1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* Intel 5000(P/V/X) class Memory Controllers kernel module
|
3 |
|
|
*
|
4 |
|
|
* This file may be distributed under the terms of the
|
5 |
|
|
* GNU General Public License.
|
6 |
|
|
*
|
7 |
|
|
* Written by Douglas Thompson Linux Networx (http://lnxi.com)
|
8 |
|
|
* norsk5@xmission.com
|
9 |
|
|
*
|
10 |
|
|
* This module is based on the following document:
|
11 |
|
|
*
|
12 |
|
|
* Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
|
13 |
|
|
* http://developer.intel.com/design/chipsets/datashts/313070.htm
|
14 |
|
|
*
|
15 |
|
|
*/
|
16 |
|
|
|
17 |
|
|
#include <linux/module.h>
|
18 |
|
|
#include <linux/init.h>
|
19 |
|
|
#include <linux/pci.h>
|
20 |
|
|
#include <linux/pci_ids.h>
|
21 |
|
|
#include <linux/slab.h>
|
22 |
|
|
#include <linux/edac.h>
|
23 |
|
|
#include <asm/mmzone.h>
|
24 |
|
|
|
25 |
|
|
#include "edac_core.h"
|
26 |
|
|
|
27 |
|
|
/*
|
28 |
|
|
* Alter this version for the I5000 module when modifications are made
|
29 |
|
|
*/
|
30 |
|
|
#define I5000_REVISION " Ver: 2.0.12 " __DATE__
|
31 |
|
|
#define EDAC_MOD_STR "i5000_edac"
|
32 |
|
|
|
33 |
|
|
#define i5000_printk(level, fmt, arg...) \
|
34 |
|
|
edac_printk(level, "i5000", fmt, ##arg)
|
35 |
|
|
|
36 |
|
|
#define i5000_mc_printk(mci, level, fmt, arg...) \
|
37 |
|
|
edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
|
38 |
|
|
|
39 |
|
|
#ifndef PCI_DEVICE_ID_INTEL_FBD_0
|
40 |
|
|
#define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5
|
41 |
|
|
#endif
|
42 |
|
|
#ifndef PCI_DEVICE_ID_INTEL_FBD_1
|
43 |
|
|
#define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6
|
44 |
|
|
#endif
|
45 |
|
|
|
46 |
|
|
/* Device 16,
|
47 |
|
|
* Function 0: System Address
|
48 |
|
|
* Function 1: Memory Branch Map, Control, Errors Register
|
49 |
|
|
* Function 2: FSB Error Registers
|
50 |
|
|
*
|
51 |
|
|
* All 3 functions of Device 16 (0,1,2) share the SAME DID
|
52 |
|
|
*/
|
53 |
|
|
#define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
|
54 |
|
|
|
55 |
|
|
/* OFFSETS for Function 0 */
|
56 |
|
|
|
57 |
|
|
/* OFFSETS for Function 1 */
|
58 |
|
|
#define AMBASE 0x48
|
59 |
|
|
#define MAXCH 0x56
|
60 |
|
|
#define MAXDIMMPERCH 0x57
|
61 |
|
|
#define TOLM 0x6C
|
62 |
|
|
#define REDMEMB 0x7C
|
63 |
|
|
#define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF)
|
64 |
|
|
#define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
|
65 |
|
|
#define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00)
|
66 |
|
|
#define MIR0 0x80
|
67 |
|
|
#define MIR1 0x84
|
68 |
|
|
#define MIR2 0x88
|
69 |
|
|
#define AMIR0 0x8C
|
70 |
|
|
#define AMIR1 0x90
|
71 |
|
|
#define AMIR2 0x94
|
72 |
|
|
|
73 |
|
|
#define FERR_FAT_FBD 0x98
|
74 |
|
|
#define NERR_FAT_FBD 0x9C
|
75 |
|
|
#define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
|
76 |
|
|
#define FERR_FAT_FBDCHAN 0x30000000
|
77 |
|
|
#define FERR_FAT_M3ERR 0x00000004
|
78 |
|
|
#define FERR_FAT_M2ERR 0x00000002
|
79 |
|
|
#define FERR_FAT_M1ERR 0x00000001
|
80 |
|
|
#define FERR_FAT_MASK (FERR_FAT_M1ERR | \
|
81 |
|
|
FERR_FAT_M2ERR | \
|
82 |
|
|
FERR_FAT_M3ERR)
|
83 |
|
|
|
84 |
|
|
#define FERR_NF_FBD 0xA0
|
85 |
|
|
|
86 |
|
|
/* Thermal and SPD or BFD errors */
|
87 |
|
|
#define FERR_NF_M28ERR 0x01000000
|
88 |
|
|
#define FERR_NF_M27ERR 0x00800000
|
89 |
|
|
#define FERR_NF_M26ERR 0x00400000
|
90 |
|
|
#define FERR_NF_M25ERR 0x00200000
|
91 |
|
|
#define FERR_NF_M24ERR 0x00100000
|
92 |
|
|
#define FERR_NF_M23ERR 0x00080000
|
93 |
|
|
#define FERR_NF_M22ERR 0x00040000
|
94 |
|
|
#define FERR_NF_M21ERR 0x00020000
|
95 |
|
|
|
96 |
|
|
/* Correctable errors */
|
97 |
|
|
#define FERR_NF_M20ERR 0x00010000
|
98 |
|
|
#define FERR_NF_M19ERR 0x00008000
|
99 |
|
|
#define FERR_NF_M18ERR 0x00004000
|
100 |
|
|
#define FERR_NF_M17ERR 0x00002000
|
101 |
|
|
|
102 |
|
|
/* Non-Retry or redundant Retry errors */
|
103 |
|
|
#define FERR_NF_M16ERR 0x00001000
|
104 |
|
|
#define FERR_NF_M15ERR 0x00000800
|
105 |
|
|
#define FERR_NF_M14ERR 0x00000400
|
106 |
|
|
#define FERR_NF_M13ERR 0x00000200
|
107 |
|
|
|
108 |
|
|
/* Uncorrectable errors */
|
109 |
|
|
#define FERR_NF_M12ERR 0x00000100
|
110 |
|
|
#define FERR_NF_M11ERR 0x00000080
|
111 |
|
|
#define FERR_NF_M10ERR 0x00000040
|
112 |
|
|
#define FERR_NF_M9ERR 0x00000020
|
113 |
|
|
#define FERR_NF_M8ERR 0x00000010
|
114 |
|
|
#define FERR_NF_M7ERR 0x00000008
|
115 |
|
|
#define FERR_NF_M6ERR 0x00000004
|
116 |
|
|
#define FERR_NF_M5ERR 0x00000002
|
117 |
|
|
#define FERR_NF_M4ERR 0x00000001
|
118 |
|
|
|
119 |
|
|
#define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \
|
120 |
|
|
FERR_NF_M11ERR | \
|
121 |
|
|
FERR_NF_M10ERR | \
|
122 |
|
|
FERR_NF_M8ERR | \
|
123 |
|
|
FERR_NF_M7ERR | \
|
124 |
|
|
FERR_NF_M6ERR | \
|
125 |
|
|
FERR_NF_M5ERR | \
|
126 |
|
|
FERR_NF_M4ERR)
|
127 |
|
|
#define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \
|
128 |
|
|
FERR_NF_M19ERR | \
|
129 |
|
|
FERR_NF_M18ERR | \
|
130 |
|
|
FERR_NF_M17ERR)
|
131 |
|
|
#define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \
|
132 |
|
|
FERR_NF_M28ERR)
|
133 |
|
|
#define FERR_NF_THERMAL (FERR_NF_M26ERR | \
|
134 |
|
|
FERR_NF_M25ERR | \
|
135 |
|
|
FERR_NF_M24ERR | \
|
136 |
|
|
FERR_NF_M23ERR)
|
137 |
|
|
#define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR)
|
138 |
|
|
#define FERR_NF_NORTH_CRC (FERR_NF_M21ERR)
|
139 |
|
|
#define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \
|
140 |
|
|
FERR_NF_M14ERR | \
|
141 |
|
|
FERR_NF_M15ERR)
|
142 |
|
|
|
143 |
|
|
#define NERR_NF_FBD 0xA4
|
144 |
|
|
#define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \
|
145 |
|
|
FERR_NF_CORRECTABLE | \
|
146 |
|
|
FERR_NF_DIMM_SPARE | \
|
147 |
|
|
FERR_NF_THERMAL | \
|
148 |
|
|
FERR_NF_SPD_PROTOCOL | \
|
149 |
|
|
FERR_NF_NORTH_CRC | \
|
150 |
|
|
FERR_NF_NON_RETRY)
|
151 |
|
|
|
152 |
|
|
#define EMASK_FBD 0xA8
|
153 |
|
|
#define EMASK_FBD_M28ERR 0x08000000
|
154 |
|
|
#define EMASK_FBD_M27ERR 0x04000000
|
155 |
|
|
#define EMASK_FBD_M26ERR 0x02000000
|
156 |
|
|
#define EMASK_FBD_M25ERR 0x01000000
|
157 |
|
|
#define EMASK_FBD_M24ERR 0x00800000
|
158 |
|
|
#define EMASK_FBD_M23ERR 0x00400000
|
159 |
|
|
#define EMASK_FBD_M22ERR 0x00200000
|
160 |
|
|
#define EMASK_FBD_M21ERR 0x00100000
|
161 |
|
|
#define EMASK_FBD_M20ERR 0x00080000
|
162 |
|
|
#define EMASK_FBD_M19ERR 0x00040000
|
163 |
|
|
#define EMASK_FBD_M18ERR 0x00020000
|
164 |
|
|
#define EMASK_FBD_M17ERR 0x00010000
|
165 |
|
|
|
166 |
|
|
#define EMASK_FBD_M15ERR 0x00004000
|
167 |
|
|
#define EMASK_FBD_M14ERR 0x00002000
|
168 |
|
|
#define EMASK_FBD_M13ERR 0x00001000
|
169 |
|
|
#define EMASK_FBD_M12ERR 0x00000800
|
170 |
|
|
#define EMASK_FBD_M11ERR 0x00000400
|
171 |
|
|
#define EMASK_FBD_M10ERR 0x00000200
|
172 |
|
|
#define EMASK_FBD_M9ERR 0x00000100
|
173 |
|
|
#define EMASK_FBD_M8ERR 0x00000080
|
174 |
|
|
#define EMASK_FBD_M7ERR 0x00000040
