1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* Cryptographic API.
|
3 |
|
|
*
|
4 |
|
|
* Support for VIA PadLock hardware crypto engine.
|
5 |
|
|
*
|
6 |
|
|
* Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
|
7 |
|
|
*
|
8 |
|
|
* Key expansion routine taken from crypto/aes_generic.c
|
9 |
|
|
*
|
10 |
|
|
* This program is free software; you can redistribute it and/or modify
|
11 |
|
|
* it under the terms of the GNU General Public License as published by
|
12 |
|
|
* the Free Software Foundation; either version 2 of the License, or
|
13 |
|
|
* (at your option) any later version.
|
14 |
|
|
*
|
15 |
|
|
* ---------------------------------------------------------------------------
|
16 |
|
|
* Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
|
17 |
|
|
* All rights reserved.
|
18 |
|
|
*
|
19 |
|
|
* LICENSE TERMS
|
20 |
|
|
*
|
21 |
|
|
* The free distribution and use of this software in both source and binary
|
22 |
|
|
* form is allowed (with or without changes) provided that:
|
23 |
|
|
*
|
24 |
|
|
* 1. distributions of this source code include the above copyright
|
25 |
|
|
* notice, this list of conditions and the following disclaimer;
|
26 |
|
|
*
|
27 |
|
|
* 2. distributions in binary form include the above copyright
|
28 |
|
|
* notice, this list of conditions and the following disclaimer
|
29 |
|
|
* in the documentation and/or other associated materials;
|
30 |
|
|
*
|
31 |
|
|
* 3. the copyright holder's name is not used to endorse products
|
32 |
|
|
* built using this software without specific written permission.
|
33 |
|
|
*
|
34 |
|
|
* ALTERNATIVELY, provided that this notice is retained in full, this product
|
35 |
|
|
* may be distributed under the terms of the GNU General Public License (GPL),
|
36 |
|
|
* in which case the provisions of the GPL apply INSTEAD OF those given above.
|
37 |
|
|
*
|
38 |
|
|
* DISCLAIMER
|
39 |
|
|
*
|
40 |
|
|
* This software is provided 'as is' with no explicit or implied warranties
|
41 |
|
|
* in respect of its properties, including, but not limited to, correctness
|
42 |
|
|
* and/or fitness for purpose.
|
43 |
|
|
* ---------------------------------------------------------------------------
|
44 |
|
|
*/
|
45 |
|
|
|
46 |
|
|
#include <crypto/algapi.h>
|
47 |
|
|
#include <linux/module.h>
|
48 |
|
|
#include <linux/init.h>
|
49 |
|
|
#include <linux/types.h>
|
50 |
|
|
#include <linux/errno.h>
|
51 |
|
|
#include <linux/interrupt.h>
|
52 |
|
|
#include <linux/kernel.h>
|
53 |
|
|
#include <asm/byteorder.h>
|
54 |
|
|
#include "padlock.h"
|
55 |
|
|
|
56 |
|
|
#define AES_MIN_KEY_SIZE 16 /* in uint8_t units */
|
57 |
|
|
#define AES_MAX_KEY_SIZE 32 /* ditto */
|
58 |
|
|
#define AES_BLOCK_SIZE 16 /* ditto */
|
59 |
|
|
#define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */
|
60 |
|
|
#define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
|
61 |
|
|
|
62 |
|
|
/* Control word. */
|
63 |
|
|
struct cword {
|
64 |
|
|
unsigned int __attribute__ ((__packed__))
|
65 |
|
|
rounds:4,
|
66 |
|
|
algo:3,
|
67 |
|
|
keygen:1,
|
68 |
|
|
interm:1,
|
69 |
|
|
encdec:1,
|
70 |
|
|
ksize:2;
|
71 |
|
|
} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
|
72 |
|
|
|
73 |
|
|
/* Whenever making any changes to the following
|
74 |
|
