_DMA_ENABLE;
2215
        conf1_write(lanai);
2216
        if ((result = service_buffer_allocate(lanai)) != 0)
2217
                goto error_unmap;
2218
        if ((result = vcc_table_allocate(lanai)) != 0)
2219
                goto error_service;
2220
        lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2221
            CONFIG2_HEC_DROP |  /* ??? */ CONFIG2_PTI7_MODE;
2222
        conf2_write(lanai);
2223
        reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2224
        reg_write(lanai, 0, CBR_ICG_Reg);        /* CBR defaults to no limit */
2225
        if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2226
            DEV_LABEL, lanai)) != 0) {
2227
                printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2228
                goto error_vcctable;
2229
        }
2230
        mb();                           /* Make sure that all that made it */
2231
        intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2232
        /* 3.11: initialize loop mode (i.e. turn looping off) */
2233
        lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2234
            CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2235
            CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2236
        conf1_write(lanai);
2237
        lanai->status = reg_read(lanai, Status_Reg);
2238
        /* We're now done initializing this card */
2239
#ifdef USE_POWERDOWN
2240
        lanai->conf1 |= CONFIG1_POWERDOWN;
2241
        conf1_write(lanai);
2242
#endif
2243
        memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2244
        lanai_timed_poll_start(lanai);
2245
        printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%u "
2246
            "(%02X-%02X-%02X-%02X-%02X-%02X)\n", lanai->number,
2247
            (int) lanai->pci->revision, (unsigned long) lanai->base,
2248
            lanai->pci->irq,
2249
            atmdev->esi[0], atmdev->esi[1], atmdev->esi[2],
2250
            atmdev->esi[3], atmdev->esi[4], atmdev->esi[5]);
2251
        printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2252
            "board_rev=%d\n", lanai->number,
2253
            lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2254
            (unsigned int) lanai->serialno, lanai->board_rev);
2255
        return 0;
2256
 
2257
    error_vcctable:
2258
        vcc_table_deallocate(lanai);
2259
    error_service:
2260
        service_buffer_deallocate(lanai);
2261
    error_unmap:
2262
        reset_board(lanai);
2263
#ifdef USE_POWERDOWN
2264
        lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2265
        conf1_write(lanai);
2266
#endif
2267
        iounmap(lanai->base);
2268
    error_pci:
2269
        pci_disable_device(lanai->pci);
2270
    error:
2271
        return result;
2272
}
2273
 
2274
/* called when device is being shutdown, and all vcc's are gone - higher
2275
 * levels will deallocate the atm device for us
2276
 */
2277
static void lanai_dev_close(struct atm_dev *atmdev)
2278
{
2279
        struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2280
        printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2281
            lanai->number);
2282
        lanai_timed_poll_stop(lanai);
2283
#ifdef USE_POWERDOWN
2284
        lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2285
        conf1_write(lanai);
2286
#endif
2287
        intr_disable(lanai, INT_ALL);
2288
        free_irq(lanai->pci->irq, lanai);
2289
        reset_board(lanai);
2290
#ifdef USE_POWERDOWN
2291
        lanai->conf1 |= CONFIG1_POWERDOWN;
2292
        conf1_write(lanai);
2293
#endif
2294
        pci_disable_device(lanai->pci);
2295
        vcc_table_deallocate(lanai);
2296
        service_buffer_deallocate(lanai);
2297
        iounmap(lanai->base);
2298
        kfree(lanai);
2299
}
2300
 
2301
/* close a vcc */
2302
static void lanai_close(struct atm_vcc *atmvcc)
2303
{
2304
        struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2305
        struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2306
        if (lvcc == NULL)
2307
                return;
2308
        clear_bit(ATM_VF_READY, &atmvcc->flags);
2309
        clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2310
        if (lvcc->rx.atmvcc == atmvcc) {
2311
                lanai_shutdown_rx_vci(lvcc);
2312
                if (atmvcc->qos.aal == ATM_AAL0) {
2313
                        if (--lanai->naal0 <= 0)
2314
                                aal0_buffer_free(lanai);
2315
                } else
2316
                        lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2317
                lvcc->rx.atmvcc = NULL;
2318
        }
2319
        if (lvcc->tx.atmvcc == atmvcc) {
2320
                if (atmvcc == lanai->cbrvcc) {
2321
                        if (lvcc->vbase != NULL)
2322
                                lanai_cbr_shutdown(lanai);
2323
                        lanai->cbrvcc = NULL;
2324
                }
2325
                lanai_shutdown_tx_vci(lanai, lvcc);
2326
                lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2327
                lvcc->tx.atmvcc = NULL;
2328
        }
2329
        if (--lvcc->nref == 0) {
2330
                host_vcc_unbind(lanai, lvcc);
2331
                kfree(lvcc);
2332
        }
2333
        atmvcc->dev_data = NULL;
2334
        clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2335
}
2336
 
