OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [firewire/] [fw-sbp2.c] - Blame information for rev 78

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5
 *
6
 * This program is free software; you can redistribute it and/or modify
7
 * it under the terms of the GNU General Public License as published by
8
 * the Free Software Foundation; either version 2 of the License, or
9
 * (at your option) any later version.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, write to the Free Software Foundation,
18
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
 */
20
 
21
/*
22
 * The basic structure of this driver is based on the old storage driver,
23
 * drivers/ieee1394/sbp2.c, originally written by
24
 *     James Goodwin <jamesg@filanet.com>
25
 * with later contributions and ongoing maintenance from
26
 *     Ben Collins <bcollins@debian.org>,
27
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28
 * and many others.
29
 */
30
 
31
#include <linux/kernel.h>
32
#include <linux/module.h>
33
#include <linux/moduleparam.h>
34
#include <linux/mod_devicetable.h>
35
#include <linux/device.h>
36
#include <linux/scatterlist.h>
37
#include <linux/dma-mapping.h>
38
#include <linux/blkdev.h>
39
#include <linux/string.h>
40
#include <linux/stringify.h>
41
#include <linux/timer.h>
42
#include <linux/workqueue.h>
43
 
44
#include <scsi/scsi.h>
45
#include <scsi/scsi_cmnd.h>
46
#include <scsi/scsi_device.h>
47
#include <scsi/scsi_host.h>
48
 
49
#include "fw-transaction.h"
50
#include "fw-topology.h"
51
#include "fw-device.h"
52
 
53
/*
54
 * So far only bridges from Oxford Semiconductor are known to support
55
 * concurrent logins. Depending on firmware, four or two concurrent logins
56
 * are possible on OXFW911 and newer Oxsemi bridges.
57
 *
58
 * Concurrent logins are useful together with cluster filesystems.
59
 */
60
static int sbp2_param_exclusive_login = 1;
61
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
62
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
63
                 "(default = Y, use N for concurrent initiators)");
64
 
65
/*
66
 * Flags for firmware oddities
67
 *
68
 * - 128kB max transfer
69
 *   Limit transfer size. Necessary for some old bridges.
70
 *
71
 * - 36 byte inquiry
72
 *   When scsi_mod probes the device, let the inquiry command look like that
73
 *   from MS Windows.
74
 *
75
 * - skip mode page 8
76
 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
77
 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
78
 *
79
 * - fix capacity
80
 *   Tell sd_mod to correct the last sector number reported by read_capacity.
81
 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
82
 *   Don't use this with devices which don't have this bug.
83
 *
84
 * - override internal blacklist
85
 *   Instead of adding to the built-in blacklist, use only the workarounds
86
 *   specified in the module load parameter.
87
 *   Useful if a blacklist entry interfered with a non-broken device.
88
 */
89
#define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
90
#define SBP2_WORKAROUND_INQUIRY_36      0x2
91
#define SBP2_WORKAROUND_MODE_SENSE_8    0x4
92
#define SBP2_WORKAROUND_FIX_CAPACITY    0x8
93
#define SBP2_WORKAROUND_OVERRIDE        0x100
94
 
95
static int sbp2_param_workarounds;
96
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
97
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
98
        ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
99
        ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
100
        ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
101
        ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
102
        ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
103
        ", or a combination)");
104
 
105
/* I don't know why the SCSI stack doesn't define something like this... */
106
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
107
 
108
static const char sbp2_driver_name[] = "sbp2";
109
 
110
/*
111
 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
112
 * and one struct scsi_device per sbp2_logical_unit.
113
 */
114
struct sbp2_logical_unit {
115
        struct sbp2_target *tgt;
116
        struct list_head link;
117
        struct scsi_device *sdev;
118
        struct fw_address_handler address_handler;
119
        struct list_head orb_list;
120
 
121
        u64 command_block_agent_address;
122
        u16 lun;
123
        int login_id;
124
 
125
        /*
126
         * The generation is updated once we've logged in or reconnected
127
         * to the logical unit.  Thus, I/O to the device will automatically
128
         * fail and get retried if it happens in a window where the device
129
         * is not ready, e.g. after a bus reset but before we reconnect.
130
         */
131
        int generation;
132
        int retries;
133
        struct delayed_work work;
134
};
135
 
136
/*
137
 * We create one struct sbp2_target per IEEE 1212 Unit Directory
138
 * and one struct Scsi_Host per sbp2_target.
139
 */
140
struct sbp2_target {
141
        struct kref kref;
142
        struct fw_unit *unit;
143
 
144
        u64 management_agent_address;
145
        int directory_id;
146
        int node_id;
147
        int address_high;
148
 
149
        unsigned workarounds;
150
        struct list_head lu_list;
151
};
152
 
153
#define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
154
#define SBP2_MAX_SECTORS                255     /* Max sectors supported */
155
#define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
156
 
157
#define SBP2_ORB_NULL                   0x80000000
158
 
159
#define SBP2_DIRECTION_TO_MEDIA         0x0
160
#define SBP2_DIRECTION_FROM_MEDIA       0x1
161
 
162
/* Unit directory keys */
163
#define SBP2_CSR_FIRMWARE_REVISION      0x3c
164
#define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
165
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
166
 
167
/* Management orb opcodes */
168
#define SBP2_LOGIN_REQUEST              0x0
169
#define SBP2_QUERY_LOGINS_REQUEST       0x1
170
#define SBP2_RECONNECT_REQUEST          0x3
171
#define SBP2_SET_PASSWORD_REQUEST       0x4
172
#define SBP2_LOGOUT_REQUEST             0x7
173
#define SBP2_ABORT_TASK_REQUEST         0xb
174
#define SBP2_ABORT_TASK_SET             0xc
175
#define SBP2_LOGICAL_UNIT_RESET         0xe
176
#define SBP2_TARGET_RESET_REQUEST       0xf
177
 