|
* structure *make sure* you keep E, d_data
|
75 |
|
|
* and cword aligned on 16 Bytes boundaries!!! */
|
76 |
|
|
struct aes_ctx {
|
77 |
|
|
struct {
|
78 |
|
|
struct cword encrypt;
|
79 |
|
|
struct cword decrypt;
|
80 |
|
|
} cword;
|
81 |
|
|
u32 *D;
|
82 |
|
|
int key_length;
|
83 |
|
|
u32 E[AES_EXTENDED_KEY_SIZE]
|
84 |
|
|
__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
|
85 |
|
|
u32 d_data[AES_EXTENDED_KEY_SIZE]
|
86 |
|
|
__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
|
87 |
|
|
};
|
88 |
|
|
|
89 |
|
|
/* ====== Key management routines ====== */
|
90 |
|
|
|
91 |
|
|
static inline uint32_t
|
92 |
|
|
generic_rotr32 (const uint32_t x, const unsigned bits)
|
93 |
|
|
{
|
94 |
|
|
const unsigned n = bits % 32;
|
95 |
|
|
return (x >> n) | (x << (32 - n));
|
96 |
|
|
}
|
97 |
|
|
|
98 |
|
|
static inline uint32_t
|
99 |
|
|
generic_rotl32 (const uint32_t x, const unsigned bits)
|
100 |
|
|
{
|
101 |
|
|
const unsigned n = bits % 32;
|
102 |
|
|
return (x << n) | (x >> (32 - n));
|
103 |
|
|
}
|
104 |
|
|
|
105 |
|
|
#define rotl generic_rotl32
|
106 |
|
|
#define rotr generic_rotr32
|
107 |
|
|
|
108 |
|
|
/*
|
109 |
|
|
* #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
|
110 |
|
|
*/
|
111 |
|
|
static inline uint8_t
|
112 |
|
|
byte(const uint32_t x, const unsigned n)
|
113 |
|
|
{
|
114 |
|
|
return x >> (n << 3);
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
#define E_KEY ctx->E
|
118 |
|
|
#define D_KEY ctx->D
|
119 |
|
|
|
120 |
|
|
static uint8_t pow_tab[256];
|
121 |
|
|
static uint8_t log_tab[256];
|
122 |
|
|
static uint8_t sbx_tab[256];
|
123 |
|
|
static uint8_t isb_tab[256];
|
124 |
|
|
static uint32_t rco_tab[10];
|
125 |
|
|
static uint32_t ft_tab[4][256];
|
126 |
|
|
static uint32_t it_tab[4][256];
|
127 |
|
|
|
128 |
|
|
static uint32_t fl_tab[4][256];
|
129 |
|
|
static uint32_t il_tab[4][256];
|
130 |
|
|
|
131 |
|
|
static inline uint8_t
|
132 |
|
|
f_mult (uint8_t a, uint8_t b)
|
133 |
|
|
{
|
134 |
|
|
uint8_t aa = log_tab[a], cc = aa + log_tab[b];
|
135 |
|
|
|
136 |
|
|
return pow_tab[cc + (cc < aa ? 1 : 0)];
|
137 |
|
|
}
|
138 |
|
|
|
139 |
|
|
#define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
|
140 |
|
|
|
141 |
|
|
#define f_rn(bo, bi, n, k) \
|
142 |
|
|
bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
|
143 |
|
|
ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
|
144 |
|
|
ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
|
145 |
|
|
ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
|
146 |
|
|
|
147 |
|
|
#define i_rn(bo, bi, n, k) \
|
148 |
|
|
bo[n] = it_tab[0][byte(bi[n],0)] ^ \
|
149 |
|
|
it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
|
150 |
|
|
it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
|
151 |
|
|
it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
|
152 |
|
|
|
153 |
|
|
#define ls_box(x) \
|
154 |
|
|
( fl_tab[0][byte(x, 0)] ^ \
|
155 |
|
|
fl_tab[1][byte(x, 1)] ^ \
|
156 |
|
|
fl_tab[2][byte(x, 2)] ^ \
|
157 |
|
|
fl_tab[3][byte(x, 3)] )
|
158 |
|
|
|
159 |
|
|
#define f_rl(bo, bi, n, k) \
|
160 |
|
|
bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
|
161 |
|
|
fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
|
162 |
|
|
fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
