1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* random.c -- A strong random number generator
|
3 |
|
|
*
|
4 |
|
|
* Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
|
5 |
|
|
*
|
6 |
|
|
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
|
7 |
|
|
* rights reserved.
|
8 |
|
|
*
|
9 |
|
|
* Redistribution and use in source and binary forms, with or without
|
10 |
|
|
* modification, are permitted provided that the following conditions
|
11 |
|
|
* are met:
|
12 |
|
|
* 1. Redistributions of source code must retain the above copyright
|
13 |
|
|
* notice, and the entire permission notice in its entirety,
|
14 |
|
|
* including the disclaimer of warranties.
|
15 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
16 |
|
|
* notice, this list of conditions and the following disclaimer in the
|
17 |
|
|
* documentation and/or other materials provided with the distribution.
|
18 |
|
|
* 3. The name of the author may not be used to endorse or promote
|
19 |
|
|
* products derived from this software without specific prior
|
20 |
|
|
* written permission.
|
21 |
|
|
*
|
22 |
|
|
* ALTERNATIVELY, this product may be distributed under the terms of
|
23 |
|
|
* the GNU General Public License, in which case the provisions of the GPL are
|
24 |
|
|
* required INSTEAD OF the above restrictions. (This clause is
|
25 |
|
|
* necessary due to a potential bad interaction between the GPL and
|
26 |
|
|
* the restrictions contained in a BSD-style copyright.)
|
27 |
|
|
*
|
28 |
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
29 |
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
30 |
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
|
31 |
|
|
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
|
32 |
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
33 |
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
34 |
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
35 |
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
36 |
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
37 |
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
38 |
|
|
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
|
39 |
|
|
* DAMAGE.
|
40 |
|
|
*/
|
41 |
|
|
|
42 |
|
|
/*
|
43 |
|
|
* (now, with legal B.S. out of the way.....)
|
44 |
|
|
*
|
45 |
|
|
* This routine gathers environmental noise from device drivers, etc.,
|
46 |
|
|
* and returns good random numbers, suitable for cryptographic use.
|
47 |
|
|
* Besides the obvious cryptographic uses, these numbers are also good
|
48 |
|
|
* for seeding TCP sequence numbers, and other places where it is
|
49 |
|
|
* desirable to have numbers which are not only random, but hard to
|
50 |
|
|
* predict by an attacker.
|
51 |
|
|
*
|
52 |
|
|
* Theory of operation
|
53 |
|
|
* ===================
|
54 |
|
|
*
|
55 |
|
|
* Computers are very predictable devices. Hence it is extremely hard
|
56 |
|
|
* to produce truly random numbers on a computer --- as opposed to
|
57 |
|
|
* pseudo-random numbers, which can easily generated by using a
|
58 |
|
|
* algorithm. Unfortunately, it is very easy for attackers to guess
|
59 |
|
|
* the sequence of pseudo-random number generators, and for some
|
60 |
|
|
* applications this is not acceptable. So instead, we must try to
|
61 |
|
|
* gather "environmental noise" from the computer's environment, which
|
62 |
|
|
* must be hard for outside attackers to observe, and use that to
|
63 |
|
|
* generate random numbers. In a Unix environment, this is best done
|
64 |
|
|
* from inside the kernel.
|
65 |
|
|
*
|
66 |
|
|
* Sources of randomness from the environment include inter-keyboard
|
67 |
|
|
* timings, inter-interrupt timings from some interrupts, and other
|
68 |
|
|
* events which are both (a) non-deterministic and (b) hard for an
|
69 |
|
|
* outside observer to measure. Randomness from these sources are
|
70 |
|
|
* added to an "entropy pool", which is mixed using a CRC-like function.
|
71 |
|
|
* This is not cryptographically strong, but it is adequate assuming
|
72 |
|
|
* the randomness is not chosen maliciously, and it is fast enough that
|
73 |
|
|
* the overhead of doing it on every interrupt is very reasonable.
|
74 |
|
|
* As random bytes are mixed into the entropy pool, the routines keep
|
75 |
|
|
* an *estimate* of how many bits of randomness have been stored into
|
76 |
|
|
* the random number generator's internal state.
|
77 |
|
|
*
|
78 |
|
|
* When random bytes are desired, they are obtained by taking the SHA
|
79 |
|
|
* hash of the contents of the "entropy pool". The SHA hash avoids
|
80 |
|
|
* exposing the internal state of the entropy pool. It is believed to
|
81 |
|
|
* be computationally infeasible to derive any useful information
|
82 |
|
|
* about the input of SHA from its output. Even if it is possible to
|
83 |
|
|
* analyze SHA in some clever way, as long as the amount of data
|
84 |
|
|
* returned from the generator is less than the inherent entropy in
|
85 |
|
|
* the pool, the output data is totally unpredictable. For this
|
86 |
|
|
* reason, the routine decreases its internal estimate of how many
|
87 |
|
|
* bits of "true randomness" are contained in the entropy pool as it
|
88 |
|
|
* outputs random numbers.
|
89 |
|
|
*
|
90 |
|
|
* If this estimate goes to zero, the routine can still generate
|
91 |
|
|
* random numbers; however, an attacker may (at least in theory) be
|
92 |
|
|
* able to infer the future output of the generator from prior
|
93 |
|
|
* outputs. This requires successful cryptanalysis of SHA, which is
|
94 |
|
|
* not believed to be feasible, but there is a remote possibility.
|
95 |
|
|
* Nonetheless, these numbers should be useful for the vast majority
|
96 |
|
|
* of purposes.
|
97 |
|
|
*
|
98 |
|
|
* Exported interfaces ---- output
|
99 |
|
|
* ===============================
|
100 |
|
|
*
|
101 |
|
|
* There are three exported interfaces; the first is one designed to
|
102 |
|
|
* be used from within the kernel:
|
103 |
|
|
*
|
104 |
|
|
* void get_random_bytes(void *buf, int nbytes);
|
105 |
|
|
*
|
106 |
|
|
* This interface will return the requested number of random bytes,
|
107 |
|
|
* and place it in the requested buffer.
|
108 |
|
|
*
|
109 |
|
|
* The two other interfaces are two character devices /dev/random and
|
110 |
|
|
* /dev/urandom. /dev/random is suitable for use when very high
|
111 |
|
|
* quality randomness is desired (for example, for key generation or
|
112 |
|
|
* one-time pads), as it will only return a maximum of the number of
|
113 |
|
|
* bits of randomness (as estimated by the random number generator)
|
114 |
|
|
* contained in the entropy pool.
|
115 |
|
|
*
|
116 |
|
|
* The /dev/urandom device does not have this limit, and will return
|
117 |
|
|
* as many bytes as are requested. As more and more random bytes are
|
118 |
|
|
* requested without giving time for the entropy pool to recharge,
|
119 |
|
|
* this will result in random numbers that are merely cryptographically
|
120 |
|
|
* strong. For many applications, however, this is acceptable.
|
121 |
|
|
*
|
122 |
|
|
* Exported interfaces ---- input
|
123 |
|
|
* ==============================
|
124 |
|
|
*
|
125 |
|
|
* The current exported interfaces for gathering environmental noise
|
126 |
|
|
* from the devices are:
|
127 |
|
|
*
|
128 |
|
|
* void add_input_randomness(unsigned int type, unsigned int code,
|
129 |
|
|
* unsigned int value);
|
130 |
|
|
* void add_interrupt_randomness(int irq);
|
131 |
|
|
*
|
132 |
|
|
* add_input_randomness() uses the input layer interrupt timing, as well as
|
133 |
|
|
* the event type information from the hardware.
|
134 |
|
|
*
|
135 |
|
|
* add_interrupt_randomness() uses the inter-interrupt timing as random
|
136 |
|
|
* inputs to the entropy pool. Note that not all interrupts are good
|
137 |
|
|
* sources of randomness! For example, the timer interrupts is not a
|
138 |
|
|
* good choice, because the periodicity of the interrupts is too
|
139 |
|
|
* regular, and hence predictable to an attacker. Disk interrupts are
|
140 |
|
|
* a better measure, since the timing of the disk interrupts are more
|
141 |
|
|
* unpredictable.
|
142 |
|
|
*
|
143 |
|
|
* All of these routines try to estimate how many bits of randomness a
|
144 |
|
|
* particular randomness source. They do this by keeping track of the
|
145 |
|
|
* first and second order deltas of the event timings.
|
146 |
|
|
*
|
147 |
|
|
* Ensuring unpredictability at system startup
|
148 |
|
|
* ============================================
|
149 |
|
|
*
|
150 |
|
|
* When any operating system starts up, it will go through a sequence
|
151 |
|
|
* of actions that are fairly predictable by an adversary, especially
|
152 |
|
|
* if the start-up does not involve interaction with a human operator.
|
153 |
|
|
* This reduces the actual number of bits of unpredictability in the
|
154 |
|
|
* entropy pool below the value in entropy_count. In order to
|
155 |
|
|
* counteract this effect, it helps to carry information in the
|
156 |
|
|
* entropy pool across shut-downs and start-ups. To do this, put the
|
157 |
|
|
* following lines an appropriate script which is run during the boot
|
158 |
|
|
* sequence:
|
159 |
|
|
*
|
160 |
|
|
* echo "Initializing random number generator..."
|
161 |
|
|
* random_seed=/var/run/random-seed
|
162 |
|
|
* # Carry a random seed from start-up to start-up
|
163 |
|
|
* # Load and then save the whole entropy pool
|
164 |
|
|
* if [ -f $random_seed ]; then
|
165 |
|
|
* cat $random_seed >/dev/urandom
|
166 |
|
|
* else
|
167 |
|
|
* touch $random_seed
|
168 |
|
|
* fi
|
169 |
|
|
* chmod 600 $random_seed
|
170 |
|
|
* dd if=/dev/urandom of=$random_seed count=1 bs=512
|
171 |
|
|
*
|
172 |
|
|
* and the following lines in an appropriate script which is run as
|
173 |
|
|
* the system is shutdown:
|
174 |
|
|
*
|
175 |
|
|
* # Carry a random seed from shut-down to start-up
|
176 |
|
|
* # Save the whole entropy pool
|
177 |
|
|
* echo "Saving random seed..."
|
178 |
|
|
* random_seed=/var/run/random-seed
|
179 |
|
|
* touch $random_seed
|
180 |
|
|
* chmod 600 $random_seed
|
181 |
|
|
* dd if=/dev/urandom of=$random_seed count=1 bs=512
|
182 |
|
|
*
|
183 |
|
|
* For example, on most modern systems using the System V init
|
184 |
|
|
* scripts, such code fragments would be found in
|
185 |
|
|
* /etc/rc.d/init.d/random. On older Linux systems, the correct script
|
186 |
|
|
* location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
|
187 |
|
|
*
|
188 |
|
|
* Effectively, these commands cause the contents of the entropy pool
|
189 |
|
|
* to be saved at shut-down time and reloaded into the entropy pool at
|
190 |
|
|
* start-up. (The 'dd' in the addition to the bootup script is to
|
191 |
|
|
* make sure that /etc/random-seed is different for every start-up,
|
192 |
|
|
* even if the system crashes without executing rc.0.) Even with
|
193 |
|
|
* complete knowledge of the start-up activities, predicting the state
|
194 |
|
|
* of the entropy pool requires knowledge of the previous history of
|
195 |
|
|
* the system.