|
175 |
|
|
#define EMASK_FBD_M6ERR 0x00000020
|
176 |
|
|
#define EMASK_FBD_M5ERR 0x00000010
|
177 |
|
|
#define EMASK_FBD_M4ERR 0x00000008
|
178 |
|
|
#define EMASK_FBD_M3ERR 0x00000004
|
179 |
|
|
#define EMASK_FBD_M2ERR 0x00000002
|
180 |
|
|
#define EMASK_FBD_M1ERR 0x00000001
|
181 |
|
|
|
182 |
|
|
#define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \
|
183 |
|
|
EMASK_FBD_M2ERR | \
|
184 |
|
|
EMASK_FBD_M3ERR)
|
185 |
|
|
|
186 |
|
|
#define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \
|
187 |
|
|
EMASK_FBD_M5ERR | \
|
188 |
|
|
EMASK_FBD_M6ERR | \
|
189 |
|
|
EMASK_FBD_M7ERR | \
|
190 |
|
|
EMASK_FBD_M8ERR | \
|
191 |
|
|
EMASK_FBD_M9ERR | \
|
192 |
|
|
EMASK_FBD_M10ERR | \
|
193 |
|
|
EMASK_FBD_M11ERR | \
|
194 |
|
|
EMASK_FBD_M12ERR)
|
195 |
|
|
#define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \
|
196 |
|
|
EMASK_FBD_M18ERR | \
|
197 |
|
|
EMASK_FBD_M19ERR | \
|
198 |
|
|
EMASK_FBD_M20ERR)
|
199 |
|
|
#define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \
|
200 |
|
|
EMASK_FBD_M28ERR)
|
201 |
|
|
#define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \
|
202 |
|
|
EMASK_FBD_M25ERR | \
|
203 |
|
|
EMASK_FBD_M24ERR | \
|
204 |
|
|
EMASK_FBD_M23ERR)
|
205 |
|
|
#define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR)
|
206 |
|
|
#define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR)
|
207 |
|
|
#define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \
|
208 |
|
|
EMASK_FBD_M14ERR | \
|
209 |
|
|
EMASK_FBD_M13ERR)
|
210 |
|
|
|
211 |
|
|
#define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \
|
212 |
|
|
ENABLE_EMASK_FBD_NORTH_CRC | \
|
213 |
|
|
ENABLE_EMASK_FBD_SPD_PROTOCOL | \
|
214 |
|
|
ENABLE_EMASK_FBD_THERMALS | \
|
215 |
|
|
ENABLE_EMASK_FBD_DIMM_SPARE | \
|
216 |
|
|
ENABLE_EMASK_FBD_FATAL_ERRORS | \
|
217 |
|
|
ENABLE_EMASK_FBD_CORRECTABLE | \
|
218 |
|
|
ENABLE_EMASK_FBD_UNCORRECTABLE)
|
219 |
|
|
|
220 |
|
|
#define ERR0_FBD 0xAC
|
221 |
|
|
#define ERR1_FBD 0xB0
|
222 |
|
|
#define ERR2_FBD 0xB4
|
223 |
|
|
#define MCERR_FBD 0xB8
|
224 |
|
|
#define NRECMEMA 0xBE
|
225 |
|
|
#define NREC_BANK(x) (((x)>>12) & 0x7)
|
226 |
|
|
#define NREC_RDWR(x) (((x)>>11) & 1)
|
227 |
|
|
#define NREC_RANK(x) (((x)>>8) & 0x7)
|
228 |
|
|
#define NRECMEMB 0xC0
|
229 |
|
|
#define NREC_CAS(x) (((x)>>16) & 0xFFFFFF)
|
230 |
|
|
#define NREC_RAS(x) ((x) & 0x7FFF)
|
231 |
|
|
#define NRECFGLOG 0xC4
|
232 |
|
|
#define NREEECFBDA 0xC8
|
233 |
|
|
#define NREEECFBDB 0xCC
|
234 |
|
|
#define NREEECFBDC 0xD0
|
235 |
|
|
#define NREEECFBDD 0xD4
|
236 |
|
|
#define NREEECFBDE 0xD8
|
237 |
|
|
#define REDMEMA 0xDC
|
238 |
|
|
#define RECMEMA 0xE2
|
239 |
|
|
#define REC_BANK(x) (((x)>>12) & 0x7)
|
240 |
|
|
#define REC_RDWR(x) (((x)>>11) & 1)
|
241 |
|
|
#define REC_RANK(x) (((x)>>8) & 0x7)
|
242 |
|
|
#define RECMEMB 0xE4
|
243 |
|
|
#define REC_CAS(x) (((x)>>16) & 0xFFFFFF)
|
244 |
|
|
#define REC_RAS(x) ((x) & 0x7FFF)
|
245 |
|
|
#define RECFGLOG 0xE8
|
246 |
|
|
#define RECFBDA 0xEC
|
247 |
|
|
#define RECFBDB 0xF0
|
248 |
|
|
#define RECFBDC 0xF4
|
249 |
|
|
#define RECFBDD 0xF8
|
250 |
|
|
#define RECFBDE 0xFC
|
251 |
|
|
|
252 |
|
|
/* OFFSETS for Function 2 */
|
253 |
|
|
|
254 |
|
|
/*
|
255 |
|
|
* Device 21,
|
256 |
|
|
* Function 0: Memory Map Branch 0
|
257 |
|
|
*
|
258 |
|
|
* Device 22,
|
259 |
|
|
* Function 0: Memory Map Branch 1
|
260 |
|
|
*/
|
261 |
|
|
#define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5
|
262 |
|
|
#define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6
|
263 |
|
|
|
264 |
|
|
#define AMB_PRESENT_0 0x64
|
265 |
|
|
#define AMB_PRESENT_1 0x66
|
266 |
|
|
#define MTR0 0x80
|
267 |
|
|
#define MTR1 0x84
|
268 |
|
|
#define MTR2 0x88
|
269 |
|
|
#define MTR3 0x8C
|
270 |
|
|
|
271 |
|
|
#define NUM_MTRS 4
|
272 |
|
|
#define CHANNELS_PER_BRANCH (2)
|
273 |
|
|
|
274 |
|
|
/* Defines to extract the vaious fields from the
|
275 |
|
|
* MTRx - Memory Technology Registers
|
276 |
|
|
*/
|
277 |
|
|
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8))
|
278 |
|
|
#define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4)
|
279 |
|
|
#define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4)
|
280 |
|
|
#define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
|
281 |
|
|
#define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1)
|
282 |
|
|
#define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
|
283 |
|
|
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
|
284 |
|
|
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
|
285 |
|
|
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
|
286 |
|
|
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
|
287 |
|
|
|
288 |
|
|
#ifdef CONFIG_EDAC_DEBUG
|
289 |
|
|
static char *numrow_toString[] = {
|
290 |
|
|
"8,192 - 13 rows",
|
291 |
|
|
"16,384 - 14 rows",
|
292 |
|
|
"32,768 - 15 rows",
|
293 |
|
|
"reserved"
|
294 |
|
|
};
|
295 |
|
|
|
296 |
|
|
static char *numcol_toString[] = {
|
297 |
|
|
"1,024 - 10 columns",
|
298 |
|
|
"2,048 - 11 columns",
|
299 |
|
|
"4,096 - 12 columns",
|
300 |
|
|
"reserved"
|
301 |
|
|
};
|
302 |
|
|
#endif
|
303 |
|
|
|
304 |
|
|
/* Enumeration of supported devices */
|
305 |
|
|
enum i5000_chips {
|
306 |
|
|
I5000P = 0,
|
307 |
|
|
I5000V = 1, /* future */
|
308 |
|
|
I5000X = 2 /* future */
|
309 |
|
|
};
|
310 |
|
|
|
311 |
|
|
/* Device name and register DID (Device ID) */
|
312 |
|
|
struct i5000_dev_info {
|
313 |
|
|
const char *ctl_name; /* name for this device */
|
314 |
|
|
u16 fsb_mapping_errors; /* DID for the branchmap,control */
|
315 |
|
|
};
|
316 |
|
|
|
317 |
|
|
/* Table of devices attributes supported by this driver */
|
318 |
|
|
static const struct i5000_dev_info i5000_devs[] = {
|
319 |
|
|
[I5000P] = {
|
320 |
|
|
.ctl_name = "I5000",
|
321 |
|
|
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
|
322 |
|
|
},
|
323 |
|
|
};
|
324 |
|
|
|
325 |
|
|
struct i5000_dimm_info {
|
326 |
|
|
int megabytes; /* size, 0 means not present */
|
327 |
|
|
int dual_rank;
|
328 |
|
|
};
|
329 |
|
|
|
330 |
|
|
#define MAX_CHANNELS 6 /* max possible channels */
|
331 |
|
|
#define MAX_CSROWS (8*2) /* max possible csrows per channel */
|
332 |
|
|
|
333 |
|
|
/* driver private data structure */
|
334 |
|
|
struct i5000_pvt {
|
335 |
|
|
struct pci_dev *system_address; /* 16.0 */
|
336 |
|
|
struct pci_dev *branchmap_werrors; /* 16.1 */
|
337 |
|
|
struct pci_dev *fsb_error_regs; /* 16.2 */
|
338 |
|
|
struct pci_dev *branch_0; /* 21.0 */
|
339 |
|
|
struct pci_dev *branch_1; /* 22.0 */
|
340 |
|
|
|
341 |
|
|
u16 tolm; /* top of low memory */
|
342 |
|
|
u64 ambase; /* AMB BAR */
|
343 |
|
|
|
344 |
|
|
u16 mir0, mir1, mir2;
|
345 |
|
|
|
346 |
|
|
u16 b0_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
|
347 |
|
|
u16 b0_ambpresent0; /* Branch 0, Channel 0 */
|
348 |
|
|
u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