|
163 |
|
|
fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
|
164 |
|
|
|
165 |
|
|
#define i_rl(bo, bi, n, k) \
|
166 |
|
|
bo[n] = il_tab[0][byte(bi[n],0)] ^ \
|
167 |
|
|
il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
|
168 |
|
|
il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
|
169 |
|
|
il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
|
170 |
|
|
|
171 |
|
|
static void
|
172 |
|
|
gen_tabs (void)
|
173 |
|
|
{
|
174 |
|
|
uint32_t i, t;
|
175 |
|
|
uint8_t p, q;
|
176 |
|
|
|
177 |
|
|
/* log and power tables for GF(2**8) finite field with
|
178 |
|
|
0x011b as modular polynomial - the simplest prmitive
|
179 |
|
|
root is 0x03, used here to generate the tables */
|
180 |
|
|
|
181 |
|
|
for (i = 0, p = 1; i < 256; ++i) {
|
182 |
|
|
pow_tab[i] = (uint8_t) p;
|
183 |
|
|
log_tab[p] = (uint8_t) i;
|
184 |
|
|
|
185 |
|
|
p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
log_tab[1] = 0;
|
189 |
|
|
|
190 |
|
|
for (i = 0, p = 1; i < 10; ++i) {
|
191 |
|
|
rco_tab[i] = p;
|
192 |
|
|
|
193 |
|
|
p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
for (i = 0; i < 256; ++i) {
|
197 |
|
|
p = (i ? pow_tab[255 - log_tab[i]] : 0);
|
198 |
|
|
q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
|
199 |
|
|
p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
|
200 |
|
|
sbx_tab[i] = p;
|
201 |
|
|
isb_tab[p] = (uint8_t) i;
|
202 |
|
|
}
|
203 |
|
|
|
204 |
|
|
for (i = 0; i < 256; ++i) {
|
205 |
|
|
p = sbx_tab[i];
|
206 |
|
|
|
207 |
|
|
t = p;
|
208 |
|
|
fl_tab[0][i] = t;
|
209 |
|
|
fl_tab[1][i] = rotl (t, 8);
|
210 |
|
|
fl_tab[2][i] = rotl (t, 16);
|
211 |
|
|
fl_tab[3][i] = rotl (t, 24);
|
212 |
|
|
|
213 |
|
|
t = ((uint32_t) ff_mult (2, p)) |
|
214 |
|
|
((uint32_t) p << 8) |
|
215 |
|
|
((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
|
216 |
|
|
|
217 |
|
|
ft_tab[0][i] = t;
|
218 |
|
|
ft_tab[1][i] = rotl (t, 8);
|
219 |
|
|
ft_tab[2][i] = rotl (t, 16);
|
220 |
|
|
ft_tab[3][i] = rotl (t, 24);
|
221 |
|
|
|
222 |
|
|
p = isb_tab[i];
|
223 |
|
|
|
224 |
|
|
t = p;
|
225 |
|
|
il_tab[0][i] = t;
|
226 |
|
|
il_tab[1][i] = rotl (t, 8);
|
227 |
|
|
il_tab[2][i] = rotl (t, 16);
|
228 |
|
|
il_tab[3][i] = rotl (t, 24);
|
229 |
|
|
|
230 |
|
|
t = ((uint32_t) ff_mult (14, p)) |
|
231 |
|
|
((uint32_t) ff_mult (9, p) << 8) |
|
232 |
|
|
((uint32_t) ff_mult (13, p) << 16) |
|
233 |
|
|
((uint32_t) ff_mult (11, p) << 24);
|
234 |
|
|
|
235 |
|
|
it_tab[0][i] = t;
|
236 |
|
|
it_tab[1][i] = rotl (t, 8);
|
237 |
|
|
it_tab[2][i] = rotl (t, 16);
|
238 |
|
|
it_tab[3][i] = rotl (t, 24);
|
239 |
|
|
}
|
240 |
|
|
}
|
241 |
|
|
|
242 |
|
|
#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
|
243 |
|
|
|
244 |
|
|
#define imix_col(y,x) \
|
245 |
|
|
u = star_x(x); \
|
246 |
|
|
v = star_x(u); \
|
247 |
|
|
w = star_x(v); \
|
248 |
|
|
t = w ^ (x); \
|
249 |
|
|
(y) = u ^ v ^ w; \
|
250 |
|
|
(y) ^= rotr(u ^ t, 8) ^ \
|
251 |
|
|
rotr(v ^ t, 16) ^ \
|
252 |
|
|
rotr(t,24)
|
253 |
|
|
|
254 |
|
|
/* initialise the key schedule from the user supplied key */
|
255 |
|
|
|
256 |
|
|
#define loop4(i) \
|
257 |
|
|
{ t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
|
258 |
|
|
t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
|
259 |
|
|