178
/* Offsets for command block agent registers */
179
#define SBP2_AGENT_STATE                0x00
180
#define SBP2_AGENT_RESET                0x04
181
#define SBP2_ORB_POINTER                0x08
182
#define SBP2_DOORBELL                   0x10
183
#define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
184
 
185
/* Status write response codes */
186
#define SBP2_STATUS_REQUEST_COMPLETE    0x0
187
#define SBP2_STATUS_TRANSPORT_FAILURE   0x1
188
#define SBP2_STATUS_ILLEGAL_REQUEST     0x2
189
#define SBP2_STATUS_VENDOR_DEPENDENT    0x3
190
 
191
#define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
192
#define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
193
#define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
194
#define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
195
#define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
196
#define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
197
#define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
198
#define STATUS_GET_DATA(v)              ((v).data)
199
 
200
struct sbp2_status {
201
        u32 status;
202
        u32 orb_low;
203
        u8 data[24];
204
};
205
 
206
struct sbp2_pointer {
207
        u32 high;
208
        u32 low;
209
};
210
 
211
struct sbp2_orb {
212
        struct fw_transaction t;
213
        struct kref kref;
214
        dma_addr_t request_bus;
215
        int rcode;
216
        struct sbp2_pointer pointer;
217
        void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
218
        struct list_head link;
219
};
220
 
221
#define MANAGEMENT_ORB_LUN(v)                   ((v))
222
#define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
223
#define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
224
#define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
225
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
226
#define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
227
 
228
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
229
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
230
 
231
struct sbp2_management_orb {
232
        struct sbp2_orb base;
233
        struct {
234
                struct sbp2_pointer password;
235
                struct sbp2_pointer response;
236
                u32 misc;
237
                u32 length;
238
                struct sbp2_pointer status_fifo;
239
        } request;
240
        __be32 response[4];
241
        dma_addr_t response_bus;
242
        struct completion done;
243
        struct sbp2_status status;
244
};
245
 
246
#define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
247
#define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
248
 
249
struct sbp2_login_response {
250
        u32 misc;
251
        struct sbp2_pointer command_block_agent;
252
        u32 reconnect_hold;
253
};
254
#define COMMAND_ORB_DATA_SIZE(v)        ((v))
255
#define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
256
#define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
257
#define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
258
#define COMMAND_ORB_SPEED(v)            ((v) << 24)
259
#define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
260
#define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
261
#define COMMAND_ORB_NOTIFY              ((1) << 31)
262
 
263
struct sbp2_command_orb {
264
        struct sbp2_orb base;
265
        struct {
266
                struct sbp2_pointer next;
267
                struct sbp2_pointer data_descriptor;
268
                u32 misc;
269
                u8 command_block[12];
270
        } request;
271
        struct scsi_cmnd *cmd;
272
        scsi_done_fn_t done;
273
        struct sbp2_logical_unit *lu;
274
 
275
        struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
276
        dma_addr_t page_table_bus;
277
};
278
 
279
/*
280
 * List of devices with known bugs.
281
 *
282
 * The firmware_revision field, masked with 0xffff00, is the best
283
 * indicator for the type of bridge chip of a device.  It yields a few
284
 * false positives but this did not break correctly behaving devices
285
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
286
 * from the config rom can never match that.
287
 */
288
static const struct {
289
        u32 firmware_revision;
290
        u32 model;
291
        unsigned workarounds;
292
} sbp2_workarounds_table[] = {
293
        /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
294
                .firmware_revision      = 0x002800,
295
                .model                  = 0x001010,
296
                .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
297
                                          SBP2_WORKAROUND_MODE_SENSE_8,
298
        },
299
        /* Initio bridges, actually only needed for some older ones */ {
300
                .firmware_revision      = 0x000200,
301
                .model                  = ~0,
302
                .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
303
        },
304
        /* Symbios bridge */ {
305
                .firmware_revision      = 0xa0b800,
306
                .model                  = ~0,
307
                .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
308
        },
309
 
310
        /*
311
         * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
312
         * these iPods do not feature the read_capacity bug according
313
         * to one report.  Read_capacity behaviour as well as model_id
314
         * could change due to Apple-supplied firmware updates though.
315
         */
316
 
317
        /* iPod 4th generation. */ {
318
                .firmware_revision      = 0x0a2700,
319
                .model                  = 0x000021,
320
                .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
321
        },
322
        /* iPod mini */ {
323
                .firmware_revision      = 0x0a2700,
324
                .model                  = 0x000023,
325
                .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
326
        },
327
        /* iPod Photo */ {
328
                .firmware_revision      = 0x0a2700,
329
                .model                  = 0x00007e,
330
                .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
331
        }
332
};
333
 
334
static void
335
free_orb(struct kref *kref)
336
{
337
        struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
338
 
339
        kfree(orb);
340
}
341
 
342
static void
343
sbp2_status_write(struct fw_card *card, struct fw_request *request,
344
                  int tcode, int destination, int source,
345
                  int generation, int speed,
346
                  unsigned long long offset,
347
                  void *payload, size_t length, void *callback_data)
348
{
349
        struct sbp2_logical_unit *lu = callback_data;
350
        struct sbp2_orb *orb;
351
        struct sbp2_status status;
352
        size_t header_size;
353
        unsigned long flags;
354
 
355
        if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
356
            length == 0 || length > sizeof(status)) {
357
                fw_send_response(card, request, RCODE_TYPE_ERROR);
358
                return;
359
        }
360
 
361
        header_size = min(length, 2 * sizeof(u32));
362
        fw_memcpy_from_be32(&status, payload, header_size);
363
        if (length > header_size)
364
                memcpy(status.data, payload + 8, length - header_size);
365
        if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
366
                fw_notify("non-orb related status write, not handled\n");
367
                fw_send_response(card, request, RCODE_COMPLETE);
368
                return;
369
        }
370
 