|
349 |
|
|
|
350 |
|
|
u16 b1_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
|
351 |
|
|
u16 b1_ambpresent0; /* Branch 1, Channel 8 */
|
352 |
|
|
u16 b1_ambpresent1; /* Branch 1, Channel 1 */
|
353 |
|
|
|
354 |
|
|
/* DIMM infomation matrix, allocating architecture maximums */
|
355 |
|
|
struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
|
356 |
|
|
|
357 |
|
|
/* Actual values for this controller */
|
358 |
|
|
int maxch; /* Max channels */
|
359 |
|
|
int maxdimmperch; /* Max DIMMs per channel */
|
360 |
|
|
};
|
361 |
|
|
|
362 |
|
|
/* I5000 MCH error information retrieved from Hardware */
|
363 |
|
|
struct i5000_error_info {
|
364 |
|
|
|
365 |
|
|
/* These registers are always read from the MC */
|
366 |
|
|
u32 ferr_fat_fbd; /* First Errors Fatal */
|
367 |
|
|
u32 nerr_fat_fbd; /* Next Errors Fatal */
|
368 |
|
|
u32 ferr_nf_fbd; /* First Errors Non-Fatal */
|
369 |
|
|
u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
|
370 |
|
|
|
371 |
|
|
/* These registers are input ONLY if there was a Recoverable Error */
|
372 |
|
|
u32 redmemb; /* Recoverable Mem Data Error log B */
|
373 |
|
|
u16 recmema; /* Recoverable Mem Error log A */
|
374 |
|
|
u32 recmemb; /* Recoverable Mem Error log B */
|
375 |
|
|
|
376 |
|
|
/* These registers are input ONLY if there was a
|
377 |
|
|
* Non-Recoverable Error */
|
378 |
|
|
u16 nrecmema; /* Non-Recoverable Mem log A */
|
379 |
|
|
u16 nrecmemb; /* Non-Recoverable Mem log B */
|
380 |
|
|
|
381 |
|
|
};
|
382 |
|
|
|
383 |
|
|
static struct edac_pci_ctl_info *i5000_pci;
|
384 |
|
|
|
385 |
|
|
/*
|
386 |
|
|
* i5000_get_error_info Retrieve the hardware error information from
|
387 |
|
|
* the hardware and cache it in the 'info'
|
388 |
|
|
* structure
|
389 |
|
|
*/
|
390 |
|
|
static void i5000_get_error_info(struct mem_ctl_info *mci,
|
391 |
|
|
struct i5000_error_info *info)
|
392 |
|
|
{
|
393 |
|
|
struct i5000_pvt *pvt;
|
394 |
|
|
u32 value;
|
395 |
|
|
|
396 |
|
|
pvt = mci->pvt_info;
|
397 |
|
|
|
398 |
|
|
/* read in the 1st FATAL error register */
|
399 |
|
|
pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
|
400 |
|
|
|
401 |
|
|
/* Mask only the bits that the doc says are valid
|
402 |
|
|
*/
|
403 |
|
|
value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
|
404 |
|
|
|
405 |
|
|
/* If there is an error, then read in the */
|
406 |
|
|
/* NEXT FATAL error register and the Memory Error Log Register A */
|
407 |
|
|
if (value & FERR_FAT_MASK) {
|
408 |
|
|
info->ferr_fat_fbd = value;
|
409 |
|
|
|
410 |
|
|
/* harvest the various error data we need */
|
411 |
|
|
pci_read_config_dword(pvt->branchmap_werrors,
|
412 |
|
|
NERR_FAT_FBD, &info->nerr_fat_fbd);
|
413 |
|
|
pci_read_config_word(pvt->branchmap_werrors,
|
414 |
|
|
NRECMEMA, &info->nrecmema);
|
415 |
|
|
pci_read_config_word(pvt->branchmap_werrors,
|
416 |
|
|
NRECMEMB, &info->nrecmemb);
|
417 |
|
|
|
418 |
|
|
/* Clear the error bits, by writing them back */
|
419 |
|
|
pci_write_config_dword(pvt->branchmap_werrors,
|
420 |
|
|
FERR_FAT_FBD, value);
|
421 |
|
|
} else {
|
422 |
|
|
info->ferr_fat_fbd = 0;
|
423 |
|
|
info->nerr_fat_fbd = 0;
|
424 |
|
|
info->nrecmema = 0;
|
425 |
|
|
info->nrecmemb = 0;
|
426 |
|
|
}
|
427 |
|
|
|
428 |
|
|
/* read in the 1st NON-FATAL error register */
|
429 |
|
|
pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
|
430 |
|
|
|
431 |
|
|
/* If there is an error, then read in the 1st NON-FATAL error
|
432 |
|
|
* register as well */
|
433 |
|
|
if (value & FERR_NF_MASK) {
|
434 |
|
|
info->ferr_nf_fbd = value;
|
435 |
|
|
|
436 |
|
|
/* harvest the various error data we need */
|
437 |
|
|
pci_read_config_dword(pvt->branchmap_werrors,
|
438 |
|
|
NERR_NF_FBD, &info->nerr_nf_fbd);
|
439 |
|
|
pci_read_config_word(pvt->branchmap_werrors,
|
440 |
|
|
RECMEMA, &info->recmema);
|
441 |
|
|
pci_read_config_dword(pvt->branchmap_werrors,
|
442 |
|
|
RECMEMB, &info->recmemb);
|
443 |
|
|
pci_read_config_dword(pvt->branchmap_werrors,
|
444 |
|
|
REDMEMB, &info->redmemb);
|
445 |
|
|
|
446 |
|
|
/* Clear the error bits, by writing them back */
|
447 |
|
|
pci_write_config_dword(pvt->branchmap_werrors,
|
448 |
|
|
FERR_NF_FBD, value);
|
449 |
|
|
} else {
|
450 |
|
|
info->ferr_nf_fbd = 0;
|
451 |
|
|
info->nerr_nf_fbd = 0;
|
452 |
|
|
info->recmema = 0;
|
453 |
|
|
info->recmemb = 0;
|
454 |
|
|
info->redmemb = 0;
|
455 |
|
|
}
|
456 |
|
|
}
|
457 |
|
|
|
458 |
|
|
/*
|
459 |
|
|
* i5000_process_fatal_error_info(struct mem_ctl_info *mci,
|
460 |
|
|
* struct i5000_error_info *info,
|
461 |
|
|
* int handle_errors);
|
462 |
|
|
*
|
463 |
|
|
* handle the Intel FATAL errors, if any
|
464 |
|
|
*/
|
465 |
|
|
static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
|
466 |
|
|
struct i5000_error_info *info,
|
467 |
|
|
int handle_errors)
|
468 |
|
|
{
|
469 |
|
|
char msg[EDAC_MC_LABEL_LEN + 1 + 90];
|
470 |
|
|
u32 allErrors;
|
471 |
|
|
int branch;
|
472 |
|
|
int channel;
|
473 |
|
|
int bank;
|
474 |
|
|
int rank;
|
475 |
|
|
int rdwr;
|
476 |
|
|
int ras, cas;
|
477 |
|
|
|
478 |
|
|
/* mask off the Error bits that are possible */
|
479 |
|
|
allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
|
480 |
|
|
if (!allErrors)
|
481 |
|
|
return; /* if no error, return now */
|
482 |
|
|
|
483 |
|
|
/* ONLY ONE of the possible error bits will be set, as per the docs */
|
484 |
|
|
i5000_mc_printk(mci, KERN_ERR,
|
485 |
|
|
"FATAL ERRORS Found!!! 1st FATAL Err Reg= 0x%x\n",
|
486 |
|
|
allErrors);
|
487 |
|
|
|
488 |
|
|
branch = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
|
489 |
|
|
channel = branch;
|
490 |
|
|
|
491 |
|
|
/* Use the NON-Recoverable macros to extract data */
|
492 |
|
|
bank = NREC_BANK(info->nrecmema);
|
493 |
|
|
rank = NREC_RANK(info->nrecmema);
|
494 |
|
|
rdwr = NREC_RDWR(info->nrecmema);
|
495 |
|
|
ras = NREC_RAS(info->nrecmemb);
|
496 |
|
|
cas = NREC_CAS(info->nrecmemb);
|
497 |
|
|
|
498 |
|
|
debugf0("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
|
499 |
|
|
"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
|
500 |
|
|
rank, channel, channel + 1, branch >> 1, bank,
|
501 |
|
|
rdwr ? "Write" : "Read", ras, cas);
|
502 |
|
|
|
503 |
|
|
/* Only 1 bit will be on */
|
504 |
|
|
if (allErrors & FERR_FAT_M1ERR) {
|
505 |
|
|
i5000_mc_printk(mci, KERN_ERR,
|
506 |
|
|
"Alert on non-redundant retry or fast "
|
507 |
|
|
"reset timeout\n");
|
508 |
|
|
|
509 |
|
|
} else if (allErrors & FERR_FAT_M2ERR) {
|
510 |
|
|
i5000_mc_printk(mci, KERN_ERR,
|
511 |
|
|
"Northbound CRC error on non-redundant "
|
512 |
|
|
"retry\n");
|
513 |
|
|
|
514 |
|
|
} else if (allErrors & FERR_FAT_M3ERR) {
|
515 |
|
|
i5000_mc_printk(mci, KERN_ERR,
|
516 |
|
|
">Tmid Thermal event with intelligent "
|
517 |
|
|
"throttling disabled\n");
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
/* Form out message */
|
521 |
|
|
