OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [char/] [mmtimer.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Timer device implementation for SGI SN platforms.
3
 *
4
 * This file is subject to the terms and conditions of the GNU General Public
5
 * License.  See the file "COPYING" in the main directory of this archive
6
 * for more details.
7
 *
8
 * Copyright (c) 2001-2006 Silicon Graphics, Inc.  All rights reserved.
9
 *
10
 * This driver exports an API that should be supportable by any HPET or IA-PC
11
 * multimedia timer.  The code below is currently specific to the SGI Altix
12
 * SHub RTC, however.
13
 *
14
 * 11/01/01 - jbarnes - initial revision
15
 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16
 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17
 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18
 *              support via the posix timer interface
19
 */
20
 
21
#include <linux/types.h>
22
#include <linux/kernel.h>
23
#include <linux/ioctl.h>
24
#include <linux/module.h>
25
#include <linux/init.h>
26
#include <linux/errno.h>
27
#include <linux/mm.h>
28
#include <linux/fs.h>
29
#include <linux/mmtimer.h>
30
#include <linux/miscdevice.h>
31
#include <linux/posix-timers.h>
32
#include <linux/interrupt.h>
33
 
34
#include <asm/uaccess.h>
35
#include <asm/sn/addrs.h>
36
#include <asm/sn/intr.h>
37
#include <asm/sn/shub_mmr.h>
38
#include <asm/sn/nodepda.h>
39
#include <asm/sn/shubio.h>
40
 
41
MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
42
MODULE_DESCRIPTION("SGI Altix RTC Timer");
43
MODULE_LICENSE("GPL");
44
 
45
/* name of the device, usually in /dev */
46
#define MMTIMER_NAME "mmtimer"
47
#define MMTIMER_DESC "SGI Altix RTC Timer"
48
#define MMTIMER_VERSION "2.1"
49
 
50
#define RTC_BITS 55 /* 55 bits for this implementation */
51
 
52
extern unsigned long sn_rtc_cycles_per_second;
53
 
54
#define RTC_COUNTER_ADDR        ((long *)LOCAL_MMR_ADDR(SH_RTC))
55
 
56
#define rtc_time()              (*RTC_COUNTER_ADDR)
57
 
58
static int mmtimer_ioctl(struct inode *inode, struct file *file,
59
                         unsigned int cmd, unsigned long arg);
60
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
61
 
62
/*
63
 * Period in femtoseconds (10^-15 s)
64
 */
65
static unsigned long mmtimer_femtoperiod = 0;
66
 
67
static const struct file_operations mmtimer_fops = {
68
        .owner =        THIS_MODULE,
69
        .mmap =         mmtimer_mmap,
70
        .ioctl =        mmtimer_ioctl,
71
};
72
 
73
/*
74
 * We only have comparison registers RTC1-4 currently available per
75
 * node.  RTC0 is used by SAL.
76
 */
77
#define NUM_COMPARATORS 3
78
/* Check for an RTC interrupt pending */
79
static int inline mmtimer_int_pending(int comparator)
80
{
81
        if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
82
                        SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
83
                return 1;
84
        else
85
                return 0;
86
}
87
/* Clear the RTC interrupt pending bit */
88
static void inline mmtimer_clr_int_pending(int comparator)
89
{
90
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
91
                SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
92
}
93
 
94
/* Setup timer on comparator RTC1 */
95
static void inline mmtimer_setup_int_0(u64 expires)
96
{
97
        u64 val;
98
 
99
        /* Disable interrupt */
100
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
101
 
102
        /* Initialize comparator value */
103
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
104
 
105
        /* Clear pending bit */
106
        mmtimer_clr_int_pending(0);
107
 
108
        val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
109
                ((u64)cpu_physical_id(smp_processor_id()) <<
110
                        SH_RTC1_INT_CONFIG_PID_SHFT);
111
 
112
        /* Set configuration */
113
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
114
 
115
        /* Enable RTC interrupts */
116
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
117
 
118
        /* Initialize comparator value */
119
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
120
 