t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
|
260 |
|
|
t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
|
261 |
|
|
t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
#define loop6(i) \
|
265 |
|
|
{ t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
|
266 |
|
|
t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
|
267 |
|
|
t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
|
268 |
|
|
t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
|
269 |
|
|
t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
|
270 |
|
|
t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
|
271 |
|
|
t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
#define loop8(i) \
|
275 |
|
|
{ t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
|
276 |
|
|
t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
|
277 |
|
|
t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
|
278 |
|
|
t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
|
279 |
|
|
t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
|
280 |
|
|
t = E_KEY[8 * i + 4] ^ ls_box(t); \
|
281 |
|
|
E_KEY[8 * i + 12] = t; \
|
282 |
|
|
t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
|
283 |
|
|
t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
|
284 |
|
|
t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
|
285 |
|
|
}
|
286 |
|
|
|
287 |
|
|
/* Tells whether the ACE is capable to generate
|
288 |
|
|
the extended key for a given key_len. */
|
289 |
|
|
static inline int
|
290 |
|
|
aes_hw_extkey_available(uint8_t key_len)
|
291 |
|
|
{
|
292 |
|
|
/* TODO: We should check the actual CPU model/stepping
|
293 |
|
|
as it's possible that the capability will be
|
294 |
|
|
added in the next CPU revisions. */
|
295 |
|
|
if (key_len == 16)
|
296 |
|
|
return 1;
|
297 |
|
|
return 0;
|
298 |
|
|
}
|
299 |
|
|
|
300 |
|
|
static inline struct aes_ctx *aes_ctx_common(void *ctx)
|
301 |
|
|
{
|
302 |
|
|
unsigned long addr = (unsigned long)ctx;
|
303 |
|
|
unsigned long align = PADLOCK_ALIGNMENT;
|
304 |
|
|
|
305 |
|
|
if (align <= crypto_tfm_ctx_alignment())
|
306 |
|
|
align = 1;
|
307 |
|
|
return (struct aes_ctx *)ALIGN(addr, align);
|
308 |
|
|
}
|
309 |
|
|
|
310 |
|
|
static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
|
311 |
|
|
{
|
312 |
|
|
return aes_ctx_common(crypto_tfm_ctx(tfm));
|
313 |
|
|
}
|
314 |
|
|
|
315 |
|
|
static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
|
316 |
|
|
{
|
317 |
|
|
return aes_ctx_common(crypto_blkcipher_ctx(tfm));
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
|
321 |
|
|
unsigned int key_len)
|
322 |
|
|
{
|
323 |
|
|
struct aes_ctx *ctx = aes_ctx(tfm);
|
324 |
|
|
const __le32 *key = (const __le32 *)in_key;
|
325 |
|
|
u32 *flags = &tfm->crt_flags;
|
326 |
|
|
uint32_t i, t, u, v, w;
|
327 |
|
|
uint32_t P[AES_EXTENDED_KEY_SIZE];
|
328 |
|
|
uint32_t rounds;
|
329 |
|
|
|
330 |
|
|
if (key_len % 8) {
|
331 |
|
|
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
|
332 |
|
|
return -EINVAL;
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
ctx->key_length = key_len;
|
336 |
|
|
|
337 |
|
|
/*
|
338 |
|
|
* If the hardware is capable of generating the extended key
|
339 |
|
|
* itself we must supply the plain key for both encryption
|
340 |
|
|
* and decryption.