snprintf(msg, sizeof(msg),
|
522 |
|
|
"(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d CAS=%d "
|
523 |
|
|
"FATAL Err=0x%x)",
|
524 |
|
|
branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
|
525 |
|
|
allErrors);
|
526 |
|
|
|
527 |
|
|
/* Call the helper to output message */
|
528 |
|
|
edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
|
529 |
|
|
}
|
530 |
|
|
|
531 |
|
|
/*
|
532 |
|
|
* i5000_process_fatal_error_info(struct mem_ctl_info *mci,
|
533 |
|
|
* struct i5000_error_info *info,
|
534 |
|
|
* int handle_errors);
|
535 |
|
|
*
|
536 |
|
|
* handle the Intel NON-FATAL errors, if any
|
537 |
|
|
*/
|
538 |
|
|
static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
|
539 |
|
|
struct i5000_error_info *info,
|
540 |
|
|
int handle_errors)
|
541 |
|
|
{
|
542 |
|
|
char msg[EDAC_MC_LABEL_LEN + 1 + 90];
|
543 |
|
|
u32 allErrors;
|
544 |
|
|
u32 ue_errors;
|
545 |
|
|
u32 ce_errors;
|
546 |
|
|
u32 misc_errors;
|
547 |
|
|
int branch;
|
548 |
|
|
int channel;
|
549 |
|
|
int bank;
|
550 |
|
|
int rank;
|
551 |
|
|
int rdwr;
|
552 |
|
|
int ras, cas;
|
553 |
|
|
|
554 |
|
|
/* mask off the Error bits that are possible */
|
555 |
|
|
allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
|
556 |
|
|
if (!allErrors)
|
557 |
|
|
return; /* if no error, return now */
|
558 |
|
|
|
559 |
|
|
/* ONLY ONE of the possible error bits will be set, as per the docs */
|
560 |
|
|
i5000_mc_printk(mci, KERN_WARNING,
|
561 |
|
|
"NON-FATAL ERRORS Found!!! 1st NON-FATAL Err "
|
562 |
|
|
"Reg= 0x%x\n", allErrors);
|
563 |
|
|
|
564 |
|
|
ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
|
565 |
|
|
if (ue_errors) {
|
566 |
|
|
debugf0("\tUncorrected bits= 0x%x\n", ue_errors);
|
567 |
|
|
|
568 |
|
|
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
|
569 |
|
|
channel = branch;
|
570 |
|
|
bank = NREC_BANK(info->nrecmema);
|
571 |
|
|
rank = NREC_RANK(info->nrecmema);
|
572 |
|
|
rdwr = NREC_RDWR(info->nrecmema);
|
573 |
|
|
ras = NREC_RAS(info->nrecmemb);
|
574 |
|
|
cas = NREC_CAS(info->nrecmemb);
|
575 |
|
|
|
576 |
|
|
debugf0
|
577 |
|
|
("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
|
578 |
|
|
"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
|
579 |
|
|
rank, channel, channel + 1, branch >> 1, bank,
|
580 |
|
|
rdwr ? "Write" : "Read", ras, cas);
|
581 |
|
|
|
582 |
|
|
/* Form out message */
|
583 |
|
|
snprintf(msg, sizeof(msg),
|
584 |
|
|
"(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
|
585 |
|
|
"CAS=%d, UE Err=0x%x)",
|
586 |
|
|
branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
|
587 |
|
|
ue_errors);
|
588 |
|
|
|
589 |
|
|
/* Call the helper to output message */
|
590 |
|
|
edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
/* Check correctable errors */
|
594 |
|
|
ce_errors = allErrors & FERR_NF_CORRECTABLE;
|
595 |
|
|
if (ce_errors) {
|
596 |
|
|
debugf0("\tCorrected bits= 0x%x\n", ce_errors);
|
597 |
|
|
|
598 |
|
|
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
|
599 |
|
|
|
600 |
|
|
channel = 0;
|
601 |
|
|
if (REC_ECC_LOCATOR_ODD(info->redmemb))
|
602 |
|
|
channel = 1;
|
603 |
|
|
|
604 |
|
|
/* Convert channel to be based from zero, instead of
|
605 |
|
|
* from branch base of 0 */
|
606 |
|
|
channel += branch;
|
607 |
|
|
|
608 |
|
|
bank = REC_BANK(info->recmema);
|
609 |
|
|
rank = REC_RANK(info->recmema);
|
610 |
|
|
rdwr = REC_RDWR(info->recmema);
|
611 |
|
|
ras = REC_RAS(info->recmemb);
|
612 |
|
|
cas = REC_CAS(info->recmemb);
|
613 |
|
|
|
614 |
|
|
debugf0("\t\tCSROW= %d Channel= %d (Branch %d "
|
615 |
|
|
"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
|
616 |
|
|
rank, channel, branch >> 1, bank,
|
617 |
|
|
rdwr ? "Write" : "Read", ras, cas);
|
618 |
|
|
|
619 |
|
|
/* Form out message */
|
620 |
|
|
snprintf(msg, sizeof(msg),
|
621 |
|
|
"(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
|
622 |
|
|
"CAS=%d, CE Err=0x%x)", branch >> 1, bank,
|
623 |
|
|
rdwr ? "Write" : "Read", ras, cas, ce_errors);
|
624 |
|
|
|
625 |
|
|
/* Call the helper to output message */
|
626 |
|
|
edac_mc_handle_fbd_ce(mci, rank, channel, msg);
|
627 |
|
|
}
|
628 |
|
|
|
629 |
|
|
/* See if any of the thermal errors have fired */
|
630 |
|
|
misc_errors = allErrors & FERR_NF_THERMAL;
|
631 |
|
|
if (misc_errors) {
|
632 |
|
|
i5000_printk(KERN_WARNING, "\tTHERMAL Error, bits= 0x%x\n",
|
633 |
|
|
misc_errors);
|
634 |
|
|
}
|
635 |
|
|
|
636 |
|
|
/* See if any of the thermal errors have fired */
|
637 |
|
|
misc_errors = allErrors & FERR_NF_NON_RETRY;
|
638 |
|
|
if (misc_errors) {
|
639 |
|
|
i5000_printk(KERN_WARNING, "\tNON-Retry Errors, bits= 0x%x\n",
|
640 |
|
|
misc_errors);
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
/* See if any of the thermal errors have fired */
|
644 |
|
|
misc_errors = allErrors & FERR_NF_NORTH_CRC;
|
645 |
|
|
if (misc_errors) {
|
646 |
|
|
i5000_printk(KERN_WARNING,
|
647 |
|
|
"\tNORTHBOUND CRC Error, bits= 0x%x\n",
|
648 |
|
|
misc_errors);
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
/* See if any of the thermal errors have fired */
|
652 |
|
|
misc_errors = allErrors & FERR_NF_SPD_PROTOCOL;
|
653 |
|
|
if (misc_errors) {
|
654 |
|
|
i5000_printk(KERN_WARNING,
|
655 |
|
|
"\tSPD Protocol Error, bits= 0x%x\n",
|
656 |
|
|
misc_errors);
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
/* See if any of the thermal errors have fired */
|
660 |
|
|
misc_errors = allErrors & FERR_NF_DIMM_SPARE;
|
661 |
|
|
if (misc_errors) {
|
662 |
|
|
i5000_printk(KERN_WARNING, "\tDIMM-Spare Error, bits= 0x%x\n",
|
663 |
|
|
misc_errors);
|
664 |
|
|
}
|
665 |
|
|
}
|
666 |
|
|
|
667 |
|
|
/*
|
668 |
|
|
* i5000_process_error_info Process the error info that is
|
669 |
|
|
* in the 'info' structure, previously retrieved from hardware
|
670 |
|
|
*/
|
671 |
|
|
static void i5000_process_error_info(struct mem_ctl_info *mci,
|
672 |
|
|
struct i5000_error_info *info,
|
673 |
|
|
int handle_errors)
|
674 |
|
|
{
|
675 |
|
|
/* First handle any fatal errors that occurred */
|
676 |
|
|
i5000_process_fatal_error_info(mci, info, handle_errors);
|
677 |
|
|
|
678 |
|
|
/* now handle any non-fatal errors that occurred */
|
679 |
|
|
i5000_process_nonfatal_error_info(mci, info, handle_errors);
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
/*
|
683 |
|
|
* i5000_clear_error Retrieve any error from the hardware
|
684 |
|
|
* but do NOT process that error.
|
685 |
|
|
* Used for 'clearing' out of previous errors
|
686 |
|
|
* Called by the Core module.
|
687 |
|
|
*/
|
688 |
|
|
static void i5000_clear_error(struct mem_ctl_info *mci)
|
689 |
|
|
{
|
690 |
|
|
struct i5000_error_info info;
|
691 |
|
|
|
692 |
|
|
i5000_get_error_info(mci, &info);
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
/*
|
696 |
|
|
* i5000_check_error Retrieve and process errors reported by the
|
697 |
|
|
* hardware. Called by the Core module.