371
        /* Lookup the orb corresponding to this status write. */
372
        spin_lock_irqsave(&card->lock, flags);
373
        list_for_each_entry(orb, &lu->orb_list, link) {
374
                if (STATUS_GET_ORB_HIGH(status) == 0 &&
375
                    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
376
                        orb->rcode = RCODE_COMPLETE;
377
                        list_del(&orb->link);
378
                        break;
379
                }
380
        }
381
        spin_unlock_irqrestore(&card->lock, flags);
382
 
383
        if (&orb->link != &lu->orb_list)
384
                orb->callback(orb, &status);
385
        else
386
                fw_error("status write for unknown orb\n");
387
 
388
        kref_put(&orb->kref, free_orb);
389
 
390
        fw_send_response(card, request, RCODE_COMPLETE);
391
}
392
 
393
static void
394
complete_transaction(struct fw_card *card, int rcode,
395
                     void *payload, size_t length, void *data)
396
{
397
        struct sbp2_orb *orb = data;
398
        unsigned long flags;
399
 
400
        /*
401
         * This is a little tricky.  We can get the status write for
402
         * the orb before we get this callback.  The status write
403
         * handler above will assume the orb pointer transaction was
404
         * successful and set the rcode to RCODE_COMPLETE for the orb.
405
         * So this callback only sets the rcode if it hasn't already
406
         * been set and only does the cleanup if the transaction
407
         * failed and we didn't already get a status write.
408
         */
409
        spin_lock_irqsave(&card->lock, flags);
410
 
411
        if (orb->rcode == -1)
412
                orb->rcode = rcode;
413
        if (orb->rcode != RCODE_COMPLETE) {
414
                list_del(&orb->link);
415
                spin_unlock_irqrestore(&card->lock, flags);
416
                orb->callback(orb, NULL);
417
        } else {
418
                spin_unlock_irqrestore(&card->lock, flags);
419
        }
420
 
421
        kref_put(&orb->kref, free_orb);
422
}
423
 
424
static void
425
sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
426
              int node_id, int generation, u64 offset)
427
{
428
        struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
429
        unsigned long flags;
430
 
431
        orb->pointer.high = 0;
432
        orb->pointer.low = orb->request_bus;
433
        fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
434
 
435
        spin_lock_irqsave(&device->card->lock, flags);
436
        list_add_tail(&orb->link, &lu->orb_list);
437
        spin_unlock_irqrestore(&device->card->lock, flags);
438
 
439
        /* Take a ref for the orb list and for the transaction callback. */
440
        kref_get(&orb->kref);
441
        kref_get(&orb->kref);
442
 
443
        fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
444
                        node_id, generation, device->max_speed, offset,
445
                        &orb->pointer, sizeof(orb->pointer),
446
                        complete_transaction, orb);
447
}
448
 
449
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
450
{
451
        struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
452
        struct sbp2_orb *orb, *next;
453
        struct list_head list;
454
        unsigned long flags;
455
        int retval = -ENOENT;
456
 
457
        INIT_LIST_HEAD(&list);
458
        spin_lock_irqsave(&device->card->lock, flags);
459
        list_splice_init(&lu->orb_list, &list);
460
        spin_unlock_irqrestore(&device->card->lock, flags);
461
 
462
        list_for_each_entry_safe(orb, next, &list, link) {
463
                retval = 0;
464
                if (fw_cancel_transaction(device->card, &orb->t) == 0)
465
                        continue;
466
 
467
                orb->rcode = RCODE_CANCELLED;
468
                orb->callback(orb, NULL);
469
        }
470
 
471
        return retval;
472
}
473
 
474
static void
475
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
476
{
477
        struct sbp2_management_orb *orb =
478
                container_of(base_orb, struct sbp2_management_orb, base);
479
 
480
        if (status)
481
                memcpy(&orb->status, status, sizeof(*status));
482
        complete(&orb->done);
483
}
484
 
485
static int
486
sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
487
                         int generation, int function, int lun_or_login_id,
488
                         void *response)
489
{
490
        struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
491
        struct sbp2_management_orb *orb;
492
        int retval = -ENOMEM;
493
 
494
        orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
495
        if (orb == NULL)
496
                return -ENOMEM;
497
 
498
        kref_init(&orb->base.kref);
499
        orb->response_bus =
500
                dma_map_single(device->card->device, &orb->response,
501
                               sizeof(orb->response), DMA_FROM_DEVICE);
502
        if (dma_mapping_error(orb->response_bus))
503
                goto fail_mapping_response;
504
 
505
        orb->request.response.high    = 0;
506
        orb->request.response.low     = orb->response_bus;
507
 
508
        orb->request.misc =
509
                MANAGEMENT_ORB_NOTIFY |
510
                MANAGEMENT_ORB_FUNCTION(function) |
511
                MANAGEMENT_ORB_LUN(lun_or_login_id);
512
        orb->request.length =
513
                MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
514
 
515
        orb->request.status_fifo.high = lu->address_handler.offset >> 32;
516
        orb->request.status_fifo.low  = lu->address_handler.offset;
517
 
518
        if (function == SBP2_LOGIN_REQUEST) {
519
                orb->request.misc |=
520
                        MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
521
                        MANAGEMENT_ORB_RECONNECT(0);
522
        }
523
 
524
        fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
525
 
526
        init_completion(&orb->done);
527
        orb->base.callback = complete_management_orb;
528
 
529
        orb->base.request_bus =
530
                dma_map_single(device->card->device, &orb->request,
531
                               sizeof(orb->request), DMA_TO_DEVICE);
532
        if (dma_mapping_error(orb->base.request_bus))
533
                goto fail_mapping_request;
534
 
535
        sbp2_send_orb(&orb->base, lu, node_id, generation,
536
                      lu->tgt->management_agent_address);
537
 