|
196 |
|
|
*
|
197 |
|
|
* Configuring the /dev/random driver under Linux
|
198 |
|
|
* ==============================================
|
199 |
|
|
*
|
200 |
|
|
* The /dev/random driver under Linux uses minor numbers 8 and 9 of
|
201 |
|
|
* the /dev/mem major number (#1). So if your system does not have
|
202 |
|
|
* /dev/random and /dev/urandom created already, they can be created
|
203 |
|
|
* by using the commands:
|
204 |
|
|
*
|
205 |
|
|
* mknod /dev/random c 1 8
|
206 |
|
|
* mknod /dev/urandom c 1 9
|
207 |
|
|
*
|
208 |
|
|
* Acknowledgements:
|
209 |
|
|
* =================
|
210 |
|
|
*
|
211 |
|
|
* Ideas for constructing this random number generator were derived
|
212 |
|
|
* from Pretty Good Privacy's random number generator, and from private
|
213 |
|
|
* discussions with Phil Karn. Colin Plumb provided a faster random
|
214 |
|
|
* number generator, which speed up the mixing function of the entropy
|
215 |
|
|
* pool, taken from PGPfone. Dale Worley has also contributed many
|
216 |
|
|
* useful ideas and suggestions to improve this driver.
|
217 |
|
|
*
|
218 |
|
|
* Any flaws in the design are solely my responsibility, and should
|
219 |
|
|
* not be attributed to the Phil, Colin, or any of authors of PGP.
|
220 |
|
|
*
|
221 |
|
|
* Further background information on this topic may be obtained from
|
222 |
|
|
* RFC 1750, "Randomness Recommendations for Security", by Donald
|
223 |
|
|
* Eastlake, Steve Crocker, and Jeff Schiller.
|
224 |
|
|
*/
|
225 |
|
|
|
226 |
|
|
#include <linux/utsname.h>
|
227 |
|
|
#include <linux/module.h>
|
228 |
|
|
#include <linux/kernel.h>
|
229 |
|
|
#include <linux/major.h>
|
230 |
|
|
#include <linux/string.h>
|
231 |
|
|
#include <linux/fcntl.h>
|
232 |
|
|
#include <linux/slab.h>
|
233 |
|
|
#include <linux/random.h>
|
234 |
|
|
#include <linux/poll.h>
|
235 |
|
|
#include <linux/init.h>
|
236 |
|
|
#include <linux/fs.h>
|
237 |
|
|
#include <linux/genhd.h>
|
238 |
|
|
#include <linux/interrupt.h>
|
239 |
|
|
#include <linux/spinlock.h>
|
240 |
|
|
#include <linux/percpu.h>
|
241 |
|
|
#include <linux/cryptohash.h>
|
242 |
|
|
|
243 |
|
|
#include <asm/processor.h>
|
244 |
|
|
#include <asm/uaccess.h>
|
245 |
|
|
#include <asm/irq.h>
|
246 |
|
|
#include <asm/io.h>
|
247 |
|
|
|
248 |
|
|
/*
|
249 |
|
|
* Configuration information
|
250 |
|
|
*/
|
251 |
|
|
#define INPUT_POOL_WORDS 128
|
252 |
|
|
#define OUTPUT_POOL_WORDS 32
|
253 |
|
|
#define SEC_XFER_SIZE 512
|
254 |
|
|
|
255 |
|
|
/*
|
256 |
|
|
* The minimum number of bits of entropy before we wake up a read on
|
257 |
|
|
* /dev/random. Should be enough to do a significant reseed.
|
258 |
|
|
*/
|
259 |
|
|
static int random_read_wakeup_thresh = 64;
|
260 |
|
|
|
261 |
|
|
/*
|
262 |
|
|
* If the entropy count falls under this number of bits, then we
|
263 |
|
|
* should wake up processes which are selecting or polling on write
|
264 |
|
|
* access to /dev/random.
|
265 |
|
|
*/
|
266 |
|
|
static int random_write_wakeup_thresh = 128;
|
267 |
|
|
|
268 |
|
|
/*
|
269 |
|
|
* When the input pool goes over trickle_thresh, start dropping most
|
270 |
|
|
* samples to avoid wasting CPU time and reduce lock contention.
|
271 |
|
|
*/
|
272 |
|
|
|
273 |
|
|
static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
|
274 |
|
|
|
275 |
|
|
static DEFINE_PER_CPU(int, trickle_count) = 0;
|
276 |
|
|
|
277 |
|
|
/*
|
278 |
|
|
* A pool of size .poolwords is stirred with a primitive polynomial
|
279 |
|
|
* of degree .poolwords over GF(2). The taps for various sizes are
|
280 |
|
|
* defined below. They are chosen to be evenly spaced (minimum RMS
|
281 |
|
|
* distance from evenly spaced; the numbers in the comments are a
|
282 |
|
|
* scaled squared error sum) except for the last tap, which is 1 to
|
283 |
|
|
* get the twisting happening as fast as possible.
|
284 |
|
|
*/
|
285 |
|
|
static struct poolinfo {
|
286 |
|
|
int poolwords;
|
287 |
|
|
int tap1, tap2, tap3, tap4, tap5;
|
288 |
|
|
} poolinfo_table[] = {
|
289 |
|
|
/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
|
290 |
|
|
{ 128, 103, 76, 51, 25, 1 },
|
291 |
|
|
/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
|
292 |
|
|
{ 32, 26, 20, 14, 7, 1 },
|
293 |
|
|
#if 0
|
294 |
|
|
/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
|
295 |
|
|
{ 2048, 1638, 1231, 819, 411, 1 },
|
296 |
|
|
|
297 |
|
|
/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
|
298 |
|
|
{ 1024, 817, 615, 412, 204, 1 },
|
299 |
|
|
|
300 |
|
|
/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
|
301 |
|
|
{ 1024, 819, 616, 410, 207, 2 },
|
302 |
|
|
|
303 |
|
|
/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
|
304 |
|
|
{ 512, 411, 308, 208, 104, 1 },
|
305 |
|
|
|
306 |
|
|
/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
|
307 |
|
|
{ 512, 409, 307, 206, 102, 2 },
|
308 |
|
|
/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
|
309 |
|
|
{ 512, 409, 309, 205, 103, 2 },
|
310 |
|
|
|
311 |
|
|
/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
|
312 |
|
|
{ 256, 205, 155, 101, 52, 1 },
|
313 |
|
|
|
314 |
|
|
/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
|
315 |
|
|
{ 128, 103, 78, 51, 27, 2 },
|
316 |
|
|
|
317 |
|
|
/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
|
318 |
|
|
{ 64, 52, 39, 26, 14, 1 },
|
319 |
|
|
#endif
|
320 |
|
|
};
|
321 |
|
|
|
322 |
|
|
#define POOLBITS poolwords*32
|
323 |
|
|
#define POOLBYTES poolwords*4
|
324 |
|
|
|
325 |
|
|
/*
|
326 |
|
|
* For the purposes of better mixing, we use the CRC-32 polynomial as
|
327 |
|
|
* well to make a twisted Generalized Feedback Shift Reigster
|
328 |
|
|
*
|
329 |
|
|
* (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
|
330 |
|
|
* Transactions on Modeling and Computer Simulation 2(3):179-194.
|
331 |
|
|
* Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
|
332 |
|
|
* II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
|
333 |
|
|
*
|
334 |
|
|
* Thanks to Colin Plumb for suggesting this.
|
335 |
|
|
*
|
336 |
|
|
* We have not analyzed the resultant polynomial to prove it primitive;
|
337 |
|
|
* in fact it almost certainly isn't. Nonetheless, the irreducible factors
|
338 |
|
|
* of a random large-degree polynomial over GF(2) are more than large enough
|
339 |
|
|
* that periodicity is not a concern.
|
340 |
|
|
*
|
341 |
|
|
* The input hash is much less sensitive than the output hash. All
|
342 |
|
|
* that we want of it is that it be a good non-cryptographic hash;
|
343 |
|
|
* i.e. it not produce collisions when fed "random" data of the sort
|
344 |
|
|
* we expect to see. As long as the pool state differs for different
|
345 |
|
|
* inputs, we have preserved the input entropy and done a good job.
|
346 |
|
|
* The fact that an intelligent attacker can construct inputs that
|
347 |
|
|
* will produce controlled alterations to the pool's state is not
|
348 |
|
|
* important because we don't consider such inputs to contribute any
|
349 |
|
|
* randomness. The only property we need with respect to them is that
|
350 |
|
|
* the attacker can't increase his/her knowledge of the pool's state.
|
351 |
|
|
* Since all additions are reversible (knowing the final state and the
|
352 |
|
|
* input, you can reconstruct the initial state), if an attacker has
|
353 |
|
|
* any uncertainty about the initial state, he/she can only shuffle
|
354 |
|
|
* that uncertainty about, but never cause any collisions (which would
|
355 |
|
|
* decrease the uncertainty).
|
356 |
|
|
*
|
357 |
|
|
* The chosen system lets the state of the pool be (essentially) the input
|
358 |
|
|
* modulo the generator polymnomial. Now, for random primitive polynomials,
|
359 |
|
|
* this is a universal class of hash functions, meaning that the chance
|
360 |
|
|
* of a collision is limited by the attacker's knowledge of the generator
|
361 |
|
|
* polynomail, so if it is chosen at random, an attacker can never force
|
362 |
|
|
* a collision. Here, we use a fixed polynomial, but we *can* assume that
|
363 |
|
|
* ###--> it is unknown to the processes generating the input entropy. <-###
|
364 |
|
|
* Because of this important property, this is a good, collision-resistant
|
365 |
|
|
* hash; hash collisions will occur no more often than chance.
|
366 |
|
|
*/
|
367 |
|
|
|
368 |
|
|
/*
|
369 |
|
|
* Static global variables
|
370 |
|
|
*/
|
371 |
|
|
static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
|
372 |
|
|
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
|
373 |
|
|
|
374 |
|
|
#if 0
|
375 |
|
|
static int debug = 0;
|
376 |
|
|
module_param(debug, bool, 0644);
|
377 |
|
|
#define DEBUG_ENT(fmt, arg...) do { if (debug) \
|
378 |
|
|
printk(KERN_DEBUG "random %04d %04d %04d: " \
|
379 |
|
|
fmt,\
|
380 |
|
|
input_pool.entropy_count,\
|
381 |
|
|
blocking_pool.entropy_count,\
|
382 |
|
|
nonblocking_pool.entropy_count,\
|
383 |
|
|
## arg); } while (0)
|
384 |
|
|
#else
|
385 |
|
|
#define DEBUG_ENT(fmt, arg...) do {} while (0)
|
386 |
|
|
#endif
|
387 |
|
|
|
388 |
|
|
/**********************************************************************
|
389 |
|
|
*
|
390 |
|
|
* OS independent entropy store. Here are the functions which handle
|
391 |
|
|
* storing entropy in an entropy pool.