|
698 |
|
|
*/
|
699 |
|
|
static void i5000_check_error(struct mem_ctl_info *mci)
|
700 |
|
|
{
|
701 |
|
|
struct i5000_error_info info;
|
702 |
|
|
debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__);
|
703 |
|
|
i5000_get_error_info(mci, &info);
|
704 |
|
|
i5000_process_error_info(mci, &info, 1);
|
705 |
|
|
}
|
706 |
|
|
|
707 |
|
|
/*
|
708 |
|
|
* i5000_get_devices Find and perform 'get' operation on the MCH's
|
709 |
|
|
* device/functions we want to reference for this driver
|
710 |
|
|
*
|
711 |
|
|
* Need to 'get' device 16 func 1 and func 2
|
712 |
|
|
*/
|
713 |
|
|
static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
|
714 |
|
|
{
|
715 |
|
|
//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
|
716 |
|
|
struct i5000_pvt *pvt;
|
717 |
|
|
struct pci_dev *pdev;
|
718 |
|
|
|
719 |
|
|
pvt = mci->pvt_info;
|
720 |
|
|
|
721 |
|
|
/* Attempt to 'get' the MCH register we want */
|
722 |
|
|
pdev = NULL;
|
723 |
|
|
while (1) {
|
724 |
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
725 |
|
|
PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
|
726 |
|
|
|
727 |
|
|
/* End of list, leave */
|
728 |
|
|
if (pdev == NULL) {
|
729 |
|
|
i5000_printk(KERN_ERR,
|
730 |
|
|
"'system address,Process Bus' "
|
731 |
|
|
"device not found:"
|
732 |
|
|
"vendor 0x%x device 0x%x FUNC 1 "
|
733 |
|
|
"(broken BIOS?)\n",
|
734 |
|
|
PCI_VENDOR_ID_INTEL,
|
735 |
|
|
PCI_DEVICE_ID_INTEL_I5000_DEV16);
|
736 |
|
|
|
737 |
|
|
return 1;
|
738 |
|
|
}
|
739 |
|
|
|
740 |
|
|
/* Scan for device 16 func 1 */
|
741 |
|
|
if (PCI_FUNC(pdev->devfn) == 1)
|
742 |
|
|
break;
|
743 |
|
|
}
|
744 |
|
|
|
745 |
|
|
pvt->branchmap_werrors = pdev;
|
746 |
|
|
|
747 |
|
|
/* Attempt to 'get' the MCH register we want */
|
748 |
|
|
pdev = NULL;
|
749 |
|
|
while (1) {
|
750 |
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
751 |
|
|
PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
|
752 |
|
|
|
753 |
|
|
if (pdev == NULL) {
|
754 |
|
|
i5000_printk(KERN_ERR,
|
755 |
|
|
"MC: 'branchmap,control,errors' "
|
756 |
|
|
"device not found:"
|
757 |
|
|
"vendor 0x%x device 0x%x Func 2 "
|
758 |
|
|
"(broken BIOS?)\n",
|
759 |
|
|
PCI_VENDOR_ID_INTEL,
|
760 |
|
|
PCI_DEVICE_ID_INTEL_I5000_DEV16);
|
761 |
|
|
|
762 |
|
|
pci_dev_put(pvt->branchmap_werrors);
|
763 |
|
|
return 1;
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
/* Scan for device 16 func 1 */
|
767 |
|
|
if (PCI_FUNC(pdev->devfn) == 2)
|
768 |
|
|
break;
|
769 |
|
|
}
|
770 |
|
|
|
771 |
|
|
pvt->fsb_error_regs = pdev;
|
772 |
|
|
|
773 |
|
|
debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
|
774 |
|
|
pci_name(pvt->system_address),
|
775 |
|
|
pvt->system_address->vendor, pvt->system_address->device);
|
776 |
|
|
debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
|
777 |
|
|
pci_name(pvt->branchmap_werrors),
|
778 |
|
|
pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
|
779 |
|
|
debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
|
780 |
|
|
pci_name(pvt->fsb_error_regs),
|
781 |
|
|
pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
|
782 |
|
|
|
783 |
|
|
pdev = NULL;
|
784 |
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
785 |
|
|
PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
|
786 |
|
|
|
787 |
|
|
if (pdev == NULL) {
|
788 |
|
|
i5000_printk(KERN_ERR,
|
789 |
|
|
"MC: 'BRANCH 0' device not found:"
|
790 |
|
|
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
|
791 |
|
|
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
|
792 |
|
|
|
793 |
|
|
pci_dev_put(pvt->branchmap_werrors);
|
794 |
|
|
pci_dev_put(pvt->fsb_error_regs);
|
795 |
|
|
return 1;
|
796 |
|
|
}
|
797 |
|
|
|
798 |
|
|
pvt->branch_0 = pdev;
|
799 |
|
|
|
800 |
|
|
/* If this device claims to have more than 2 channels then
|
801 |
|
|
* fetch Branch 1's information
|
802 |
|
|
*/
|
803 |
|
|
if (pvt->maxch >= CHANNELS_PER_BRANCH) {
|
804 |
|
|
pdev = NULL;
|
805 |
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
806 |
|
|
PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
|
807 |
|
|
|
808 |
|
|
if (pdev == NULL) {
|
809 |
|
|
i5000_printk(KERN_ERR,
|
810 |
|
|
"MC: 'BRANCH 1' device not found:"
|
811 |
|
|
"vendor 0x%x device 0x%x Func 0 "
|
812 |
|
|
"(broken BIOS?)\n",
|
813 |
|
|
PCI_VENDOR_ID_INTEL,
|
814 |
|
|
PCI_DEVICE_ID_I5000_BRANCH_1);
|
815 |
|
|
|
816 |
|
|
pci_dev_put(pvt->branchmap_werrors);
|
817 |
|
|
pci_dev_put(pvt->fsb_error_regs);
|
818 |
|
|
pci_dev_put(pvt->branch_0);
|
819 |
|
|
return 1;
|
820 |
|
|
}
|
821 |
|
|
|
822 |
|
|
pvt->branch_1 = pdev;
|
823 |
|
|
}
|
824 |
|
|
|
825 |
|
|
return 0;
|
826 |
|
|
}
|
827 |
|
|
|
828 |
|
|
/*
|
829 |
|
|
* i5000_put_devices 'put' all the devices that we have
|
830 |
|
|
* reserved via 'get'
|
831 |
|
|
*/
|
832 |
|
|
static void i5000_put_devices(struct mem_ctl_info *mci)
|
833 |
|
|
{
|
834 |
|
|
struct i5000_pvt *pvt;
|
835 |
|
|
|
836 |
|
|
pvt = mci->pvt_info;
|
837 |
|
|
|
838 |
|
|
pci_dev_put(pvt->branchmap_werrors); /* FUNC 1 */
|
839 |
|
|
pci_dev_put(pvt->fsb_error_regs); /* FUNC 2 */
|
840 |
|
|
pci_dev_put(pvt->branch_0); /* DEV 21 */
|
841 |
|
|
|
842 |
|
|
/* Only if more than 2 channels do we release the second branch */
|
843 |
|
|
if (pvt->maxch >= CHANNELS_PER_BRANCH)
|
844 |
|
|
pci_dev_put(pvt->branch_1); /* DEV 22 */
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
/*
|
848 |
|
|
* determine_amb_resent
|
849 |
|
|
*
|
850 |
|
|
* the information is contained in NUM_MTRS different registers
|
851 |
|
|
* determineing which of the NUM_MTRS requires knowing
|
852 |
|
|
* which channel is in question
|
853 |
|
|
*
|
854 |
|
|
* 2 branches, each with 2 channels
|
855 |
|
|
* b0_ambpresent0 for channel '0'
|
856 |
|
|
* b0_ambpresent1 for channel '1'
|
857 |
|
|
* b1_ambpresent0 for channel '2'
|
858 |
|
|
* b1_ambpresent1 for channel '3'
|
859 |
|
|
*/
|
860 |
|
|
static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
|
861 |
|
|
{
|
862 |
|
|
int amb_present;
|
863 |
|
|
|
864 |
|
|
if (channel < CHANNELS_PER_BRANCH) {
|
865 |
|
|
if (channel & 0x1)
|
866 |
|
|
amb_present = pvt->b0_ambpresent1;
|
867 |
|
|
else
|
868 |
|
|
amb_present = pvt->b0_ambpresent0;
|
869 |
|
|
} else {
|
870 |
|
|
if (channel & 0x1)
|
871 |
|
|
amb_present = pvt->b1_ambpresent1;
|
872 |
|
|
else
|
873 |
|
|
amb_present = pvt->b1_ambpresent0;
|
874 |
|
|
}
|
875 |
|
|
|
876 |
|
|
return amb_present;
|
877 |
|
|
}
|
878 |
|
|
|
879 |
|
|
/*
|
880 |
|
|
* determine_mtr(pvt, csrow, channel)
|
881 |
|
|
*
|
882 |
|
|
* return the proper MTR register as determine by the csrow and channel desired
|
883 |
|
|
*/
|
884 |
|
|
static int determine_mtr(struct i5000_pvt *pvt, int csrow, int channel)
|
885 |
|
|
{
|
886 |
|
|
int mtr;
|
887 |
|
|
|
888 |
|
|
if (channel < CHANNELS_PER_BRANCH)
|
889 |
|
|
mtr = pvt->b0_mtr[csrow >> 1];
|
890 |
|
|
else
|
891 |
|
|
mtr = pvt->b1_mtr[csrow >> 1];
|
892 |
|
|
|
893 |
|
|
return mtr;
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
/*
|
897 |
|
|
*/
|
898 |
|
|
static void decode_mtr(int slot_row, u16 mtr)
|
899 |
|
|
{
|
900 |
|
|
int ans;
|
901 |
|
|
|
902 |
|
|
ans = MTR_DIMMS_PRESENT(mtr);
|
903 |
|
|
|
904 |
|
|
debugf2("\tMTR%d=0x%x: DIMMs are %s\n", slot_row, mtr,
|
905 |
|
|
ans ? "Present" : "NOT Present");
|
906 |
|
|
if (!ans)
|
907 |
|
|
return;
|
908 |
|
|
|
909 |
|
|
debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
|
910 |
|
|
debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
|
911 |
|
|
debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
|
912 |
|
|
debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
|
913 |
|
|
debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
|
914 |
|
|
}
|
915 |
|
|
|
916 |
|
|
static void handle_channel(struct i5000_pvt *pvt, int csrow, int channel,
|
917 |
|
|
struct i5000_dimm_info *dinfo)
|
918 |
|
|
{
|
919 |
|
|
int mtr;
|
920 |
|
|
int amb_present_reg;
|
921 |
|
|
int addrBits;
|
922 |
|
|
|
923 |
|
|
mtr = determine_mtr(pvt, csrow, channel);
|
924 |
|
|
if (MTR_DIMMS_PRESENT(mtr)) {
|
925 |
|
|
amb_present_reg = determine_amb_present_reg(pvt, channel);
|
926 |
|
|
|
927 |
|
|
/* Determine if there is a DIMM present in this DIMM slot */
|
928 |
|
|
if (amb_present_reg & (1 << (csrow >> 1))) {
|
929 |
|
|
dinfo->dual_rank = MTR_DIMM_RANK(mtr);
|
930 |
|
|
|
931 |
|
|
if (!((dinfo->dual_rank == 0) &&
|
932 |
|
|
((csrow & 0x1) == 0x1))) {
|
933 |
|
|
/* Start with the number of bits for a Bank
|
934 |
|
|
* on the DRAM */
|
935 |
|
|
addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