121
 
122
}
123
 
124
/* Setup timer on comparator RTC2 */
125
static void inline mmtimer_setup_int_1(u64 expires)
126
{
127
        u64 val;
128
 
129
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
130
 
131
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
132
 
133
        mmtimer_clr_int_pending(1);
134
 
135
        val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
136
                ((u64)cpu_physical_id(smp_processor_id()) <<
137
                        SH_RTC2_INT_CONFIG_PID_SHFT);
138
 
139
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
140
 
141
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
142
 
143
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
144
}
145
 
146
/* Setup timer on comparator RTC3 */
147
static void inline mmtimer_setup_int_2(u64 expires)
148
{
149
        u64 val;
150
 
151
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
152
 
153
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
154
 
155
        mmtimer_clr_int_pending(2);
156
 
157
        val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
158
                ((u64)cpu_physical_id(smp_processor_id()) <<
159
                        SH_RTC3_INT_CONFIG_PID_SHFT);
160
 
161
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
162
 
163
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
164
 
165
        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
166
}
167
 
168
/*
169
 * This function must be called with interrupts disabled and preemption off
170
 * in order to insure that the setup succeeds in a deterministic time frame.
171
 * It will check if the interrupt setup succeeded.
172
 */
173
static int inline mmtimer_setup(int comparator, unsigned long expires)
174
{
175
 
176
        switch (comparator) {
177
        case 0:
178
                mmtimer_setup_int_0(expires);
179
                break;
180
        case 1:
181
                mmtimer_setup_int_1(expires);
182
                break;
183
        case 2:
184
                mmtimer_setup_int_2(expires);
185
                break;
186
        }
187
        /* We might've missed our expiration time */
188
        if (rtc_time() < expires)
189
                return 1;
190
 
191
        /*
192
         * If an interrupt is already pending then its okay
193
         * if not then we failed
194
         */
195
        return mmtimer_int_pending(comparator);
196
}
197
 
198
static int inline mmtimer_disable_int(long nasid, int comparator)
199
{
200
        switch (comparator) {
201
        case 0:
202
                nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
203
                        0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
204
                break;
205
        case 1:
206
                nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
207
                        0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
208
                break;
209
        case 2:
210
                nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
211
                        0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
212
                break;
213
        default:
214
                return -EFAULT;
215
        }
216
        return 0;
217
}
218
 
219
#define TIMER_OFF 0xbadcabLL
220
 
221
/* There is one of these for each comparator */
222
typedef struct mmtimer {
223
        spinlock_t lock ____cacheline_aligned;
224
        struct k_itimer *timer;
225
        int i;
226
        int cpu;
227
        struct tasklet_struct tasklet;
228
} mmtimer_t;
229
 
230
static mmtimer_t ** timers;
231
 
232
/**
233
 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
234
 * @inode: inode of the device
235
 * @file: file structure for the device
236
 * @cmd: command to execute
237
 * @arg: optional argument to command
238
 *
239
 * Executes the command specified by @cmd.  Returns 0 for success, < 0 for
240
 * failure.
241
 *
242
 * Valid commands:
243
 *
244
 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
245
 * of the page where the registers are mapped) for the counter in question.
246
 *
247
 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
248
 * seconds
249
 *
250
 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
251
 * specified by @arg
252
 *
253
 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
254
 *
255
 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
256
 *
257
 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
258
 * in the address specified by @arg.
259
 */
260
static int mmtimer_ioctl(struct inode *inode, struct file *file,
261
                         unsigned int cmd, unsigned long arg)
262
{
263
        int ret = 0;
264
 
265
        switch (cmd) {
266
        case MMTIMER_GETOFFSET: /* offset of the counter */
267
                /*
268
                 * SN RTC registers are on their own 64k page
269
                 */
270
                if(PAGE_SIZE <= (1 << 16))
271
                        ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
272
                else
273
                        ret = -ENOSYS;
274
                break;
275
 
276
        case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
277
                if(copy_to_user((unsigned long __user *)arg,
278
                                &mmtimer_femtoperiod, sizeof(unsigned long)))
279
                        return -EFAULT;
280
                break;
281
 