538
        wait_for_completion_timeout(&orb->done,
539
                                    msecs_to_jiffies(SBP2_ORB_TIMEOUT));
540
 
541
        retval = -EIO;
542
        if (sbp2_cancel_orbs(lu) == 0) {
543
                fw_error("orb reply timed out, rcode=0x%02x\n",
544
                         orb->base.rcode);
545
                goto out;
546
        }
547
 
548
        if (orb->base.rcode != RCODE_COMPLETE) {
549
                fw_error("management write failed, rcode 0x%02x\n",
550
                         orb->base.rcode);
551
                goto out;
552
        }
553
 
554
        if (STATUS_GET_RESPONSE(orb->status) != 0 ||
555
            STATUS_GET_SBP_STATUS(orb->status) != 0) {
556
                fw_error("error status: %d:%d\n",
557
                         STATUS_GET_RESPONSE(orb->status),
558
                         STATUS_GET_SBP_STATUS(orb->status));
559
                goto out;
560
        }
561
 
562
        retval = 0;
563
 out:
564
        dma_unmap_single(device->card->device, orb->base.request_bus,
565
                         sizeof(orb->request), DMA_TO_DEVICE);
566
 fail_mapping_request:
567
        dma_unmap_single(device->card->device, orb->response_bus,
568
                         sizeof(orb->response), DMA_FROM_DEVICE);
569
 fail_mapping_response:
570
        if (response)
571
                fw_memcpy_from_be32(response,
572
                                    orb->response, sizeof(orb->response));
573
        kref_put(&orb->base.kref, free_orb);
574
 
575
        return retval;
576
}
577
 
578
static void
579
complete_agent_reset_write(struct fw_card *card, int rcode,
580
                           void *payload, size_t length, void *data)
581
{
582
        struct fw_transaction *t = data;
583
 
584
        kfree(t);
585
}
586
 
587
static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
588
{
589
        struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
590
        struct fw_transaction *t;
591
        static u32 zero;
592
 
593
        t = kzalloc(sizeof(*t), GFP_ATOMIC);
594
        if (t == NULL)
595
                return -ENOMEM;
596
 
597
        fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
598
                        lu->tgt->node_id, lu->generation, device->max_speed,
599
                        lu->command_block_agent_address + SBP2_AGENT_RESET,
600
                        &zero, sizeof(zero), complete_agent_reset_write, t);
601
 
602
        return 0;
603
}
604
 
605
static void sbp2_release_target(struct kref *kref)
606
{
607
        struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
608
        struct sbp2_logical_unit *lu, *next;
609
        struct Scsi_Host *shost =
610
                container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
611
 
612
        list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
613
                if (lu->sdev)
614
                        scsi_remove_device(lu->sdev);
615
 
616
                sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
617
                                SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
618
                fw_core_remove_address_handler(&lu->address_handler);
619
                list_del(&lu->link);
620
                kfree(lu);
621
        }
622
        scsi_remove_host(shost);
623
        fw_notify("released %s\n", tgt->unit->device.bus_id);
624
 
625
        put_device(&tgt->unit->device);
626
        scsi_host_put(shost);
627
}
628
 
629
static struct workqueue_struct *sbp2_wq;
630
 
631
static void sbp2_reconnect(struct work_struct *work);
632
 
633
static void sbp2_login(struct work_struct *work)
634
{
635
        struct sbp2_logical_unit *lu =
636
                container_of(work, struct sbp2_logical_unit, work.work);
637
        struct Scsi_Host *shost =
638
                container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
639
        struct scsi_device *sdev;
640
        struct scsi_lun eight_bytes_lun;
641
        struct fw_unit *unit = lu->tgt->unit;
642
        struct fw_device *device = fw_device(unit->device.parent);
643
        struct sbp2_login_response response;
644
        int generation, node_id, local_node_id;
645
 
646
        generation    = device->card->generation;
647
        node_id       = device->node->node_id;
648
        local_node_id = device->card->local_node->node_id;
649
 
650
        if (sbp2_send_management_orb(lu, node_id, generation,
651
                                SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
652
                if (lu->retries++ < 5) {
653
                        if (queue_delayed_work(sbp2_wq, &lu->work,
654
                                               DIV_ROUND_UP(HZ, 5)))
655
                                kref_get(&lu->tgt->kref);
656
                } else {
657
                        fw_error("failed to login to %s LUN %04x\n",
658
                                 unit->device.bus_id, lu->lun);
659
                }
660
                kref_put(&lu->tgt->kref, sbp2_release_target);
661
                return;
662
        }
663
 
664
        lu->generation        = generation;
665
        lu->tgt->node_id      = node_id;
666
        lu->tgt->address_high = local_node_id << 16;
667
 
668
        /* Get command block agent offset and login id. */
669
        lu->command_block_agent_address =
670
                ((u64) (response.command_block_agent.high & 0xffff) << 32) |
671
                response.command_block_agent.low;
672
        lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
673
 
674
        fw_notify("logged in to %s LUN %04x (%d retries)\n",
675
                  unit->device.bus_id, lu->lun, lu->retries);
676
 
677
#if 0
678
        /* FIXME: The linux1394 sbp2 does this last step. */
679
        sbp2_set_busy_timeout(scsi_id);
680
#endif
681
 
682
        PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
683
        sbp2_agent_reset(lu);
684
 
685
        memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
686
        eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
687
        eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
688
 
689
        sdev = __scsi_add_device(shost, 0, 0,
690
                                 scsilun_to_int(&eight_bytes_lun), lu);
691
        if (IS_ERR(sdev)) {
692
                sbp2_send_management_orb(lu, node_id, generation,
693
                                SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
694
                /*
695
                 * Set this back to sbp2_login so we fall back and
696
                 * retry login on bus reset.
697
                 */
698
                PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
699
        } else {
700
                lu->sdev = sdev;
701
                scsi_device_put(sdev);
702
        }
703
        kref_put(&lu->tgt->kref, sbp2_release_target);
704
}
705
 