|
392 |
|
|
*
|
393 |
|
|
**********************************************************************/
|
394 |
|
|
|
395 |
|
|
struct entropy_store;
|
396 |
|
|
struct entropy_store {
|
397 |
|
|
/* mostly-read data: */
|
398 |
|
|
struct poolinfo *poolinfo;
|
399 |
|
|
__u32 *pool;
|
400 |
|
|
const char *name;
|
401 |
|
|
int limit;
|
402 |
|
|
struct entropy_store *pull;
|
403 |
|
|
|
404 |
|
|
/* read-write data: */
|
405 |
|
|
spinlock_t lock ____cacheline_aligned_in_smp;
|
406 |
|
|
unsigned add_ptr;
|
407 |
|
|
int entropy_count;
|
408 |
|
|
int input_rotate;
|
409 |
|
|
};
|
410 |
|
|
|
411 |
|
|
static __u32 input_pool_data[INPUT_POOL_WORDS];
|
412 |
|
|
static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
|
413 |
|
|
static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
|
414 |
|
|
|
415 |
|
|
static struct entropy_store input_pool = {
|
416 |
|
|
.poolinfo = &poolinfo_table[0],
|
417 |
|
|
.name = "input",
|
418 |
|
|
.limit = 1,
|
419 |
|
|
.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
|
420 |
|
|
.pool = input_pool_data
|
421 |
|
|
};
|
422 |
|
|
|
423 |
|
|
static struct entropy_store blocking_pool = {
|
424 |
|
|
.poolinfo = &poolinfo_table[1],
|
425 |
|
|
.name = "blocking",
|
426 |
|
|
.limit = 1,
|
427 |
|
|
.pull = &input_pool,
|
428 |
|
|
.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
|
429 |
|
|
.pool = blocking_pool_data
|
430 |
|
|
};
|
431 |
|
|
|
432 |
|
|
static struct entropy_store nonblocking_pool = {
|
433 |
|
|
.poolinfo = &poolinfo_table[1],
|
434 |
|
|
.name = "nonblocking",
|
435 |
|
|
.pull = &input_pool,
|
436 |
|
|
.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
|
437 |
|
|
.pool = nonblocking_pool_data
|
438 |
|
|
};
|
439 |
|
|
|
440 |
|
|
/*
|
441 |
|
|
* This function adds a byte into the entropy "pool". It does not
|
442 |
|
|
* update the entropy estimate. The caller should call
|
443 |
|
|
* credit_entropy_store if this is appropriate.
|
444 |
|
|
*
|
445 |
|
|
* The pool is stirred with a primitive polynomial of the appropriate
|
446 |
|
|
* degree, and then twisted. We twist by three bits at a time because
|
447 |
|
|
* it's cheap to do so and helps slightly in the expected case where
|
448 |
|
|
* the entropy is concentrated in the low-order bits.
|
449 |
|
|
*/
|
450 |
|
|
static void __add_entropy_words(struct entropy_store *r, const __u32 *in,
|
451 |
|
|
int nwords, __u32 out[16])
|
452 |
|
|
{
|
453 |
|
|
static __u32 const twist_table[8] = {
|
454 |
|
|
0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
|
455 |
|
|
0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
|
456 |
|
|
unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5;
|
457 |
|
|
int new_rotate, input_rotate;
|
458 |
|
|
int wordmask = r->poolinfo->poolwords - 1;
|
459 |
|
|
__u32 w, next_w;
|
460 |
|
|
unsigned long flags;
|
461 |
|
|
|
462 |
|
|
/* Taps are constant, so we can load them without holding r->lock. */
|
463 |
|
|
tap1 = r->poolinfo->tap1;
|
464 |
|
|
tap2 = r->poolinfo->tap2;
|
465 |
|
|
tap3 = r->poolinfo->tap3;
|
466 |
|
|
tap4 = r->poolinfo->tap4;
|
467 |
|
|
tap5 = r->poolinfo->tap5;
|
468 |
|
|
next_w = *in++;
|
469 |
|
|
|
470 |
|
|
spin_lock_irqsave(&r->lock, flags);
|
471 |
|
|
prefetch_range(r->pool, wordmask);
|
472 |
|
|
input_rotate = r->input_rotate;
|
473 |
|
|
add_ptr = r->add_ptr;
|
474 |
|
|
|
475 |
|
|
while (nwords--) {
|
476 |
|
|
w = rol32(next_w, input_rotate);
|
477 |
|
|
if (nwords > 0)
|
478 |
|
|
next_w = *in++;
|
479 |
|
|
i = add_ptr = (add_ptr - 1) & wordmask;
|
480 |
|
|
/*
|
481 |
|
|
* Normally, we add 7 bits of rotation to the pool.
|
482 |
|
|
* At the beginning of the pool, add an extra 7 bits
|
483 |
|
|
* rotation, so that successive passes spread the
|
484 |
|
|
* input bits across the pool evenly.
|
485 |
|
|
*/
|
486 |
|
|
new_rotate = input_rotate + 14;
|
487 |
|
|
if (i)
|
488 |
|
|
new_rotate = input_rotate + 7;
|
489 |
|
|
input_rotate = new_rotate & 31;
|
490 |
|
|
|
491 |
|
|
/* XOR in the various taps */
|
492 |
|
|
w ^= r->pool[(i + tap1) & wordmask];
|
493 |
|
|
w ^= r->pool[(i + tap2) & wordmask];
|
494 |
|
|
w ^= r->pool[(i + tap3) & wordmask];
|
495 |
|
|
w ^= r->pool[(i + tap4) & wordmask];
|
496 |
|
|
w ^= r->pool[(i + tap5) & wordmask];
|
497 |
|
|
w ^= r->pool[i];
|
498 |
|
|
r->pool[i] = (w >> 3) ^ twist_table[w & 7];
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
r->input_rotate = input_rotate;
|
502 |
|
|
r->add_ptr = add_ptr;
|
503 |
|
|
|
504 |
|
|
if (out) {
|
505 |
|
|
for (i = 0; i < 16; i++) {
|
506 |
|
|
out[i] = r->pool[add_ptr];
|
507 |
|
|
add_ptr = (add_ptr - 1) & wordmask;
|
508 |
|
|
}
|
509 |
|
|
}
|
510 |
|
|
|
511 |
|
|
spin_unlock_irqrestore(&r->lock, flags);
|
512 |
|
|
}
|
513 |
|
|
|
514 |
|
|
static inline void add_entropy_words(struct entropy_store *r, const __u32 *in,
|
515 |
|
|
int nwords)
|
516 |
|
|
{
|
517 |
|
|
__add_entropy_words(r, in, nwords, NULL);
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
/*
|
521 |
|
|
* Credit (or debit) the entropy store with n bits of entropy
|
522 |
|
|
*/
|
523 |
|
|
static void credit_entropy_store(struct entropy_store *r, int nbits)
|
524 |
|
|
{
|
525 |
|
|
unsigned long flags;
|
526 |
|
|
|
527 |
|
|
spin_lock_irqsave(&r->lock, flags);
|
528 |
|
|
|
529 |
|
|
if (r->entropy_count + nbits < 0) {
|
530 |
|
|
DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
|
531 |
|
|
r->entropy_count, nbits);
|
532 |
|
|
r->entropy_count = 0;
|
533 |
|
|
} else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) {
|
534 |
|
|
r->entropy_count = r->poolinfo->POOLBITS;
|
535 |
|
|
} else {
|
536 |
|
|
r->entropy_count += nbits;
|
537 |
|
|
if (nbits)
|
538 |
|
|
DEBUG_ENT("added %d entropy credits to %s\n",
|
539 |
|
|
nbits, r->name);
|
540 |
|
|
}
|
541 |
|
|
|
542 |
|
|
spin_unlock_irqrestore(&r->lock, flags);
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
/*********************************************************************
|
546 |
|
|
*
|
547 |
|
|
* Entropy input management
|
548 |
|
|
*
|
549 |
|
|
*********************************************************************/
|
550 |
|
|
|
551 |
|
|
/* There is one of these per entropy source */
|
552 |
|
|
struct timer_rand_state {
|
553 |
|
|
cycles_t last_time;
|
554 |
|
|
long last_delta,last_delta2;
|
555 |
|
|
unsigned dont_count_entropy:1;
|
556 |
|
|
};
|
557 |
|
|
|
558 |
|
|
static struct timer_rand_state input_timer_state;
|
559 |
|
|
static struct timer_rand_state *irq_timer_state[NR_IRQS];
|
560 |
|
|
|
561 |
|
|
/*
|
562 |
|
|
* This function adds entropy to the entropy "pool" by using timing
|
563 |
|
|
* delays. It uses the timer_rand_state structure to make an estimate
|
564 |
|
|
* of how many bits of entropy this call has added to the pool.
|
565 |
|
|
*
|
566 |
|
|
* The number "num" is also added to the pool - it should somehow describe
|
567 |
|
|
* the type of event which just happened. This is currently 0-255 for
|
568 |
|
|
* keyboard scan codes, and 256 upwards for interrupts.
|
569 |
|
|
*
|
570 |
|
|
*/
|
571 |
|
|
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
|
572 |
|
|
{
|
573 |
|
|
struct {
|
574 |
|
|
cycles_t cycles;
|
575 |
|
|
long jiffies;
|
576 |
|
|
unsigned num;
|
577 |
|
|
} sample;
|
578 |
|
|
long delta, delta2, delta3;
|
579 |
|
|
|
580 |
|
|
preempt_disable();
|
581 |
|
|
/* if over the trickle threshold, use only 1 in 4096 samples */
|
582 |
|
|
if (input_pool.entropy_count > trickle_thresh &&
|
583 |
|
|
(__get_cpu_var(trickle_count)++ & 0xfff))
|
584 |
|
|
goto out;
|
585 |
|
|
|
586 |
|
|
sample.jiffies = jiffies;
|
587 |
|
|
sample.cycles = get_cycles();
|
588 |
|
|
sample.num = num;
|
589 |
|
|
add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4);
|
590 |
|
|
|
591 |
|
|
/*
|
592 |
|
|
* Calculate number of bits of randomness we probably added.
|
593 |
|
|
* We take into account the first, second and third-order deltas
|
594 |
|
|
* in order to make our estimate.
|
595 |
|
|
*/
|
596 |
|
|
|
597 |
|
|
if (!state->dont_count_entropy) {
|
598 |
|
|
delta = sample.jiffies - state->last_time;
|
599 |
|
|
state->last_time = sample.jiffies;
|
600 |
|
|
|
601 |
|
|
delta2 = delta - state->last_delta;
|
602 |
|
|
state->last_delta = delta;
|
603 |
|
|
|
604 |
|
|
delta3 = delta2 - state->last_delta2;
|
605 |
|
|
state->last_delta2 = delta2;
|
606 |
|
|
|
607 |
|
|
if (delta < 0)
|
608 |
|
|
delta = -delta;
|
609 |
|
|
if (delta2 < 0)
|
610 |
|
|
delta2 = -delta2;
|
611 |
|
|
if (delta3 < 0)
|
612 |
|
|
delta3 = -delta3;
|
613 |
|
|
if (delta > delta2)
|
614 |
|
|
delta = delta2;
|
615 |
|
|
if (delta > delta3)
|
616 |
|
|
delta = delta3;
|
617 |
|
|
|
618 |
|
|
/*
|
619 |
|
|
* delta is now minimum absolute delta.