2337
/* open a vcc on the card to vpi/vci */
2338
static int lanai_open(struct atm_vcc *atmvcc)
2339
{
2340
        struct lanai_dev *lanai;
2341
        struct lanai_vcc *lvcc;
2342
        int result = 0;
2343
        int vci = atmvcc->vci;
2344
        short vpi = atmvcc->vpi;
2345
        /* we don't support partial open - it's not really useful anyway */
2346
        if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2347
            (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2348
                return -EINVAL;
2349
        lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2350
        result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2351
        if (unlikely(result != 0))
2352
                goto out;
2353
        set_bit(ATM_VF_ADDR, &atmvcc->flags);
2354
        if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2355
                return -EINVAL;
2356
        DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2357
            (int) vpi, vci);
2358
        lvcc = lanai->vccs[vci];
2359
        if (lvcc == NULL) {
2360
                lvcc = new_lanai_vcc();
2361
                if (unlikely(lvcc == NULL))
2362
                        return -ENOMEM;
2363
                atmvcc->dev_data = lvcc;
2364
        }
2365
        lvcc->nref++;
2366
        if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2367
                APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2368
                    vci);
2369
                if (atmvcc->qos.aal == ATM_AAL0) {
2370
                        if (lanai->naal0 == 0)
2371
                                result = aal0_buffer_allocate(lanai);
2372
                } else
2373
                        result = lanai_setup_rx_vci_aal5(
2374
                            lanai, lvcc, &atmvcc->qos);
2375
                if (unlikely(result != 0))
2376
                        goto out_free;
2377
                lvcc->rx.atmvcc = atmvcc;
2378
                lvcc->stats.rx_nomem = 0;
2379
                lvcc->stats.x.aal5.rx_badlen = 0;
2380
                lvcc->stats.x.aal5.service_trash = 0;
2381
                lvcc->stats.x.aal5.service_stream = 0;
2382
                lvcc->stats.x.aal5.service_rxcrc = 0;
2383
                if (atmvcc->qos.aal == ATM_AAL0)
2384
                        lanai->naal0++;
2385
        }
2386
        if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2387
                APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2388
                    vci);
2389
                result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2390
                if (unlikely(result != 0))
2391
                        goto out_free;
2392
                lvcc->tx.atmvcc = atmvcc;
2393
                if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2394
                        APRINTK(lanai->cbrvcc == NULL,
2395
                            "cbrvcc!=NULL, vci=%d\n", vci);
2396
                        lanai->cbrvcc = atmvcc;
2397
                }
2398
        }
2399
        host_vcc_bind(lanai, lvcc, vci);
2400
        /*
2401
         * Make sure everything made it to RAM before we tell the card about
2402
         * the VCC
2403
         */
2404
        wmb();
2405
        if (atmvcc == lvcc->rx.atmvcc)
2406
                host_vcc_start_rx(lvcc);
2407
        if (atmvcc == lvcc->tx.atmvcc) {
2408
                host_vcc_start_tx(lvcc);
2409
                if (lanai->cbrvcc == atmvcc)
2410
                        lanai_cbr_setup(lanai);
2411
        }
2412
        set_bit(ATM_VF_READY, &atmvcc->flags);
2413
        return 0;
2414
    out_free:
2415
        lanai_close(atmvcc);
2416
    out:
2417
        return result;
2418
}
2419
 
2420
static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2421
{
2422
        struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2423
        struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2424
        unsigned long flags;
2425
        if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2426
              lvcc->tx.atmvcc != atmvcc))
2427
                goto einval;
2428
#ifdef DEBUG
2429
        if (unlikely(skb == NULL)) {
2430
                DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2431
                goto einval;
2432
        }
2433
        if (unlikely(lanai == NULL)) {
2434
                DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2435
                goto einval;
2436
        }
2437
#endif
2438
        ATM_SKB(skb)->vcc = atmvcc;
2439
        switch (atmvcc->qos.aal) {
2440
                case ATM_AAL5:
2441
                        read_lock_irqsave(&vcc_sklist_lock, flags);
2442
                        vcc_tx_aal5(lanai, lvcc, skb);
2443
                        read_unlock_irqrestore(&vcc_sklist_lock, flags);
2444
                        return 0;
2445
                case ATM_AAL0:
2446
                        if (unlikely(skb->len != ATM_CELL_SIZE-1))
2447
                                goto einval;
2448
  /* NOTE - this next line is technically invalid - we haven't unshared skb */
2449
                        cpu_to_be32s((u32 *) skb->data);
2450
                        read_lock_irqsave(&vcc_sklist_lock, flags);
2451
                        vcc_tx_aal0(lanai, lvcc, skb);
2452
                        read_unlock_irqrestore(&vcc_sklist_lock, flags);
2453
                        return 0;
2454
        }
2455
        DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2456
            atmvcc->vci);
2457
    einval:
2458
        lanai_free_skb(atmvcc, skb);
2459
        return -EINVAL;
2460
}
2461
 