|
341 |
|
|
*/
|
342 |
|
|
ctx->D = ctx->E;
|
343 |
|
|
|
344 |
|
|
E_KEY[0] = le32_to_cpu(key[0]);
|
345 |
|
|
E_KEY[1] = le32_to_cpu(key[1]);
|
346 |
|
|
E_KEY[2] = le32_to_cpu(key[2]);
|
347 |
|
|
E_KEY[3] = le32_to_cpu(key[3]);
|
348 |
|
|
|
349 |
|
|
/* Prepare control words. */
|
350 |
|
|
memset(&ctx->cword, 0, sizeof(ctx->cword));
|
351 |
|
|
|
352 |
|
|
ctx->cword.decrypt.encdec = 1;
|
353 |
|
|
ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
|
354 |
|
|
ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
|
355 |
|
|
ctx->cword.encrypt.ksize = (key_len - 16) / 8;
|
356 |
|
|
ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
|
357 |
|
|
|
358 |
|
|
/* Don't generate extended keys if the hardware can do it. */
|
359 |
|
|
if (aes_hw_extkey_available(key_len))
|
360 |
|
|
return 0;
|
361 |
|
|
|
362 |
|
|
ctx->D = ctx->d_data;
|
363 |
|
|
ctx->cword.encrypt.keygen = 1;
|
364 |
|
|
ctx->cword.decrypt.keygen = 1;
|
365 |
|
|
|
366 |
|
|
switch (key_len) {
|
367 |
|
|
case 16:
|
368 |
|
|
t = E_KEY[3];
|
369 |
|
|
for (i = 0; i < 10; ++i)
|
370 |
|
|
loop4 (i);
|
371 |
|
|
break;
|
372 |
|
|
|
373 |
|
|
case 24:
|
374 |
|
|
E_KEY[4] = le32_to_cpu(key[4]);
|
375 |
|
|
t = E_KEY[5] = le32_to_cpu(key[5]);
|
376 |
|
|
for (i = 0; i < 8; ++i)
|
377 |
|
|
loop6 (i);
|
378 |
|
|
break;
|
379 |
|
|
|
380 |
|
|
case 32:
|
381 |
|
|
E_KEY[4] = le32_to_cpu(key[4]);
|
382 |
|
|
E_KEY[5] = le32_to_cpu(key[5]);
|
383 |
|
|
E_KEY[6] = le32_to_cpu(key[6]);
|
384 |
|
|
t = E_KEY[7] = le32_to_cpu(key[7]);
|
385 |
|
|
for (i = 0; i < 7; ++i)
|
386 |
|
|
loop8 (i);
|
387 |
|
|
break;
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
D_KEY[0] = E_KEY[0];
|
391 |
|
|
D_KEY[1] = E_KEY[1];
|
392 |
|
|
D_KEY[2] = E_KEY[2];
|
393 |
|
|
D_KEY[3] = E_KEY[3];
|
394 |
|
|
|
395 |
|
|
for (i = 4; i < key_len + 24; ++i) {
|
396 |
|
|
imix_col (D_KEY[i], E_KEY[i]);
|
397 |
|
|
}
|
398 |
|
|
|
399 |
|
|
/* PadLock needs a different format of the decryption key. */
|
400 |
|
|
rounds = 10 + (key_len - 16) / 4;
|
401 |
|
|
|
402 |
|
|
for (i = 0; i < rounds; i++) {
|
403 |
|
|
P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
|
404 |
|
|
P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
|
405 |
|
|
P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
|
406 |
|
|
P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
|
407 |
|
|
}
|
408 |
|
|
|
409 |
|
|
P[0] = E_KEY[(rounds * 4) + 0];
|
410 |
|
|
P[1] = E_KEY[(rounds * 4) + 1];
|
411 |
|
|
P[2] = E_KEY[(rounds * 4) + 2];
|
412 |
|
|
P[3] = E_KEY[(rounds * 4) + 3];
|
413 |
|
|
|
414 |
|
|
memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
|
415 |
|
|
|
416 |
|
|
return 0;
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
/* ====== Encryption/decryption routines ====== */
|
420 |
|
|
|
421 |
|
|
/* These are the real call to PadLock. */
|
422 |
|
|
static inline void padlock_xcrypt(const u8 *input, u8 *output, void *key,
|
423 |
|
|
void *control_word)
|
424 |
|
|
{
|
425 |
|
|
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
|
426 |
|
|
: "+S"(input), "+D"(output)
|
427 |
|
|
: "d"(control_word), "b"(key), "c"(1));
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
static void aes_crypt_copy(const u8 *in, u8 *out, u32 *key, struct cword *cword)
|
431 |
|
|
{
|
432 |
|
|
u8 buf[AES_BLOCK_SIZE * 2 + PADLOCK_ALIGNMENT - 1];
|
433 |
|
|