706
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
707
{
708
        struct sbp2_logical_unit *lu;
709
 
710
        lu = kmalloc(sizeof(*lu), GFP_KERNEL);
711
        if (!lu)
712
                return -ENOMEM;
713
 
714
        lu->address_handler.length           = 0x100;
715
        lu->address_handler.address_callback = sbp2_status_write;
716
        lu->address_handler.callback_data    = lu;
717
 
718
        if (fw_core_add_address_handler(&lu->address_handler,
719
                                        &fw_high_memory_region) < 0) {
720
                kfree(lu);
721
                return -ENOMEM;
722
        }
723
 
724
        lu->tgt  = tgt;
725
        lu->sdev = NULL;
726
        lu->lun  = lun_entry & 0xffff;
727
        lu->retries = 0;
728
        INIT_LIST_HEAD(&lu->orb_list);
729
        INIT_DELAYED_WORK(&lu->work, sbp2_login);
730
 
731
        list_add_tail(&lu->link, &tgt->lu_list);
732
        return 0;
733
}
734
 
735
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
736
{
737
        struct fw_csr_iterator ci;
738
        int key, value;
739
 
740
        fw_csr_iterator_init(&ci, directory);
741
        while (fw_csr_iterator_next(&ci, &key, &value))
742
                if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
743
                    sbp2_add_logical_unit(tgt, value) < 0)
744
                        return -ENOMEM;
745
        return 0;
746
}
747
 
748
static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
749
                              u32 *model, u32 *firmware_revision)
750
{
751
        struct fw_csr_iterator ci;
752
        int key, value;
753
 
754
        fw_csr_iterator_init(&ci, directory);
755
        while (fw_csr_iterator_next(&ci, &key, &value)) {
756
                switch (key) {
757
 
758
                case CSR_DEPENDENT_INFO | CSR_OFFSET:
759
                        tgt->management_agent_address =
760
                                        CSR_REGISTER_BASE + 4 * value;
761
                        break;
762
 
763
                case CSR_DIRECTORY_ID:
764
                        tgt->directory_id = value;
765
                        break;
766
 
767
                case CSR_MODEL:
768
                        *model = value;
769
                        break;
770
 
771
                case SBP2_CSR_FIRMWARE_REVISION:
772
                        *firmware_revision = value;
773
                        break;
774
 
775
                case SBP2_CSR_LOGICAL_UNIT_NUMBER:
776
                        if (sbp2_add_logical_unit(tgt, value) < 0)
777
                                return -ENOMEM;
778
                        break;
779
 
780
                case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
781
                        if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
782
                                return -ENOMEM;
783
                        break;
784
                }
785
        }
786
        return 0;
787
}
788
 
789
static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
790
                                  u32 firmware_revision)
791
{
792
        int i;
793
        unsigned w = sbp2_param_workarounds;
794
 
795
        if (w)
796
                fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
797
                          "if you need the workarounds parameter for %s\n",
798
                          tgt->unit->device.bus_id);
799
 
800
        if (w & SBP2_WORKAROUND_OVERRIDE)
801
                goto out;
802
 
803
        for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
804
 
805
                if (sbp2_workarounds_table[i].firmware_revision !=
806
                    (firmware_revision & 0xffffff00))
807
                        continue;
808
 
809
                if (sbp2_workarounds_table[i].model != model &&
810
                    sbp2_workarounds_table[i].model != ~0)
811
                        continue;
812
 
813
                w |= sbp2_workarounds_table[i].workarounds;
814
                break;
815
        }
816
 out:
817
        if (w)
818
                fw_notify("Workarounds for %s: 0x%x "
819
                          "(firmware_revision 0x%06x, model_id 0x%06x)\n",
820
                          tgt->unit->device.bus_id,
821
                          w, firmware_revision, model);
822
        tgt->workarounds = w;
823
}
824
 
825
static struct scsi_host_template scsi_driver_template;
826
 
827
static int sbp2_probe(struct device *dev)
828
{
829
        struct fw_unit *unit = fw_unit(dev);
830
        struct fw_device *device = fw_device(unit->device.parent);
831
        struct sbp2_target *tgt;
832
        struct sbp2_logical_unit *lu;
833
        struct Scsi_Host *shost;
834
        u32 model, firmware_revision;
835
 
836
        shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
837
        if (shost == NULL)
838
                return -ENOMEM;
839
 
840
        tgt = (struct sbp2_target *)shost->hostdata;
841
        unit->device.driver_data = tgt;
842
        tgt->unit = unit;
843
        kref_init(&tgt->kref);
844
        INIT_LIST_HEAD(&tgt->lu_list);
845
 
846
        if (fw_device_enable_phys_dma(device) < 0)
847
                goto fail_shost_put;
848
 
849
        if (scsi_add_host(shost, &unit->device) < 0)
850
                goto fail_shost_put;
851
 
852
        /* Initialize to values that won't match anything in our table. */
853
        firmware_revision = 0xff000000;
854
        model = 0xff000000;
855
 
856
        /* implicit directory ID */
857
        tgt->directory_id = ((unit->directory - device->config_rom) * 4
858
                             + CSR_CONFIG_ROM) & 0xffffff;
859
 
860
        if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
861
                               &firmware_revision) < 0)
862
                goto fail_tgt_put;
863
 
864
        sbp2_init_workarounds(tgt, model, firmware_revision);
865
 
866
        get_device(&unit->device);
867
 
868
        /*
869
         * We schedule work to do the login so we can easily
870
         * reschedule retries. Always get the ref before scheduling
871
         * work.
872
         */
873
        list_for_each_entry(lu, &tgt->lu_list, link)
874
                if (queue_delayed_work(sbp2_wq, &lu->work, 0))
875
                        kref_get(&tgt->kref);
876
        return 0;
877
 
