OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [cpufreq/] [cpufreq_conservative.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  drivers/cpufreq/cpufreq_conservative.c
3
 *
4
 *  Copyright (C)  2001 Russell King
5
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6
 *                      Jun Nakajima <jun.nakajima@intel.com>
7
 *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8
 *
9
 * This program is free software; you can redistribute it and/or modify
10
 * it under the terms of the GNU General Public License version 2 as
11
 * published by the Free Software Foundation.
12
 */
13
 
14
#include <linux/kernel.h>
15
#include <linux/module.h>
16
#include <linux/smp.h>
17
#include <linux/init.h>
18
#include <linux/interrupt.h>
19
#include <linux/ctype.h>
20
#include <linux/cpufreq.h>
21
#include <linux/sysctl.h>
22
#include <linux/types.h>
23
#include <linux/fs.h>
24
#include <linux/sysfs.h>
25
#include <linux/cpu.h>
26
#include <linux/kmod.h>
27
#include <linux/workqueue.h>
28
#include <linux/jiffies.h>
29
#include <linux/kernel_stat.h>
30
#include <linux/percpu.h>
31
#include <linux/mutex.h>
32
/*
33
 * dbs is used in this file as a shortform for demandbased switching
34
 * It helps to keep variable names smaller, simpler
35
 */
36
 
37
#define DEF_FREQUENCY_UP_THRESHOLD              (80)
38
#define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
39
 
40
/*
41
 * The polling frequency of this governor depends on the capability of
42
 * the processor. Default polling frequency is 1000 times the transition
43
 * latency of the processor. The governor will work on any processor with
44
 * transition latency <= 10mS, using appropriate sampling
45
 * rate.
46
 * For CPUs with transition latency > 10mS (mostly drivers
47
 * with CPUFREQ_ETERNAL), this governor will not work.
48
 * All times here are in uS.
49
 */
50
static unsigned int def_sampling_rate;
51
#define MIN_SAMPLING_RATE_RATIO                 (2)
52
/* for correct statistics, we need at least 10 ticks between each measure */
53
#define MIN_STAT_SAMPLING_RATE                  \
54
                        (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55
#define MIN_SAMPLING_RATE                       \
56
                        (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57
#define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
58
#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (1000)
59
#define DEF_SAMPLING_DOWN_FACTOR                (1)
60
#define MAX_SAMPLING_DOWN_FACTOR                (10)
61
#define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
62
 
63
static void do_dbs_timer(struct work_struct *work);
64
 
65
struct cpu_dbs_info_s {
66
        struct cpufreq_policy *cur_policy;
67
        unsigned int prev_cpu_idle_up;
68
        unsigned int prev_cpu_idle_down;
69
        unsigned int enable;
70
        unsigned int down_skip;
71
        unsigned int requested_freq;
72
};
73
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
74
 
75
static unsigned int dbs_enable; /* number of CPUs using this policy */
76
 
77
/*
78
 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
79
 * lock and dbs_mutex. cpu_hotplug lock should always be held before
80
 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
81
 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
82
 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
83
 * is recursive for the same process. -Venki
84
 */
85
static DEFINE_MUTEX (dbs_mutex);
86
static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
87
 
88
struct dbs_tuners {
89
        unsigned int sampling_rate;
90
        unsigned int sampling_down_factor;
91
        unsigned int up_threshold;
92
        unsigned int down_threshold;
93
        unsigned int ignore_nice;
94
        unsigned int freq_step;
95
};
96
 
97
static struct dbs_tuners dbs_tuners_ins = {
98
        .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
99
        .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
100
        .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
101
        .ignore_nice = 0,
102
        .freq_step = 5,
103
};
104
 
105
static inline unsigned int get_cpu_idle_time(unsigned int cpu)
106
{
107
        unsigned int add_nice = 0, ret;
108
 
109
        if (dbs_tuners_ins.ignore_nice)
110
                add_nice = kstat_cpu(cpu).cpustat.nice;
111
 