282
        case MMTIMER_GETFREQ: /* frequency in Hz */
283
                if(copy_to_user((unsigned long __user *)arg,
284
                                &sn_rtc_cycles_per_second,
285
                                sizeof(unsigned long)))
286
                        return -EFAULT;
287
                ret = 0;
288
                break;
289
 
290
        case MMTIMER_GETBITS: /* number of bits in the clock */
291
                ret = RTC_BITS;
292
                break;
293
 
294
        case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
295
                ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
296
                break;
297
 
298
        case MMTIMER_GETCOUNTER:
299
                if(copy_to_user((unsigned long __user *)arg,
300
                                RTC_COUNTER_ADDR, sizeof(unsigned long)))
301
                        return -EFAULT;
302
                break;
303
        default:
304
                ret = -ENOSYS;
305
                break;
306
        }
307
 
308
        return ret;
309
}
310
 
311
/**
312
 * mmtimer_mmap - maps the clock's registers into userspace
313
 * @file: file structure for the device
314
 * @vma: VMA to map the registers into
315
 *
316
 * Calls remap_pfn_range() to map the clock's registers into
317
 * the calling process' address space.
318
 */
319
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
320
{
321
        unsigned long mmtimer_addr;
322
 
323
        if (vma->vm_end - vma->vm_start != PAGE_SIZE)
324
                return -EINVAL;
325
 
326
        if (vma->vm_flags & VM_WRITE)
327
                return -EPERM;
328
 
329
        if (PAGE_SIZE > (1 << 16))
330
                return -ENOSYS;
331
 
332
        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
333
 
334
        mmtimer_addr = __pa(RTC_COUNTER_ADDR);
335
        mmtimer_addr &= ~(PAGE_SIZE - 1);
336
        mmtimer_addr &= 0xfffffffffffffffUL;
337
 
338
        if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
339
                                        PAGE_SIZE, vma->vm_page_prot)) {
340
                printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
341
                return -EAGAIN;
342
        }
343
 
344
        return 0;
345
}
346
 
347
static struct miscdevice mmtimer_miscdev = {
348
        SGI_MMTIMER,
349
        MMTIMER_NAME,
350
        &mmtimer_fops
351
};
352
 
353
static struct timespec sgi_clock_offset;
354
static int sgi_clock_period;
355
 
356
/*
357
 * Posix Timer Interface
358
 */
359
 
360
static struct timespec sgi_clock_offset;
361
static int sgi_clock_period;
362
 
363
static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
364
{
365
        u64 nsec;
366
 
367
        nsec = rtc_time() * sgi_clock_period
368
                        + sgi_clock_offset.tv_nsec;
369
        tp->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tp->tv_nsec)
370
                        + sgi_clock_offset.tv_sec;
371
        return 0;
372
};
373
 
374
static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
375
{
376
 
377
        u64 nsec;
378
        u64 rem;
379
 
380
        nsec = rtc_time() * sgi_clock_period;
381
 
382
        sgi_clock_offset.tv_sec = tp->tv_sec - div_long_long_rem(nsec, NSEC_PER_SEC, &rem);
383
 
384
        if (rem <= tp->tv_nsec)
385
                sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
386
        else {
387
                sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
388
                sgi_clock_offset.tv_sec--;
389
        }
390
        return 0;
391
}
392
 
393
/*
394
 * Schedule the next periodic interrupt. This function will attempt
395
 * to schedule a periodic interrupt later if necessary. If the scheduling
396
 * of an interrupt fails then the time to skip is lengthened
397
 * exponentially in order to ensure that the next interrupt
398
 * can be properly scheduled..
399
 */
400
static int inline reschedule_periodic_timer(mmtimer_t *x)
401
{
402
        int n;
403
        struct k_itimer *t = x->timer;
404
 
405
        t->it.mmtimer.clock = x->i;
406
        t->it_overrun--;
407
 
408
        n = 0;
409
        do {
410
 
411
                t->it.mmtimer.expires += t->it.mmtimer.incr << n;
412
                t->it_overrun += 1 << n;
413
                n++;
414
                if (n > 20)
415
                        return 1;
416
 