2462
static int lanai_change_qos(struct atm_vcc *atmvcc,
2463
        /*const*/ struct atm_qos *qos, int flags)
2464
{
2465
        return -EBUSY;          /* TODO: need to write this */
2466
}
2467
 
2468
#ifndef CONFIG_PROC_FS
2469
#define lanai_proc_read NULL
2470
#else
2471
static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2472
{
2473
        struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2474
        loff_t left = *pos;
2475
        struct lanai_vcc *lvcc;
2476
        if (left-- == 0)
2477
                return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2478
                    "serial=%u, magic=0x%08X, num_vci=%d\n",
2479
                    atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2480
                    (unsigned int) lanai->serialno,
2481
                    (unsigned int) lanai->magicno, lanai->num_vci);
2482
        if (left-- == 0)
2483
                return sprintf(page, "revision: board=%d, pci_if=%d\n",
2484
                    lanai->board_rev, (int) lanai->pci->revision);
2485
        if (left-- == 0)
2486
                return sprintf(page, "EEPROM ESI: "
2487
                    "%02X:%02X:%02X:%02X:%02X:%02X\n",
2488
                    lanai->eeprom[EEPROM_MAC + 0],
2489
                    lanai->eeprom[EEPROM_MAC + 1],
2490
                    lanai->eeprom[EEPROM_MAC + 2],
2491
                    lanai->eeprom[EEPROM_MAC + 3],
2492
                    lanai->eeprom[EEPROM_MAC + 4],
2493
                    lanai->eeprom[EEPROM_MAC + 5]);
2494
        if (left-- == 0)
2495
                return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2496
                    "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2497
                    (lanai->status & STATUS_LOCD) ? 1 : 0,
2498
                    (lanai->status & STATUS_LED) ? 1 : 0,
2499
                    (lanai->status & STATUS_GPIN) ? 1 : 0);
2500
        if (left-- == 0)
2501
                return sprintf(page, "global buffer sizes: service=%Zu, "
2502
                    "aal0_rx=%Zu\n", lanai_buf_size(&lanai->service),
2503
                    lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2504
        if (left-- == 0) {
2505
                get_statistics(lanai);
2506
                return sprintf(page, "cells in error: overflow=%u, "
2507
                    "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2508
                    lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2509
                    lanai->stats.hec_err, lanai->stats.atm_ovfl);
2510
        }
2511
        if (left-- == 0)
2512
                return sprintf(page, "PCI errors: parity_detect=%u, "
2513
                    "master_abort=%u, master_target_abort=%u,\n",
2514
                    lanai->stats.pcierr_parity_detect,
2515
                    lanai->stats.pcierr_serr_set,
2516
                    lanai->stats.pcierr_m_target_abort);
2517
        if (left-- == 0)
2518
                return sprintf(page, "            slave_target_abort=%u, "
2519
                    "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2520
                    lanai->stats.pcierr_master_parity);
2521
        if (left-- == 0)
2522
                return sprintf(page, "                     no_tx=%u, "
2523
                    "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2524
                    lanai->stats.service_notx,
2525
                    lanai->stats.service_rxnotaal5);
2526
        if (left-- == 0)
2527
                return sprintf(page, "resets: dma=%u, card=%u\n",
2528
                    lanai->stats.dma_reenable, lanai->stats.card_reset);
2529
        /* At this point, "left" should be the VCI we're looking for */
2530
        read_lock(&vcc_sklist_lock);
2531
        for (; ; left++) {
2532
                if (left >= NUM_VCI) {
2533
                        left = 0;
2534
                        goto out;
2535
                }
2536
                if ((lvcc = lanai->vccs[left]) != NULL)
2537
                        break;
2538
                (*pos)++;
2539
        }
2540
        /* Note that we re-use "left" here since we're done with it */
2541
        left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
2542
            lvcc->nref, lvcc->stats.rx_nomem);
2543
        if (lvcc->rx.atmvcc != NULL) {
2544
                left += sprintf(&page[left], ",\n          rx_AAL=%d",
2545
                    lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2546
                if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2547
                        left += sprintf(&page[left], ", rx_buf_size=%Zu, "
2548
                            "rx_bad_len=%u,\n          rx_service_trash=%u, "
2549
                            "rx_service_stream=%u, rx_bad_crc=%u",
2550
                            lanai_buf_size(&lvcc->rx.buf),
2551
                            lvcc->stats.x.aal5.rx_badlen,
2552
                            lvcc->stats.x.aal5.service_trash,
2553
                            lvcc->stats.x.aal5.service_stream,
2554
                            lvcc->stats.x.aal5.service_rxcrc);
2555
        }
2556
        if (lvcc->tx.atmvcc != NULL)
2557
                left += sprintf(&page[left], ",\n          tx_AAL=%d, "
2558
                    "tx_buf_size=%Zu, tx_qos=%cBR, tx_backlogged=%c",
2559
                    lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2560
                    lanai_buf_size(&lvcc->tx.buf),
2561
                    lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2562
                    vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2563
        page[left++] = '\n';
2564
        page[left] = '\0';
2565
    out:
2566
        read_unlock(&vcc_sklist_lock);
2567
        return left;
2568
}
2569
#endif /* CONFIG_PROC_FS */
2570
 