112
        ret = kstat_cpu(cpu).cpustat.idle +
113
                kstat_cpu(cpu).cpustat.iowait +
114
                add_nice;
115
 
116
        return ret;
117
}
118
 
119
/* keep track of frequency transitions */
120
static int
121
dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
122
                     void *data)
123
{
124
        struct cpufreq_freqs *freq = data;
125
        struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
126
                                                        freq->cpu);
127
 
128
        if (!this_dbs_info->enable)
129
                return 0;
130
 
131
        this_dbs_info->requested_freq = freq->new;
132
 
133
        return 0;
134
}
135
 
136
static struct notifier_block dbs_cpufreq_notifier_block = {
137
        .notifier_call = dbs_cpufreq_notifier
138
};
139
 
140
/************************** sysfs interface ************************/
141
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
142
{
143
        return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
144
}
145
 
146
static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
147
{
148
        return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
149
}
150
 
151
#define define_one_ro(_name)                            \
152
static struct freq_attr _name =                         \
153
__ATTR(_name, 0444, show_##_name, NULL)
154
 
155
define_one_ro(sampling_rate_max);
156
define_one_ro(sampling_rate_min);
157
 
158
/* cpufreq_conservative Governor Tunables */
159
#define show_one(file_name, object)                                     \
160
static ssize_t show_##file_name                                         \
161
(struct cpufreq_policy *unused, char *buf)                              \
162
{                                                                       \
163
        return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
164
}
165
show_one(sampling_rate, sampling_rate);
166
show_one(sampling_down_factor, sampling_down_factor);
167
show_one(up_threshold, up_threshold);
168
show_one(down_threshold, down_threshold);
169
show_one(ignore_nice_load, ignore_nice);
170
show_one(freq_step, freq_step);
171
 
172
static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
173
                const char *buf, size_t count)
174
{
175
        unsigned int input;
176
        int ret;
177
        ret = sscanf (buf, "%u", &input);
178
        if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
179
                return -EINVAL;
180
 
181
        mutex_lock(&dbs_mutex);
182
        dbs_tuners_ins.sampling_down_factor = input;
183
        mutex_unlock(&dbs_mutex);
184
 
185
        return count;
186
}
187
 
188
static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
189
                const char *buf, size_t count)
190
{
191
        unsigned int input;
192
        int ret;
193
        ret = sscanf (buf, "%u", &input);
194
 
195
        mutex_lock(&dbs_mutex);
196
        if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
197
                mutex_unlock(&dbs_mutex);
198
                return -EINVAL;
199
        }
200
 
201
        dbs_tuners_ins.sampling_rate = input;
202
        mutex_unlock(&dbs_mutex);
203
 
204
        return count;
205
}
206
 
207
static ssize_t store_up_threshold(struct cpufreq_policy *unused,
208
                const char *buf, size_t count)
209
{
210
        unsigned int input;
211
        int ret;
212
        ret = sscanf (buf, "%u", &input);
213
 
214
        mutex_lock(&dbs_mutex);
215
        if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
216
                mutex_unlock(&dbs_mutex);
217
                return -EINVAL;
218
        }
219
 
220
        dbs_tuners_ins.up_threshold = input;
221
        mutex_unlock(&dbs_mutex);
222
 
223
        return count;
224
}
225
 
226
static ssize_t store_down_threshold(struct cpufreq_policy *unused,
227
                const char *buf, size_t count)
228
{
229
        unsigned int input;
230
        int ret;
231
        ret = sscanf (buf, "%u", &input);
232
 
233
        mutex_lock(&dbs_mutex);
234
        if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
235
                mutex_unlock(&dbs_mutex);
236
                return -EINVAL;
237
        }
238
 
239
        dbs_tuners_ins.down_threshold = input;
240
        mutex_unlock(&dbs_mutex);
241
 
242
        return count;
243
}
244
 
245
static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
246
                const char *buf, size_t count)
247
{
248
        unsigned int input;
249
        int ret;
250
 
251
        unsigned int j;
252
 
253
        ret = sscanf(buf, "%u", &input);
254
        if (ret != 1)
255
                return -EINVAL;
256
 