417
        } while (!mmtimer_setup(x->i, t->it.mmtimer.expires));
418
 
419
        return 0;
420
}
421
 
422
/**
423
 * mmtimer_interrupt - timer interrupt handler
424
 * @irq: irq received
425
 * @dev_id: device the irq came from
426
 *
427
 * Called when one of the comarators matches the counter, This
428
 * routine will send signals to processes that have requested
429
 * them.
430
 *
431
 * This interrupt is run in an interrupt context
432
 * by the SHUB. It is therefore safe to locally access SHub
433
 * registers.
434
 */
435
static irqreturn_t
436
mmtimer_interrupt(int irq, void *dev_id)
437
{
438
        int i;
439
        unsigned long expires = 0;
440
        int result = IRQ_NONE;
441
        unsigned indx = cpu_to_node(smp_processor_id());
442
 
443
        /*
444
         * Do this once for each comparison register
445
         */
446
        for (i = 0; i < NUM_COMPARATORS; i++) {
447
                mmtimer_t *base = timers[indx] + i;
448
                /* Make sure this doesn't get reused before tasklet_sched */
449
                spin_lock(&base->lock);
450
                if (base->cpu == smp_processor_id()) {
451
                        if (base->timer)
452
                                expires = base->timer->it.mmtimer.expires;
453
                        /* expires test won't work with shared irqs */
454
                        if ((mmtimer_int_pending(i) > 0) ||
455
                                (expires && (expires < rtc_time()))) {
456
                                mmtimer_clr_int_pending(i);
457
                                tasklet_schedule(&base->tasklet);
458
                                result = IRQ_HANDLED;
459
                        }
460
                }
461
                spin_unlock(&base->lock);
462
                expires = 0;
463
        }
464
        return result;
465
}
466
 
467
void mmtimer_tasklet(unsigned long data) {
468
        mmtimer_t *x = (mmtimer_t *)data;
469
        struct k_itimer *t = x->timer;
470
        unsigned long flags;
471
 
472
        if (t == NULL)
473
                return;
474
 
475
        /* Send signal and deal with periodic signals */
476
        spin_lock_irqsave(&t->it_lock, flags);
477
        spin_lock(&x->lock);
478
        /* If timer was deleted between interrupt and here, leave */
479
        if (t != x->timer)
480
                goto out;
481
        t->it_overrun = 0;
482
 
483
        if (posix_timer_event(t, 0) != 0) {
484
 
485
                // printk(KERN_WARNING "mmtimer: cannot deliver signal.\n");
486
 
487
                t->it_overrun++;
488
        }
489
        if(t->it.mmtimer.incr) {
490
                /* Periodic timer */
491
                if (reschedule_periodic_timer(x)) {
492
                        printk(KERN_WARNING "mmtimer: unable to reschedule\n");
493
                        x->timer = NULL;
494
                }
495
        } else {
496
                /* Ensure we don't false trigger in mmtimer_interrupt */
497
                t->it.mmtimer.expires = 0;
498
        }
499
        t->it_overrun_last = t->it_overrun;
500
out:
501
        spin_unlock(&x->lock);
502
        spin_unlock_irqrestore(&t->it_lock, flags);
503
}
504
 
505
static int sgi_timer_create(struct k_itimer *timer)
506
{
507
        /* Insure that a newly created timer is off */
508
        timer->it.mmtimer.clock = TIMER_OFF;
509
        return 0;
510
}
511
 
512
/* This does not really delete a timer. It just insures
513
 * that the timer is not active
514
 *
515
 * Assumption: it_lock is already held with irq's disabled
516
 */
517
static int sgi_timer_del(struct k_itimer *timr)
518
{
519
        int i = timr->it.mmtimer.clock;
520
        cnodeid_t nodeid = timr->it.mmtimer.node;
521
        mmtimer_t *t = timers[nodeid] + i;
522
        unsigned long irqflags;
523
 