|
620 |
|
|
* Round down by 1 bit on general principles,
|
621 |
|
|
* and limit entropy entimate to 12 bits.
|
622 |
|
|
*/
|
623 |
|
|
credit_entropy_store(&input_pool,
|
624 |
|
|
min_t(int, fls(delta>>1), 11));
|
625 |
|
|
}
|
626 |
|
|
|
627 |
|
|
if(input_pool.entropy_count >= random_read_wakeup_thresh)
|
628 |
|
|
wake_up_interruptible(&random_read_wait);
|
629 |
|
|
|
630 |
|
|
out:
|
631 |
|
|
preempt_enable();
|
632 |
|
|
}
|
633 |
|
|
|
634 |
|
|
void add_input_randomness(unsigned int type, unsigned int code,
|
635 |
|
|
unsigned int value)
|
636 |
|
|
{
|
637 |
|
|
static unsigned char last_value;
|
638 |
|
|
|
639 |
|
|
/* ignore autorepeat and the like */
|
640 |
|
|
if (value == last_value)
|
641 |
|
|
return;
|
642 |
|
|
|
643 |
|
|
DEBUG_ENT("input event\n");
|
644 |
|
|
last_value = value;
|
645 |
|
|
add_timer_randomness(&input_timer_state,
|
646 |
|
|
(type << 4) ^ code ^ (code >> 4) ^ value);
|
647 |
|
|
}
|
648 |
|
|
EXPORT_SYMBOL_GPL(add_input_randomness);
|
649 |
|
|
|
650 |
|
|
void add_interrupt_randomness(int irq)
|
651 |
|
|
{
|
652 |
|
|
if (irq >= NR_IRQS || irq_timer_state[irq] == NULL)
|
653 |
|
|
return;
|
654 |
|
|
|
655 |
|
|
DEBUG_ENT("irq event %d\n", irq);
|
656 |
|
|
add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
#ifdef CONFIG_BLOCK
|
660 |
|
|
void add_disk_randomness(struct gendisk *disk)
|
661 |
|
|
{
|
662 |
|
|
if (!disk || !disk->random)
|
663 |
|
|
return;
|
664 |
|
|
/* first major is 1, so we get >= 0x200 here */
|
665 |
|
|
DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
|
666 |
|
|
|
667 |
|
|
add_timer_randomness(disk->random,
|
668 |
|
|
0x100 + MKDEV(disk->major, disk->first_minor));
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
EXPORT_SYMBOL(add_disk_randomness);
|
672 |
|
|
#endif
|
673 |
|
|
|
674 |
|
|
#define EXTRACT_SIZE 10
|
675 |
|
|
|
676 |
|
|
/*********************************************************************
|
677 |
|
|
*
|
678 |
|
|
* Entropy extraction routines
|
679 |
|
|
*
|
680 |
|
|
*********************************************************************/
|
681 |
|
|
|
682 |
|
|
static ssize_t extract_entropy(struct entropy_store *r, void * buf,
|
683 |
|
|
size_t nbytes, int min, int rsvd);
|
684 |
|
|
|
685 |
|
|
/*
|
686 |
|
|
* This utility inline function is responsible for transfering entropy
|
687 |
|
|
* from the primary pool to the secondary extraction pool. We make
|
688 |
|
|
* sure we pull enough for a 'catastrophic reseed'.
|
689 |
|
|
*/
|
690 |
|
|
static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
|
691 |
|
|
{
|
692 |
|
|
__u32 tmp[OUTPUT_POOL_WORDS];
|
693 |
|
|
|
694 |
|
|
if (r->pull && r->entropy_count < nbytes * 8 &&
|
695 |
|
|
r->entropy_count < r->poolinfo->POOLBITS) {
|
696 |
|
|
/* If we're limited, always leave two wakeup worth's BITS */
|
697 |
|
|
int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
|
698 |
|
|
int bytes = nbytes;
|
699 |
|
|
|
700 |
|
|
/* pull at least as many as BYTES as wakeup BITS */
|
701 |
|
|
bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
|
702 |
|
|
/* but never more than the buffer size */
|
703 |
|
|
bytes = min_t(int, bytes, sizeof(tmp));
|
704 |
|
|
|
705 |
|
|
DEBUG_ENT("going to reseed %s with %d bits "
|
706 |
|
|
"(%d of %d requested)\n",
|
707 |
|
|
r->name, bytes * 8, nbytes * 8, r->entropy_count);
|
708 |
|
|
|
709 |
|
|
bytes=extract_entropy(r->pull, tmp, bytes,
|
710 |
|
|
random_read_wakeup_thresh / 8, rsvd);
|
711 |
|
|
add_entropy_words(r, tmp, (bytes + 3) / 4);
|
712 |
|
|
credit_entropy_store(r, bytes*8);
|
713 |
|
|
}
|
714 |
|
|
}
|
715 |
|
|
|
716 |
|
|
/*
|
717 |
|
|
* These functions extracts randomness from the "entropy pool", and
|
718 |
|
|
* returns it in a buffer.
|
719 |
|
|
*
|
720 |
|
|
* The min parameter specifies the minimum amount we can pull before
|
721 |
|
|
* failing to avoid races that defeat catastrophic reseeding while the
|
722 |
|
|
* reserved parameter indicates how much entropy we must leave in the
|
723 |
|
|
* pool after each pull to avoid starving other readers.
|
724 |
|
|
*
|
725 |
|
|
* Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
|
726 |
|
|
*/
|
727 |
|
|
|
728 |
|
|
static size_t account(struct entropy_store *r, size_t nbytes, int min,
|
729 |
|
|
int reserved)
|
730 |
|
|
{
|
731 |
|
|
unsigned long flags;
|
732 |
|
|
|
733 |
|
|
BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
|
734 |
|
|
|
735 |
|
|
/* Hold lock while accounting */
|
736 |
|
|
spin_lock_irqsave(&r->lock, flags);
|
737 |
|
|
|
738 |
|
|
DEBUG_ENT("trying to extract %d bits from %s\n",
|
739 |
|
|
nbytes * 8, r->name);
|
740 |
|
|
|
741 |
|
|
/* Can we pull enough? */
|
742 |
|
|
if (r->entropy_count / 8 < min + reserved) {
|
743 |
|
|
nbytes = 0;
|
744 |
|
|
} else {
|
745 |
|
|
/* If limited, never pull more than available */
|
746 |
|
|
if (r->limit && nbytes + reserved >= r->entropy_count / 8)
|
747 |
|
|
nbytes = r->entropy_count/8 - reserved;
|
748 |
|
|
|
749 |
|
|
if(r->entropy_count / 8 >= nbytes + reserved)
|
750 |
|
|
r->entropy_count -= nbytes*8;
|
751 |
|
|
else
|
752 |
|
|
r->entropy_count = reserved;
|
753 |
|
|
|
754 |
|
|
if (r->entropy_count < random_write_wakeup_thresh)
|
755 |
|
|
wake_up_interruptible(&random_write_wait);
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
DEBUG_ENT("debiting %d entropy credits from %s%s\n",
|
759 |
|
|
nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
|
760 |
|
|
|
761 |
|
|
spin_unlock_irqrestore(&r->lock, flags);
|
762 |
|
|
|
763 |
|
|
return nbytes;
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
static void extract_buf(struct entropy_store *r, __u8 *out)
|
767 |
|
|
{
|
768 |
|
|
int i;
|
769 |
|
|
__u32 data[16], buf[5 + SHA_WORKSPACE_WORDS];
|
770 |
|
|
|
771 |
|
|
sha_init(buf);
|
772 |
|
|
/*
|
773 |
|
|
* As we hash the pool, we mix intermediate values of
|
774 |
|
|
* the hash back into the pool. This eliminates
|
775 |
|
|
* backtracking attacks (where the attacker knows
|
776 |
|
|
* the state of the pool plus the current outputs, and
|
777 |
|
|
* attempts to find previous ouputs), unless the hash
|
778 |
|
|
* function can be inverted.
|
779 |
|
|
*/
|
780 |
|
|
for (i = 0; i < r->poolinfo->poolwords; i += 16) {
|
781 |
|
|
/* hash blocks of 16 words = 512 bits */
|
782 |
|
|
sha_transform(buf, (__u8 *)(r->pool + i), buf + 5);
|
783 |
|
|
/* feed back portion of the resulting hash */
|
784 |
|
|
add_entropy_words(r, &buf[i % 5], 1);
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
/*
|
788 |
|
|
* To avoid duplicates, we atomically extract a
|
789 |
|
|
* portion of the pool while mixing, and hash one
|
790 |
|
|
* final time.
|
791 |
|
|
*/
|
792 |
|
|
__add_entropy_words(r, &buf[i % 5], 1, data);
|
793 |
|
|
sha_transform(buf, (__u8 *)data, buf + 5);
|
794 |
|
|
|
795 |
|
|
/*
|
796 |
|
|
* In case the hash function has some recognizable
|
797 |
|
|
* output pattern, we fold it in half.