257
        if (input > 1)
258
                input = 1;
259
 
260
        mutex_lock(&dbs_mutex);
261
        if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
262
                mutex_unlock(&dbs_mutex);
263
                return count;
264
        }
265
        dbs_tuners_ins.ignore_nice = input;
266
 
267
        /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
268
        for_each_online_cpu(j) {
269
                struct cpu_dbs_info_s *j_dbs_info;
270
                j_dbs_info = &per_cpu(cpu_dbs_info, j);
271
                j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
272
                j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
273
        }
274
        mutex_unlock(&dbs_mutex);
275
 
276
        return count;
277
}
278
 
279
static ssize_t store_freq_step(struct cpufreq_policy *policy,
280
                const char *buf, size_t count)
281
{
282
        unsigned int input;
283
        int ret;
284
 
285
        ret = sscanf(buf, "%u", &input);
286
 
287
        if (ret != 1)
288
                return -EINVAL;
289
 
290
        if (input > 100)
291
                input = 100;
292
 
293
        /* no need to test here if freq_step is zero as the user might actually
294
         * want this, they would be crazy though :) */
295
        mutex_lock(&dbs_mutex);
296
        dbs_tuners_ins.freq_step = input;
297
        mutex_unlock(&dbs_mutex);
298
 
299
        return count;
300
}
301
 
302
#define define_one_rw(_name) \
303
static struct freq_attr _name = \
304
__ATTR(_name, 0644, show_##_name, store_##_name)
305
 
306
define_one_rw(sampling_rate);
307
define_one_rw(sampling_down_factor);
308
define_one_rw(up_threshold);
309
define_one_rw(down_threshold);
310
define_one_rw(ignore_nice_load);
311
define_one_rw(freq_step);
312
 
313
static struct attribute * dbs_attributes[] = {
314
        &sampling_rate_max.attr,
315
        &sampling_rate_min.attr,
316
        &sampling_rate.attr,
317
        &sampling_down_factor.attr,
318
        &up_threshold.attr,
319
        &down_threshold.attr,
320
        &ignore_nice_load.attr,
321
        &freq_step.attr,
322
        NULL
323
};
324
 
325
static struct attribute_group dbs_attr_group = {
326
        .attrs = dbs_attributes,
327
        .name = "conservative",
328
};
329
 
330
/************************** sysfs end ************************/
331
 
332
static void dbs_check_cpu(int cpu)
333
{
334
        unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
335
        unsigned int tmp_idle_ticks, total_idle_ticks;
336
        unsigned int freq_step;
337
        unsigned int freq_down_sampling_rate;
338
        struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
339
        struct cpufreq_policy *policy;
340
 
341
        if (!this_dbs_info->enable)
342
                return;
343
 
344
        policy = this_dbs_info->cur_policy;
345
 
346
        /*
347
         * The default safe range is 20% to 80%
348
         * Every sampling_rate, we check
349
         *      - If current idle time is less than 20%, then we try to
350
         *        increase frequency
351
         * Every sampling_rate*sampling_down_factor, we check
352
         *      - If current idle time is more than 80%, then we try to
353
         *        decrease frequency
354
         *
355
         * Any frequency increase takes it to the maximum frequency.
356
         * Frequency reduction happens at minimum steps of
357
         * 5% (default) of max_frequency
358
         */
359
 
360
        /* Check for frequency increase */
361
        idle_ticks = UINT_MAX;
362
 
363
        /* Check for frequency increase */
364
        total_idle_ticks = get_cpu_idle_time(cpu);
365
        tmp_idle_ticks = total_idle_ticks -
366
                this_dbs_info->prev_cpu_idle_up;
367
        this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
368
 
369
        if (tmp_idle_ticks < idle_ticks)
370
                idle_ticks = tmp_idle_ticks;
371
 
372
        /* Scale idle ticks by 100 and compare with up and down ticks */
373
        idle_ticks *= 100;
374
        up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
375
                        usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
376
 