524
        if (i != TIMER_OFF) {
525
                spin_lock_irqsave(&t->lock, irqflags);
526
                mmtimer_disable_int(cnodeid_to_nasid(nodeid),i);
527
                t->timer = NULL;
528
                timr->it.mmtimer.clock = TIMER_OFF;
529
                timr->it.mmtimer.expires = 0;
530
                spin_unlock_irqrestore(&t->lock, irqflags);
531
        }
532
        return 0;
533
}
534
 
535
#define timespec_to_ns(x) ((x).tv_nsec + (x).tv_sec * NSEC_PER_SEC)
536
#define ns_to_timespec(ts, nsec) (ts).tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &(ts).tv_nsec)
537
 
538
/* Assumption: it_lock is already held with irq's disabled */
539
static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
540
{
541
 
542
        if (timr->it.mmtimer.clock == TIMER_OFF) {
543
                cur_setting->it_interval.tv_nsec = 0;
544
                cur_setting->it_interval.tv_sec = 0;
545
                cur_setting->it_value.tv_nsec = 0;
546
                cur_setting->it_value.tv_sec =0;
547
                return;
548
        }
549
 
550
        ns_to_timespec(cur_setting->it_interval, timr->it.mmtimer.incr * sgi_clock_period);
551
        ns_to_timespec(cur_setting->it_value, (timr->it.mmtimer.expires - rtc_time())* sgi_clock_period);
552
        return;
553
}
554
 
555
 
556
static int sgi_timer_set(struct k_itimer *timr, int flags,
557
        struct itimerspec * new_setting,
558
        struct itimerspec * old_setting)
559
{
560
 
561
        int i;
562
        unsigned long when, period, irqflags;
563
        int err = 0;
564
        cnodeid_t nodeid;
565
        mmtimer_t *base;
566
 
567
        if (old_setting)
568
                sgi_timer_get(timr, old_setting);
569
 
570
        sgi_timer_del(timr);
571
        when = timespec_to_ns(new_setting->it_value);
572
        period = timespec_to_ns(new_setting->it_interval);
573
 
574
        if (when == 0)
575
                /* Clear timer */
576
                return 0;
577
 
578
        if (flags & TIMER_ABSTIME) {
579
                struct timespec n;
580
                unsigned long now;
581
 
582
                getnstimeofday(&n);
583
                now = timespec_to_ns(n);
584
                if (when > now)
585
                        when -= now;
586
                else
587
                        /* Fire the timer immediately */
588
                        when = 0;
589
        }
590
 
591
        /*
592
         * Convert to sgi clock period. Need to keep rtc_time() as near as possible
593
         * to getnstimeofday() in order to be as faithful as possible to the time
594
         * specified.
595
         */
596
        when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
597
        period = (period + sgi_clock_period - 1)  / sgi_clock_period;
598
 
599
        /*
600
         * We are allocating a local SHub comparator. If we would be moved to another
601
         * cpu then another SHub may be local to us. Prohibit that by switching off
602
         * preemption.
603
         */
604
        preempt_disable();
605
 
606
        nodeid =  cpu_to_node(smp_processor_id());
607
retry:
608
        /* Don't use an allocated timer, or a deleted one that's pending */
609
        for(i = 0; i< NUM_COMPARATORS; i++) {
610
                base = timers[nodeid] + i;
611
                if (!base->timer && !base->tasklet.state) {
612
                        break;
613
                }
614
        }
615
 
616
        if (i == NUM_COMPARATORS) {
617
                preempt_enable();
618
                return -EBUSY;
619
        }
620
 
621
        spin_lock_irqsave(&base->lock, irqflags);
622
 
623
        if (base->timer || base->tasklet.state != 0) {
624
                spin_unlock_irqrestore(&base->lock, irqflags);
625
                goto retry;
626
        }
627
        base->timer = timr;
628
        base->cpu = smp_processor_id();
629
 
630
        timr->it.mmtimer.clock = i;
631
        timr->it.mmtimer.node = nodeid;
632
        timr->it.mmtimer.incr = period;
633
        timr->it.mmtimer.expires = when;
634
 