|
936 |
|
|
/* Add thenumber of ROW bits */
|
937 |
|
|
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
|
938 |
|
|
/* add the number of COLUMN bits */
|
939 |
|
|
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
|
940 |
|
|
|
941 |
|
|
addrBits += 6; /* add 64 bits per DIMM */
|
942 |
|
|
addrBits -= 20; /* divide by 2^^20 */
|
943 |
|
|
addrBits -= 3; /* 8 bits per bytes */
|
944 |
|
|
|
945 |
|
|
dinfo->megabytes = 1 << addrBits;
|
946 |
|
|
}
|
947 |
|
|
}
|
948 |
|
|
}
|
949 |
|
|
}
|
950 |
|
|
|
951 |
|
|
/*
|
952 |
|
|
* calculate_dimm_size
|
953 |
|
|
*
|
954 |
|
|
* also will output a DIMM matrix map, if debug is enabled, for viewing
|
955 |
|
|
* how the DIMMs are populated
|
956 |
|
|
*/
|
957 |
|
|
static void calculate_dimm_size(struct i5000_pvt *pvt)
|
958 |
|
|
{
|
959 |
|
|
struct i5000_dimm_info *dinfo;
|
960 |
|
|
int csrow, max_csrows;
|
961 |
|
|
char *p, *mem_buffer;
|
962 |
|
|
int space, n;
|
963 |
|
|
int channel;
|
964 |
|
|
|
965 |
|
|
/* ================= Generate some debug output ================= */
|
966 |
|
|
space = PAGE_SIZE;
|
967 |
|
|
mem_buffer = p = kmalloc(space, GFP_KERNEL);
|
968 |
|
|
if (p == NULL) {
|
969 |
|
|
i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
|
970 |
|
|
__FILE__, __func__);
|
971 |
|
|
return;
|
972 |
|
|
}
|
973 |
|
|
|
974 |
|
|
n = snprintf(p, space, "\n");
|
975 |
|
|
p += n;
|
976 |
|
|
space -= n;
|
977 |
|
|
|
978 |
|
|
/* Scan all the actual CSROWS (which is # of DIMMS * 2)
|
979 |
|
|
* and calculate the information for each DIMM
|
980 |
|
|
* Start with the highest csrow first, to display it first
|
981 |
|
|
* and work toward the 0th csrow
|
982 |
|
|
*/
|
983 |
|
|
max_csrows = pvt->maxdimmperch * 2;
|
984 |
|
|
for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
|
985 |
|
|
|
986 |
|
|
/* on an odd csrow, first output a 'boundary' marker,
|
987 |
|
|
* then reset the message buffer */
|
988 |
|
|
if (csrow & 0x1) {
|
989 |
|
|
n = snprintf(p, space, "---------------------------"
|
990 |
|
|
"--------------------------------");
|
991 |
|
|
p += n;
|
992 |
|
|
space -= n;
|
993 |
|
|
debugf2("%s\n", mem_buffer);
|
994 |
|
|
p = mem_buffer;
|
995 |
|
|
space = PAGE_SIZE;
|
996 |
|
|
}
|
997 |
|
|
n = snprintf(p, space, "csrow %2d ", csrow);
|
998 |
|
|
p += n;
|
999 |
|
|
space -= n;
|
1000 |
|
|
|
1001 |
|
|
for (channel = 0; channel < pvt->maxch; channel++) {
|
1002 |
|
|
dinfo = &pvt->dimm_info[csrow][channel];
|
1003 |
|
|
handle_channel(pvt, csrow, channel, dinfo);
|
1004 |
|
|
n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
|
1005 |
|
|
p += n;
|
1006 |
|
|
space -= n;
|
1007 |
|
|
}
|
1008 |
|
|
n = snprintf(p, space, "\n");
|
1009 |
|
|
p += n;
|
1010 |
|
|
space -= n;
|
1011 |
|
|
}
|
1012 |
|
|
|
1013 |
|
|
/* Output the last bottom 'boundary' marker */
|
1014 |
|
|
n = snprintf(p, space, "---------------------------"
|
1015 |
|
|
"--------------------------------\n");
|
1016 |
|
|
p += n;
|
1017 |
|
|
space -= n;
|
1018 |
|
|
|
1019 |
|
|
/* now output the 'channel' labels */
|
1020 |
|
|
n = snprintf(p, space, " ");
|
1021 |
|
|
p += n;
|
1022 |
|
|
space -= n;
|
1023 |
|
|
for (channel = 0; channel < pvt->maxch; channel++) {
|
1024 |
|
|
n = snprintf(p, space, "channel %d | ", channel);
|
1025 |
|
|
p += n;
|
1026 |
|
|
space -= n;
|
1027 |
|
|
}
|
1028 |
|
|
n = snprintf(p, space, "\n");
|
1029 |
|
|
p += n;
|
1030 |
|
|
space -= n;
|
1031 |
|
|
|
1032 |
|
|
/* output the last message and free buffer */
|
1033 |
|
|
debugf2("%s\n", mem_buffer);
|
1034 |
|
|
kfree(mem_buffer);
|
1035 |
|
|
}
|
1036 |
|
|
|
1037 |
|
|
/*
|
1038 |
|
|
* i5000_get_mc_regs read in the necessary registers and
|
1039 |
|
|
* cache locally
|
1040 |
|
|
*
|
1041 |
|
|
* Fills in the private data members
|
1042 |
|
|
*/
|
1043 |
|
|
static void i5000_get_mc_regs(struct mem_ctl_info *mci)
|
1044 |
|
|
{
|
1045 |
|
|
struct i5000_pvt *pvt;
|
1046 |
|
|
u32 actual_tolm;
|
1047 |
|
|
u16 limit;
|
1048 |
|
|
int slot_row;
|
1049 |
|
|
int maxch;
|
1050 |
|
|
int maxdimmperch;
|
1051 |
|
|
int way0, way1;
|
1052 |
|
|
|
1053 |
|
|
pvt = mci->pvt_info;
|
1054 |
|
|
|
1055 |
|
|
pci_read_config_dword(pvt->system_address, AMBASE,
|
1056 |
|
|
(u32 *) & pvt->ambase);
|
1057 |
|
|
pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
|
1058 |
|
|
((u32 *) & pvt->ambase) + sizeof(u32));
|
1059 |
|
|
|
1060 |
|
|
maxdimmperch = pvt->maxdimmperch;
|
1061 |
|
|
maxch = pvt->maxch;
|
1062 |
|
|
|
1063 |
|
|
debugf2("AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
|
1064 |
|
|
(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
|
1065 |
|
|
|
1066 |
|
|
/* Get the Branch Map regs */
|
1067 |
|
|
pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
|
1068 |
|
|
pvt->tolm >>= 12;
|
1069 |
|
|
debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
|
1070 |
|
|
pvt->tolm);
|
1071 |
|
|
|
1072 |
|
|
actual_tolm = pvt->tolm << 28;
|
1073 |
|
|
debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm);
|
1074 |
|
|
|
1075 |
|
|
pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
|
1076 |
|
|
pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
|
1077 |
|
|
pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
|
1078 |
|
|
|
1079 |
|
|
/* Get the MIR[0-2] regs */
|
1080 |
|
|
limit = (pvt->mir0 >> 4) & 0x0FFF;
|
1081 |
|
|
way0 = pvt->mir0 & 0x1;
|
1082 |
|
|
way1 = pvt->mir0 & 0x2;
|
1083 |
|
|
debugf2("MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
|
1084 |
|
|
limit = (pvt->mir1 >> 4) & 0x0FFF;
|
1085 |
|
|
way0 = pvt->mir1 & 0x1;
|
1086 |
|
|
way1 = pvt->mir1 & 0x2;
|
1087 |
|
|
debugf2("MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
|
1088 |
|
|
limit = (pvt->mir2 >> 4) & 0x0FFF;
|
1089 |
|
|
way0 = pvt->mir2 & 0x1;
|
1090 |
|
|
way1 = pvt->mir2 & 0x2;
|
1091 |
|
|
debugf2("MIR2: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
|
1092 |
|
|
|
1093 |
|
|
/* Get the MTR[0-3] regs */
|
1094 |
|
|
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
|
1095 |
|
|
int where = MTR0 + (slot_row * sizeof(u32));
|
1096 |
|
|
|
1097 |
|
|
pci_read_config_word(pvt->branch_0, where,
|
1098 |
|
|
&pvt->b0_mtr[slot_row]);
|
1099 |
|
|
|
1100 |
|
|
debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
|
1101 |
|
|
pvt->b0_mtr[slot_row]);
|
1102 |
|
|
|
1103 |
|
|
if (pvt->maxch >= CHANNELS_PER_BRANCH) {
|
1104 |
|
|
pci_read_config_word(pvt->branch_1, where,
|
1105 |
|
|
&pvt->b1_mtr[slot_row]);
|
1106 |
|
|
debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row,
|
1107 |
|
|
where, pvt->b0_mtr[slot_row]);
|
1108 |
|
|
} else {
|
1109 |
|
|
pvt->b1_mtr[slot_row] = 0;
|
1110 |
|
|
}
|
1111 |
|
|
}
|
1112 |
|
|
|
1113 |
|
|
/* Read and dump branch 0's MTRs */
|
1114 |
|
|
debugf2("\nMemory Technology Registers:\n");
|
1115 |
|
|
debugf2(" Branch 0:\n");
|
1116 |
|
|
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
|
1117 |
|
|
decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
|
1118 |
|
|
}
|
1119 |
|
|
pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
|
1120 |
|
|
&pvt->b0_ambpresent0);
|
1121 |
|
|
debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
|
1122 |
|
|
pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
|
1123 |
|
|
&pvt->b0_ambpresent1);
|
1124 |
|
|
debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
|
1125 |
|
|
|
1126 |
|
|
/* Only if we have 2 branchs (4 channels) */
|
1127 |
|
|
if (pvt->maxch < CHANNELS_PER_BRANCH) {
|
1128 |
|
|
pvt->b1_ambpresent0 = 0;
|
1129 |
|
|
pvt->b1_ambpresent1 = 0;
|
1130 |
|
|
} else {
|
1131 |
|
|
/* Read and dump branch 1's MTRs */
|
1132 |
|
|
debugf2(" Branch 1:\n");
|
1133 |
|
|
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
|
1134 |
|
|
decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
|
1135 |
|
|
}
|
1136 |
|
|
pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
|
1137 |
|
|
&pvt->b1_ambpresent0);
|
1138 |
|
|
debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
|
1139 |
|
|
pvt->b1_ambpresent0);
|
1140 |
|
|
pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
|
1141 |
|
|
&pvt->b1_ambpresent1);
|
1142 |
|
|
debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
|
1143 |
|
|
pvt->b1_ambpresent1);
|
1144 |
|
|
}
|
1145 |
|
|
|
1146 |
|
|
/* Go and determine the size of each DIMM and place in an
|
1147 |
|
|
* orderly matrix */
|
1148 |
|
|
calculate_dimm_size(pvt);
|
1149 |
|
|
}
|
1150 |
|
|
|
1151 |
|
|
/*
|
1152 |
|
|
* i5000_init_csrows Initialize the 'csrows' table within
|
1153 |
|
|
* the mci control structure with the
|
1154 |
|
|
* addressing of memory.