377
        if (idle_ticks < up_idle_ticks) {
378
                this_dbs_info->down_skip = 0;
379
                this_dbs_info->prev_cpu_idle_down =
380
                        this_dbs_info->prev_cpu_idle_up;
381
 
382
                /* if we are already at full speed then break out early */
383
                if (this_dbs_info->requested_freq == policy->max)
384
                        return;
385
 
386
                freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
387
 
388
                /* max freq cannot be less than 100. But who knows.... */
389
                if (unlikely(freq_step == 0))
390
                        freq_step = 5;
391
 
392
                this_dbs_info->requested_freq += freq_step;
393
                if (this_dbs_info->requested_freq > policy->max)
394
                        this_dbs_info->requested_freq = policy->max;
395
 
396
                __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
397
                        CPUFREQ_RELATION_H);
398
                return;
399
        }
400
 
401
        /* Check for frequency decrease */
402
        this_dbs_info->down_skip++;
403
        if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
404
                return;
405
 
406
        /* Check for frequency decrease */
407
        total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
408
        tmp_idle_ticks = total_idle_ticks -
409
                this_dbs_info->prev_cpu_idle_down;
410
        this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
411
 
412
        if (tmp_idle_ticks < idle_ticks)
413
                idle_ticks = tmp_idle_ticks;
414
 
415
        /* Scale idle ticks by 100 and compare with up and down ticks */
416
        idle_ticks *= 100;
417
        this_dbs_info->down_skip = 0;
418
 
419
        freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
420
                dbs_tuners_ins.sampling_down_factor;
421
        down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
422
                usecs_to_jiffies(freq_down_sampling_rate);
423
 
424
        if (idle_ticks > down_idle_ticks) {
425
                /*
426
                 * if we are already at the lowest speed then break out early
427
                 * or if we 'cannot' reduce the speed as the user might want
428
                 * freq_step to be zero
429
                 */
430
                if (this_dbs_info->requested_freq == policy->min
431
                                || dbs_tuners_ins.freq_step == 0)
432
                        return;
433
 
434
                freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
435
 
436
                /* max freq cannot be less than 100. But who knows.... */
437
                if (unlikely(freq_step == 0))
438
                        freq_step = 5;
439
 
440
                this_dbs_info->requested_freq -= freq_step;
441
                if (this_dbs_info->requested_freq < policy->min)
442
                        this_dbs_info->requested_freq = policy->min;
443
 
444
                __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
445
                                CPUFREQ_RELATION_H);
446
                return;
447
        }
448
}
449
 
450
static void do_dbs_timer(struct work_struct *work)
451
{
452
        int i;
453
        mutex_lock(&dbs_mutex);
454
        for_each_online_cpu(i)
455
                dbs_check_cpu(i);
456
        schedule_delayed_work(&dbs_work,
457
                        usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
458
        mutex_unlock(&dbs_mutex);
459
}
460
 
461
static inline void dbs_timer_init(void)
462
{
463
        schedule_delayed_work(&dbs_work,
464
                        usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
465
        return;
466
}
467
 
468
static inline void dbs_timer_exit(void)
469
{
470
        cancel_delayed_work(&dbs_work);
471
        return;
472
}
473
 
474
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
475
                                   unsigned int event)
476
{
477
        unsigned int cpu = policy->cpu;
478
        struct cpu_dbs_info_s *this_dbs_info;
479
        unsigned int j;
480
        int rc;
481
 
482
        this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
483
 
484
        switch (event) {
485
        case CPUFREQ_GOV_START:
486
                if ((!cpu_online(cpu)) || (!policy->cur))
487
                        return -EINVAL;
488
 
489
                if (this_dbs_info->enable) /* Already enabled */
490
                        break;
491
 
492
                mutex_lock(&dbs_mutex);
493
 
494
                rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
495
                if (rc) {
496
                        mutex_unlock(&dbs_mutex);
497
                        return rc;
498
                }
499
 
500
                for_each_cpu_mask(j, policy->cpus) {
501
                        struct cpu_dbs_info_s *j_dbs_info;
502
                        j_dbs_info = &per_cpu(cpu_dbs_info, j);
503
                        j_dbs_info->cur_policy = policy;
504
 