u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
434 |
|
|
|
435 |
|
|
memcpy(tmp, in, AES_BLOCK_SIZE);
|
436 |
|
|
padlock_xcrypt(tmp, out, key, cword);
|
437 |
|
|
}
|
438 |
|
|
|
439 |
|
|
static inline void aes_crypt(const u8 *in, u8 *out, u32 *key,
|
440 |
|
|
struct cword *cword)
|
441 |
|
|
{
|
442 |
|
|
asm volatile ("pushfl; popfl");
|
443 |
|
|
|
444 |
|
|
/* padlock_xcrypt requires at least two blocks of data. */
|
445 |
|
|
if (unlikely(!(((unsigned long)in ^ (PAGE_SIZE - AES_BLOCK_SIZE)) &
|
446 |
|
|
(PAGE_SIZE - 1)))) {
|
447 |
|
|
aes_crypt_copy(in, out, key, cword);
|
448 |
|
|
return;
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
padlock_xcrypt(in, out, key, cword);
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
|
455 |
|
|
void *control_word, u32 count)
|
456 |
|
|
{
|
457 |
|
|
if (count == 1) {
|
458 |
|
|
aes_crypt(input, output, key, control_word);
|
459 |
|
|
return;
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
asm volatile ("pushfl; popfl"); /* enforce key reload. */
|
463 |
|
|
asm volatile ("test $1, %%cl;"
|
464 |
|
|
"je 1f;"
|
465 |
|
|
"lea -1(%%ecx), %%eax;"
|
466 |
|
|
"mov $1, %%ecx;"
|
467 |
|
|
".byte 0xf3,0x0f,0xa7,0xc8;" /* rep xcryptecb */
|
468 |
|
|
"mov %%eax, %%ecx;"
|
469 |
|
|
"1:"
|
470 |
|
|
".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
|
471 |
|
|
: "+S"(input), "+D"(output)
|
472 |
|
|
: "d"(control_word), "b"(key), "c"(count)
|
473 |
|
|
: "ax");
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
|
477 |
|
|
u8 *iv, void *control_word, u32 count)
|
478 |
|
|
{
|
479 |
|
|
/* Enforce key reload. */
|
480 |
|
|
asm volatile ("pushfl; popfl");
|
481 |
|
|
/* rep xcryptcbc */
|
482 |
|
|
asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
|
483 |
|
|
: "+S" (input), "+D" (output), "+a" (iv)
|
484 |
|
|
: "d" (control_word), "b" (key), "c" (count));
|
485 |
|
|
return iv;
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
|
489 |
|
|
{
|
490 |
|
|
struct aes_ctx *ctx = aes_ctx(tfm);
|
491 |
|
|
aes_crypt(in, out, ctx->E, &ctx->cword.encrypt);
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
|
495 |
|
|
{
|
496 |
|
|
struct aes_ctx *ctx = aes_ctx(tfm);
|
497 |
|
|
aes_crypt(in, out, ctx->D, &ctx->cword.decrypt);
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
static struct crypto_alg aes_alg = {
|
501 |
|
|
.cra_name = "aes",
|
502 |
|
|
.cra_driver_name = "aes-padlock",
|
503 |
|
|
.cra_priority = PADLOCK_CRA_PRIORITY,
|
504 |
|
|
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
|
505 |
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
506 |
|
|
.cra_ctxsize = sizeof(struct aes_ctx),
|
507 |
|
|
.cra_alignmask = PADLOCK_ALIGNMENT - 1,
|
508 |
|
|
.cra_module = THIS_MODULE,
|
509 |
|
|
.cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
|
510 |
|
|
.cra_u = {
|
511 |
|
|
.cipher = {
|
512 |
|
|
.cia_min_keysize = AES_MIN_KEY_SIZE,
|
513 |
|
|
.cia_max_keysize = AES_MAX_KEY_SIZE,
|
514 |
|
|
.cia_setkey = aes_set_key,
|
515 |
|
|
.cia_encrypt = aes_encrypt,
|
516 |
|
|
.cia_decrypt = aes_decrypt,
|
517 |
|
|
}
|
518 |
|
|
}
|
519 |
|
|
};
|
520 |
|
|
|
521 |
|
|
static int ecb_aes_encrypt(struct blkcipher_desc *desc,
|
522 |
|
|
struct scatterlist *dst, struct scatterlist *src,
|
523 |
|
|
unsigned int nbytes)
|
524 |
|
|
{
|
525 |
|
|
struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
|
526 |
|
|