878
 fail_tgt_put:
879
        kref_put(&tgt->kref, sbp2_release_target);
880
        return -ENOMEM;
881
 
882
 fail_shost_put:
883
        scsi_host_put(shost);
884
        return -ENOMEM;
885
}
886
 
887
static int sbp2_remove(struct device *dev)
888
{
889
        struct fw_unit *unit = fw_unit(dev);
890
        struct sbp2_target *tgt = unit->device.driver_data;
891
 
892
        kref_put(&tgt->kref, sbp2_release_target);
893
        return 0;
894
}
895
 
896
static void sbp2_reconnect(struct work_struct *work)
897
{
898
        struct sbp2_logical_unit *lu =
899
                container_of(work, struct sbp2_logical_unit, work.work);
900
        struct fw_unit *unit = lu->tgt->unit;
901
        struct fw_device *device = fw_device(unit->device.parent);
902
        int generation, node_id, local_node_id;
903
 
904
        generation    = device->card->generation;
905
        node_id       = device->node->node_id;
906
        local_node_id = device->card->local_node->node_id;
907
 
908
        if (sbp2_send_management_orb(lu, node_id, generation,
909
                                     SBP2_RECONNECT_REQUEST,
910
                                     lu->login_id, NULL) < 0) {
911
                if (lu->retries++ >= 5) {
912
                        fw_error("failed to reconnect to %s\n",
913
                                 unit->device.bus_id);
914
                        /* Fall back and try to log in again. */
915
                        lu->retries = 0;
916
                        PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
917
                }
918
                if (queue_delayed_work(sbp2_wq, &lu->work, DIV_ROUND_UP(HZ, 5)))
919
                        kref_get(&lu->tgt->kref);
920
                kref_put(&lu->tgt->kref, sbp2_release_target);
921
                return;
922
        }
923
 
924
        lu->generation        = generation;
925
        lu->tgt->node_id      = node_id;
926
        lu->tgt->address_high = local_node_id << 16;
927
 
928
        fw_notify("reconnected to %s LUN %04x (%d retries)\n",
929
                  unit->device.bus_id, lu->lun, lu->retries);
930
 
931
        sbp2_agent_reset(lu);
932
        sbp2_cancel_orbs(lu);
933
 
934
        kref_put(&lu->tgt->kref, sbp2_release_target);
935
}
936
 
937
static void sbp2_update(struct fw_unit *unit)
938
{
939
        struct sbp2_target *tgt = unit->device.driver_data;
940
        struct sbp2_logical_unit *lu;
941
 
942
        fw_device_enable_phys_dma(fw_device(unit->device.parent));
943
 
944
        /*
945
         * Fw-core serializes sbp2_update() against sbp2_remove().
946
         * Iteration over tgt->lu_list is therefore safe here.
947
         */
948
        list_for_each_entry(lu, &tgt->lu_list, link) {
949
                lu->retries = 0;
950
                if (queue_delayed_work(sbp2_wq, &lu->work, 0))
951
                        kref_get(&tgt->kref);
952
        }
953
}
954
 
955
#define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
956
#define SBP2_SW_VERSION_ENTRY   0x00010483
957
 
958
static const struct fw_device_id sbp2_id_table[] = {
959
        {
960
                .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
961
                .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
962
                .version      = SBP2_SW_VERSION_ENTRY,
963
        },
964
        { }
965
};
966
 
967
static struct fw_driver sbp2_driver = {
968
        .driver   = {
969
                .owner  = THIS_MODULE,
970
                .name   = sbp2_driver_name,
971
                .bus    = &fw_bus_type,
972
                .probe  = sbp2_probe,
973
                .remove = sbp2_remove,
974
        },
975
        .update   = sbp2_update,
976
        .id_table = sbp2_id_table,
977
};
978
 
979
static unsigned int
980
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
981
{
982
        int sam_status;
983
 
984
        sense_data[0] = 0x70;
985
        sense_data[1] = 0x0;
986
        sense_data[2] = sbp2_status[1];
987
        sense_data[3] = sbp2_status[4];
988
        sense_data[4] = sbp2_status[5];
989
        sense_data[5] = sbp2_status[6];
990
        sense_data[6] = sbp2_status[7];
991
        sense_data[7] = 10;
992
        sense_data[8] = sbp2_status[8];
993
        sense_data[9] = sbp2_status[9];
994
        sense_data[10] = sbp2_status[10];
995
        sense_data[11] = sbp2_status[11];
996
        sense_data[12] = sbp2_status[2];
997
        sense_data[13] = sbp2_status[3];
998
        sense_data[14] = sbp2_status[12];
999
        sense_data[15] = sbp2_status[13];
1000
 
1001
        sam_status = sbp2_status[0] & 0x3f;
1002
 
1003
        switch (sam_status) {
1004
        case SAM_STAT_GOOD:
1005
        case SAM_STAT_CHECK_CONDITION:
1006
        case SAM_STAT_CONDITION_MET:
1007
        case SAM_STAT_BUSY:
1008
        case SAM_STAT_RESERVATION_CONFLICT:
1009
        case SAM_STAT_COMMAND_TERMINATED:
1010
                return DID_OK << 16 | sam_status;
1011
 
1012
        default:
1013
                return DID_ERROR << 16;
1014
        }
1015
}
1016
 
1017
static void
1018
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1019
{
1020
        struct sbp2_command_orb *orb =
1021
                container_of(base_orb, struct sbp2_command_orb, base);
1022
        struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1023
        int result;
1024
 
1025
        if (status != NULL) {
1026
                if (STATUS_GET_DEAD(*status))
1027
                        sbp2_agent_reset(orb->lu);
1028
 