|
798 |
|
|
*/
|
799 |
|
|
|
800 |
|
|
buf[0] ^= buf[3];
|
801 |
|
|
buf[1] ^= buf[4];
|
802 |
|
|
buf[2] ^= rol32(buf[2], 16);
|
803 |
|
|
memcpy(out, buf, EXTRACT_SIZE);
|
804 |
|
|
memset(buf, 0, sizeof(buf));
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
static ssize_t extract_entropy(struct entropy_store *r, void * buf,
|
808 |
|
|
size_t nbytes, int min, int reserved)
|
809 |
|
|
{
|
810 |
|
|
ssize_t ret = 0, i;
|
811 |
|
|
__u8 tmp[EXTRACT_SIZE];
|
812 |
|
|
|
813 |
|
|
xfer_secondary_pool(r, nbytes);
|
814 |
|
|
nbytes = account(r, nbytes, min, reserved);
|
815 |
|
|
|
816 |
|
|
while (nbytes) {
|
817 |
|
|
extract_buf(r, tmp);
|
818 |
|
|
i = min_t(int, nbytes, EXTRACT_SIZE);
|
819 |
|
|
memcpy(buf, tmp, i);
|
820 |
|
|
nbytes -= i;
|
821 |
|
|
buf += i;
|
822 |
|
|
ret += i;
|
823 |
|
|
}
|
824 |
|
|
|
825 |
|
|
/* Wipe data just returned from memory */
|
826 |
|
|
memset(tmp, 0, sizeof(tmp));
|
827 |
|
|
|
828 |
|
|
return ret;
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
|
832 |
|
|
size_t nbytes)
|
833 |
|
|
{
|
834 |
|
|
ssize_t ret = 0, i;
|
835 |
|
|
__u8 tmp[EXTRACT_SIZE];
|
836 |
|
|
|
837 |
|
|
xfer_secondary_pool(r, nbytes);
|
838 |
|
|
nbytes = account(r, nbytes, 0, 0);
|
839 |
|
|
|
840 |
|
|
while (nbytes) {
|
841 |
|
|
if (need_resched()) {
|
842 |
|
|
if (signal_pending(current)) {
|
843 |
|
|
if (ret == 0)
|
844 |
|
|
ret = -ERESTARTSYS;
|
845 |
|
|
break;
|
846 |
|
|
}
|
847 |
|
|
schedule();
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
extract_buf(r, tmp);
|
851 |
|
|
i = min_t(int, nbytes, EXTRACT_SIZE);
|
852 |
|
|
if (copy_to_user(buf, tmp, i)) {
|
853 |
|
|
ret = -EFAULT;
|
854 |
|
|
break;
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
nbytes -= i;
|
858 |
|
|
buf += i;
|
859 |
|
|
ret += i;
|
860 |
|
|
}
|
861 |
|
|
|
862 |
|
|
/* Wipe data just returned from memory */
|
863 |
|
|
memset(tmp, 0, sizeof(tmp));
|
864 |
|
|
|
865 |
|
|
return ret;
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
/*
|
869 |
|
|
* This function is the exported kernel interface. It returns some
|
870 |
|
|
* number of good random numbers, suitable for seeding TCP sequence
|
871 |
|
|
* numbers, etc.
|
872 |
|
|
*/
|
873 |
|
|
void get_random_bytes(void *buf, int nbytes)
|
874 |
|
|
{
|
875 |
|
|
extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
|
876 |
|
|
}
|
877 |
|
|
|
878 |
|
|
EXPORT_SYMBOL(get_random_bytes);
|
879 |
|
|
|
880 |
|
|
/*
|
881 |
|
|
* init_std_data - initialize pool with system data
|
882 |
|
|
*
|
883 |
|
|
* @r: pool to initialize
|
884 |
|
|
*
|
885 |
|
|
* This function clears the pool's entropy count and mixes some system
|
886 |
|
|
* data into the pool to prepare it for use. The pool is not cleared
|
887 |
|
|
* as that can only decrease the entropy in the pool.
|
888 |
|
|
*/
|
889 |
|
|
static void init_std_data(struct entropy_store *r)
|
890 |
|
|
{
|
891 |
|
|
ktime_t now;
|
892 |
|
|
unsigned long flags;
|
893 |
|
|
|
894 |
|
|
spin_lock_irqsave(&r->lock, flags);
|
895 |
|
|
r->entropy_count = 0;
|
896 |
|
|
spin_unlock_irqrestore(&r->lock, flags);
|
897 |
|
|
|
898 |
|
|
now = ktime_get_real();
|
899 |
|
|
add_entropy_words(r, (__u32 *)&now, sizeof(now)/4);
|
900 |
|
|
add_entropy_words(r, (__u32 *)utsname(),
|
901 |
|
|
sizeof(*(utsname()))/4);
|
902 |
|
|
}
|
903 |
|
|
|
904 |
|
|
static int __init rand_initialize(void)
|
905 |
|
|
{
|
906 |
|
|
init_std_data(&input_pool);
|
907 |
|
|
init_std_data(&blocking_pool);
|
908 |
|
|
init_std_data(&nonblocking_pool);
|
909 |
|
|
return 0;
|
910 |
|
|
}
|
911 |
|
|
module_init(rand_initialize);
|
912 |
|
|
|
913 |
|
|
void rand_initialize_irq(int irq)
|
914 |
|
|
{
|
915 |
|
|
struct timer_rand_state *state;
|
916 |
|
|
|
917 |
|
|
if (irq >= NR_IRQS || irq_timer_state[irq])
|
918 |
|
|
return;
|
919 |
|
|
|
920 |
|
|
/*
|
921 |
|
|
* If kzalloc returns null, we just won't use that entropy
|
922 |
|
|
* source.
|
923 |
|
|
*/
|
924 |
|
|
state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
|
925 |
|
|
if (state)
|
926 |
|
|
irq_timer_state[irq] = state;
|
927 |
|
|
}
|
928 |
|
|
|
929 |
|
|
#ifdef CONFIG_BLOCK
|
930 |
|
|
void rand_initialize_disk(struct gendisk *disk)
|
931 |
|
|
{
|
932 |
|
|
struct timer_rand_state *state;
|
933 |
|
|
|
934 |
|
|
/*
|
935 |
|
|
* If kzalloc returns null, we just won't use that entropy
|
936 |
|
|
* source.
|
937 |
|
|
*/
|
938 |
|
|
state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
|
939 |
|
|
if (state)
|
940 |
|
|
disk->random = state;
|
941 |
|
|
}
|
942 |
|
|
#endif
|
943 |
|
|
|
944 |
|
|
static ssize_t
|
945 |
|
|
random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos)
|
946 |
|
|
{
|
947 |
|
|
ssize_t n, retval = 0, count = 0;
|
948 |
|
|
|
949 |
|
|
if (nbytes == 0)
|
950 |
|
|
return 0;
|
951 |
|
|
|
952 |
|
|
while (nbytes > 0) {
|
953 |
|
|
n = nbytes;
|
954 |
|
|
if (n > SEC_XFER_SIZE)
|
955 |
|
|
n = SEC_XFER_SIZE;
|
956 |
|
|
|
957 |
|
|
DEBUG_ENT("reading %d bits\n", n*8);
|
958 |
|
|
|
959 |
|
|
n = extract_entropy_user(&blocking_pool, buf, n);
|
960 |
|
|
|
961 |
|
|
DEBUG_ENT("read got %d bits (%d still needed)\n",
|
962 |
|
|
n*8, (nbytes-n)*8);
|
963 |
|
|
|
964 |
|
|
if (n == 0) {
|
965 |
|
|
if (file->f_flags & O_NONBLOCK) {
|
966 |
|
|
retval = -EAGAIN;
|
967 |
|
|
break;
|
968 |
|
|
}
|
969 |
|
|
|
970 |
|
|
DEBUG_ENT("sleeping?\n");
|
971 |
|
|
|
972 |
|
|
wait_event_interruptible(random_read_wait,
|
973 |
|
|
input_pool.entropy_count >=
|
974 |
|
|
random_read_wakeup_thresh);
|
975 |
|
|
|
976 |
|
|
DEBUG_ENT("awake\n");
|
977 |
|
|
|
978 |
|
|
if (signal_pending(current)) {
|
979 |
|
|
retval = -ERESTARTSYS;
|
980 |
|
|
break;
|
981 |
|
|
}
|
982 |
|
|
|
983 |
|
|
continue;
|
984 |
|
|
}
|
985 |
|
|
|
986 |
|
|
if (n < 0) {
|
987 |
|
|
retval = n;
|
988 |
|
|
break;
|
989 |
|
|
}
|
990 |
|
|
count += n;
|
991 |
|
|
buf += n;
|
992 |
|
|
nbytes -= n;
|
993 |
|
|
break; /* This break makes the device work */
|
994 |
|
|
/* like a named pipe */
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
/*
|
998 |
|
|
* If we gave the user some bytes, update the access time.
|
999 |
|
|
*/
|
1000 |
|
|
if (count)
|
1001 |
|
|
file_accessed(file);
|
1002 |
|
|
|
1003 |
|
|
return (count ? count : retval);
|
1004 |
|
|
}
|
1005 |
|
|
|
1006 |
|
|
static ssize_t
|
1007 |
|
|
urandom_read(struct file * file, char __user * buf,
|
1008 |
|
|
size_t nbytes, loff_t *ppos)
|
1009 |
|
|
{
|
1010 |
|
|
return extract_entropy_user(&nonblocking_pool, buf, nbytes);
|
1011 |
|
|
}
|
1012 |
|
|
|
1013 |
|
|
static unsigned int
|
1014 |
|
|
random_poll(struct file *file, poll_table * wait)
|
1015 |
|
|
{
|
1016 |
|
|
unsigned int mask;
|
1017 |
|
|
|
1018 |
|
|
poll_wait(file, &random_read_wait, wait);
|
1019 |
|
|
poll_wait(file, &random_write_wait, wait);
|
1020 |
|
|
mask = 0;
|
1021 |
|
|
if (input_pool.entropy_count >= random_read_wakeup_thresh)
|
1022 |
|
|
mask |= POLLIN | POLLRDNORM;
|
1023 |
|
|
if (input_pool.entropy_count < random_write_wakeup_thresh)
|
1024 |
|
|
mask |= POLLOUT | POLLWRNORM;
|
1025 |
|
|
return mask;
|
1026 |
|
|
}
|
1027 |
|
|
|
1028 |
|
|
static int
|
1029 |
|
|
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
|
1030 |
|
|
{
|
1031 |
|
|
size_t bytes;
|
1032 |
|
|
__u32 buf[16];
|
1033 |
|
|
const char __user *p = buffer;
|
1034 |
|
|
|
1035 |
|
|
while (count > 0) {
|
1036 |
|
|
bytes = min(count, sizeof(buf));
|
1037 |
|
|
if (copy_from_user(&buf, p, bytes))
|
1038 |
|
|
return -EFAULT;
|
1039 |
|
|
|
1040 |
|
|
count -= bytes;
|
1041 |
|
|
p += bytes;
|
1042 |
|
|
|
1043 |
|
|
add_entropy_words(r, buf, (bytes + 3) / 4);
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
return 0;
|
1047 |
|
|
}
|
1048 |
|
|
|
1049 |
|
|
static ssize_t
|
1050 |
|
|
random_write(struct file * file, const char __user * buffer,
|
1051 |
|
|
size_t count, loff_t *ppos)
|
1052 |
|
|
{
|
1053 |
|
|
size_t ret;
|
1054 |
|
|
struct inode *inode = file->f_path.dentry->d_inode;
|
1055 |
|
|
|
1056 |
|
|
ret = write_pool(&blocking_pool, buffer, count);
|
1057 |
|
|
if (ret)
|
1058 |
|
|
return ret;
|
1059 |
|
|
ret = write_pool(&nonblocking_pool, buffer, count);
|
1060 |
|
|
if (ret)
|
1061 |
|
|
return ret;
|
1062 |
|
|
|
1063 |
|
|
inode->i_mtime = current_fs_time(inode->i_sb);
|
1064 |
|
|
mark_inode_dirty(inode);
|
1065 |
|
|
return (ssize_t)count;
|
1066 |
|
|
}
|
1067 |
|
|
|
1068 |
|
|
static int
|
1069 |
|
|
random_ioctl(struct inode * inode, struct file * file,
|
1070 |
|
|
unsigned int cmd, unsigned long arg)
|
1071 |
|
|
{
|
1072 |
|
|
int size, ent_count;
|
1073 |
|
|
int __user *p = (int __user *)arg;
|
1074 |
|
|
int retval;
|
1075 |
|
|
|
1076 |
|
|
switch (cmd) {
|
1077 |
|
|
case RNDGETENTCNT:
|
1078 |
|
|
ent_count = input_pool.entropy_count;
|
1079 |
|
|
if (put_user(ent_count, p))
|
1080 |
|
|
return -EFAULT;
|
1081 |
|
|
return 0;
|
1082 |
|
|
case RNDADDTOENTCNT:
|
1083 |
|
|
if (!capable(CAP_SYS_ADMIN))
|
1084 |
|
|
return -EPERM;
|
1085 |
|
|
if (get_user(ent_count, p))
|
1086 |
|
|
return -EFAULT;
|
1087 |
|
|
credit_entropy_store(&input_pool, ent_count);
|
1088 |
|
|
/*
|
1089 |
|
|
* Wake up waiting processes if we have enough
|
1090 |
|
|
* entropy.