struct blkcipher_walk walk;
|
527 |
|
|
int err;
|
528 |
|
|
|
529 |
|
|
blkcipher_walk_init(&walk, dst, src, nbytes);
|
530 |
|
|
err = blkcipher_walk_virt(desc, &walk);
|
531 |
|
|
|
532 |
|
|
while ((nbytes = walk.nbytes)) {
|
533 |
|
|
padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
|
534 |
|
|
ctx->E, &ctx->cword.encrypt,
|
535 |
|
|
nbytes / AES_BLOCK_SIZE);
|
536 |
|
|
nbytes &= AES_BLOCK_SIZE - 1;
|
537 |
|
|
err = blkcipher_walk_done(desc, &walk, nbytes);
|
538 |
|
|
}
|
539 |
|
|
|
540 |
|
|
return err;
|
541 |
|
|
}
|
542 |
|
|
|
543 |
|
|
static int ecb_aes_decrypt(struct blkcipher_desc *desc,
|
544 |
|
|
struct scatterlist *dst, struct scatterlist *src,
|
545 |
|
|
unsigned int nbytes)
|
546 |
|
|
{
|
547 |
|
|
struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
|
548 |
|
|
struct blkcipher_walk walk;
|
549 |
|
|
int err;
|
550 |
|
|
|
551 |
|
|
blkcipher_walk_init(&walk, dst, src, nbytes);
|
552 |
|
|
err = blkcipher_walk_virt(desc, &walk);
|
553 |
|
|
|
554 |
|
|
while ((nbytes = walk.nbytes)) {
|
555 |
|
|
padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
|
556 |
|
|
ctx->D, &ctx->cword.decrypt,
|
557 |
|
|
nbytes / AES_BLOCK_SIZE);
|
558 |
|
|
nbytes &= AES_BLOCK_SIZE - 1;
|
559 |
|
|
err = blkcipher_walk_done(desc, &walk, nbytes);
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
return err;
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
static struct crypto_alg ecb_aes_alg = {
|
566 |
|
|
.cra_name = "ecb(aes)",
|
567 |
|
|
.cra_driver_name = "ecb-aes-padlock",
|
568 |
|
|
.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
|
569 |
|
|
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
|
570 |
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
571 |
|
|
.cra_ctxsize = sizeof(struct aes_ctx),
|
572 |
|
|
.cra_alignmask = PADLOCK_ALIGNMENT - 1,
|
573 |
|
|
.cra_type = &crypto_blkcipher_type,
|
574 |
|
|
.cra_module = THIS_MODULE,
|
575 |
|
|
.cra_list = LIST_HEAD_INIT(ecb_aes_alg.cra_list),
|
576 |
|
|
.cra_u = {
|
577 |
|
|
.blkcipher = {
|
578 |
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
579 |
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
580 |
|
|
.setkey = aes_set_key,
|
581 |
|
|
.encrypt = ecb_aes_encrypt,
|
582 |
|
|
.decrypt = ecb_aes_decrypt,
|
583 |
|
|
}
|
584 |
|
|
}
|
585 |
|
|
};
|
586 |
|
|
|
587 |
|
|
static int cbc_aes_encrypt(struct blkcipher_desc *desc,
|
588 |
|
|
struct scatterlist *dst, struct scatterlist *src,
|
589 |
|
|
unsigned int nbytes)
|
590 |
|
|
{
|
591 |
|
|
struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
|
592 |
|
|
struct blkcipher_walk walk;
|
593 |
|
|
int err;
|
594 |
|
|
|
595 |
|
|
blkcipher_walk_init(&walk, dst, src, nbytes);
|
596 |
|
|
err = blkcipher_walk_virt(desc, &walk);
|
597 |
|
|
|
598 |
|
|
while ((nbytes = walk.nbytes)) {
|
599 |
|
|
u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
|
600 |
|
|
walk.dst.virt.addr, ctx->E,
|
601 |
|
|
walk.iv, &ctx->cword.encrypt,
|
602 |
|
|
nbytes / AES_BLOCK_SIZE);
|
603 |
|
|
memcpy(walk.iv, iv, AES_BLOCK_SIZE);
|
604 |
|
|
nbytes &= AES_BLOCK_SIZE - 1;
|
605 |
|
|
err = blkcipher_walk_done(desc, &walk, nbytes);
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
return err;
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
static int cbc_aes_decrypt(struct blkcipher_desc *desc,
|
612 |
|
|
struct scatterlist *dst, struct scatterlist *src,