1029
                switch (STATUS_GET_RESPONSE(*status)) {
1030
                case SBP2_STATUS_REQUEST_COMPLETE:
1031
                        result = DID_OK << 16;
1032
                        break;
1033
                case SBP2_STATUS_TRANSPORT_FAILURE:
1034
                        result = DID_BUS_BUSY << 16;
1035
                        break;
1036
                case SBP2_STATUS_ILLEGAL_REQUEST:
1037
                case SBP2_STATUS_VENDOR_DEPENDENT:
1038
                default:
1039
                        result = DID_ERROR << 16;
1040
                        break;
1041
                }
1042
 
1043
                if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1044
                        result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1045
                                                           orb->cmd->sense_buffer);
1046
        } else {
1047
                /*
1048
                 * If the orb completes with status == NULL, something
1049
                 * went wrong, typically a bus reset happened mid-orb
1050
                 * or when sending the write (less likely).
1051
                 */
1052
                result = DID_BUS_BUSY << 16;
1053
        }
1054
 
1055
        dma_unmap_single(device->card->device, orb->base.request_bus,
1056
                         sizeof(orb->request), DMA_TO_DEVICE);
1057
 
1058
        if (scsi_sg_count(orb->cmd) > 0)
1059
                dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1060
                             scsi_sg_count(orb->cmd),
1061
                             orb->cmd->sc_data_direction);
1062
 
1063
        if (orb->page_table_bus != 0)
1064
                dma_unmap_single(device->card->device, orb->page_table_bus,
1065
                                 sizeof(orb->page_table), DMA_TO_DEVICE);
1066
 
1067
        orb->cmd->result = result;
1068
        orb->done(orb->cmd);
1069
}
1070
 
1071
static int
1072
sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1073
                     struct sbp2_logical_unit *lu)
1074
{
1075
        struct scatterlist *sg;
1076
        int sg_len, l, i, j, count;
1077
        dma_addr_t sg_addr;
1078
 
1079
        sg = scsi_sglist(orb->cmd);
1080
        count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1081
                           orb->cmd->sc_data_direction);
1082
        if (count == 0)
1083
                goto fail;
1084
 
1085
        /*
1086
         * Handle the special case where there is only one element in
1087
         * the scatter list by converting it to an immediate block
1088
         * request. This is also a workaround for broken devices such
1089
         * as the second generation iPod which doesn't support page
1090
         * tables.
1091
         */
1092
        if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1093
                orb->request.data_descriptor.high = lu->tgt->address_high;
1094
                orb->request.data_descriptor.low  = sg_dma_address(sg);
1095
                orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1096
                return 0;
1097
        }
1098
 
1099
        /*
1100
         * Convert the scatterlist to an sbp2 page table.  If any
1101
         * scatterlist entries are too big for sbp2, we split them as we
1102
         * go.  Even if we ask the block I/O layer to not give us sg
1103
         * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1104
         * during DMA mapping, and Linux currently doesn't prevent this.
1105
         */
1106
        for (i = 0, j = 0; i < count; i++) {
1107
                sg_len = sg_dma_len(sg + i);
1108
                sg_addr = sg_dma_address(sg + i);
1109
                while (sg_len) {
1110
                        /* FIXME: This won't get us out of the pinch. */
1111
                        if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1112
                                fw_error("page table overflow\n");
1113
                                goto fail_page_table;
1114
                        }
1115
                        l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1116
                        orb->page_table[j].low = sg_addr;
1117
                        orb->page_table[j].high = (l << 16);
1118
                        sg_addr += l;
1119
                        sg_len -= l;
1120
                        j++;
1121
                }
1122
        }
1123
 
1124
        fw_memcpy_to_be32(orb->page_table, orb->page_table,
1125
                          sizeof(orb->page_table[0]) * j);
1126
        orb->page_table_bus =
1127
                dma_map_single(device->card->device, orb->page_table,
1128
                               sizeof(orb->page_table), DMA_TO_DEVICE);
1129
        if (dma_mapping_error(orb->page_table_bus))
1130
                goto fail_page_table;
1131
 
1132
        /*
1133
         * The data_descriptor pointer is the one case where we need
1134
         * to fill in the node ID part of the address.  All other
1135
         * pointers assume that the data referenced reside on the
1136
         * initiator (i.e. us), but data_descriptor can refer to data
1137
         * on other nodes so we need to put our ID in descriptor.high.
1138
         */
1139
        orb->request.data_descriptor.high = lu->tgt->address_high;
1140
        orb->request.data_descriptor.low  = orb->page_table_bus;
1141
        orb->request.misc |=
1142
                COMMAND_ORB_PAGE_TABLE_PRESENT |
1143
                COMMAND_ORB_DATA_SIZE(j);
1144
 
1145
        return 0;
1146
 
1147
 fail_page_table:
1148
        dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1149
                     orb->cmd->sc_data_direction);
1150
 fail:
1151
        return -ENOMEM;
1152
}
1153
 
1154
/* SCSI stack integration */
1155
 
1156
static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1157
{
1158
        struct sbp2_logical_unit *lu = cmd->device->hostdata;
1159
        struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1160
        struct sbp2_command_orb *orb;
1161
        unsigned max_payload;
1162
        int retval = SCSI_MLQUEUE_HOST_BUSY;
1163
 
1164
        /*
1165
         * Bidirectional commands are not yet implemented, and unknown
1166
         * transfer direction not handled.
1167
         */
1168
        if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1169
                fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1170
                cmd->result = DID_ERROR << 16;
1171
                done(cmd);
1172
                return 0;
1173
        }
1174
 
1175
        orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1176
        if (orb == NULL) {
1177
                fw_notify("failed to alloc orb\n");
1178
                return SCSI_MLQUEUE_HOST_BUSY;
1179
        }
1180
 
1181
        /* Initialize rcode to something not RCODE_COMPLETE. */
1182
        orb->base.rcode = -1;
1183
        kref_init(&orb->base.kref);
1184
 