|
1091 |
|
|
*/
|
1092 |
|
|
if (input_pool.entropy_count >= random_read_wakeup_thresh)
|
1093 |
|
|
wake_up_interruptible(&random_read_wait);
|
1094 |
|
|
return 0;
|
1095 |
|
|
case RNDADDENTROPY:
|
1096 |
|
|
if (!capable(CAP_SYS_ADMIN))
|
1097 |
|
|
return -EPERM;
|
1098 |
|
|
if (get_user(ent_count, p++))
|
1099 |
|
|
return -EFAULT;
|
1100 |
|
|
if (ent_count < 0)
|
1101 |
|
|
return -EINVAL;
|
1102 |
|
|
if (get_user(size, p++))
|
1103 |
|
|
return -EFAULT;
|
1104 |
|
|
retval = write_pool(&input_pool, (const char __user *)p,
|
1105 |
|
|
size);
|
1106 |
|
|
if (retval < 0)
|
1107 |
|
|
return retval;
|
1108 |
|
|
credit_entropy_store(&input_pool, ent_count);
|
1109 |
|
|
/*
|
1110 |
|
|
* Wake up waiting processes if we have enough
|
1111 |
|
|
* entropy.
|
1112 |
|
|
*/
|
1113 |
|
|
if (input_pool.entropy_count >= random_read_wakeup_thresh)
|
1114 |
|
|
wake_up_interruptible(&random_read_wait);
|
1115 |
|
|
return 0;
|
1116 |
|
|
case RNDZAPENTCNT:
|
1117 |
|
|
case RNDCLEARPOOL:
|
1118 |
|
|
/* Clear the entropy pool counters. */
|
1119 |
|
|
if (!capable(CAP_SYS_ADMIN))
|
1120 |
|
|
return -EPERM;
|
1121 |
|
|
init_std_data(&input_pool);
|
1122 |
|
|
init_std_data(&blocking_pool);
|
1123 |
|
|
init_std_data(&nonblocking_pool);
|
1124 |
|
|
return 0;
|
1125 |
|
|
default:
|
1126 |
|
|
return -EINVAL;
|
1127 |
|
|
}
|
1128 |
|
|
}
|
1129 |
|
|
|
1130 |
|
|
const struct file_operations random_fops = {
|
1131 |
|
|
.read = random_read,
|
1132 |
|
|
.write = random_write,
|
1133 |
|
|
.poll = random_poll,
|
1134 |
|
|
.ioctl = random_ioctl,
|
1135 |
|
|
};
|
1136 |
|
|
|
1137 |
|
|
const struct file_operations urandom_fops = {
|
1138 |
|
|
.read = urandom_read,
|
1139 |
|
|
.write = random_write,
|
1140 |
|
|
.ioctl = random_ioctl,
|
1141 |
|
|
};
|
1142 |
|
|
|
1143 |
|
|
/***************************************************************
|
1144 |
|
|
* Random UUID interface
|
1145 |
|
|
*
|
1146 |
|
|
* Used here for a Boot ID, but can be useful for other kernel
|
1147 |
|
|
* drivers.
|
1148 |
|
|
***************************************************************/
|
1149 |
|
|
|
1150 |
|
|
/*
|
1151 |
|
|
* Generate random UUID
|
1152 |
|
|
*/
|
1153 |
|
|
void generate_random_uuid(unsigned char uuid_out[16])
|
1154 |
|
|
{
|
1155 |
|
|
get_random_bytes(uuid_out, 16);
|
1156 |
|
|
/* Set UUID version to 4 --- truely random generation */
|
1157 |
|
|
uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
|
1158 |
|
|
/* Set the UUID variant to DCE */
|
1159 |
|
|
uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
|
1160 |
|
|
}
|
1161 |
|
|
|
1162 |
|
|
EXPORT_SYMBOL(generate_random_uuid);
|
1163 |
|
|
|
1164 |
|
|
/********************************************************************
|
1165 |
|
|
*
|
1166 |
|
|
* Sysctl interface
|
1167 |
|
|
*
|
1168 |
|
|
********************************************************************/
|
1169 |
|
|
|
1170 |
|
|
#ifdef CONFIG_SYSCTL
|
1171 |
|
|
|
1172 |
|
|
#include <linux/sysctl.h>
|
1173 |
|
|
|
1174 |
|
|
static int min_read_thresh = 8, min_write_thresh;
|
1175 |
|
|
static int max_read_thresh = INPUT_POOL_WORDS * 32;
|
1176 |
|
|
static int max_write_thresh = INPUT_POOL_WORDS * 32;
|
1177 |
|
|
static char sysctl_bootid[16];
|
1178 |
|
|
|
1179 |
|
|
/*
|
1180 |
|
|
* These functions is used to return both the bootid UUID, and random
|
1181 |
|
|
* UUID. The difference is in whether table->data is NULL; if it is,
|
1182 |
|
|
* then a new UUID is generated and returned to the user.
|
1183 |
|
|
*
|
1184 |
|
|
* If the user accesses this via the proc interface, it will be returned
|
1185 |
|
|
* as an ASCII string in the standard UUID format. If accesses via the
|
1186 |
|
|
* sysctl system call, it is returned as 16 bytes of binary data.
|
1187 |
|
|
*/
|
1188 |
|
|
static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
|
1189 |
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
1190 |
|
|
{
|
1191 |
|
|
ctl_table fake_table;
|
1192 |
|
|
unsigned char buf[64], tmp_uuid[16], *uuid;
|
1193 |
|
|
|
1194 |
|
|
uuid = table->data;
|
1195 |
|
|
if (!uuid) {
|
1196 |
|
|
uuid = tmp_uuid;
|
1197 |
|
|
uuid[8] = 0;
|
1198 |
|
|
}
|
1199 |
|
|
if (uuid[8] == 0)
|
1200 |
|
|
generate_random_uuid(uuid);
|
1201 |
|
|
|
1202 |
|
|
sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
|
1203 |
|
|
"%02x%02x%02x%02x%02x%02x",
|
1204 |
|
|
uuid[0], uuid[1], uuid[2], uuid[3],
|
1205 |
|
|
uuid[4], uuid[5], uuid[6], uuid[7],
|
1206 |
|
|
uuid[8], uuid[9], uuid[10], uuid[11],
|
1207 |
|
|
uuid[12], uuid[13], uuid[14], uuid[15]);
|
1208 |
|
|
fake_table.data = buf;
|
1209 |
|
|
fake_table.maxlen = sizeof(buf);
|
1210 |
|
|
|
1211 |
|
|
return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
|
1212 |
|
|
}
|
1213 |
|
|
|
1214 |
|
|
static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
|
1215 |
|
|
void __user *oldval, size_t __user *oldlenp,
|
1216 |
|
|
void __user *newval, size_t newlen)
|
1217 |
|
|
{
|
1218 |
|
|
unsigned char tmp_uuid[16], *uuid;
|
1219 |
|
|
unsigned int len;
|
1220 |
|
|
|
1221 |
|
|
if (!oldval || !oldlenp)
|
1222 |
|
|
return 1;
|
1223 |
|
|
|
1224 |
|
|
uuid = table->data;
|
1225 |
|
|
if (!uuid) {
|
1226 |
|
|
uuid = tmp_uuid;
|
1227 |
|
|
uuid[8] = 0;
|
1228 |
|
|
}
|
1229 |
|
|
if (uuid[8] == 0)
|
1230 |
|
|
generate_random_uuid(uuid);
|
1231 |
|
|
|
1232 |
|
|
if (get_user(len, oldlenp))
|
1233 |
|
|
return -EFAULT;
|
1234 |
|
|
if (len) {
|
1235 |
|
|
if (len > 16)
|
1236 |
|
|
len = 16;
|
1237 |
|
|
if (copy_to_user(oldval, uuid, len) ||
|
1238 |
|
|
put_user(len, oldlenp))
|
1239 |
|
|
return -EFAULT;
|
1240 |
|
|
}
|
1241 |
|
|
return 1;
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
|
1245 |
|
|
ctl_table random_table[] = {
|
1246 |
|
|
{
|
1247 |
|
|
.ctl_name = RANDOM_POOLSIZE,
|
1248 |
|
|
.procname = "poolsize",
|
1249 |
|
|
.data = &sysctl_poolsize,
|
1250 |
|
|
.maxlen = sizeof(int),
|
1251 |
|
|
.mode = 0444,
|
1252 |
|
|
.proc_handler = &proc_dointvec,
|
1253 |
|
|
},
|
1254 |
|
|
{
|
1255 |
|
|
.ctl_name = RANDOM_ENTROPY_COUNT,
|
1256 |
|
|
.procname = "entropy_avail",
|
1257 |
|
|
.maxlen = sizeof(int),
|
1258 |
|
|
.mode = 0444,
|
1259 |
|
|
.proc_handler = &proc_dointvec,
|
1260 |
|
|
.data = &input_pool.entropy_count,
|
1261 |
|
|
},
|
1262 |
|
|
{
|
1263 |
|
|
.ctl_name = RANDOM_READ_THRESH,
|
1264 |
|
|
.procname = "read_wakeup_threshold",
|
1265 |
|
|
.data = &random_read_wakeup_thresh,
|
1266 |
|
|
.maxlen = sizeof(int),
|
1267 |
|
|
.mode = 0644,
|
1268 |
|
|
.proc_handler = &proc_dointvec_minmax,
|
1269 |
|
|
.strategy = &sysctl_intvec,
|
1270 |
|
|
.extra1 = &min_read_thresh,
|
1271 |
|
|
.extra2 = &max_read_thresh,
|
1272 |
|
|
},
|
1273 |
|
|
{
|
1274 |
|
|
.ctl_name = RANDOM_WRITE_THRESH,
|
1275 |
|
|
.procname = "write_wakeup_threshold",
|
1276 |
|
|
.data = &random_write_wakeup_thresh,
|
1277 |
|
|
.maxlen = sizeof(int),
|
1278 |
|
|
.mode = 0644,
|
1279 |
|
|
.proc_handler = &proc_dointvec_minmax,
|
1280 |
|
|
.strategy = &sysctl_intvec,
|
1281 |
|
|
.extra1 = &min_write_thresh,
|
1282 |
|
|
.extra2 = &max_write_thresh,
|
1283 |
|
|
},
|
1284 |
|
|
{
|
1285 |
|
|
.ctl_name = RANDOM_BOOT_ID,
|
1286 |
|
|
.procname = "boot_id",
|
1287 |
|
|
.data = &sysctl_bootid,
|
1288 |
|
|
.maxlen = 16,
|
1289 |
|
|
.mode = 0444,
|
1290 |
|
|
.proc_handler = &proc_do_uuid,
|
1291 |
|
|
.strategy = &uuid_strategy,
|
1292 |
|
|
},
|
1293 |
|
|
{
|
1294 |
|
|
.ctl_name = RANDOM_UUID,
|
1295 |
|
|
.procname = "uuid",
|
1296 |
|
|
.maxlen = 16,
|
1297 |
|
|
.mode = 0444,
|
1298 |
|
|
.proc_handler = &proc_do_uuid,
|
1299 |
|
|
.strategy = &uuid_strategy,
|
1300 |
|
|
},
|
1301 |
|
|
{ .ctl_name = 0 }
|
1302 |
|
|
};
|
1303 |
|
|
#endif /* CONFIG_SYSCTL */
|
1304 |
|
|
|
1305 |
|
|
/********************************************************************
|
1306 |
|
|
*
|
1307 |
|
|
* Random funtions for networking
|
1308 |
|
|
*
|
1309 |
|
|
********************************************************************/
|
1310 |
|
|
|
1311 |
|
|
/*
|
1312 |
|
|
* TCP initial sequence number picking. This uses the random number
|
1313 |
|
|
* generator to pick an initial secret value. This value is hashed
|
1314 |
|
|
* along with the TCP endpoint information to provide a unique
|
1315 |
|
|
* starting point for each pair of TCP endpoints. This defeats
|
1316 |
|
|
* attacks which rely on guessing the initial TCP sequence number.