|
1155 |
|
|
*
|
1156 |
|
|
* return:
|
1157 |
|
|
* 0 success
|
1158 |
|
|
* 1 no actual memory found on this MC
|
1159 |
|
|
*/
|
1160 |
|
|
static int i5000_init_csrows(struct mem_ctl_info *mci)
|
1161 |
|
|
{
|
1162 |
|
|
struct i5000_pvt *pvt;
|
1163 |
|
|
struct csrow_info *p_csrow;
|
1164 |
|
|
int empty, channel_count;
|
1165 |
|
|
int max_csrows;
|
1166 |
|
|
int mtr;
|
1167 |
|
|
int csrow_megs;
|
1168 |
|
|
int channel;
|
1169 |
|
|
int csrow;
|
1170 |
|
|
|
1171 |
|
|
pvt = mci->pvt_info;
|
1172 |
|
|
|
1173 |
|
|
channel_count = pvt->maxch;
|
1174 |
|
|
max_csrows = pvt->maxdimmperch * 2;
|
1175 |
|
|
|
1176 |
|
|
empty = 1; /* Assume NO memory */
|
1177 |
|
|
|
1178 |
|
|
for (csrow = 0; csrow < max_csrows; csrow++) {
|
1179 |
|
|
p_csrow = &mci->csrows[csrow];
|
1180 |
|
|
|
1181 |
|
|
p_csrow->csrow_idx = csrow;
|
1182 |
|
|
|
1183 |
|
|
/* use branch 0 for the basis */
|
1184 |
|
|
mtr = pvt->b0_mtr[csrow >> 1];
|
1185 |
|
|
|
1186 |
|
|
/* if no DIMMS on this row, continue */
|
1187 |
|
|
if (!MTR_DIMMS_PRESENT(mtr))
|
1188 |
|
|
continue;
|
1189 |
|
|
|
1190 |
|
|
/* FAKE OUT VALUES, FIXME */
|
1191 |
|
|
p_csrow->first_page = 0 + csrow * 20;
|
1192 |
|
|
p_csrow->last_page = 9 + csrow * 20;
|
1193 |
|
|
p_csrow->page_mask = 0xFFF;
|
1194 |
|
|
|
1195 |
|
|
p_csrow->grain = 8;
|
1196 |
|
|
|
1197 |
|
|
csrow_megs = 0;
|
1198 |
|
|
for (channel = 0; channel < pvt->maxch; channel++) {
|
1199 |
|
|
csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
p_csrow->nr_pages = csrow_megs << 8;
|
1203 |
|
|
|
1204 |
|
|
/* Assume DDR2 for now */
|
1205 |
|
|
p_csrow->mtype = MEM_FB_DDR2;
|
1206 |
|
|
|
1207 |
|
|
/* ask what device type on this row */
|
1208 |
|
|
if (MTR_DRAM_WIDTH(mtr))
|
1209 |
|
|
p_csrow->dtype = DEV_X8;
|
1210 |
|
|
else
|
1211 |
|
|
p_csrow->dtype = DEV_X4;
|
1212 |
|
|
|
1213 |
|
|
p_csrow->edac_mode = EDAC_S8ECD8ED;
|
1214 |
|
|
|
1215 |
|
|
empty = 0;
|
1216 |
|
|
}
|
1217 |
|
|
|
1218 |
|
|
return empty;
|
1219 |
|
|
}
|
1220 |
|
|
|
1221 |
|
|
/*
|
1222 |
|
|
* i5000_enable_error_reporting
|
1223 |
|
|
* Turn on the memory reporting features of the hardware
|
1224 |
|
|
*/
|
1225 |
|
|
static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
|
1226 |
|
|
{
|
1227 |
|
|
struct i5000_pvt *pvt;
|
1228 |
|
|
u32 fbd_error_mask;
|
1229 |
|
|
|
1230 |
|
|
pvt = mci->pvt_info;
|
1231 |
|
|
|
1232 |
|
|
/* Read the FBD Error Mask Register */
|
1233 |
|
|
pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
|
1234 |
|
|
&fbd_error_mask);
|
1235 |
|
|
|
1236 |
|
|
/* Enable with a '0' */
|
1237 |
|
|
fbd_error_mask &= ~(ENABLE_EMASK_ALL);
|
1238 |
|
|
|
1239 |
|
|
pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
|
1240 |
|
|
fbd_error_mask);
|
1241 |
|
|
}
|
1242 |
|
|
|
1243 |
|
|
/*
|
1244 |
|
|
* i5000_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
|
1245 |
|
|
*
|
1246 |
|
|
* ask the device how many channels are present and how many CSROWS
|
1247 |
|
|
* as well
|
1248 |
|
|
*/
|
1249 |
|
|
static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
|
1250 |
|
|
int *num_dimms_per_channel,
|
1251 |
|
|
int *num_channels)
|
1252 |
|
|
{
|
1253 |
|
|
u8 value;
|
1254 |
|
|
|
1255 |
|
|
/* Need to retrieve just how many channels and dimms per channel are
|
1256 |
|
|
* supported on this memory controller
|
1257 |
|
|
*/
|
1258 |
|
|
pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
|
1259 |
|
|
*num_dimms_per_channel = (int)value *2;
|
1260 |
|
|
|
1261 |
|
|
pci_read_config_byte(pdev, MAXCH, &value);
|
1262 |
|
|
*num_channels = (int)value;
|
1263 |
|
|
}
|
1264 |
|
|
|
1265 |
|
|
/*
|
1266 |
|
|
* i5000_probe1 Probe for ONE instance of device to see if it is
|
1267 |
|
|
* present.
|
1268 |
|
|
* return:
|
1269 |
|
|
* 0 for FOUND a device
|
1270 |
|
|
* < 0 for error code
|
1271 |
|
|
*/
|
1272 |
|
|
static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
|
1273 |
|
|
{
|
1274 |
|
|
struct mem_ctl_info *mci;
|
1275 |
|
|
struct i5000_pvt *pvt;
|
1276 |
|
|
int num_channels;
|
1277 |
|
|
int num_dimms_per_channel;
|
1278 |
|
|
int num_csrows;
|
1279 |
|
|
|
1280 |
|
|
debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
|
1281 |
|
|
__func__,
|
1282 |
|
|
pdev->bus->number,
|
1283 |
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
|
1284 |
|
|
|
1285 |
|
|
/* We only are looking for func 0 of the set */
|
1286 |
|
|
if (PCI_FUNC(pdev->devfn) != 0)
|
1287 |
|
|
return -ENODEV;
|
1288 |
|
|
|
1289 |
|
|
/* make sure error reporting method is sane */
|
1290 |
|
|
switch (edac_op_state) {
|
1291 |
|
|
case EDAC_OPSTATE_POLL:
|
1292 |
|
|
case EDAC_OPSTATE_NMI:
|
1293 |
|
|
break;
|
1294 |
|
|
default:
|
1295 |
|
|
edac_op_state = EDAC_OPSTATE_POLL;
|
1296 |
|
|
break;
|
1297 |
|
|
}
|
1298 |
|
|
|
1299 |
|
|
/* Ask the devices for the number of CSROWS and CHANNELS so
|
1300 |
|
|
* that we can calculate the memory resources, etc
|
1301 |
|
|
*
|
1302 |
|
|
* The Chipset will report what it can handle which will be greater
|
1303 |
|
|
* or equal to what the motherboard manufacturer will implement.
|
1304 |
|
|
*
|
1305 |
|
|
* As we don't have a motherboard identification routine to determine
|
1306 |
|
|
* actual number of slots/dimms per channel, we thus utilize the
|
1307 |
|
|
* resource as specified by the chipset. Thus, we might have
|
1308 |
|
|
* have more DIMMs per channel than actually on the mobo, but this
|
1309 |
|
|
* allows the driver to support upto the chipset max, without
|
1310 |
|
|
* some fancy mobo determination.