505
                        j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
506
                        j_dbs_info->prev_cpu_idle_down
507
                                = j_dbs_info->prev_cpu_idle_up;
508
                }
509
                this_dbs_info->enable = 1;
510
                this_dbs_info->down_skip = 0;
511
                this_dbs_info->requested_freq = policy->cur;
512
 
513
                dbs_enable++;
514
                /*
515
                 * Start the timerschedule work, when this governor
516
                 * is used for first time
517
                 */
518
                if (dbs_enable == 1) {
519
                        unsigned int latency;
520
                        /* policy latency is in nS. Convert it to uS first */
521
                        latency = policy->cpuinfo.transition_latency / 1000;
522
                        if (latency == 0)
523
                                latency = 1;
524
 
525
                        def_sampling_rate = 10 * latency *
526
                                        DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
527
 
528
                        if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
529
                                def_sampling_rate = MIN_STAT_SAMPLING_RATE;
530
 
531
                        dbs_tuners_ins.sampling_rate = def_sampling_rate;
532
 
533
                        dbs_timer_init();
534
                        cpufreq_register_notifier(
535
                                        &dbs_cpufreq_notifier_block,
536
                                        CPUFREQ_TRANSITION_NOTIFIER);
537
                }
538
 
539
                mutex_unlock(&dbs_mutex);
540
                break;
541
 
542
        case CPUFREQ_GOV_STOP:
543
                mutex_lock(&dbs_mutex);
544
                this_dbs_info->enable = 0;
545
                sysfs_remove_group(&policy->kobj, &dbs_attr_group);
546
                dbs_enable--;
547
                /*
548
                 * Stop the timerschedule work, when this governor
549
                 * is used for first time
550
                 */
551
                if (dbs_enable == 0) {
552
                        dbs_timer_exit();
553
                        cpufreq_unregister_notifier(
554
                                        &dbs_cpufreq_notifier_block,
555
                                        CPUFREQ_TRANSITION_NOTIFIER);
556
                }
557
 
558
                mutex_unlock(&dbs_mutex);
559
 
560
                break;
561
 
562
        case CPUFREQ_GOV_LIMITS:
563
                mutex_lock(&dbs_mutex);
564
                if (policy->max < this_dbs_info->cur_policy->cur)
565
                        __cpufreq_driver_target(
566
                                        this_dbs_info->cur_policy,
567
                                        policy->max, CPUFREQ_RELATION_H);
568
                else if (policy->min > this_dbs_info->cur_policy->cur)
569
                        __cpufreq_driver_target(
570
                                        this_dbs_info->cur_policy,
571
                                        policy->min, CPUFREQ_RELATION_L);
572
                mutex_unlock(&dbs_mutex);
573
                break;
574
        }
575
        return 0;
576
}
577
 
578
struct cpufreq_governor cpufreq_gov_conservative = {
579
        .name                   = "conservative",
580
        .governor               = cpufreq_governor_dbs,
581
        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
582
        .owner                  = THIS_MODULE,
583
};
584
EXPORT_SYMBOL(cpufreq_gov_conservative);
585
 
586
static int __init cpufreq_gov_dbs_init(void)
587
{
588
        return cpufreq_register_governor(&cpufreq_gov_conservative);
589
}
590
 
591
static void __exit cpufreq_gov_dbs_exit(void)
592
{
593
        /* Make sure that the scheduled work is indeed not running */
594
        flush_scheduled_work();
595
 
596
        cpufreq_unregister_governor(&cpufreq_gov_conservative);
597
}
598
 
599
 
600
MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
601
MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
602
                "Low Latency Frequency Transition capable processors "
603
                "optimised for use in a battery environment");
604
MODULE_LICENSE ("GPL");
605
 
606
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
607
fs_initcall(cpufreq_gov_dbs_init);
608
#else
609
module_init(cpufreq_gov_dbs_init);
610
#endif
611
module_exit(cpufreq_gov_dbs_exit);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.