|
1317 |
|
|
* This algorithm was suggested by Steve Bellovin.
|
1318 |
|
|
*
|
1319 |
|
|
* Using a very strong hash was taking an appreciable amount of the total
|
1320 |
|
|
* TCP connection establishment time, so this is a weaker hash,
|
1321 |
|
|
* compensated for by changing the secret periodically.
|
1322 |
|
|
*/
|
1323 |
|
|
|
1324 |
|
|
/* F, G and H are basic MD4 functions: selection, majority, parity */
|
1325 |
|
|
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
|
1326 |
|
|
#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
|
1327 |
|
|
#define H(x, y, z) ((x) ^ (y) ^ (z))
|
1328 |
|
|
|
1329 |
|
|
/*
|
1330 |
|
|
* The generic round function. The application is so specific that
|
1331 |
|
|
* we don't bother protecting all the arguments with parens, as is generally
|
1332 |
|
|
* good macro practice, in favor of extra legibility.
|
1333 |
|
|
* Rotation is separate from addition to prevent recomputation
|
1334 |
|
|
*/
|
1335 |
|
|
#define ROUND(f, a, b, c, d, x, s) \
|
1336 |
|
|
(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
|
1337 |
|
|
#define K1 0
|
1338 |
|
|
#define K2 013240474631UL
|
1339 |
|
|
#define K3 015666365641UL
|
1340 |
|
|
|
1341 |
|
|
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
|
1342 |
|
|
|
1343 |
|
|
static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
|
1344 |
|
|
{
|
1345 |
|
|
__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
|
1346 |
|
|
|
1347 |
|
|
/* Round 1 */
|
1348 |
|
|
ROUND(F, a, b, c, d, in[ 0] + K1, 3);
|
1349 |
|
|
ROUND(F, d, a, b, c, in[ 1] + K1, 7);
|
1350 |
|
|
ROUND(F, c, d, a, b, in[ 2] + K1, 11);
|
1351 |
|
|
ROUND(F, b, c, d, a, in[ 3] + K1, 19);
|
1352 |
|
|
ROUND(F, a, b, c, d, in[ 4] + K1, 3);
|
1353 |
|
|
ROUND(F, d, a, b, c, in[ 5] + K1, 7);
|
1354 |
|
|
ROUND(F, c, d, a, b, in[ 6] + K1, 11);
|
1355 |
|
|
ROUND(F, b, c, d, a, in[ 7] + K1, 19);
|
1356 |
|
|
ROUND(F, a, b, c, d, in[ 8] + K1, 3);
|
1357 |
|
|
ROUND(F, d, a, b, c, in[ 9] + K1, 7);
|
1358 |
|
|
ROUND(F, c, d, a, b, in[10] + K1, 11);
|
1359 |
|
|
ROUND(F, b, c, d, a, in[11] + K1, 19);
|
1360 |
|
|
|
1361 |
|
|
/* Round 2 */
|
1362 |
|
|
ROUND(G, a, b, c, d, in[ 1] + K2, 3);
|
1363 |
|
|
ROUND(G, d, a, b, c, in[ 3] + K2, 5);
|
1364 |
|
|
ROUND(G, c, d, a, b, in[ 5] + K2, 9);
|
1365 |
|
|
ROUND(G, b, c, d, a, in[ 7] + K2, 13);
|
1366 |
|
|
ROUND(G, a, b, c, d, in[ 9] + K2, 3);
|
1367 |
|
|
ROUND(G, d, a, b, c, in[11] + K2, 5);
|
1368 |
|
|
ROUND(G, c, d, a, b, in[ 0] + K2, 9);
|
1369 |
|
|
ROUND(G, b, c, d, a, in[ 2] + K2, 13);
|
1370 |
|
|
ROUND(G, a, b, c, d, in[ 4] + K2, 3);
|
1371 |
|
|
ROUND(G, d, a, b, c, in[ 6] + K2, 5);
|
1372 |
|
|
ROUND(G, c, d, a, b, in[ 8] + K2, 9);
|
1373 |
|
|
ROUND(G, b, c, d, a, in[10] + K2, 13);
|
1374 |
|
|
|
1375 |
|
|
/* Round 3 */
|
1376 |
|
|
ROUND(H, a, b, c, d, in[ 3] + K3, 3);
|
1377 |
|
|
ROUND(H, d, a, b, c, in[ 7] + K3, 9);
|
1378 |
|
|
ROUND(H, c, d, a, b, in[11] + K3, 11);
|
1379 |
|
|
ROUND(H, b, c, d, a, in[ 2] + K3, 15);
|
1380 |
|
|
ROUND(H, a, b, c, d, in[ 6] + K3, 3);
|
1381 |
|
|
ROUND(H, d, a, b, c, in[10] + K3, 9);
|
1382 |
|
|
ROUND(H, c, d, a, b, in[ 1] + K3, 11);
|
1383 |
|
|
ROUND(H, b, c, d, a, in[ 5] + K3, 15);
|
1384 |
|
|
ROUND(H, a, b, c, d, in[ 9] + K3, 3);
|
1385 |
|
|
ROUND(H, d, a, b, c, in[ 0] + K3, 9);
|
1386 |
|
|
ROUND(H, c, d, a, b, in[ 4] + K3, 11);
|
1387 |
|
|
ROUND(H, b, c, d, a, in[ 8] + K3, 15);
|
1388 |
|
|
|
1389 |
|
|
return buf[1] + b; /* "most hashed" word */
|
1390 |
|
|
/* Alternative: return sum of all words? */
|
1391 |
|
|
}
|
1392 |
|
|
#endif
|
1393 |
|
|
|
1394 |
|
|
#undef ROUND
|
1395 |
|
|
#undef F
|
1396 |
|
|
#undef G
|
1397 |
|
|
#undef H
|
1398 |
|
|
#undef K1
|
1399 |
|
|
#undef K2
|
1400 |
|
|
#undef K3
|
1401 |
|
|
|
1402 |
|
|
/* This should not be decreased so low that ISNs wrap too fast. */
|
1403 |
|
|
#define REKEY_INTERVAL (300 * HZ)
|
1404 |
|
|
/*
|
1405 |
|
|
* Bit layout of the tcp sequence numbers (before adding current time):
|
1406 |
|
|
* bit 24-31: increased after every key exchange
|
1407 |
|
|
* bit 0-23: hash(source,dest)
|
1408 |
|
|
*
|
1409 |
|
|
* The implementation is similar to the algorithm described
|
1410 |
|
|
* in the Appendix of RFC 1185, except that
|
1411 |
|
|
* - it uses a 1 MHz clock instead of a 250 kHz clock
|
1412 |
|
|
* - it performs a rekey every 5 minutes, which is equivalent
|
1413 |
|
|
* to a (source,dest) tulple dependent forward jump of the
|
1414 |
|
|
* clock by 0..2^(HASH_BITS+1)
|
1415 |
|
|
*
|
1416 |
|
|
* Thus the average ISN wraparound time is 68 minutes instead of
|
1417 |
|
|
* 4.55 hours.
|
1418 |
|
|
*
|
1419 |
|
|
* SMP cleanup and lock avoidance with poor man's RCU.
|
1420 |
|
|
* Manfred Spraul <manfred@colorfullife.com>
|
1421 |
|
|
*
|
1422 |
|
|
*/
|
1423 |
|
|
#define COUNT_BITS 8
|
1424 |
|
|
#define COUNT_MASK ((1 << COUNT_BITS) - 1)
|
1425 |
|
|
#define HASH_BITS 24
|
1426 |
|
|
#define HASH_MASK ((1 << HASH_BITS) - 1)
|
1427 |
|
|
|
1428 |
|
|
static struct keydata {
|
1429 |
|
|
__u32 count; /* already shifted to the final position */
|
1430 |
|
|
__u32 secret[12];
|
1431 |
|
|
} ____cacheline_aligned ip_keydata[2];
|
1432 |
|
|
|
1433 |
|
|
static unsigned int ip_cnt;
|
1434 |
|
|
|
1435 |
|
|
static void rekey_seq_generator(struct work_struct *work);
|
1436 |
|
|
|
1437 |
|
|
static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
|
1438 |
|
|
|
1439 |
|
|
/*
|
1440 |
|
|
* Lock avoidance:
|
1441 |
|
|
* The ISN generation runs lockless - it's just a hash over random data.
|
1442 |
|
|
* State changes happen every 5 minutes when the random key is replaced.
|
1443 |
|
|
* Synchronization is performed by having two copies of the hash function
|
1444 |
|
|
* state and rekey_seq_generator always updates the inactive copy.
|
1445 |
|
|
* The copy is then activated by updating ip_cnt.
|
1446 |
|
|
* The implementation breaks down if someone blocks the thread
|
1447 |
|
|
* that processes SYN requests for more than 5 minutes. Should never
|
1448 |
|
|
* happen, and even if that happens only a not perfectly compliant
|
1449 |
|
|
* ISN is generated, nothing fatal.