1185
        orb->lu   = lu;
1186
        orb->done = done;
1187
        orb->cmd  = cmd;
1188
 
1189
        orb->request.next.high   = SBP2_ORB_NULL;
1190
        orb->request.next.low    = 0x0;
1191
        /*
1192
         * At speed 100 we can do 512 bytes per packet, at speed 200,
1193
         * 1024 bytes per packet etc.  The SBP-2 max_payload field
1194
         * specifies the max payload size as 2 ^ (max_payload + 2), so
1195
         * if we set this to max_speed + 7, we get the right value.
1196
         */
1197
        max_payload = min(device->max_speed + 7,
1198
                          device->card->max_receive - 1);
1199
        orb->request.misc =
1200
                COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1201
                COMMAND_ORB_SPEED(device->max_speed) |
1202
                COMMAND_ORB_NOTIFY;
1203
 
1204
        if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1205
                orb->request.misc |=
1206
                        COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1207
        else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1208
                orb->request.misc |=
1209
                        COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1210
 
1211
        if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1212
                goto out;
1213
 
1214
        fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1215
 
1216
        memset(orb->request.command_block,
1217
               0, sizeof(orb->request.command_block));
1218
        memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1219
 
1220
        orb->base.callback = complete_command_orb;
1221
        orb->base.request_bus =
1222
                dma_map_single(device->card->device, &orb->request,
1223
                               sizeof(orb->request), DMA_TO_DEVICE);
1224
        if (dma_mapping_error(orb->base.request_bus))
1225
                goto out;
1226
 
1227
        sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1228
                      lu->command_block_agent_address + SBP2_ORB_POINTER);
1229
        retval = 0;
1230
 out:
1231
        kref_put(&orb->base.kref, free_orb);
1232
        return retval;
1233
}
1234
 
1235
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1236
{
1237
        struct sbp2_logical_unit *lu = sdev->hostdata;
1238
 
1239
        sdev->allow_restart = 1;
1240
 
1241
        if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1242
                sdev->inquiry_len = 36;
1243
 
1244
        return 0;
1245
}
1246
 
1247
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1248
{
1249
        struct sbp2_logical_unit *lu = sdev->hostdata;
1250
 
1251
        sdev->use_10_for_rw = 1;
1252
 
1253
        if (sdev->type == TYPE_ROM)
1254
                sdev->use_10_for_ms = 1;
1255
 
1256
        if (sdev->type == TYPE_DISK &&
1257
            lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1258
                sdev->skip_ms_page_8 = 1;
1259
 
1260
        if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1261
                sdev->fix_capacity = 1;
1262
 
1263
        if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1264
                blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1265
 
1266
        return 0;
1267
}
1268
 
1269
/*
1270
 * Called by scsi stack when something has really gone wrong.  Usually
1271
 * called when a command has timed-out for some reason.
1272
 */
1273
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1274
{
1275
        struct sbp2_logical_unit *lu = cmd->device->hostdata;
1276
 
1277
        fw_notify("sbp2_scsi_abort\n");
1278
        sbp2_agent_reset(lu);
1279
        sbp2_cancel_orbs(lu);
1280
 
1281
        return SUCCESS;
1282
}
1283
 
1284
/*
1285
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1286
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1287
 *
1288
 * This is the concatenation of target port identifier and logical unit
1289
 * identifier as per SAM-2...SAM-4 annex A.
1290
 */
1291
static ssize_t
1292
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1293
                            char *buf)
1294
{
1295
        struct scsi_device *sdev = to_scsi_device(dev);
1296
        struct sbp2_logical_unit *lu;
1297
        struct fw_device *device;
1298
 
1299
        if (!sdev)
1300
                return 0;
1301
 
1302
        lu = sdev->hostdata;
1303
        device = fw_device(lu->tgt->unit->device.parent);
1304
 
1305
        return sprintf(buf, "%08x%08x:%06x:%04x\n",
1306
                        device->config_rom[3], device->config_rom[4],
1307
                        lu->tgt->directory_id, lu->lun);
1308
}
1309
 
1310
static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1311
 
1312
static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1313
        &dev_attr_ieee1394_id,
1314
        NULL
1315
};
1316
 
1317
static struct scsi_host_template scsi_driver_template = {
1318
        .module                 = THIS_MODULE,
1319
        .name                   = "SBP-2 IEEE-1394",
1320
        .proc_name              = sbp2_driver_name,
1321
        .queuecommand           = sbp2_scsi_queuecommand,
1322
        .slave_alloc            = sbp2_scsi_slave_alloc,
1323
        .slave_configure        = sbp2_scsi_slave_configure,
1324
        .eh_abort_handler       = sbp2_scsi_abort,
1325
        .this_id                = -1,
1326
        .sg_tablesize           = SG_ALL,
1327
        .use_clustering         = ENABLE_CLUSTERING,
1328
        .cmd_per_lun            = 1,
1329
        .can_queue              = 1,
1330
        .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1331
};
1332
 
1333
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1334
MODULE_DESCRIPTION("SCSI over IEEE1394");
1335
MODULE_LICENSE("GPL");
1336
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1337
 
1338
/* Provide a module alias so root-on-sbp2 initrds don't break. */
1339
#ifndef CONFIG_IEEE1394_SBP2_MODULE
1340
MODULE_ALIAS("sbp2");
1341
#endif
1342
 
1343
static int __init sbp2_init(void)
1344
{
1345
        sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1346
        if (!sbp2_wq)
1347
                return -ENOMEM;
1348
 
1349
        return driver_register(&sbp2_driver.driver);
1350
}
1351
 
1352
static void __exit sbp2_cleanup(void)
1353
{
1354
        driver_unregister(&sbp2_driver.driver);
1355
        destroy_workqueue(sbp2_wq);
1356
}
1357
 
1358
module_init(sbp2_init);
1359
module_exit(sbp2_cleanup);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.