|
613 |
|
|
unsigned int nbytes)
|
614 |
|
|
{
|
615 |
|
|
struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
|
616 |
|
|
struct blkcipher_walk walk;
|
617 |
|
|
int err;
|
618 |
|
|
|
619 |
|
|
blkcipher_walk_init(&walk, dst, src, nbytes);
|
620 |
|
|
err = blkcipher_walk_virt(desc, &walk);
|
621 |
|
|
|
622 |
|
|
while ((nbytes = walk.nbytes)) {
|
623 |
|
|
padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
|
624 |
|
|
ctx->D, walk.iv, &ctx->cword.decrypt,
|
625 |
|
|
nbytes / AES_BLOCK_SIZE);
|
626 |
|
|
nbytes &= AES_BLOCK_SIZE - 1;
|
627 |
|
|
err = blkcipher_walk_done(desc, &walk, nbytes);
|
628 |
|
|
}
|
629 |
|
|
|
630 |
|
|
return err;
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
static struct crypto_alg cbc_aes_alg = {
|
634 |
|
|
.cra_name = "cbc(aes)",
|
635 |
|
|
.cra_driver_name = "cbc-aes-padlock",
|
636 |
|
|
.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
|
637 |
|
|
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
|
638 |
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
639 |
|
|
.cra_ctxsize = sizeof(struct aes_ctx),
|
640 |
|
|
.cra_alignmask = PADLOCK_ALIGNMENT - 1,
|
641 |
|
|
.cra_type = &crypto_blkcipher_type,
|
642 |
|
|
.cra_module = THIS_MODULE,
|
643 |
|
|
.cra_list = LIST_HEAD_INIT(cbc_aes_alg.cra_list),
|
644 |
|
|
.cra_u = {
|
645 |
|
|
.blkcipher = {
|
646 |
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
647 |
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
648 |
|
|
.ivsize = AES_BLOCK_SIZE,
|
649 |
|
|
.setkey = aes_set_key,
|
650 |
|
|
.encrypt = cbc_aes_encrypt,
|
651 |
|
|
.decrypt = cbc_aes_decrypt,
|
652 |
|
|
}
|
653 |
|
|
}
|
654 |
|
|
};
|
655 |
|
|
|
656 |
|
|
static int __init padlock_init(void)
|
657 |
|
|
{
|
658 |
|
|
int ret;
|
659 |
|
|
|
660 |
|
|
if (!cpu_has_xcrypt) {
|
661 |
|
|
printk(KERN_ERR PFX "VIA PadLock not detected.\n");
|
662 |
|
|
return -ENODEV;
|
663 |
|
|
}
|
664 |
|
|
|
665 |
|
|
if (!cpu_has_xcrypt_enabled) {
|
666 |
|
|
printk(KERN_ERR PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
|
667 |
|
|
return -ENODEV;
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
gen_tabs();
|
671 |
|
|
if ((ret = crypto_register_alg(&aes_alg)))
|
672 |
|
|
goto aes_err;
|
673 |
|
|
|
674 |
|
|
if ((ret = crypto_register_alg(&ecb_aes_alg)))
|
675 |
|
|
goto ecb_aes_err;
|
676 |
|
|
|
677 |
|
|
if ((ret = crypto_register_alg(&cbc_aes_alg)))
|
678 |
|
|
goto cbc_aes_err;
|
679 |
|
|
|
680 |
|
|
printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
|
681 |
|
|
|
682 |
|
|
out:
|
683 |
|
|
return ret;
|
684 |
|
|
|
685 |
|
|
cbc_aes_err:
|
686 |
|
|
crypto_unregister_alg(&ecb_aes_alg);
|
687 |
|
|
ecb_aes_err:
|
688 |
|
|
crypto_unregister_alg(&aes_alg);
|
689 |
|
|
aes_err:
|
690 |
|
|
printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
|
691 |
|
|
goto out;
|
692 |
|
|
}
|
693 |
|
|
|
694 |
|
|
static void __exit padlock_fini(void)
|
695 |
|
|
{
|
696 |
|
|
crypto_unregister_alg(&cbc_aes_alg);
|
697 |
|
|
crypto_unregister_alg(&ecb_aes_alg);
|
698 |
|
|
crypto_unregister_alg(&aes_alg);
|
699 |
|
|
}
|
700 |
|
|
|
701 |
|
|
module_init(padlock_init);
|
702 |
|
|
module_exit(padlock_fini);
|
703 |
|
|
|
704 |
|
|
MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
|
705 |
|
|
MODULE_LICENSE("GPL");
|
706 |
|
|
MODULE_AUTHOR("Michal Ludvig");
|
707 |
|
|
|
708 |
|
|
MODULE_ALIAS("aes");
|