|
1311 |
|
|
*/
|
1312 |
|
|
i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
|
1313 |
|
|
&num_channels);
|
1314 |
|
|
num_csrows = num_dimms_per_channel * 2;
|
1315 |
|
|
|
1316 |
|
|
debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
|
1317 |
|
|
__func__, num_channels, num_dimms_per_channel, num_csrows);
|
1318 |
|
|
|
1319 |
|
|
/* allocate a new MC control structure */
|
1320 |
|
|
mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
|
1321 |
|
|
|
1322 |
|
|
if (mci == NULL)
|
1323 |
|
|
return -ENOMEM;
|
1324 |
|
|
|
1325 |
|
|
debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
|
1326 |
|
|
|
1327 |
|
|
mci->dev = &pdev->dev; /* record ptr to the generic device */
|
1328 |
|
|
|
1329 |
|
|
pvt = mci->pvt_info;
|
1330 |
|
|
pvt->system_address = pdev; /* Record this device in our private */
|
1331 |
|
|
pvt->maxch = num_channels;
|
1332 |
|
|
pvt->maxdimmperch = num_dimms_per_channel;
|
1333 |
|
|
|
1334 |
|
|
/* 'get' the pci devices we want to reserve for our use */
|
1335 |
|
|
if (i5000_get_devices(mci, dev_idx))
|
1336 |
|
|
goto fail0;
|
1337 |
|
|
|
1338 |
|
|
/* Time to get serious */
|
1339 |
|
|
i5000_get_mc_regs(mci); /* retrieve the hardware registers */
|
1340 |
|
|
|
1341 |
|
|
mci->mc_idx = 0;
|
1342 |
|
|
mci->mtype_cap = MEM_FLAG_FB_DDR2;
|
1343 |
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
1344 |
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
1345 |
|
|
mci->mod_name = "i5000_edac.c";
|
1346 |
|
|
mci->mod_ver = I5000_REVISION;
|
1347 |
|
|
mci->ctl_name = i5000_devs[dev_idx].ctl_name;
|
1348 |
|
|
mci->dev_name = pci_name(pdev);
|
1349 |
|
|
mci->ctl_page_to_phys = NULL;
|
1350 |
|
|
|
1351 |
|
|
/* Set the function pointer to an actual operation function */
|
1352 |
|
|
mci->edac_check = i5000_check_error;
|
1353 |
|
|
|
1354 |
|
|
/* initialize the MC control structure 'csrows' table
|
1355 |
|
|
* with the mapping and control information */
|
1356 |
|
|
if (i5000_init_csrows(mci)) {
|
1357 |
|
|
debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
|
1358 |
|
|
" because i5000_init_csrows() returned nonzero "
|
1359 |
|
|
"value\n");
|
1360 |
|
|
mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
|
1361 |
|
|
} else {
|
1362 |
|
|
debugf1("MC: Enable error reporting now\n");
|
1363 |
|
|
i5000_enable_error_reporting(mci);
|
1364 |
|
|
}
|
1365 |
|
|
|
1366 |
|
|
/* add this new MC control structure to EDAC's list of MCs */
|
1367 |
|
|
if (edac_mc_add_mc(mci)) {
|
1368 |
|
|
debugf0("MC: " __FILE__
|
1369 |
|
|
": %s(): failed edac_mc_add_mc()\n", __func__);
|
1370 |
|
|
/* FIXME: perhaps some code should go here that disables error
|
1371 |
|
|
* reporting if we just enabled it
|
1372 |
|
|
*/
|
1373 |
|
|
goto fail1;
|
1374 |
|
|
}
|
1375 |
|
|
|
1376 |
|
|
i5000_clear_error(mci);
|
1377 |
|
|
|
1378 |
|
|
/* allocating generic PCI control info */
|
1379 |
|
|
i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
|
1380 |
|
|
if (!i5000_pci) {
|
1381 |
|
|
printk(KERN_WARNING
|
1382 |
|
|
"%s(): Unable to create PCI control\n",
|
1383 |
|
|
__func__);
|
1384 |
|
|
printk(KERN_WARNING
|
1385 |
|
|
"%s(): PCI error report via EDAC not setup\n",
|
1386 |
|
|
__func__);
|
1387 |
|
|
}
|
1388 |
|
|
|
1389 |
|
|
return 0;
|
1390 |
|
|
|
1391 |
|
|
/* Error exit unwinding stack */
|
1392 |
|
|
fail1:
|
1393 |
|
|
|
1394 |
|
|
i5000_put_devices(mci);
|
1395 |
|
|
|
1396 |
|
|
fail0:
|
1397 |
|
|
edac_mc_free(mci);
|
1398 |
|
|
return -ENODEV;
|
1399 |
|
|
}
|
1400 |
|
|
|
1401 |
|
|
/*
|
1402 |
|
|
* i5000_init_one constructor for one instance of device
|
1403 |
|
|
*
|
1404 |
|
|
* returns:
|
1405 |
|
|
* negative on error
|
1406 |
|
|
* count (>= 0)
|
1407 |
|
|
*/
|
1408 |
|
|
static int __devinit i5000_init_one(struct pci_dev *pdev,
|
1409 |
|
|
const struct pci_device_id *id)
|
1410 |
|
|
{
|
1411 |
|
|
int rc;
|
1412 |
|
|
|
1413 |
|
|
debugf0("MC: " __FILE__ ": %s()\n", __func__);
|
1414 |
|
|
|
1415 |
|
|
/* wake up device */
|
1416 |
|
|
rc = pci_enable_device(pdev);
|
1417 |
|
|
if (rc == -EIO)
|
1418 |
|
|
return rc;
|
1419 |
|
|
|
1420 |
|
|
/* now probe and enable the device */
|
1421 |
|
|
return i5000_probe1(pdev, id->driver_data);
|
1422 |
|
|
}
|
1423 |
|
|
|
1424 |
|
|
/*
|
1425 |
|
|
* i5000_remove_one destructor for one instance of device
|
1426 |
|
|
*
|
1427 |
|
|
*/
|
1428 |
|
|
static void __devexit i5000_remove_one(struct pci_dev *pdev)
|
1429 |
|
|
{
|
1430 |
|
|
struct mem_ctl_info *mci;
|
1431 |
|
|
|
1432 |
|
|
debugf0(__FILE__ ": %s()\n", __func__);
|
1433 |
|
|
|
1434 |
|
|
if (i5000_pci)
|
1435 |
|
|
edac_pci_release_generic_ctl(i5000_pci);
|
1436 |
|
|
|
1437 |
|
|
if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
|
1438 |
|
|
return;
|
1439 |
|
|
|
1440 |
|
|
/* retrieve references to resources, and free those resources */
|
1441 |
|
|
i5000_put_devices(mci);
|
1442 |
|
|
|
1443 |
|
|
edac_mc_free(mci);
|
1444 |
|
|
}
|
1445 |
|
|
|
1446 |
|
|
/*
|
1447 |
|
|
* pci_device_id table for which devices we are looking for
|
1448 |
|
|
*
|
1449 |
|
|
* The "E500P" device is the first device supported.
|
1450 |
|
|
*/
|
1451 |
|
|
static const struct pci_device_id i5000_pci_tbl[] __devinitdata = {
|
1452 |
|
|
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
|
1453 |
|
|
.driver_data = I5000P},
|
1454 |
|
|
|
1455 |
|
|
{0,} /* 0 terminated list. */
|
1456 |
|
|
};
|
1457 |
|
|
|
1458 |
|
|
MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
|
1459 |
|
|
|
1460 |
|
|
/*
|
1461 |
|
|
* i5000_driver pci_driver structure for this module
|
1462 |
|
|
*
|
1463 |
|
|
*/
|
1464 |
|
|
static struct pci_driver i5000_driver = {
|
1465 |
|
|
.name = KBUILD_BASENAME,
|
1466 |
|
|
.probe = i5000_init_one,
|
1467 |
|
|
.remove = __devexit_p(i5000_remove_one),
|
1468 |
|
|
.id_table = i5000_pci_tbl,
|
1469 |
|
|
};
|
1470 |
|
|
|
1471 |
|
|
/*
|
1472 |
|
|
* i5000_init Module entry function
|
1473 |
|
|
* Try to initialize this module for its devices
|
1474 |
|
|
*/
|
1475 |
|
|
static int __init i5000_init(void)
|
1476 |
|
|
{
|
1477 |
|
|
int pci_rc;
|
1478 |
|
|
|
1479 |
|
|
debugf2("MC: " __FILE__ ": %s()\n", __func__);
|
1480 |
|
|
|
1481 |
|
|
pci_rc = pci_register_driver(&i5000_driver);
|
1482 |
|
|
|
1483 |
|
|
return (pci_rc < 0) ? pci_rc : 0;
|
1484 |
|
|
}
|
1485 |
|
|
|
1486 |
|
|
/*
|
1487 |
|
|
* i5000_exit() Module exit function
|
1488 |
|
|
* Unregister the driver
|
1489 |
|
|
*/
|
1490 |
|
|
static void __exit i5000_exit(void)
|
1491 |
|
|
{
|
1492 |
|
|
debugf2("MC: " __FILE__ ": %s()\n", __func__);
|
1493 |
|
|
pci_unregister_driver(&i5000_driver);
|
1494 |
|
|
}
|
1495 |
|
|
|
1496 |
|
|
module_init(i5000_init);
|
1497 |
|
|
module_exit(i5000_exit);
|
1498 |
|
|
|
1499 |
|
|
MODULE_LICENSE("GPL");
|
1500 |
|
|
MODULE_AUTHOR
|
1501 |
|
|
("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
|
1502 |
|
|
MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
|
1503 |
|
|
I5000_REVISION);
|
1504 |
|
|
module_param(edac_op_state, int, 0444);
|
1505 |
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|