635
        if (period == 0) {
636
                if (!mmtimer_setup(i, when)) {
637
                        mmtimer_disable_int(-1, i);
638
                        posix_timer_event(timr, 0);
639
                        timr->it.mmtimer.expires = 0;
640
                }
641
        } else {
642
                timr->it.mmtimer.expires -= period;
643
                if (reschedule_periodic_timer(base))
644
                        err = -EINVAL;
645
        }
646
 
647
        spin_unlock_irqrestore(&base->lock, irqflags);
648
 
649
        preempt_enable();
650
 
651
        return err;
652
}
653
 
654
static struct k_clock sgi_clock = {
655
        .res = 0,
656
        .clock_set = sgi_clock_set,
657
        .clock_get = sgi_clock_get,
658
        .timer_create = sgi_timer_create,
659
        .nsleep = do_posix_clock_nonanosleep,
660
        .timer_set = sgi_timer_set,
661
        .timer_del = sgi_timer_del,
662
        .timer_get = sgi_timer_get
663
};
664
 
665
/**
666
 * mmtimer_init - device initialization routine
667
 *
668
 * Does initial setup for the mmtimer device.
669
 */
670
static int __init mmtimer_init(void)
671
{
672
        unsigned i;
673
        cnodeid_t node, maxn = -1;
674
 
675
        if (!ia64_platform_is("sn2"))
676
                return 0;
677
 
678
        /*
679
         * Sanity check the cycles/sec variable
680
         */
681
        if (sn_rtc_cycles_per_second < 100000) {
682
                printk(KERN_ERR "%s: unable to determine clock frequency\n",
683
                       MMTIMER_NAME);
684
                goto out1;
685
        }
686
 
687
        mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
688
                               2) / sn_rtc_cycles_per_second;
689
 
690
        if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
691
                printk(KERN_WARNING "%s: unable to allocate interrupt.",
692
                        MMTIMER_NAME);
693
                goto out1;
694
        }
695
 
696
        if (misc_register(&mmtimer_miscdev)) {
697
                printk(KERN_ERR "%s: failed to register device\n",
698
                       MMTIMER_NAME);
699
                goto out2;
700
        }
701
 
702
        /* Get max numbered node, calculate slots needed */
703
        for_each_online_node(node) {
704
                maxn = node;
705
        }
706
        maxn++;
707
 
708
        /* Allocate list of node ptrs to mmtimer_t's */
709
        timers = kzalloc(sizeof(mmtimer_t *)*maxn, GFP_KERNEL);
710
        if (timers == NULL) {
711
                printk(KERN_ERR "%s: failed to allocate memory for device\n",
712
                                MMTIMER_NAME);
713
                goto out3;
714
        }
715
 
716
        /* Allocate mmtimer_t's for each online node */
717
        for_each_online_node(node) {
718
                timers[node] = kmalloc_node(sizeof(mmtimer_t)*NUM_COMPARATORS, GFP_KERNEL, node);
719
                if (timers[node] == NULL) {
720
                        printk(KERN_ERR "%s: failed to allocate memory for device\n",
721
                                MMTIMER_NAME);
722
                        goto out4;
723
                }
724
                for (i=0; i< NUM_COMPARATORS; i++) {
725
                        mmtimer_t * base = timers[node] + i;
726
 
727
                        spin_lock_init(&base->lock);
728
                        base->timer = NULL;
729
                        base->cpu = 0;
730
                        base->i = i;
731
                        tasklet_init(&base->tasklet, mmtimer_tasklet,
732
                                (unsigned long) (base));
733
                }
734
        }
735
 
736
        sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
737
        register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);
738
 
739
        printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
740
               sn_rtc_cycles_per_second/(unsigned long)1E6);
741
 
742
        return 0;
743
 
744
out4:
745
        for_each_online_node(node) {
746
                kfree(timers[node]);
747
        }
748
out3:
749
        misc_deregister(&mmtimer_miscdev);
750
out2:
751
        free_irq(SGI_MMTIMER_VECTOR, NULL);
752
out1:
753
        return -1;
754
}
755
 
756
module_init(mmtimer_init);
757
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.