|
1450 |
|
|
*/
|
1451 |
|
|
static void rekey_seq_generator(struct work_struct *work)
|
1452 |
|
|
{
|
1453 |
|
|
struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
|
1454 |
|
|
|
1455 |
|
|
get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
|
1456 |
|
|
keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
|
1457 |
|
|
smp_wmb();
|
1458 |
|
|
ip_cnt++;
|
1459 |
|
|
schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
|
1460 |
|
|
}
|
1461 |
|
|
|
1462 |
|
|
static inline struct keydata *get_keyptr(void)
|
1463 |
|
|
{
|
1464 |
|
|
struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
|
1465 |
|
|
|
1466 |
|
|
smp_rmb();
|
1467 |
|
|
|
1468 |
|
|
return keyptr;
|
1469 |
|
|
}
|
1470 |
|
|
|
1471 |
|
|
static __init int seqgen_init(void)
|
1472 |
|
|
{
|
1473 |
|
|
rekey_seq_generator(NULL);
|
1474 |
|
|
return 0;
|
1475 |
|
|
}
|
1476 |
|
|
late_initcall(seqgen_init);
|
1477 |
|
|
|
1478 |
|
|
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
|
1479 |
|
|
__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
|
1480 |
|
|
__be16 sport, __be16 dport)
|
1481 |
|
|
{
|
1482 |
|
|
__u32 seq;
|
1483 |
|
|
__u32 hash[12];
|
1484 |
|
|
struct keydata *keyptr = get_keyptr();
|
1485 |
|
|
|
1486 |
|
|
/* The procedure is the same as for IPv4, but addresses are longer.
|
1487 |
|
|
* Thus we must use twothirdsMD4Transform.
|
1488 |
|
|
*/
|
1489 |
|
|
|
1490 |
|
|
memcpy(hash, saddr, 16);
|
1491 |
|
|
hash[4]=((__force u16)sport << 16) + (__force u16)dport;
|
1492 |
|
|
memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
|
1493 |
|
|
|
1494 |
|
|
seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
|
1495 |
|
|
seq += keyptr->count;
|
1496 |
|
|
|
1497 |
|
|
seq += ktime_to_ns(ktime_get_real());
|
1498 |
|
|
|
1499 |
|
|
return seq;
|
1500 |
|
|
}
|
1501 |
|
|
EXPORT_SYMBOL(secure_tcpv6_sequence_number);
|
1502 |
|
|
#endif
|
1503 |
|
|
|
1504 |
|
|
/* The code below is shamelessly stolen from secure_tcp_sequence_number().
|
1505 |
|
|
* All blames to Andrey V. Savochkin <saw@msu.ru>.
|
1506 |
|
|
*/
|
1507 |
|
|
__u32 secure_ip_id(__be32 daddr)
|
1508 |
|
|
{
|
1509 |
|
|
struct keydata *keyptr;
|
1510 |
|
|
__u32 hash[4];
|
1511 |
|
|
|
1512 |
|
|
keyptr = get_keyptr();
|
1513 |
|
|
|
1514 |
|
|
/*
|
1515 |
|
|
* Pick a unique starting offset for each IP destination.
|
1516 |
|
|
* The dest ip address is placed in the starting vector,
|
1517 |
|
|
* which is then hashed with random data.
|
1518 |
|
|
*/
|
1519 |
|
|
hash[0] = (__force __u32)daddr;
|
1520 |
|
|
hash[1] = keyptr->secret[9];
|
1521 |
|
|
hash[2] = keyptr->secret[10];
|
1522 |
|
|
hash[3] = keyptr->secret[11];
|
1523 |
|
|
|
1524 |
|
|
return half_md4_transform(hash, keyptr->secret);
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
#ifdef CONFIG_INET
|
1528 |
|
|
|
1529 |
|
|
__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
|
1530 |
|
|
__be16 sport, __be16 dport)
|
1531 |
|
|
{
|
1532 |
|
|
__u32 seq;
|
1533 |
|
|
__u32 hash[4];
|
1534 |
|
|
struct keydata *keyptr = get_keyptr();
|
1535 |
|
|
|
1536 |
|
|
/*
|
1537 |
|
|
* Pick a unique starting offset for each TCP connection endpoints
|
1538 |
|
|
* (saddr, daddr, sport, dport).
|
1539 |
|
|
* Note that the words are placed into the starting vector, which is
|
1540 |
|
|
* then mixed with a partial MD4 over random data.
|
1541 |
|
|
*/
|
1542 |
|
|
hash[0]=(__force u32)saddr;
|
1543 |
|
|
hash[1]=(__force u32)daddr;
|
1544 |
|
|
hash[2]=((__force u16)sport << 16) + (__force u16)dport;
|
1545 |
|
|
hash[3]=keyptr->secret[11];
|
1546 |
|
|
|
1547 |
|
|
seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
|
1548 |
|
|
seq += keyptr->count;
|
1549 |
|
|
/*
|
1550 |
|
|
* As close as possible to RFC 793, which
|
1551 |
|
|
* suggests using a 250 kHz clock.
|
1552 |
|
|
* Further reading shows this assumes 2 Mb/s networks.
|
1553 |
|
|
* For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
|
1554 |
|
|
* For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
|
1555 |
|
|
* we also need to limit the resolution so that the u32 seq
|
1556 |
|
|
* overlaps less than one time per MSL (2 minutes).
|
1557 |
|
|
* Choosing a clock of 64 ns period is OK. (period of 274 s)
|
1558 |
|
|
*/
|
1559 |
|
|
seq += ktime_to_ns(ktime_get_real()) >> 6;
|
1560 |
|
|
#if 0
|
1561 |
|
|
printk("init_seq(%lx, %lx, %d, %d) = %d\n",
|
1562 |
|
|
saddr, daddr, sport, dport, seq);
|
1563 |
|
|
#endif
|
1564 |
|
|
return seq;
|
1565 |
|
|
}
|
1566 |
|
|
|
1567 |
|
|
/* Generate secure starting point for ephemeral IPV4 transport port search */
|
1568 |
|
|
u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
|
1569 |
|
|
{
|
1570 |
|
|
struct keydata *keyptr = get_keyptr();
|
1571 |
|
|
u32 hash[4];
|
1572 |
|
|
|
1573 |
|
|
/*
|
1574 |
|
|
* Pick a unique starting offset for each ephemeral port search
|
1575 |
|
|
* (saddr, daddr, dport) and 48bits of random data.
|
1576 |
|
|
*/
|
1577 |
|
|
hash[0] = (__force u32)saddr;
|
1578 |
|
|
hash[1] = (__force u32)daddr;
|
1579 |
|
|
hash[2] = (__force u32)dport ^ keyptr->secret[10];
|
1580 |
|
|
hash[3] = keyptr->secret[11];
|
1581 |
|
|
|
1582 |
|
|
return half_md4_transform(hash, keyptr->secret);
|
1583 |
|
|
}
|
1584 |
|
|
|
1585 |
|
|
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
|
1586 |
|
|
u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, __be16 dport)
|
1587 |
|
|
{
|
1588 |
|
|
struct keydata *keyptr = get_keyptr();
|
1589 |
|
|
u32 hash[12];
|
1590 |
|
|
|
1591 |
|
|
memcpy(hash, saddr, 16);
|
1592 |
|
|
hash[4] = (__force u32)dport;
|
1593 |
|
|
memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
|
1594 |
|
|
|
1595 |
|
|
return twothirdsMD4Transform((const __u32 *)daddr, hash);
|
1596 |
|
|
}
|
1597 |
|
|
#endif
|
1598 |
|
|
|
1599 |
|
|
#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
|
1600 |
|
|
/* Similar to secure_tcp_sequence_number but generate a 48 bit value
|
1601 |
|
|
* bit's 32-47 increase every key exchange
|
1602 |
|
|
* 0-31 hash(source, dest)
|
1603 |
|
|
*/
|
1604 |
|
|
u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
|
1605 |
|
|
__be16 sport, __be16 dport)
|
1606 |
|
|
{
|
1607 |
|
|
u64 seq;
|
1608 |
|
|
__u32 hash[4];
|
1609 |
|
|
struct keydata *keyptr = get_keyptr();
|
1610 |
|
|
|
1611 |
|
|
hash[0] = (__force u32)saddr;
|
1612 |
|
|
hash[1] = (__force u32)daddr;
|
1613 |
|
|
hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
|
1614 |
|
|
hash[3] = keyptr->secret[11];
|
1615 |
|
|
|
1616 |
|
|
seq = half_md4_transform(hash, keyptr->secret);
|
1617 |
|
|
seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
|
1618 |
|
|
|
1619 |
|
|
seq += ktime_to_ns(ktime_get_real());
|
1620 |
|
|
seq &= (1ull << 48) - 1;
|
1621 |
|
|
#if 0
|
1622 |
|
|
printk("dccp init_seq(%lx, %lx, %d, %d) = %d\n",
|
1623 |
|
|
saddr, daddr, sport, dport, seq);
|
1624 |
|
|
#endif
|
1625 |
|
|
return seq;
|
1626 |
|
|
}
|
1627 |
|
|
|
1628 |
|
|
EXPORT_SYMBOL(secure_dccp_sequence_number);
|
1629 |
|
|
#endif
|
1630 |
|
|
|
1631 |
|
|
#endif /* CONFIG_INET */
|
1632 |
|
|
|
1633 |
|
|
|
1634 |
|
|
/*
|
1635 |
|
|
* Get a random word for internal kernel use only. Similar to urandom but
|
1636 |
|
|
* with the goal of minimal entropy pool depletion. As a result, the random
|
1637 |
|
|
* value is not cryptographically secure but for several uses the cost of
|
1638 |
|
|
* depleting entropy is too high
|
1639 |
|
|
*/
|
1640 |
|
|
unsigned int get_random_int(void)
|
1641 |
|
|
{
|
1642 |
|
|
/*
|
1643 |
|
|
* Use IP's RNG. It suits our purpose perfectly: it re-keys itself
|
1644 |
|
|
* every second, from the entropy pool (and thus creates a limited
|
1645 |
|
|
* drain on it), and uses halfMD4Transform within the second. We
|
1646 |
|
|
* also mix it with jiffies and the PID:
|
1647 |
|
|
*/
|
1648 |
|
|
return secure_ip_id((__force __be32)(current->pid + jiffies));
|
1649 |
|
|
}
|
1650 |
|
|
|
1651 |
|
|
/*
|
1652 |
|
|
* randomize_range() returns a start address such that
|
1653 |
|
|
*
|
1654 |
|
|
* [...... <range> .....]
|
1655 |
|
|
* start end
|
1656 |
|
|
*
|
1657 |
|
|
* a <range> with size "len" starting at the return value is inside in the
|
1658 |
|
|
* area defined by [start, end], but is otherwise randomized.
|
1659 |
|
|
*/
|
1660 |
|
|
unsigned long
|
1661 |
|
|
randomize_range(unsigned long start, unsigned long end, unsigned long len)
|
1662 |
|
|
{
|
1663 |
|
|
unsigned long range = end - len - start;
|
1664 |
|
|
|
1665 |
|
|
if (end <= start + len)
|
1666 |
|
|
return 0;
|
1667 |
|
|
return PAGE_ALIGN(get_random_int() % range + start);
|
1668 |
|
|
}
|