2571
/* -------------------- HOOKS: */
2572
 
2573
static const struct atmdev_ops ops = {
2574
        .dev_close      = lanai_dev_close,
2575
        .open           = lanai_open,
2576
        .close          = lanai_close,
2577
        .getsockopt     = NULL,
2578
        .setsockopt     = NULL,
2579
        .send           = lanai_send,
2580
        .phy_put        = NULL,
2581
        .phy_get        = NULL,
2582
        .change_qos     = lanai_change_qos,
2583
        .proc_read      = lanai_proc_read,
2584
        .owner          = THIS_MODULE
2585
};
2586
 
2587
/* initialize one probed card */
2588
static int __devinit lanai_init_one(struct pci_dev *pci,
2589
                                    const struct pci_device_id *ident)
2590
{
2591
        struct lanai_dev *lanai;
2592
        struct atm_dev *atmdev;
2593
        int result;
2594
 
2595
        lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2596
        if (lanai == NULL) {
2597
                printk(KERN_ERR DEV_LABEL
2598
                       ": couldn't allocate dev_data structure!\n");
2599
                return -ENOMEM;
2600
        }
2601
 
2602
        atmdev = atm_dev_register(DEV_LABEL, &ops, -1, NULL);
2603
        if (atmdev == NULL) {
2604
                printk(KERN_ERR DEV_LABEL
2605
                    ": couldn't register atm device!\n");
2606
                kfree(lanai);
2607
                return -EBUSY;
2608
        }
2609
 
2610
        atmdev->dev_data = lanai;
2611
        lanai->pci = pci;
2612
        lanai->type = (enum lanai_type) ident->device;
2613
 
2614
        result = lanai_dev_open(atmdev);
2615
        if (result != 0) {
2616
                DPRINTK("lanai_start() failed, err=%d\n", -result);
2617
                atm_dev_deregister(atmdev);
2618
                kfree(lanai);
2619
        }
2620
        return result;
2621
}
2622
 
2623
static struct pci_device_id lanai_pci_tbl[] = {
2624
        { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2625
        { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2626
        { 0, }   /* terminal entry */
2627
};
2628
MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2629
 
2630
static struct pci_driver lanai_driver = {
2631
        .name     = DEV_LABEL,
2632
        .id_table = lanai_pci_tbl,
2633
        .probe    = lanai_init_one,
2634
};
2635
 
2636
static int __init lanai_module_init(void)
2637
{
2638
        int x;
2639
 
2640
        x = pci_register_driver(&lanai_driver);
2641
        if (x != 0)
2642
                printk(KERN_ERR DEV_LABEL ": no adapter found\n");
2643
        return x;
2644
}
2645
 
2646
static void __exit lanai_module_exit(void)
2647
{
2648
        /* We'll only get called when all the interfaces are already
2649
         * gone, so there isn't much to do
2650
         */
2651
        DPRINTK("cleanup_module()\n");
2652
        pci_unregister_driver(&lanai_driver);
2653
}
2654
 
2655
module_init(lanai_module_init);
2656
module_exit(lanai_module_exit);
2657
 
2658
MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2659
MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2660
MODULE_LICENSE("GPL");

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.